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Executive Summary

This report describes the research activity in the Seventh Framework Programme, Theme 3 “In-
formation and Communication Technologies”, STREP research projectHierarchical and Dis-
tributed Model Predictive Control of Large Scale Systems- HD-MPC, focusing on WP2 -
“Definition of the hierarchical architecture for control design”, task 2.1“Literature survey” and
task 2.2 “Methods for system decomposition and hierarchical control architectures”.
The report is organized in three main chapters:

• Chapter 1 reviews a number of approaches based on Model PredictiveControl for the design
of decentralized, distributed and hierarchical control architectures for large scale systems.
Starting from the analysis of completely decentralized systems, attention is then focused on
distributed control systems, where the local regulators can exchange information to reach a
consensus on their actions, or where a high level coordinator is used. The review considers
also the main approaches to the design of hierarchical control, used with theaim to control
a system described at different levels of accuracy or to cope with an intrinsic hierarchical
structure of the plant. Finally, the problem of coordinating a number of dynamically inde-
pendent systems with coupling constraints is considered. For all the structures reviewed, the
underlying rationale, their merits and limitations are discussed, the main references to the
literature are reported and some future developments are suggested.

• Chapter 2 presents a number of methods for system partitioning and model reduction. First,
the main selection criteria of the input-output pairings suitable for a subsequent design of
decentralized control structures are briefly described. They are based on the Relative Gain
Array method, and on a number of variations proposed in the literature, as well as on the
analysis of the controllability and observability gramians. The final part of thechapter is
devoted to summarize the most efficient techniques for model order reduction. This problem
is important in the design of hierarchical control structures where the regulators at the higher
levels of the structure are designed starting from quite simple models of the plantunder
control, which typically represent its behavior at low frequency.

• Chapter 3 describes the model and the simulator of a complex chemical benchmark, where
the plant is made by three reactors and three distillation columns. The presence of recir-
culating flows makes the system strongly interacting, so that the design of a decentral-
ized/distributed control system is difficult. In the considered configuration, the overall
model of the plant has 183 state variables, 6 inputs and 6 outputs. The modelobtained
through numerical linearization around an equilibrium is then used to test someof the meth-
ods for system partitioning described in the previous chapter. References to the open soft-
ware code are reported in the Appendix.
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Chapter 1

Architectures for distributed and
hierarchical control with MPC

Technological and economical reasons motivate the development of process plants, manufacturing
systems and traffic networks with an ever increasing complexity. These large scale systems, often
composed by many interacting subsystems, can be difficult to control with a centralized control struc-
ture due to the required inherent computational complexity, due to robustness and reliability problems
and due to communication bandwidth limitations. For all these reasons, many distributed control
structures have been developed and applied over the last forty years.Among them, it is worth men-
tioning completely decentralized structures, distributed control systems with exchange of information
between local regulators, and hierarchical structures. Due to the wide range of the problems con-
sidered and of the goals to be achieved, it is not always trivial to properly classify all the proposed
solutions and to judge their merits and limitations. The aim of this Chapter is to review the main ap-
proaches adopted, to propose a classification criterion and to provide a wide list of references focusing
the attention on the methods based on the Model Predictive Control (MPC) approach, see e.g. [50].
The reason for this choice is due to the ever increasing popularity of MPC inthe process industry
and in other fields, such as road traffic control, distribution systems, manufacturing systems, and to
its capability to handle static and dynamic constraints on the plant variables. Moreover, in distributed
control systems it is easy for any local regulator designed with MPC to predict its future control ac-
tions and to transmit them to neighboring local control units. This information is often fundamental
to achieve performance comparable to those ideally provided by a centralized control structure.
The Chapter is organized as follows. In Section 1.1 completely decentralizedcontrol structures are
considered and some fundamental references in the field are reported together with a description of the
very few results available concerning decentralized MPC. Section 1.2 describes the main approaches
proposed so far to the design of distributed MPC systems, where informationis transmitted among
local regulators to achieve global stability and performance results. Section 1.3 is devoted to introduce
a hierarchical control structure where the action of local (decentralized) regulators is coordinated by
an algorithm operating at a higher level. The main ideas underlying the designof this coordinator
are summarized together with the approaches adopted in the MPC literature. Section 1.4 deals with
hierarchical multilayer systems, i.e. control systems made by a number of control algorithms work-
ing at different time scales. Multilayer structures are useful either to control plants characterized by
significantly different dynamics or to use different models of the same plantwith the aim to optimize
a number of criteria. Both these situations are described and the available results are summarized.
Distributed MPC algorithms have also been proposed to coordinate totally independent systems in
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Figure 1.1: Decentralized control of a two input (u1,u2) - two output (y1,y2) system.

order to achieve a common target and to deal with joint constraints. These cases and the proposed
solutions are reviewed in Section 1.5. Finally, Section 1.6 briefly describes some open issues, which
are partially considered in the following chapters.

1.1 Decentralized control

In decentralized control, see Figure 1.1, both the control (inputu) and the controlled (outputy) vari-
ables are grouped into disjoint sets. Then, these sets are coupled to produce non overlapping pairs for
which local regulators are designed to operate in a completely independentfashion. The design prob-
lem is trivial when the interactions (static or dynamic) among the inputs and the outputs of different
pairs are weak, while it is well known that strong interactions can even prevent one from achieving
stability and/or performance with a decentralized control structure. Classical textbooks dealing with
decentralized control are [87], [47], while a milestone paper in the field is [81]. More recently, decen-
tralized control has been considered in the papers [88], [7], [14], which also report an up-to-date list
of references.
A decentralized state-feedback MPC algorithm for nonlinear discrete-time systems has been proposed
in [52], where closed loop stability is obtained with the inclusion of a contractionconstraint in the op-
timization problem to be solved at any time instant. In [72] a stabilizing state-feedback regulator for
nonlinear discrete-time systems is derived by looking at the plant interactionsas perturbations (dis-
turbances) to be rejected, by designing robust MPC algorithms [53] and by resorting to Input to State
Stability (ISS) concepts, see e.g. [41].

1.2 Distributed control

In distributed control structures, like the one shown in Figure 1.2, it is assumed that some informa-
tion is transmitted among the local regulators, so that each one of them has someknowledge on the
behavior of the others. In distributed MPC algorithms, the information transmittedtypically consists
of the future predicted control and states computed locally, so that any local regulator can predict the
mutual effects of the actions of the others over the considered prediction horizon.

Within the wide set of distributed MPC algorithms proposed in the literature, a further classi-
fication can be made depending on the topology of the communication network. Specifically, the
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Figure 1.2: Distributed control of a two input (u1,u2) - two output (y1,y2) system.

following cases can be considered:

• information is transmitted (and received) by any local regulator to all the others (distributed/fully
connectedalgorithms);

• information is transmitted (and received) by any local regulator to a given subset of the others
(distributed/partially connectedalgorithms).

A distributed/partially connected information structure can be convenient in the case of large scale
systems made up by a great number of loosely connected subsystems. In these cases, limiting the
information exchange among directly interacting subsystems produces a negligible performance de-
terioration. An interesting discussion on this point referring to chemical processes is reported in [78].
The exchange of information among local regulators can be made according to different protocols:

• information is transmitted (and received) by the local regulators only once within each sampling
time (distributed/noniterativealgorithms);

• information can be transmitted (and received) by the local regulators many timeswithin the
sampling time (distributed/iterativealgorithms).

It is apparent that the amount of information available to the local regulatorswith distributed/iterative
algorithms is much higher, so that an overall iterative procedure can be set-up to (hopefully) arrive to
a global consensus on the actions to be taken within the sampling interval. To thisregard however, a
further classification has to be considered:

• distributed algorithms where each local regulator minimizes a local performance index (dis-
tributed/independentalgorithms);

• distributed algorithms where each local regulator minimizes a global cost function (distributed/cooperating
algorithms).

As discussed in [95] (see also [96]) by means of game theory considerations (see [8]), it is appar-
ent that in iterative distributed/independent algorithms each local regulatortends to move towards a
Nash equilibrium, while iterative distributed/cooperating methods seek to achieve the Pareto optimal
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solution provided by an ideal centralized control structure1. However, Nash equilibria can even be
unstable and far from the Pareto optimal solution, so that specific constraints have to be included in
the MPC problem formulation to guarantee closed-loop stability.

As for the MPC algorithms published in the literature, the state feedback method described in
[11] (see also [33]), for discrete-time linear systems belongs to the set ofdistributed/independent,
noniterative algorithms. A stability constraint is also included in the problem formulation, although
stability can be verified only a-posteriori with an analysis of the resulting closed-loop dynamics. Nash
equilibrium solutions are searched in the distributed/independent, iterative,fully connected methods
developed in [17], [45] for discrete-time unconstrained linear systems represented by input-output
models. Linear discrete-time systems are also considered in [95], where aniterative, cooperating
method with many interesting properties is presented. In particular, the proposed approach guarantees
the attainment of the global (Pareto) optimum when the iterative procedure converges, but still ensures
closed-loop stability and feasibility if the procedure is stopped at any intermediate iterate.
A partially connected, noniterative, independent distributed MPC algorithmfor discrete-time nonlin-
ear systems has been presented in [34]. The approach consists of describing the effect of the inter-
connections among the subsystems as disturbances acting on the local models.The values of these
disturbances can be predicted from the predicted state trajectories broadcasted by the local regulators.
Then, a min-max approach aimed at minimizing local cost functions under the worst-case disturbance
allows one to compute parametrized distributed control laws. A feasibility property is proven together
with convergence to a set. It is believed that the method could be further developed according to many
recent results on closed-loop robust MPC, see e.g. [51], [53].
A distributed/independent, noniterative, partially connected MPC algorithm guaranteeing stability for
nonlinear continuous-time systems has been presented in [18], where information is only transmitted
among neighboring subsystems. The stabilizing properties of the method proposed in [18] heavily
rely on the assumption that the mutual dynamic interactions among the subsystems are limited and
on a consistency constraint included in the MPC problem formulation forcingthe actual input and
state sequences to not differ too much from their predicted values. The feasibility and stability proofs
are based on the techniques described in [58] and share many ideas with the robust open-loop MPC
algorithms developed in [13], [46], [53].
Relying on the methods for distributed state estimation and control presented in [60] and [61], dis-
tributed algorithms have been described in [94] and [93], while an extension of these techniques based
on MPC has been described in [56].
A distributed, partially connected and independent MPC algorithm for linear discrete-time systems
has been described in [1], [2], where conditions for the a-posterioristability analysis are given also in
the case of communication failures among the local control units.
Finally, it is worth noting that the classification proposed here could be based also on other character-
istics of the system under control, such as the presence/absence of coupled (joint) constraints in the
various problem formulations.

1In game theory, a non cooperative Nash equilibrium of two (or more) players, is such that there no player can increase
their utility pay-off by choosing a different strategy, given that any other player is going to change their strategy. A cooper-
ative Pareto equilibrium is such that there is no other outcome that makes every player at least as well off and at least one
player strictly better off. That is, a Pareto Optimal outcome cannot be improved upon without hurting at least one player.
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Figure 1.3: Hierarchical scheme for coordination of two local regulators.

1.3 Hierarchical control for coordination

An alternative to the distributed control schemes described in the previous section consists of con-
sidering a two level hierarchical control structure, such as the one shown in Figure 1.3, where an
algorithm at the higher level coordinates the actions of local regulators placed at a lower level and
possibly designed with MPC.

The design of the coordinator has been extensively studied over the lastforty years, see e.g. the old
but still fundamental books [57], [24]. The basic idea is to describe the overall system under control as
composed by a number of subsystems linked through some interconnecting variables, i.e. the inputs
of a given subsystem are the outputs of another one. Then, for any subsystem an optimization problem
is solved with MPC by minimizing a suitable local cost function under local state, input and output
constraints. If the computed local solutions satisfy the constraints imposed bythe interconnecting
variables, that is if there is coherence among the values of the interconnecting variables computed by
the local regulators, the procedure is concluded. Otherwise, an iterative “price coordination” method
is used: the coordinator sets the prices, which coincide with the Lagrange multipliers of the coher-
ence constraints in the global optimization problem, by assuming as given the state, input and output
variables defined by the local regulators. In turn, these optimal prices are sent to the low level local
optimizers which take them as given and recompute the optimal trajectories of thestate, input and
output variables over the considered prediction horizon. The iterations are stopped when the intercon-
necting variables satisfy the required coherence conditions. This conceptual iterative procedure must
be specialized to guarantee its convergence as well as some properties ofthe resulting final solution.
In the context of MPC, coordination schemes for discrete-time systems havebeen described in [62],
[65], where also different communication schemes among the local regulators (agents) are considered.
The proposed algorithms have been used for control of transportation networks, see [64], and power
networks, see [63]. Another two layer structure developed with similar arguments has been presented
in [38], which also describes an analogous two-level structure for the state estimation phase.
Finally, it must be noted that similar two-level structures are widely used in the intensive stream of
research in computer science/artificial intelligence related to the so-called “autonomous agents”. Ba-
sically, a number of agents (controllers) must negotiate their actions througha “negotiator” until a
consensus on their actions is attained, see e.g. [3]. The ideas behind this approach have been special-
ized to the control design problem in [90].
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Figure 1.4: Control of a system with slow and fast dynamics.

1.4 Hierarchical control of multilayer systems

In hierarchical multilayer systems, the control action is performed by a number of regulators working
at different time scales. This can be useful at least in two cases: when the overall process under
control is characterized by different dynamic behavior, i.e. by slow andfast dynamics, or in plantwide
optimization when optimization and control algorithms working at a different rates compute both the
optimal targets and the effective control actions to be applied. These cases are considered in this
section.

1.4.1 Hierarchical control of multi time scale systems

Many systems are characterized by clearly separable slow and fast dynamics, see e.g. [10] and [31] for
a couple of significant industrial examples concerning a waste water treatment plant [10] and a green-
house control problem [31]. In these cases, the control can be performed at two different time scales.
A regulator acting at lower frequencies computes both the control actions of the manipulated variables
which have a long-term effect on the plant, i.e. the “slow” control variables, and the reference values
of the “fast” control variables, states and outputs. A second regulator takes these computed reference
values as inputs and solves a tracking problem at a higher rate. A conceptual scheme of this architec-
ture for a two layer structure is reported in Figure 1.4.
Two time scale systems are often referred to as singularly perturbed systems, and have been widely
studied in the past, see e.g. [43]. However, in the context of MPC, systematic design methods guar-
anteeing well assessed properties are still lacking and only ad-hoc solutions tailored to some specific
industrial problems have been described, see again [10] and [31]. Inthe development of new algo-
rithms for these systems, one could take advantage from the multirate MPC methods developed in
[82], [44], [85]. However, in these papers, the multirate nature of the problem usually stems from the
adopted output sampling or input updating mechanisms.

1.4.2 Control of systems with hierarchical structure

Many industrial, economical or sociological systems can be described by ahierarchical structure, see
e.g. the visionary book [57]. The highest layer of the hierarchy corresponds to a dynamical system
with slow dynamics. This system can be controlled by looking at its behavior over a long time scale,
and its computed control inputs must be effectively provided by subsystemsplaced at lower layers
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Figure 1.5: Hierarchical structure of a three layer system.

of the hierarchy and characterized by faster dynamics. In turn, these subsystems must be controlled
at a higher rate and can be placed at an intermediate layer of hierarchy. An example of a three layer
structure is reported in Figure 1.5.

As a matter of fact, in these structures the regulator at a higher layer computes its desired control
inputs, which are the reference signals of the immediately lower layer. In order to guarantee that these
computed references are feasible for the lower layer dynamics and constraints, as well as to consider
the presence of disturbances acting at the lower layer, some additional information has often to be
transmitted bottom-up. Moreover, the regulators of the subsystems at the lower layer must guarantee
the solution of the corresponding tracking problems with an adequate level of accuracy, so that the
mismatch between what is required by the higher level and what is provided by the lower one does
not destroy some fundamental properties, such as stability and performance.
From a control engineering point of view, this multilayer hierarchical structure corresponds to a clas-
sical cascade feedback control system, see e.g. Figure 1.6 where again a three layer structure is
considered and the inner loops correspond to faster dynamics, while the outer loop corresponds to
the control of the system at the highest layer. In industrial control systems, the fastest dynamics is
usually associated to the actuators, while the slowest one describes the process under control. The
project of cascade control systems is typically made according to a frequency decoupling principle:
the dynamics of the feedback loops are so different that in the design of the regulator for a given loop
all the other loops can be assumed to be at the steady state. Moreover, no information is transmitted
from inner to outer loops (dotted lines in Figure 1.6), so that any layer is unaware of the possibility of
the lower layers to fulfill its requirements. In the design phase, the inner loops are often closed with
standard PI-PID regulators, while MPC is used to design the control algorithm for the slowest system.
When the frequency decoupling principle cannot be assumed, or when also the control of the subsys-
tems at the lower layers of the hierarchy requires a more careful design,MPC can be used at any layer,
with the clear advantage to consider the corresponding input, state and output constraints. Although
this possibility has many potential advantages, few works have exploited it in depth. In particular, in
[83] linear models are used to describe the systems at any layer and information is passed bottom-up
to relax the requirements of the higher layer when infeasibility occurs at the lower layer. Overactu-
ated cascade linear systems are analyzed in [84], while [70] deals with the tracking problem for plants
at the higher layer described by Wiener models. In all these papers, the regulators at any layer are
independently designed by resorting to robust MPC algorithms, so that the design phase turns out to
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Figure 1.6: Three layer cascade control structure.

be completely decoupled even when the frequency decoupling principle does not hold.

1.4.3 Hierarchical control for plantwide optimization

In the process industry it is very common to design the overall control system according to the hi-
erarchical structure shown in Figure 1.7, see e.g. [5], [86], [71]. At the higher layer, a Real Time
Optimization (RTO) problem is solved to compute the optimal plant operating conditions with respect
to a performance index usually representing an economic criterion. At this stage a detailed, although
static, physical nonlinear model of the system is used. At the lower layer a simpler linear dynamic
model of the same system, often derived by means of identification experiments, is used to design a
regulator with MPC, guaranteeing that the target values transmitted from the higher layer are attained.
Also in this case, the lower level can transmit bottom-up information on constraints and performance.
Note that, although the previous approach is very popular in process control, in other contexts, such
as in air traffic management systems, a somehow dual point of view is taken, see e.g. [69]. In these
cases, at the higher level a simpler and more abstract model is consideredto predict the long term
behavior of the system and to optimize a given cost function over a long time horizon. At the lower
level, a more accurate model is used to compute the current control actions by looking at a shorter time
horizon. Also in this case, the lower level can transmit to the upper one information on constraints
and performance.

In the multilayer structure of Figure 1.7, the design of the RTO module plays a fundamental role.
In fact, even when it is based on a static model of the process, some main issues must be considered.
First, the adopted model has to be periodically updated (adapted) by means of some kind of recon-
ciliation procedure to deal with changing operating conditions due to slow disturbances. Second,
coherence must be guaranteed between the more abstract model (typicallya low order one) used in
the design phase at the upper layer and the model (a more complex one) used at the lower layer for
the MPC implementation, see e.g. [98]. Third, accurate steady-state target optimization must be done
to guarantee that the input and output steady state references computed by RTO are feasible and as
close as possible to the desired set-points, see e.g. [75] and the results recently reported in [77], [76]
to solve this feasibility problem.

Many papers have been published in the MPC literature dealing with the hierarchical structure of
Figure 1.7. Among them, a recent and interesting survey on the subject is reported in [91], where also
a wide list of references is provided. It is also worth recalling [20], where a thorough discussion on
the merits, limitation and implementation aspect of RTO is reported. A RTO procedure based on a
dynamic model of the process is described in [36]. An attempt to mix the two layers of the hierarchy
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Figure 1.8: Hierarchical control structure for plantwide control and optimization.

of Figure 1.7, i.e. to integrate (nonlinear) steady-state optimization and (linear) MPC control is de-
scribed in [99]. Steady-state target calculation for a set of local MPC regulators has been considered
in [12] by adopting an approach based on coordination and similar to the onediscussed in Section 4,
while a high level coordinator maximizing the plant throughput based on the information provided by
lower level local MPC regulators has been described in [4].
Despite the large amount of results on RTO, it is believed that much work has still to be done to
extend many theoretical results (stability, performance, robustness) nowadays available for standard
MPC implementations to the considered hierarchical structure, see e.g. [54], [53].

Finally, a couple of remarks are in order. First, it can be noted that the conceptual scheme of Figure
1.7 can be given the equivalent and more “control oriented” representation of Figure 1.8, where a two
layer structure is considered and each layer uses a different system model (SaandSb) in the design
of the corresponding regulator. Second, it is worth pointing out that the conceptual classification
adopted here, which distinguishes between the schemes of Figures 1.5 and1.7, is not always clear
in the technical literature. In fact, a very popular picture is the one depictedin Figure 1.9 where
the regulators (PI-PID) at the lowest layer control the actuators, so that they make reference to the
actuators’ models (as in Subsection 1.4.1), while conceptually, the two higherlevels make reference
to the plantwide optimization problem described in this subsection.

1.5 Coordinated control of independent systems

So far, large scale systems made by interacting subsystems have been considered. Another significant
scenario is related to the problem of coordinating a number of decoupled systems (agents) which must
cooperate to achieve a given goal, i.e. to globally minimize a cost function subject to joint constraints.
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Figure 1.9: A popular representation of plantwide control.

Also in these cases, instead of solving a unique centralized control problem, in principle it is possible
to solve a number of local optimization problems and to coordinate the local actions of the agents by
means of a suitable exchange of information. It is apparent that the designof local, but coordinated
control algorithms shares many features with the problem considered in Section 1.2, so that the more
detailed classifications proposed there will not be replicated here.
In the context of MPC, the coordination of independent nonlinear discrete time systems with delayed
intercommunication has been considered in [25], which also provides stabilityresults obtained by
resorting to Input to State Stability (ISS) concepts. In [40], [39], any agent (a node of a graph)
is described as a discrete-time nonlinear system which knows the state of its neighborhoods without
delay. The local performance indices weight the state and the inputs of the neighborhoods and the local
future control values are computed over the considered horizon to predict the transient of the local
state. Stability is achieved with a zero terminal constraint, as usual in MPC, see[54]. The problem
considered in [79] consists of controlling a number of disturbed subsystems described by discrete-
time linear models with independent dynamics but with coupling constraints. The proposed solution
is based on a non iterative procedure where any regulator solves its ownoptimization problem (with
local performance indices) but knows the most recent or the predicted plans for the other subsystems.
Constraint satisfaction is guaranteed by a constraint tightening procedure similar to the one already
used in [13] and in [46]; feasibility and convergence are guaranteed.An extension of this approach
based on recent results on robust MPC design (see [55]) is reportedin [92]. The formation control
of vehicles with independent second order nonlinear continuous-time dynamics and coupling cost
functions has been solved with the Receding Horizon approach also in [19], while in [27] a similar
problem (independent cost functions) is solved for double integratorsby looking to a Nash equilibrium
solution.
In all the above mentioned approaches the final goal, for example the equilibrium point to be reached,
is specified a-priori. On the contrary, in another class of coordinated control problems the subsystems
must negotiate on-line their final outcome starting from a partial knowledge ofthe overall system,
for example the state of their neighbors. These are usually called “consensus problems” and have a
wide number of potential applications, such as flocking, rendezvous, formation control and alignment
problems or coordination of sensor networks. Among the ever increasingnumber of publications on
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this subject, it is possible to recall here that the problem has been formulatedand solved in [32] for
systems described by a single integrator, while fundamental contributions have been given in [59]. In
the context of MPC, preliminary results have been reported in [35], while the consensus problem for
single and double integrator dynamics has been solved with stabilizing MPC approaches in [21], [22],
[23].

1.6 Related design problems and conclusions

This chapter has reviewed a number of architectures and algorithms for control of large scale systems.
Concerning the implementation of the proposed distributed and hierarchical solutions, many funda-
mental problems must be considered to obtain an adequate level of performance. Among them, the
following are of paramount importance.

• New algorithms with guaranteed properties. Many theoretical contributions are required to de-
velop efficient algorithms with guaranteed properties, such as stability and performance. In
particular, this is true for decentralized MPC, where very few results areavailable, and for the
design of hierarchical MPC regulators for multilayer systems. It is believedthat in all the con-
sidered cases, one could take advantage of recent results on robustMPC, see e.g. [53], and on
the analysis of interconnected systems with a “small gain” approach, see [15]. However, robust
MPC and small gain properties naturally lead to very conservative results,with performance
not acceptable in real world applications.

• Selection of the control structure. Criteria must be developed for the selection of the proper
control structure based on the relative improvements achievable by increasing the complexity.
For example, it is apparent that a distributed controller can stabilize systems which cannot be
stabilized by a decentralized one because of the presence of fixed modes.However, if stability
can be provided by both the schemes, it is still to be evaluated in term of performance whether
it is worth considering a more complex structure, which requires more information to be trans-
mitted among local control units. A second issue concerns the comparison ofthe performance
provided by distributed regulators (see Section 1.2) with respect to those achievable with the
hierarchical approach for coordination described in Section 1.3.

• Reconfigurable control structures and hybrid systems.With reference to the hierarchical struc-
tures described in Section 1.4.2, one should explore the possibility to reconfigure the system,
for example by adding or removing actuators and sensors (“plug and playcontrol”, see [42]).
This could be useful to consider time varying performance requirements and to control systems
described by a hybrid model. For example, consider the problem of the optimal management
of the start-up of a thermal power plant. During this phase, the control configuration and the
control objectives are usually very different from those to be considered during standard operat-
ing conditions. Preliminary work on hierarchical control of hybrid systemshas been described
in [49], where however non predictive approaches have been taken. Finally, a flexible control
configuration can better cope with the requirement of a high tolerance to faults.

• Optimization algorithms. Many optimization algorithms have been developed to solve effi-
ciently the minimization problems related to linear and nonlinear centralized MPC, see e.g.
[9], [16]. On the contrary, optimization methods for distributed and hierarchical MPC are still
lacking. This is an important and critical point where significant improvementsare expected.
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• Distributed state estimation. Distributed control algorithms call for the availability of dis-
tributed state estimators guaranteeing the asymptotic convergence of the localstate estimates.
Preliminary results have been reported in e.g. [68], [67], [37], wheresensor networks have been
considered. However, further developments are required to include in the state estimation prob-
lem the knowledge on state and noise constraints, as well as to link the convergence properties
of the local estimates to local or global observability properties. A predictive approach can be
taken also for this problem by resorting to the ideas underlying the moving horizon estimators
described in [58], [73], [74].

• System partitioning. In the design of decentralized and distributed control systems (Sections
1.1 and 1.2), eventually coordinated as described in Section 1.3, the process under control must
be a-priori partitioned into subsystems properly defined to reduce the dynamic couplings and
to facilitate the control design. In some cases partitioning is natural in view of the process
layout, for example chemical plants are often composed by a series of process units with some
recirculating products, see [78]. In other cases, the partitioning can bemade by means of an
input-output analysis based on the Relative Gain Array and related indices, see [89], [26], [66],
[28], [28], [30], or on an analysis in the state space based on gramians, see e.g. [97], [80].
Temporal decomposition and model reduction, useful for the design of thehierarchical control
systems described in Section 1.4, can be performed with singular value decomposition, see
again [89].

• Synchronization and communication protocols.Whenever the adopted control structure requires
an exchange of information among local regulators, at the same or at different layers of a hier-
archical structure, the achievable performance strongly depends on the adopted implementation
(see e.g. the discussion in [65]) and communication protocols. Moreover,some fundamental
problems related to these aspects must be considered, such as low transmission frequency or
loss of information. The interested reader is referred to [6] for an insightful discussion on these
aspects.
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Chapter 2

Partitioning methods for distributed and
hierarchical control

This chapter surveys a number of approaches for the solution of the following problems for linear
systems:

• decomposition of a dynamical system into a number of weakly interacting subsystems;

• representation of a dynamical system at different levels of abstraction for the design of decen-
tralized/distributed or hierarchical control systems.

These problems can be solved according to different rules and goals:

1. A functional/spatial decomposition aimed at minimizing the control system complexity while
still guaranteeing a given level of performance. In this context, it is necessary to choose the
proper controlled outputs; to select the inputs to manipulate; to partition the systeminto weakly
interacting subsystems, to define the control structure, to synthesize the control law.

2. A temporal decomposition where different dynamic behaviors (fast/slow) of the system must
be recognized so as to facilitate the synthesis of controllers working at different time scales.
Another important problem concerns the representation of the system at different levels of ab-
straction where the higher levels describe the slow system dynamics. This representation natu-
rally leads to the design of hierarchical control systems where the top control level defines the
system operating conditions usually according to economic criteria, while the lower levels are
more related to the control of the plant units.

The chapter is organized as follows. In Section 2.1 the methods based on theRelative Gain Array
(RGA) for the design of decentralized controllers are described. Section 2.2 presents the decompo-
sition approaches based on the analysis of the controllability and observability gramians. Finally,
Section 2.3 is devoted to describe the most popular and effective model reduction techniques.

2.1 Decomposition methods based on the Relative Gain Array

Consider a linear, continuous-time, invariant and square system described by

Σ :

{
ẋ(t) = Ax(t)+Bu(t)
y(t) = Cx(t)+Du(t)

(2.1)
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wherex(t) ∈ ℜn is the state,u(t) ∈ ℜm is the input variable andy(t) ∈ ℜm is the output. The transfer
function of the system isG(s) = C(sI−A)−1B+D, with steady-state gainG0 = G(0), whose individ-
ual elements are denoted bygi j , i, j = 1,2, . . . ,m.

Assumption 1 G(s) has stable poles and no invariant zeros at the origin.

2.1.1 Relative Gain Array

The system Relative Gain Array (RGA), in the following denoted byΛ, is defined as

Λ = G0× (G−1
0 )′ (2.2)

where the symbol× represents the element by element multiplication. The elements

λi j =
(∂yi/∂u j)ul 6= jconstant

(∂yi/∂u j)yk6=iconstant
(2.3)

of the matrixΛ represent the ratio between the process gain for the pairingyi −u j in an isolated loop
and the process gain in the same loop when all other loops are closed. As discussed in [89], the matrix
Λ has a number of interesting properties. Among them:

• its elements are independent of the adopted units;

• the sum of the elements of any row is equal to 1;

• the sum of the elements of any column is equal to 1;

• it is equal to the identity ifG(s) is a diagonal or a triangular matrix.

In the selection of the pairings among input and output variables for the design of SISO (Single In-
put Single Output) decentralized controllers, it is advisable to select those pairs that maintain roughly
the same gain in open-loop and closed-loop configurations, i.e.λi j ≃ 1, while the pairings for which
a change of sign of these gains occurs, i.e.λi j < 0, must be avoided. By recalling the meaning of the
elements ofΛ, the two following main rules are recommended:

i) select the input-output pairs such that the corresponding elements ofΛ are positive and close to 1;

ii) avoid the input-output pairs corresponding to negative elements ofΛ.

Extensions of the basic definition to consider

• nonsquare systems,

• analysis of the coupling at a given frequency,

are also reported in [89], together with the analysis of the connections between the Relative Gain
Array and the achievable performances of decentralized control schemes. Concerning this point, in
the wide literature available, it is worth mentioning [26], where a wide list of references is also given.
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2.1.2 Niederlinski index

In many cases, from the analysis of the RGA it is not possible to find a unique, dominating, solution
to the problem of pairing input and output variables, but a number of apparently equivalent solutions
can be recognized. In these cases, it is convenient to use the Niederlinski index (NI), see [66], defined
as follows. For a given choice of the input-output pairings, letG0 be the matrix obtained fromG0

by setting to zero all the elements which do not correspond to the selectedm input-output pairs. The
Niederlinski indexNG0

(G0) is

NG0
(G0) =

det(G0)

det(G0)
(2.4)

and the following criterion can be followed:
among the possible sets of pairings selected by looking at the RGA, choosethe pairings with a positive
Niederlinski index.
It can be proved that a decentralized control configuration corresponding to a positive value ofNG0

(G0)
has the potentiality to beIntegral Controllable with Integrity(ICI), where the ICI property is defined
as follows:

Definition 1 The system isIntegral Controllable with Integrity(ICI) if there exists a controller such
that the closed loop system is stable and such that each individual loop may be detuned independently
by a factorεi , εi ∈ [0,1], without introducing instability.

2.1.3 Partial Relative Gain

The method has been proposed in [28] to provide necessary conditions for a control configuration
to be ICI and to derive pairing rules in cases where the conventional useof the RGA fails or is
ambiguous. Moreover, it can be useful to select cases where block-decentralized control structures
must be preferred to those based on conventional SISO regulators. Inorder to introduce the Partial
Relative Gain (PRG) index, first assume that the matricesG0 andΛ are partitioned as follows

G0 =

[
G11 G12

G21 G22

]
,Λ =

[
Λ11 Λ12

Λ21 Λ22

]
(2.5)

whereG11 andΛ11 have the same dimensions, whileG22 is assumed to be nonsingular. It is possible
to show that

Λ11 = G11× (G
−1
11 )′,G11 = G11−G12G

−1
22 G21 (2.6)

The matrixG11 is the gain matrix of the subsystemG11(s) when the rest of the system, i.e.G22(s),
is closed under integral feedback control. Then, the procedure based on the PRG approach can be
summarized as follows:

• from the analysis of the RGA choose an input-output pairing (i.e.u j −yi),

• reorder the matrixG0 as in (2.5) so thatG22 corresponds to the selected input-output pair,

• recompute the RGA for the other subsystem (G11) given thatG22 is in an integral feedback loop,
i.e. ΛP = G11× (G

−1
11 )′,

• from the analysis ofΛP choose a new pairing,
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• repeat the procedure until all theu−y pairs have been chosen.

In so doing, the selection of the input-output pairs is done by considering that some loops have
been already closed, that is PRG is an attempt to consider closed-loop information related to the
decentralized control structure progressively chosen. Note however that the procedure is not uniquely
defined, since the (initial) choice of the pairu j −yi heavily influences all the subsequent steps. In any
case, the procedure closely resembles a typical approach in the design of a decentralized closed-loop
control system: once a loop has been closed, the project of the regulators for the other loops considers
the closed-loop system already defined. Finally, note that necessary conditions for ICI in terms of
PRG have been reported in [28].

2.1.4 Decomposed Relative Interaction Array

The Decomposed Relative Interaction Array (DRIA) is a method, first proposed in [29], aimed at
refining the results of the analysis performed with the RGA and NI indices. Associated to any element
of the static gain matrixG0 it is possible to define the matrix

Ψi j = ∆Gi j × (G−1
i j )′ (2.7)

whereGi j is the matrix of the static gains of the overall system with the i-th row and the j-th column
removed, while∆Gi j is the incremental process gain matrix of subsystemGi j when loopyi − u j is
closed, that is

∆Gi j = − 1
gi j

gi j
• jg

i j
i•

wheregi j is again the(i, j) element ofG0 and the vectorsgi j
• jg

i j
i• are theith row andjth column ofG0

with the elementgi j removed. Then,m×m DRIA matrices are associated to the system, each one of
them with dimensionm−1. Recalling that for any matrixϒ the 2-norm is defined by

‖ϒ‖2 = ρ(ϒ)1/2

whereρ(ϒ) is the spectral radius ofϒ, it is possible to compute a new matrixΩ whose element (i,j) is

ωi j = ‖Ψi j‖2

Finally, in addition to the previous rules concerning the analysis of RGA and NI, in [29] it is suggested
to consider the following one:

• choose the pairings that correspond to the smallestωi j values

2.1.5 Decomposed Relative Gain Array

The Decomposed Relative Gain Array (DRGA), proposed in [30], is a technique to evaluate the ef-
fectiveness of a loop pairing previously selected with the criteria based onRGA, NI, DRIA. The
procedure to compute the DRGA matrixΓ can be summarized as follows:

• select by means of RGA, NI and DRIA a given pairing of input and outputvariables,

• rearrange the matrixG(s) into Gr(s) so that the selected pairings correspond to the diagonal
elements ofGr(s),
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• compute the Relative Gain Array matrixΛr of Gr(s),

• compute the DRGA matrix asΓ = 0.5(diag(Λr)
−1Λr +Λrdiag(Λr)

−1).

The matrixΓ has the following properties:

i) it depends only on the steady-state gain of the system;

ii) it is scaling independent;

iv) if Gr(s) is diagonal or triangular,Γ is a zero matrix.

It is now possible to define theRelative Control Performance Index(RCPI), i.e. a tuning knob
ε ∈ [0,1], which indicates the confidence level on system overall control structures with respect to the
promising control structures.

The value ofε can be chosen according to the following design rules:

• ε = 0: a centralized control structure is preferred regardless of the complexity of the process;

• ε = 1: a fully decentralized controller is preferred;

• for small values ofε a block diagonal controller or a sparse controller are preferred.

Once the value ofε has been chosen, denoting byγik the (i,k) element ofΓ and bygr
ik the (i,k)

element ofGr(s), a dominant model̃Gr(s) to be used in the control design can be selected as follows:

G̃r(s) = {gr
ik|gr

ik = 0, i f |γik| < ε, i,k = 1,2, . . . ,n} (2.8)

Therefore, the value of the parameterε influences the choice of the single-input, single-output
transfer functions which are neglected in the definition of the dominant modelThe structure of the
resulting dominant model̃Gr(s). In turn, this choice obviously strongly impacts on the following
control design phase.

2.2 Decomposition methods based on Gramians

In order to quantify the interaction between a control loop and the others it ispossible to use the
notions of gramians, which describe controllability and observability properties of a given stable linear
system, see [97], [80].

Definition 2 For a stable system (2.1), the controllability gramian P and the observability gramian
Q are symmetric non negative definite matrices which satisfy the Lyapunov equations

AP+PA′ +BB′ = 0 A′Q+QA′ +C′C = 0

Alternatively, the matrices P and Q can be expressed as

P =
∫ ∞

0
eAtBB′eA′tdt Q=

∫ ∞

0
eA′tC′CeAtdt

Partitioning methods for distributed and hierarchical control 22



Chapter 2

The gramians quantify how hard it is to control and to observe the system states, and the ranks ofP
andQ are related to the dimensions of the controllable and observable subspace respectively.
Now consider the productPQ, it can be proven that its eigenvaluesλi , i = 1,2, . . . ,n, are non negative
and do not depend on the particular realization.

Definition 3 TheHankel Singular Values(HSV) of system (2.1) are defined as

σ (i)
H =

√
λ i i = 1, . . . ,n (2.9)

where theλi are ordered to obtainσ (1)
H ≥ σ (2)

H ≥ . . . ≥ σ (n)
H .

Note that the HSV can be related to a system norm through the following definition.

Definition 4 TheHankel Normof a system with transfer function G(s) is defined as

‖G(s)‖H =
√

λmax(PQ) = σ (1)
H (2.10)

Let b j be the j − th column of matrixB andci the i − th row of C. Define byPj andQi the control-
lability and observability gramians for the elementary system(A,b j ,ci ,0). Then the original system
controllability and observability gramiansP andQ can be written as (see [80])

P = Σm
j=1Pj Q = Σm

i=1Qi

and
PQ= Σm

j=1Σm
i=1PjQi

2.2.1 Participation Matrix

As shown in [80], in order to quantify the interaction between thej − th input and thei − th output it
is possible to consider the trace of the matrixPjQi , which has the following properties:

i) the trace of anyPjQi is non negative and state realization independent;

ii) the trace of any sum of termsPjQi is the sum of the traces of the individual terms;

iii) the trace of any sum of termsPjQi is monotonically non decreasing when new terms are added;

iv) the trace ofPjQi is equal to the sum of the squared HSV for the system with transfer function
G(s)i j

v) the trace ofPQ is larger than, or at least equal to, the trace of any sum of termsPjQi .

Define now theParticipation Matrix(PM) whose elements are

Φ = {φi j |φi j =
trace(PjQi)

trace(PQ)
} 0 < φi j < 1 (2.11)

with the property
Σm

i=1Σm
j=1φi j = 1

It follows that the “average” value of any elementφi j of PM is 1/m2, while if the element (i,j)
of PM is high (near to 1), thej-th input has a great influence on thei-th output. On the contrary, if
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φi j ≃ 0 the effect ofu j overyi is minor. In view of this consideration, an approximate simplified model
Gr(s) of the system can be obtained by forcing the elementsgri j (s) of Gr(s) to be equal togi j (s) if
φi j ≥ ε, 1 > ε ≥ 0 being a tuning knob which can be chosen equal to 1/m2 , and by setting them to
zero otherwise. Denoting byΣ the sum of the elementsφi j corresponding to the input-output pairs
included in the modelGr(s), an empirical rule of thumb to evaluate the quality of the model is to verify
thatΣ is greater than a given value, typically 0.7, while forΣ < 0.5 the quality of the approximation
is usually unacceptable.

Obviously, once the modelGr(s) has been chosen, its zero/nonzero pattern forces the structure of
the regulator to be designed.

For discrete time systems described by

Σ :

{
x(k+1) = Ax(k)+Bu(k)

y(k) = Cx(k)+Du(k)
(2.12)

all the previous considerations hold as well, but the gramians must be computed from the equations

A′PA−P+BB′ = 0 AQA′−Q+C′C = 0

Moreover, if the system has input or output time delays, some further considerations can be done
to refine the analysis, see again [80].

2.2.2 Hankel Interaction Index Array

Strictly related to the PM, it is possible to consider the Hankel Norm of the transfer functionG(s)
of the system, as shown in [97]. To this end, consider theHankel interaction index arraȳΣH whose
elements are

ΣHi j = ‖Gi j (s)‖H

whereGi j (s) is the(i, j)− th element ofG(s).
Matrix Σ̄H can be interpreted as a gain matrix relating the Hankel norms of inputs and outputs.

Similarly to the participation matrix PM, it takes the full dynamic effects of the systeminto account
and does not only focus on the steady-state performance as the RGA does.

To eliminate the effect of scaling, one can normalize the matrix in different ways, for example by
considering (as for RGA) the matrix

Σ̄H × (Σ̄′
H)−1

whose rows (columns) have elements which sum to one. From the analysis ofthe Hankel interaction
index array it is finally possible to choose the most appropriate control structure (fully decentralized,
sparse, centralized).

2.3 Model order reduction

The project of hierarchical systems where the higher levels of the hierarchy are designed on the basis
of simplified models of the plant under control calls for model reduction techniques. In this section,
the main algorithms for model reduction are briefly summarized. The presentation strictly follows the
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results reported in [89]. Let (2.1) be a balanced realization of the systemunder control, so that its
controllability and observability gramians are such that

P = Q = Σ = diag(σ1,σ2, . . . ,σn), σ1 ≥ σ2 ≥ . . . ≥ σn > 0 (2.13)

Moreover, partition the system matrices as

A =

[
A11 A12

A21 A22

]
, B =

[
B1

B2

]
, C =

[
C1 C2

]
(2.14)

whereA11 ∈ Rk,k, B1 ∈ Rk,m, C1 ∈ Rm,k. Correspondingly, the matrixΣ is

Σ =

[
Σ1 0
0 Σ2

]
(2.15)

whereΣ1 ∈ Rk,k.
The reduced order model obtained bybalance truncationis then described by the matrices(A11,B1,C1,D).

It is a balanced realization itself and its singular values are those ofΣ1. Moreover, lettingGk
a(s) the

corresponding transfer function, it results that

‖G(s)−Gk
a(s)‖∞ ≤ 2(σk+1 +σk+1 + . . .+σk+n) (2.16)

Another possibility for model reduction consists of considering the balanced residualization tech-
nique, where it is assumed ˙x2 = 0 (the “fast” dynamics is supposed to be always at the steady state, as
it is done in the analysis of singularly perturbed systems). Under this hypothesis, the reduced order
model is

Σ :

{
ẋ1(t) = Arx1(t)+Bru(t)
y(t) = Crx1(t)+Dru(t)

(2.17)

where

Ar = A11−A12A
−1
22 A21, Br = B1−A12A

−1
22 B2 (2.18)

Cr = C1−C2A−1
22 A21, Dr = D−C2A−1

22 B2 (2.19)

Balanced residualization enjoys the same error bound (2.16) of balance truncation. Moreover the
corresponding transfer functionGk

a(s) has the same static gain of the original system, i.e.Gk
a(0) =

G(0), so that it must be preferred to balanced truncation when an accurate model at low frequency is
required.
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Chapter 3

A chemical benchmark for distributed
and hierarchical control

This chapter describes the dynamic model of a large chemical plant typical of many industrial ap-
plications. The plant is composed by three binary distillation columns, three chemical reactors and
six chemical components. This system has been first studied in [48] and represents an interesting
benchmark for plantwide control of complex processes.

3.1 Dynamic model of the plant units

3.1.1 Dynamic model of the reactors

Consider a chemical reactor and assume that:

• all the energy phenomena are negligible;

• the hydraulic phenomena are all at the steady state;

• perfect mixing inside the reactor;

Define:

• qI j volumetric flow rate of thej − th input;

• cI ji concentration of thei− th component in thej − th input flow rate;

• V reactor volume;

• ci concentration inside the reactor of thei− th component;

• qO j volumetric flow rate of thej − th output;

• cO ji concentration of thei− th component in thej − th output flow rate;

• ni number of input components;

• n0 number of output components;

• nr number of reacting components;
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• k reaction constant;

The mass balance of thei− th component inside the reactor is then given by

dci(t)
dt

=
1
V
·
[

ni

∑
j=1

cI ji ·qI j −
no

∑
j=1

cO ji ·qO j

]
±k ·

nr

∏
r=1

cr (3.1)

Assuming that inside the reactor there aren components, the model will be described by a system
of n differential equations besides one more equation describing the hydraulicequilibrium, that is

ni

∑
j=1

qI j(t) =
no

∑
j=1

qO j(t) (3.2)

Finally, note that the dynamic model previously derived can be expressedin terms of molar frac-
tionsxi , instead of concentrationsci by defining

xi =
ci

∑n
j=1c j

(3.3)

Then, with an obvious meaning of symbols, the dynamic equations can be writtenas

dxi(t)
dt

=
1
V
·
[

ni

∑
j=1

xI ji ·qI j −
no

∑
j=1

xO ji ·qO j

]
±k ·

nr

∏
r=1

xr (3.4)

and

n

∑
j=1

x j = 1

3.1.2 Dynamic model of the columns

The simplified model of the tray distillation column here considered assumes that itis composed by
five sections:

1. condenser

2. enriching section

3. feed tray

4. stripping section

5. reboiler

where the enriching and stripping sections can be composed by a variable number of trays. A
schematic diagram of the column is shown in Figure 3.1, where:

1. V is the vapor flow rate;

2. R is the reflux flow rate;

3. D is the distillate flow rate;
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Figure 3.1: Schematic representation of a distillation column

4. B is the flow rate of the bottom product;

5. F is the feed flow rate;

6. xf i is the liquid molar fraction of thei− th component into the feed flow rate.

Assume that the mixture is formed byN components and let

• xi liquid molar fraction of thei− th component (i = 1,2, . . . ,N);

• yi vapor molar fraction of thei− th component (i = 1,2, . . . ,N);

• αi volatility of the i− th component (i = 1,2, . . . ,N);

• αi j relative volatility of the i − th component with respect to thej − th component (i, j =
1,2, . . . ,N).

Straightforward computations allow to conclude that the relation among the liquid and the vapor
molar fractions is given by the following set of linear equations




1+α1N
x1
xN

α1N
x1
xN

· · · α1N
x1
xN

α2N
x2
xN

1+α2N
x2
xN

· · · α2N
x2
xN

...
...

. ..
...

α(N−1)N
xN−1
xN

· · · · · · 1+α(N−1)N
xN−1
xN







y1
y2
...

yN


 =




α1N
x1
xN

α2N
x2
xN

...
α(N−1)N

xN−1
xN




(3.5)

The mathematical model of the column is derived under the fundamental assumption that the
energetic phenomena are negligible, so that only mass balance equations are used. Moreover, the
following simplifying hypothesis are introduced.

• the pressure inside the column is constant;

• the vapor flow rateV can be directly manipulated (the reboiler has no dynamics);
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• the liquid (R) and vapor (V) flow rates are constant inside the column;

• the hydraulic dynamics is negligible with respect to the dynamics of the concentrations;

• the vapor hold-up on the trays is negligible with respect to the liquid hold-up;

• the Murphee efficiency is constant for any (i− th) component and any (j − th) tray, that is

E j i =
y j i −y( j−1)i

y∗j i −y( j−1)i

= 1 (3.6)

wherey∗j i is given by:

y∗j i =
αiNxi

1+(αiN −1)xi
(3.7)

Define the following quantities:

• H j liquid hold-up in thej − th tray;

• Ha liquid hold-up in the feed tray;

• Na number of trays in the enriching section;

• Ne number of trays in the stripping section;

• x j i liquid molar fraction of thei− th component in thej − th tray;

• y j i vapor molar fraction of thei− th component in thej − th tray;

• xai liquid molar fraction of thei− th component in the feed tray;;

• xt i liquid molar fraction of thei− th component in the top product;

• xbi liquid molar fraction of thei− th component in the bottom product;

• F feed flow rate;

• xf i liquid molar fraction of thei− th component in the feed flow rate;

• αiN relative volatility of thei− th component with respect to theN− th component.

Denoting by the indexj = 1 the reboiler and by the indexj = Np the condenser and defining:

• x1i = xbi

• xNpi = xt i

• Np = Na +Ne+3 total number of trays, including reboiler and condenser

the mass balance for any tray and for anyi− th component is:

1. Static balance of the flow rates at the condenser:

V = R+D
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2. Static balance of the flow rates at the reboiler:

V +B = R+F

3. Dynamic balance at the reboiler:

H1i ẋ1i = −Vy1i +(R+F)x2i −Bx1i

4. dynamic balance in the stripping section (j=[2, Ne+1]):

H j i ẋ j i = (R+F)(x( j+1)i
−x j i)+V(y( j−1)i

−y j i)

5. dynamic balance at the feed tray:

Haẋai = Rx(Ne+3)i
− (R+F)xai +V(y(Ne+1)i

−yai)+Fxf i

6. dynamic balance in the enriching section (j=[Ne+3,Np−1]):

H j ẋ j i = R(x( j+1)i
−x j i)+V(y( j−1)i

−y j i)

7. dynamic balance at the condenser:

HNp ˙xNpi = Vy(Np−1)i
− (R+D)xNpi

The complete model of a distillation column withNp trays is then described by the above seven
equations, written for any component, besides the additional relations (3.5), (3.6) and (3.7).

3.2 Plant description

The plant is composed by three reactors,R1, R2 andR3, three distillation columns,C1, C2 andC3,
two recycle streams and six chemical components, namedA,B,C,D,E,F. The flow diagram of the
plant is shown in Figure 3.2.

3.2.1 Plant data and nominal inputs

The main plant variables used to obtain the results discussed in the following are now summarized.
These values can be easily modified by editing the Matlab files described in the Appendix.

Relative volatilities

αAF = 8, αBF = 6, αCF = 4, αDF = 2, αEF = 1.2

Reactor R1

k1 = 10[h−1] reaction constant;

VR1 = 1000[lb ·mol] reactor’s volume;

qIA = 100[ lb·mol
h ] fresh feed volumetric flow rate of component A;
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Figure 3.2: Flow diagram of the plant-R1, R2 R3 are the reactors,C1, C2, C3 are the distillation
columns,D1, D2, D3are the top products andB1, B2, B3are the bottom products.

qD1 = 80 [ lb·mol
h ] volumetric flow rate of distillateD1 from columnC1;

qD3 = 141[ lb·mol
h ] volumetric flow rate of distillateD3 from columnC3;

Reactor R2

k2 = 50[h−1] reaction constant;

VR2 = 850[lb ·mol] reactor’s volume;

qIE = 99.5 [ lb·mol
h ] fresh feed volumetric flow rate of component E;

Reactor R3

k3 = 141[h−1] reaction constant;

VR3 = 282[lb ·mol] reactor’s volume;

Distillation column C1

R1 = 330[ lb·mol
h ] reflux flow rate;

V1 = 410[ lb·mol
h ] vapor flow rate;

Na1 = 8 number of trays of the enriching section;

Ne1 = 8 number of trays of the stripping section;

Hr1 = 53.8 [lb ·mol] hold-up in the reboiler;

Hc1 = 33.6 [lb ·mol] hold-up in the condenser;

Har1 = 1.36 [lb ·mol] hold-up on the trays of the enriching section;

He1 = 1.63 [lb ·mol] hold-up on the trays of the stripping section;
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Hal1 = 1.36 [lb ·mol] hold-up on the feed tray.

Distillation column C2

R2 = 283[ lb·mol
h ] reflux flow rate;

V2 = 385[ lb·mol
h ] vapor flow rate;

Na2 = 8 number of trays of the enriching section;

Ne2 = 8 number of trays of the stripping section;

Hr2 = 100[lb ·mol] hold-up in the reboiler;

Hc2 = 32.1 [lb ·mol] hold-up in the condenser;

Har2 = 1.27 [lb ·mol] hold-up on the trays of the enriching section;

He2 = 1.39 [lb ·mol] hold-up on the trays of the stripping section;

Hal2 = 1.27 [lb ·mol] hold-up on the feed tray.

Distillation column C3

R3 = 141[ lb·mol
h ] reflux flow rate;

V3 = 282[ lb·mol
h ] vapor flow rate;

Na3 = 8 number of trays of the enriching section;

Ne3 = 8 number of trays of the stripping section;

Hr3 = 31.7 [lb ·mol] hold-up in the reboiler;

Hc3 = 100[lb ·mol] hold-up in the condenser;

Har3 = 0.837[lb ·mol] hold-up on the trays of the enriching section;

He3 = 1.04 [lb ·mol] hold-up on the trays of the stripping section;

Hal3 = 1.04 [lb ·mol] hold-up on the feed tray.

3.2.2 Equilibrium conditions

Given the plant configuration previously described and the nominal inputsconsidered, the following
equilibrium values have been computed.

Reactor R1

xR1−A = 0.2589 molar fraction of componentA inside the reactor;

xR1−B = 0.0356 molar fraction of componentB inside the reactor;

xR1−C = 0.2909 molar fraction of componentC inside the reactor;

xR1−D = 0.4146 molar fraction of componentD inside the reactor.

A chemical benchmark for distributed and hierarchical control 32



Chapter 3

Reactor R2

xR2−D = 0.148 molar fraction of componentD inside the reactor;

xR2−E = 0.0152 molar fraction of componentE inside the reactor;

xR2−F = 0.4184 molar fraction of componentF inside the reactor;

xR2−B = 0.4184 molar fraction of componentB inside the reactor.

Reactor R3

xR3−D = 0.133 molar fraction of componentD inside the reactor;

xR3−E = 0.0006 molar fraction of componentE inside the reactor;

xR3−F = 0.4332 molar fraction of componentF inside the reactor;

xR3−B = 0.4332 molar fraction of componentB inside the reactor.

Column C1

xC1−A(1) = 0.0325 molar fraction of componentA in the reboiler;

xC1−A(Np1) = 0.9425 molar fraction of componentA in the condenser;

xC1−B(1) = 0.0319 molar fraction of componentB in the reboiler;

xC1−B(Np1) = 0.0468 molar fraction of componentB in the condenser;

xC1−C(1) = 0.3837 molar fraction of componentC in the reboiler;

xC1−C(Np1) = 0.0107 molar fraction of componentC in the condenser;

xC1−D(1) = 0.5519 molar fraction of componentD in the reboiler;

xC1−D(Np1) = 0 molar fraction of componentC in the condenser.

Column C2

xC2−A(1) = 0 molar fraction of componentA in the reboiler;

xC2−A(Np1) = 0.0769 molar fraction of componentA in the condenser;

xC2−B(1) = 0.0001 molar fraction of componentB in the reboiler;

xC2−B(Np1) = 0.0754 molar fraction of componentB in the condenser;

xC2−C(1) = 0.0593 molar fraction of componentC in the reboiler;

xC2−C(Np1) = 0.8274 molar fraction of componentC in the condenser;

xC2−D(1) = 0.9406 molar fraction of componentD in the reboiler;
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xC2−D(Np1) = 0.0203 molar fraction of componentC in the condenser.

Column C3

xC3−B(1) = 0. molar fraction of componentB in the reboiler;

xC3−B(Np1) = 0.7046 molar fraction of componentB in the condenser;

xC3−D(1) = 0.0075 molar fraction of componentD in the reboiler;

xC3−D(Np1) = 0.2208 molar fraction of componentD in the condenser;

xC3−E(1) = 0.001 molar fraction of componentE in the reboiler;

xC3−E(Np1) = 0.0003 molar fraction of componentE in the condenser;

xC3−F(1) = 0.9915 molar fraction of componentF in the reboiler;

xC3−F(Np1) = 0.0743 molar fraction of componentF in the condenser.

3.2.3 Linearized model

The model, in the configuration considered, has 183 state variables. The linearized model, computed
through the numerical linearization procedures available in Matlab/Simulink hasa very sparse dy-
namic matrixA, as shown in Figure 3.3 where the zero-non zero pattern of its elements is reported,
reflecting the plant structure.

Figure 3.3: Matrix A of the linearized model

The eigenvalues of A are shown in Figure 3.4, as expected they are all inside the stability region
of the complex plane.

The variables to be controlled are:

• xC1−At molar fraction of componentA at the top product ofC1;

• xC1−Db molar fraction of componentD at the bottom product ofC1;
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Figure 3.4: Eigenvalues of the linearized model

• xC2−Ct molar fraction of componentC at the top product ofC1;

• xC2−Db molar fraction of componentD at the bottom product ofC2;

• xC3−Bt molar fraction of componentB at the top product ofC3;

• xC3−Fb molar fraction of componentF at the bottom product ofC3.

The selected control variables are:

• R1 reflux in C1;

• V1 vapor inC1;

• R2 reflux in C2;

• V2 vapor inC2;

• R3 reflux in C3;

• V3 vapor inC3.

The step responses of this (6x6) system are shown in Figure 3.5; it is apparent that the system
has strong interactions among the input and output variables, so that its control with a decentralized
control structure is particularly difficult. These interactions will be examined inthe following with
some of the tools described in Chapter 2.

3.3 Analysis of the interactions of the linearized model

The linearized model of the plant is used to test some of the interaction measures and decomposition
criteria described in the previous chapter. To this end, first note that the Relative Gain Array of the
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Figure 3.5: Step responses of the linearized model

linearized system is:



−1.366e−02 6.207e−03 3.574e−01 6.512e−01 8.093e−01 −8.104e−01

−9.690e−04 4.404e−04 5.999e−01 4.006e−01 −4.034e−02 4.032e−02

2.730 −1.730 1.170e−11 −1.402e−11 8.442e−11 −8.454e−11

−5.370e−03 8.891e−03 4.027e−02 −4.886e−02 −5.267 6.272

3.542e−06 −1.610e−06 −1.695e−05 1.677e−05 2.654 −1.654

−1.710 2.714 2.424e−03 −2.945e−03 2.844 −2.848




(3.8)

where a frame has been placed to the elements which are positive and significantly different from
zero. In view of this RGA, the possible input-output couplings are:

• CouplingCo1: u1−y3,u2−y6,u3−y1,u4−y2,u5−y5,u6−y4;

• CouplingCo2: u1−y3,u2−y6,u3−y2,u4−y1,u5−y5,u6−y4;

• CouplingCo3: u1−y3,u2−y6,u3−y4,u4−y1,u5−y5,u6−y2;

• CouplingCo4 :u1−y3,u2−y6,u3−y4,u4−y5,u5−y1,u6−y2.

The Niederlinski indexNI for each one of these pairings is:

• CouplingCo1 −→ NI1 = 2.58;

• CouplingCo2 −→ NI2 = 4.7;

• CouplingCo3 −→ NI3 = −1.09;

• CouplingCo4 −→ NI4 = 5.09x10−4.

This result shows that the third set of couplings must be avoided, since it corresponds to a negative
NI index. In order to select the best pairing among the remaining ones, it is possible to use thePartial
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Relative Gainmethod. To this end, note that the couplingu1− y3 is present in all the three possible
configurations. Once this loop has been closed, one obtains

Λ(Ḡ11)3xxxxx=




0.0023 0.4040 0.5953 1.1286 −1.1302
0.0002 0.5996 0.4003 −0.0911 0.0911
0.0033 0.0401 −0.0486 −5.2681 6.2734
−0.0000 −0.0000 0.0000 2.5671 −1.5671
0.9943 −0.0436 0.0530 2.6635 −2.6672




(3.9)

where the notationΛ(Ḡ11)3xxxxxmeans that the inputu1 controls the outputy3, all the other loops being
open. In view of the computedΛ(Ḡ11)3xxxxxmatrix, it is advisable to select the couplingu2−y6, since
the corresponding element is near to 1 (0.9943). By repeating the procedure to select the remaining
coupling, one gets:

Λ(Ḡ11)36xxxx=




−0.8610 1.8956 0.0539 −0.0885
1.8748 −0.8721 0.0042 −0.0069
−0.0138 −0.0235 −1.0916 2.1288
−0.0000 −0.0000 2.0334 −1.0334


 (3.10)

This matrix shows that the best coupling isu3 − y2 (which corresponds to the element (2,1) of
Λ(Ḡ11)36xxxx). The next computed matrix is

Λ(Ḡ11)362xxx =




1.0008 0.0004 −0.0012
−0.0008 −0.3527 1.3535
0.0000 1.3523 −0.3523


 (3.11)

which selects the couplingu4−y1 (which corresponds to the element (2,1) ofΛ(Ḡ11)362xxx). Finally,
by inspection of

Λ(Ḡ11)3621xx =

[
−0.0728 1.0728
1.0728 −0.0728

]
(3.12)

the two remaining couplingsu5−y5 andu6−y4 are chosen. In conclusion, the selected pairing is:

• u1−y3,u2−y6,u3−y2,u4−y1,u5−y5,u6−y4;

which corresponds to the physical variables:

• R1 7−→ cA1

• V1 7−→ cD1

• R2 7−→ cD2

• V2 7−→ cC2

• R3 7−→ cF3

• V3 7−→ cB3

This partitioning can then be used for the design of a decentralized controlstructure.
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Chapter 4

Conclusions

In view of the results reported in this report, the future activity within Work Package 2 will be devel-
oped along the following research lines.

• Development of a mathematical formulation of the control design problem with MPC suitable
for the description of many significant cases (decentralized, distributed and hierarchical sys-
tems, see Chapter 2).

• Extension of existing results to dynamically varying structures of the system under control, for
example due to the inclusion or the removal of sensor or actuators (plug and playoption).

• Analysis of the effects on the achievable performances when differentcommunication protocols
are used in distributed and hierarchical systems.

• Development of reduction/aggregation methods (see Chapter 3) tailored to the distributed frame-
work here considered.
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Appendix

The Matlab/Simulink (version 7.0.1) simulator of the chemical benchmark example can be down-
loaded at the internet address

ftp://ftp.elet.polimi.it/users/Riccardo.Scattolini/

In order to use the simulator, proceed as follows:

• run the Matlab fileChemBenchData.mwhich initializes all the plant parameters and all the
constant inputs. It is possible to edit this file and change anyone of these parameters.

• run the Simulink fileChemBench.mdl; note that in the simulator there is the block ”plots” where
all the variables are plotted and stored.
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