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Executive Summary

This report describes the research activity in the Seventh Framework Programme, Theme 3 “In-
formation and Communication Technologies”, STREP research projectHierarchical and Dis-
tributed Model Predictive Control of Large Scale Systems- HD-MPC, focusing on WP2 -
“Definition of the hierarchical architecture for control design” - task 2.2: “Definition of the con-
trol architecture”, task 2.3: ”Extension of the control architecture”, task 2.4: ”Multi-level models”.
The report is organized in five main chapters:

• Chapter 1 summarizes four main cases where hierarchical control can beused, i.e. cascade
systems, multi time scale systems, or system described at different levels of abstraction (see
also Deliverable D2.1), which have been considered in the report.

• Chapter 2 presents an approach to the design of hierarchical control systems with Model
Predictive Control (MPC). A mathematical formulation of the problem is givenby consid-
ering a three layers structure and different time scales.

• Chapter 3 describes two different communications protocol among the layers which have
been defined to coordinate the control actions computed at the different levels.

• Chapter 4 shows how the proposed algorithmic solution fits with the main structures adopted
for hierarchical control and described in Chapter 1.

• Chapter 5 is devoted to present a very simple worked example useful to illustrate how the
proposed methodology can be adapted to consider the different cases discussed in Chapter
1.
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Chapter 1

Chapter 1

Introduction

In Deliverable D2.1 it has been extensively discussed how hierarchical structures in control can be
used to cope with a number of industrial problems. Specifically, the following four relevant cases
have been identified:
Case 1.When the plant under control is composed by many process units, it is advisable to design
a high level regulator optimizing the overall performance and coordinating the underlying units. In
practice, the controller can be organized according to a cascade structure where the high level reg-
ulator computes the reference signals for the systems at the lower level, which in turn are equipped
with local controllers and provide the higher level with the required (control) actions. Additional in-
formation may be transmitted from the lower level to the upper one to guarantee that the coordinator
provides the lower level with feasible references.
Case 2.The synthesis problem for systems characterized by significantly different dynamic behaviors,
often called singularly perturbed [2], has been widely studied in the literature (see [1] for an industrial
example). The control action is usually due to two main contributions: a regulator working at low
frequency and accounting for the slow dynamics produces both the valueof the control variables with
a long term effect and the references (inputs and states) for another regulator working at an higher
frequency. In turn, the latter regulator computes the values of the manipulated variables with a short
term effect, so as to obtain a tighter control action and to reject disturbances.
Case 3.A hierarchical control scheme widely employed is the one adopted in the context of plantwide
control [4],[3] where different models of the system under control are used to design regulators work-
ing at slow and high frequencies. At the higher level of the hierarchy a simplified model is used
to compute the reference values for the lower level by minimizing a cost function usually based on
economic considerations. At the lower level a dynamic model is used for the synthesis of a regulator
(typically designed with MPC) guaranteeing the proper effective controlaction.
Case 4.A simplified version of the scheme described in case 3 consists of a top layer with a static
model of the system used to fix the set-point for the lower level controllers.

Although studies on the design of hierarchical control systems can be traced back to the early ‘70s
(see, e.g., [8]) and have received attention for many years [4], the problem of designing an overall
control system based on MPC and guaranteeing some fundamental properties, such as stability and
robustness, has not been fully solved yet and only partial results are available, see [11, 9].
In this direction, this report gives a mathematical formulation of the control design problem and
presents a possible solution with MPC that provides a unifying framework for the four cases listed
above. Specifically, the system under control is assumed to be describedby a three layers structure,
where each layer is characterized by a different dynamic behavior. For any layer, starting from the
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highest one which corresponds to the slowest representation of the system, an MPC problem is for-
mulated and its solution is passed to the lower layer until the procedure is completed. The results
contained in this report have been also described in [10].
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Chapter 2

Problem definition and control algorithm

The problem is formulated for the case of three layers systems. Nevertheless, the proposed approach
can be modified in a natural way to includen layers systems withn≥ 2.
Consider a system with different dynamic behaviors and described by thefollowing set of state equa-
tions:
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where thehigh levelstate and input variablesxf
s and uf

s are associated to a “slow” dynamics, the
middle levelvariablesxf

m anduf
m to a “medium” dynamics and thelow levelvariablesxf

f anduf
f to

a “fast” dynamics. The time indexkf is related to a base fast time scale, where the fastest dynamic
behaviors are adequately represented. Then, the superscriptf in the previous symbology means that
the state and input variables, as well as the transition functions, are associated to the fast time scale.
The state and control inputs are required to belong to given compact sets containing the origin as
interior point, i.e.,xf

s ∈ Xs, uf
s ∈ Us, xf

m ∈ Xm, uf
m ∈ Um, xf

f ∈ X f , uf
f ∈ U f .

In order to develop the multiscale MPC algorithm presented below, it is also worth introducing a
“medium” and a “slow” time scale by defining the time index of the medium time scalekm∈N so that
kf = νmkm (for some fixed positive integerνm), and the time index of the slow time scaleks ∈ N so
thatkm = ν ′

sks (for some fixed positive integerν ′
s), thuskf = νsks with νs = νmν ′

s.
The following assumption, concerning the update of the control variables,reflects the different

control objectives at different time scales:

Assumption 1 The control variable ufm is allowed to vary at every medium sampling period, i.e.,
uf

m(νmkm+ i) = uf
m(νmkm), i = 0, . . . ,νm−1. Such a common value is denoted by um(km), thus defining

a control signal in the medium time scale.
The control variable ufs is allowed to vary at every slow sampling period, i.e., uf

s(νsks+ i) = uf
s(νsks),

i = 0, . . . ,νs−1: such a common value is denoted by us(ks), thus defining a control signal in the slow
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time scale. Obviously, this means that uf
s is also constant over the medium sampling periods, hence

uf
s(νmkm+ i) = uf

s(νmkm), i = 0, . . . ,νm−1
(

such a common value is denoted by um
s (km)

)

as well as
us(ks) = um

s (ν ′
sks+ i) = um

s (ν ′
sks), i = 0, . . . ,ν ′

s−1. 3

We letxm
∗ (km) = xf

∗(νmkm) andxs
∗(ks) = xf

∗(νsks) be the sampling of the state variables according to
the medium and to the slow time scale, respectively (where “∗” is f , m or s, in turn). To simplify the
notation, we letxf (kf ) = xf

f (kf ), uf (kf ) = uf
f (kf ), xm(km) = xm

m(km) andxs(ks) = xs
s(ks).

According to Assumption 1 and to the notation introduced above, the dynamics of xm
s and xm

m
can easily (although implicitly, in the case of nonlinear systems) be described interms of suitable
functions f m

s and f m
m as follows:
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with
Um

f (km)=
[
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)]

.

In a similar way, the dynamics ofxs
s is described in terms of a suitable functionf s

s by

xs(ks+1) = f s
s
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s
m(ks),x

s
f (ks),us(ks),U

s
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, (2.3)

with
{

Us
m(ks)=

[

um(ν ′
sks) um(ν ′

sks+1) · · · um
(

ν ′
s(ks+1)−1

)]

Us
f (ks)=

[

uf (νsks) uf (νsks+1) · · · uf
(

νs(ks+1)−1
)]

.

With slight abuse of notation, we writeUm
f (km) = ūf to mean thatuf (νmkm+ i) = ūf ∀i = 0, . . . ,νm−1.

Analogous convention is set for the vectorsUs
m andUs

f .

MPC problem at the slow time scale

Since the dynamics are supposed to be increasingly faster at the middle and low levels, at any long
sampling time the control design for the higher level is carried out under the assumption that, along
the time interval[ks,ks+1[, the lower levels are at the steady state (say, the state and control variables
take suitable constant values ¯xm, ūm, x̄f andūf ). This position motivates the following

Definition 1 A 6-tuple(xs,us, x̄m, ūm, x̄f , ūf ) ∈ Xs×Us×Xm×Um×X f ×U f such that

{

x̄m = f m
m

(

xs, x̄m, x̄f ,us, ūm, ūf
)

x̄f = f f
f (xs, x̄m, x̄f ,us, ūm, ūf )

is said to bes-admissible.
A 4-tuple(xs,us, x̄m, ūm)∈Xs×Us×Xm×Um such that∃(x̄f , ūf )∈X f ×U f so that the correspond-
ing 6-tuple(xs,us, x̄m, ūm, x̄f , ūf ) is s-admissible is said to befeasible. 3
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Thus, the s-admissibility of a 6-tuple is related to the request that ¯xm and x̄f be equilibrium states
according to their “natural” dynamics (i.e.,f m

m and f f
f , respectively).

Assumption 2

1. ∀xs ∈ Xs, there exists at least one 5-tuple(us, x̄m, ūm, x̄f , ūf ) ∈ Us×Xm×Um×X f ×U f so
that the corresponding 6-tuple(xs,us, x̄m, ūm, x̄f , ūf ) is s-admissible.

2. If the 4-tuple(xs,us, x̄m, ūm) ∈ Xs×Us×Xm×Um is feasible, then there exists a unique pair
(x̄f , ūf ) ∈ X f ×U f so that the corresponding 6-tuple(xs,us, x̄m, ūm, x̄f , ūf ) is s-admissible.3

The variableus(ks) is computed by solving an MPC optimization problem and by adopting the Re-
ceding Horizon paradigm. That is, lettingls(·, ·, ·, ·) andvs(·) be positive cost functions andNs > 0 an
integer, the optimization problem

min
us(ks+i), i=0,...,Ns−1

x̄m(ks+i),ūm(ks+i), i=0,...,Ns−1

Js
(

xs(ks)
)

, (2.4)

where

Js
(

xs(ks)
)

=
Ns−1

∑
i=0

ls
(

xs(ks+ i),us(ks+ i),

x̄m(ks+ i), ūm(ks+ i)
)

+vs
(

xs(ks+Ns)
)

,

is considered subject to the following constraints:

• the system dynamics (2.3) with,

∀i = 0, . . . ,Ns−1,




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f (ks+ i) = x̄f (ks+ i)

Us
m(ks+ i) = ūm(ks+ i)

Us
f (ks+ i) = ūf (ks+ i),

where the 4-tuple
(

xs(ks + i),us(ks + i), x̄m(ks + i), ūm(ks + i)
)

is feasible and, according to
Assumption 2.2,

(

x̄f (ks + i), ūf (ks + i)
)

∈ X f ×U f is the unique pair such that the 6-tuple
(

xs(ks+ i),us(ks+ i), x̄m(ks+ i), ūm(ks+ i), x̄f (ks+ i), ūf (ks+ i)
)

is s-admissible;

• the feasibility constraintxs(ks+Ns) ∈ Xs.

Then, according to the RH paradigm, only the first computed valueus(ks) is applied and the over-
all procedure is repeated at the new slow sampling period. Indeed, besides computing the optimal
control sequence at the high level, also the desired reference for the state and the input variables
(

x̄m(ks), ūm(ks)
)

at the middle level is returned.

Remark 1 Notice that, thanks to Assumption 2.2, the input and state variables of the low level are
not explicitly involved in the optimization(2.4)at the high level. 3

Remark 2 If the current state xsm(ks) of the middle level is available to the controller at the high
level, in order that a sensible reference be provided to the middle level, onecan add the constraint
‖xs

m(ks)− x̄m(ks)‖ ≤ εm (for suitably smallεm ≥ 0) to the optimization problem(2.4). 3
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MPC problem at the medium time scale
Now consider the medium time scale. In view of the solution of the optimization problem at the high
level, the goal is to track given reference values(x̄m, ūm) of the state and input variables. Moreover,
similarly to the problem at the slow time scale, since the dynamics at the low level is supposed to be
the fastest one, the control problem at the middle level is solved under the assumption that, along the
time interval[km,km+1[, the low level is at the steady state (say, the state and control variables take
suitable constant values ¯xf andūf ). This position motivates the following

Definition 2 A 6-tuple(xs,us,xm,um, x̄f , ūf ) ∈ Xs×Us×Xm×Um×X f ×U f such that

x̄f = f f
f (xs,xm, x̄f ,us,um, ūf )

is said to bem-admissible. 3

Assumption 3 For any tern(xs,us,xm) ∈ Xs×Us×Xm, there exists at least one tern(um, x̄f , ūf ) ∈
Um×X f ×U f so that the corresponding 6-tuple(xs,us,xm,um, x̄f , ūf ) is m-admissible. 3

The variableum(km) is computed by solving an MPC optimization problem and by adopting the Re-
ceding Horizon paradigm. That is, lettinglm(·, ·, ·, ·) andvm(·) be positive cost functions,Nm > 0 be
an integer and

ks =

⌊

km

ν ′
s

⌋

,

we consider the optimization problem

min
um(km+i), i=0,...,Nm−1

x̄f (km+i),ūf (km+i), i=0,...,Nm−1

Jm
(

xm(km)
)

, (2.5)

where
Jm

(

xm(km)
)

=

=
Nm−1

∑
i=0

lm
(

(

xm(km+ i)− x̄m(ks)
)

,
(

um(km+ i)− ūm(ks)
)

,

x̄f (km+ i), ūf (km+ i)
)

+vm
(

xm(km+Nm)− x̄m(ks)
)

and
(

x̄m(ks), ūm(ks)
)

is the reference provided by the controller at the high level, subject to the follow-
ing constraints:

• the system dynamics (2.2) with,

∀i = 0, . . . ,Nm−1,







xm
f (km+ i) = x̄f (km+ i)

um
s (km+ i) = us(ks)

Um
f (km+ i) = ūf (km+ i),

and the initial condition
(

xm
s (km),xm(km)

) (

wherexm
s (km) is supposed to be available, see the

discussion in Section 3
)

;

• the additional feasibility constraints

– the 6-tuple
(

xm
s (km + i),um

s (km + i),xm(km + i), um(km + i), x̄f (km + i), ūf (km + i)
)

is m-
admissible∀i = 0, . . . ,Nm−1;
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– xm
s (km+ i) ∈ Xs ∀i = 1, . . . ,Nm;

– xm(km+Nm) ∈ Xm.

Then, according to the RH paradigm, only the first computed valueum(km) is applied and the overall
procedure is repeated at the new medium sampling period. Also in this case, besides computing the
optimal control sequence at the middle level, also the desired values of the state and of input variables
(

x̄f (km), ūf (km)
)

at the low level are returned.

Remark 3 Notice that in(2.5) the reference value
(

x̄m(ks), ūm(ks)
)

, as well as the control us(ks), are
considered constant over the prediction horizon even if time instants km ≥ ν ′

s(ks+1) are included in
the horizon. 3

Remark 4 If the current state xmf (km) of the low level is available to the controller at the middle
level, in order that a sensible reference be provided to the low level, one can add the constraint
‖xm

f (km)− x̄f (km)‖ ≤ ε f (for suitably smallε f ≥ 0) to the optimization problem(2.5). 3

MPC problem at the fast time scale

Finally we consider the fast time scale. Now the goal is to track given reference values(ūf , x̄f )
of the state and input variables provided by the controller at the middle level. Then, similarly to the
two upper levels, the variableuf (kf ) is computed by solving an MPC optimization problem and by
adopting the Receding Horizon paradigm. Then, lettingl f (·, ·) andvf (·) be positive cost functions,
Nf > 0 be an integer and

km =

⌊

kf

νm

⌋

,

we consider the optimization problem

min
uf (kf +i), i=0,...,Nf−1

Jf
(

xf (kf )
)

, (2.6)

where
Jf

(

xf (kf )
)

=

=
Nf−1

∑
i=0

l f

(

(

xf (kf + i)− x̄f (km)
)

,
(

uf (kf + i)− ūf (km)
)

)

+

+vf
(

xf (kf +Nf )− x̄f (km)
)

and where(x̄f (km), ūf (km)) is the reference provided by the MPC controller at the middle level, sub-
ject to the following constraints:

• the system dynamics (2.1) with1,

∀i = 0, . . . ,Nf −1,

{

uf
s(kf + i) = um

s (km)

uf
m(kf + i) = um(km),

and the initial condition
(

xf
s(kf ),x

f
m(kf ),xf (kf )

) (

wherexf
s(kf ) andxf

m(kf ) are supposed to be
available, see the discussion in Section 3

)

;

1Notice that, withks =
⌊

kf

νs

⌋

, it holds thatum
s (km) = us(ks).
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• the feasibility constraints

– xf
s(kf + i) ∈ Xs ∀i = 1, . . . ,Nf ;

– xf
m(kf + i) ∈ Xm ∀i = 1, . . . ,Nf ;

– xf (kf + i) ∈ X f ∀i = 1, . . . ,Nf ;

– uf (kf + i) ∈ U f ∀i = 0, . . . ,Nf −1.

Then, according to the RH paradigm, only the first computed valueuf (kf ) is applied and the overall
procedure is repeated at the new fast sampling period.

Remark 5 Similarly to problem(2.5), in (2.6) the reference value
(

x̄f (km), ūf (km)
)

, as well as the
controls ums (km) and um(km), are considered constant over the prediction horizon even if time instants
kf ≥ ν f (km+1) or kf ≥ νs(ks+1) are included in the horizon. 3
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Chapter 3

Communication protocols

In order to implement the proposed multilayer MPC algorithm, it is necessary to specify the communi-
cation protocol regulating the information exchange among the layers. First,the basic communication
rules are established, then two alternative protocols are described. It isagreed that the time instants
are shown in the base fast time scale.

Basic rules:

1. At every instantkf , each level is supposed to know the current value of its state and control;

2. At timeνsks the high level communicates to the middle level its current control valueus(ks) and
the references

(

x̄m(ks), ūm(ks)
)

;

3. At timeνsks the middle level communicates to the low level the control valueus(ks) which has
received by the high level;
At time νmkm the middle level communicates to the low level its current control valueum(km)
and the references

(

x̄f (km), ūf (km)
)

.

Since the availability ofxm
s (km) is needed by the MPC controller at the middle level and the availability

of bothxf
s(kf ) andxf

m(kf ) is needed by the MPC controller at the low level, then more information is
to be exchanged between the layers. The choice between the following two communication protocols
is proposed (see also Figure 3.1).

Protocol 1:

1. At timeνmkm the high level communicates to the middle level its current statexm
s (km);

2. At timeνsks the middle level communicates to the low level the valuexs(ks) which has received
by the high level and its current statexs

m(ks).

Protocol 2:

1. At timeνsks the high level communicates to the middle level its current statexs(ks);

2. At timeνsks the low level communicates to the middle level its current statexf (νsks);
At time kf the low level communicates to the middle level its current controluf (kf );

3. At timeνsks the middle level communicates to the low level the valuexs(ks) which has received
by the high level and its current statexs

m(ks).

Communication protocols 12
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Figure 3.1: Pictorial representation of the proposed communication protocols. Straight arrows:com-
munication of the result of the optimization problems;Curved arrows:other information to be trans-
mitted;Broken arrows:the optional information transmission discussed in Remarks 2 and 4.

Both protocols are able to provide the necessary information to the controllers. In fact, in case of
Protocol 1, the availability ofxm

s (km) to the MPC controller at the middle level is guaranteed by rule 1.
As for the low level, the whole information of the system is available because, at time νsks, all the
components of the state are known as well as all the successive control values applied at any level. In
case of Protocol 2, the whole information of the system is available to both the middle and the low
level because, at timeνsks, all the components of the state are known as well as all the successive
control values applied at any level.

Remark 6 In Protocol 1 there is an exact pyramidal structure of the information on the system: any
level has no information concerned with the lower levels and the lowest levelknows everything on the
system.
According to Protocol 2, the amount of information exchanged is much larger than that in Protocol 1.
On the other hand, Protocol 2 allows one to reduce the information transmittedby the high level (i.e.,
the top level of the hierarchy is less pressed with information requests). However, such a reduction
is to be counterbalanced by a large amount of information to be transmitted bythe low level (see
Figure 3.1). As a consequence, much more information becomes available to the middle level than
that really needed

(

in fact, the whole information on the system is available rather than xm
s (km) only

)

.
3

In both Protocols 1 and 2, tolerance to unmodelled disturbances affecting the system can be gained if
the information transmission from the middle level to the low level is more frequent:e.g., if at time
νmkm the middle level communicates to the low level the valuexm

s (km) (which has received by the
high level, in case of Protocol 1, or which has reconstructed, in case ofProtocol 2) and its current
statexm(km).
Finally, notice that to implement the MPC controllers at the high and at the middle level according
to the modification suggested in Remarks 2 and 4, a further flow of information from lower to higher
levels is needed.
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Chapter 4

Hierarchical structures

Let us show how the proposed approach fits well with the different cases, mentioned in the Introduc-
tion, which can arise when designing a hierarchical control structure.

Case 1.When the system is divided into functional layers, the control structure can be seen as a
cascade one, where the states of an inner loop are the control variablesfor the outer one, as shown in
Figure 4.1. This control structure can be described in the layers framework adopted in this paper as
follows: the cascade interconnection of three systems

xf
s(kf +1) = f f

s

(

xf
s(kf ),u

f
s(kf )

)

(4.1a)

xf
m(kf +1) = f f

m

(

xf
m(kf ),u

f
m(kf )

)

(4.1b)

xf (kf +1) = f f
f (xf (kf ),uf (kf )) , (4.1c)

in whichuf
s = xf

m anduf
m = xf , is equivalent to the system











xf
s(kf +1) = f f

s
(

xf
s(kf ),x

f
m(kf )

)

xf
m(kf +1) = f f

m
(

xf
m(kf ),x

f
s(kf )

)

xf (kf +1) = f f
f

(

xf (kf ),uf (kf )
)

.

(4.2)

The latter is a special case of system (2.1) and can be controlled through the proposed algorithm.
Specifically, the MPC controller at the high level (working in the long time scale)provides the ref-
erence ¯xm to the controller at the medium level; this reference is tracked by the MPC controller at
the middle level (working in the medium time scale) which returns the state and control reference
(x̄f , ūf ) for the low level controller (working in the fast time scale) which in turn computes the real
inputuf (kf ) for system (4.2), see Figure 4.1.

slow fast fast slowmed med

f
f
mf

f

s m

f
m

f
ss

m

f

m f

m
f

s
m

Figure 4.1: Cascade of three interconnected systems: the proposed control structure (broken lines
represent the optional connections discussed in Remarks 2 and 4).
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m m m m

Reference m s m s

Figure 4.2: The typical structure of a hierarchical controller adapted to the framework considered in
this paper.

Thanks to the special form of the system, the “basic rules” of the communication protocols described
in Chapter 3 suffices for the implementation of the control algorithm.

Case 2.It is apparent that singularly perturbed systems, i.e., systems with interlacedslow and fast
dynamics, perfectly fits with the adopted model description: it is sufficient to consider a two layers
version of the proposed algorithm.

Case 3.Hierarchical control structures find another helpful employment to handle optimal control
problems over a long time horizonNs ≫ 1 for complex systems. A sub-optimal solution to this
otherwise untractable problem is provided by a two layers hierarchical controller organized as follows:
at the top level the long horizon problem is solved for a simplified model of the system; at the bottom
level an optimal control problem, to track the top level solution, is solved for the overall model but
with a shorter horizonNm≪ Ns. This approach has been proposed in [4]-Section 1.2. Also the control
algorithm presented in this paper is suitable to deal with such a problem, in fact:consider a two layers
version of the algorithm for a system of the type

{

xm
s (km+1) = f m

s

(

xm
s (km),um

s (km),um(km)
)

xm(km+1) = f m
m

(

xm(km),um
s (km),um(km)

)

,

(4.3a)

(4.3b)

where equation (4.3b) is a detailed model of the plant under control and equation (4.3a) is a reduced
order model of the same plant withf m

s accounting for the slow dynamics of the system. In this
case, the optimization problem (2.4) returns the “slow” componentus(ks) of the control variable (in
the slow time scale) and a reference ¯um(ks) for the “medium” component. In correspondence with
(

us(ks), ūm(ks)
)

, an equilibrium state ¯xm(ks) is computed for system (4.3b)
(

assume either that ¯xm(ks)
is univocally determined by

(

us(ks), ūm(ks)
)

or that some rule to select ¯xm(ks) is given
)

. Hence, the
MPC controller at the middle level solves a tracking problem, with reference

(

x̄m(ks), ūm(ks)
)

, for
system (4.3b) and returns the medium componentum(km) of the control signal.
In this formulation, a less detailed (but dynamical) model of the plant is employedto fix the reference
(this layer is calleddynamic-RTO[5]), then the overall model is considered to determine the control
action. This is different from case 2, where the control synthesis is carried out by solving various
optimal control problems defined on simpler sub-systems.

Case 4. The easiest version of the hierarchical controller described in case 3 has a two layers
structure where the top level performs a static optimization (static-RTO) and returns the set-point for
the bottom level dynamic regulator, see Figure 4.2. Also this control structure results as a special
case of the control algorithm described in this paper, in fact: if equation (2.1a) is static, then the high
level controller resulting from the proposed algorithm is nothing but the staticoptimization layer. In a
formal way, letx(k+1) = f

(

x(k),u(k)
)

be a dynamical system modelling the plant under control, add
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a fictitious equationz(k+1) = z(k) and consider a two layers version of the algorithm wherexm = x,
xs = z andkm = k is the base time scale. In this way, the optimization problem (2.4) turns out to be
a static optimization over the equilibrium pairs(x̄m, ūm) of the plant providing the reference for the
bottom level MPC controller. Notice that, if the current state of the system is available to the static
optimizer and a constraint‖xs

m(ks)− x̄m(ks)‖ ≤ εm is considered (see Remark 2), then a new set-point
is computed at any time instantks so that the reference is time-varying.

Hierarchical structures 16
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An illustrative example

Consider a system composed by three tanks as in Figure 5.1. Each tank hasan input flow: tanks 2
and 3 are fed by ˜qi2 andq̃i3; tank 1, which is supposed to be significantly larger than the other tanks,
is fed by tanks 2 and 3 with flows ˜qo2 andq̃o3 through pipes with fixed opening valves. There is also
an output flow ˜qo from tank 1. Fori = 1,2,3, let the state variable ˜xi denote the level of thei-th tank,
while the control variables are the flows ˜qi2, q̃i3 andq̃o. A discrete time and linearized model for this
system is the following:











x1(k+1) = x1(k)+β3x3(k)+β2x2(k)−β1qo(k)

x2(k+1) = (1−β2)x2(k)+α2qi2(k)

x3(k+1) = (1−β3)x3(k)+α3qi3(k),

(5.1a)

(5.1b)

(5.1c)

wherexi = x̃i − x∗i (i = 1,2,3), qi j = q̃i j −q∗i j ( j = 2,3) andqo = q̃o−q∗o, with (x∗1,x
∗
2,x

∗
3,q

∗
i2,q

∗
i3,q

∗
o)

being a given equilibrium for the nonlinear model of the system. Moreover,β1, β2, β3, α2 andα3 are
positive constants (which depend on the areas of the tanks and on the characteristics of the valves)
andβ2, β3 are smaller than 1.
For this system, four different hierarchical controllers can be constructed according to the four appli-
cations of the proposed algorithm discussed above:
Case 1. System (5.1) can be viewed as the cascade of two subsystems characterized by two different
dynamics: one for tanks 2 and 3 and a slower one for tank 1

(

thus,xm = (x2,x3), um = (qi2,qi3),
xs = x1 andus = qo

)

. Indeed, system (5.1) is in the form of system (4.2) except for the presence of
a slow control variableqo directly acting on the slow part of the system. According to the proposed
algorithm, the optimization problem for (5.1a) returns the inputqo and the reference(x̄2, x̄3, q̄i2, q̄i3)
for (5.1b) and (5.1c). Then the low level controller computesqi2 andqi3.

i2 i3

2
3

1

o
o2 o3

Figure 5.1: System composed by three tanks.
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Case 2. Lettingxt = x1 +x2 +x3, system (5.1) becomes











xt(k+1) = xt(k)+α3qi3(k)+α2qi2(k)−β1qo

x2(k+1) = (1−β2)x2(k)+α2qi2(k)

x3(k+1) = (1−β3)x3(k)+α3qi3(k)

(5.2a)

(5.2b)

(5.2c)

where the slow dynamicsxs = xt is decoupled by the faster onexm = (x2,x3). The control algorithm
for this case works in the same way as in case 1

(

but the model (5.2a) used to produceqo and the
reference for the low level is different

)

.
Case 3. Consider system (5.2) and letxs = xt, xm = (xt,x2,x3), us = qo andum = (qi2,qi3). In this way,
equation (5.2a) is a reduced order model of the system and plays the role of (4.3a), while in place
of (4.3b) we take the overall system (5.2). According to the algorithm, the optimization problem
for (5.2a) computes the inputqo and the reference(q̄i2, q̄i3) for the “medium” component. The MPC
controller at the middle level solves a tracking problem for the overall system (5.2), with suitable ref-
erence

(

x̄t, x̄2, x̄3, q̄i2, q̄i3
)

, and returns the control valuesqi2 andqi3. Notice that, since equation (5.2a)
is an integrator, the relationα3q̄i3 + α2q̄i2 −β1qo = 0 must be satisfied and, in correspondence with
such a(qo, q̄i2, q̄i3), there is not an unique equilibrium state(x̄t, x̄2, x̄3) (specifically, ¯xt is not univocally
determined).
Case 4. The reference

(

x̄t, x̄2, x̄3, q̄i2, q̄i3, q̄o
)

for the overall system (5.2) is provided by the static
optimization layer. 3

An illustrative example 18



Chapter 6
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Conclusions

A general formulation to the problem of designing hierarchical control structures with MPC has been
described in this report. It has also been shown how the adopted approach and the corresponding se-
quence of MPC synthesis methods can deal with a number of significant industrial control problems.
The proposed approach is coherent with the goals of Task 2.2 of Work Package 2 (WP2), since it de-
fines a hierarchical control architecture that integrates sequential decisions in the global MPC scheme,
and allows for the use at each level of various optimisation criteria (quadratic, linear, etc.) and control
schemes (MPC, classical PID, etc.). Moreover, it fits with the activity planned in the framework of
Task 2.3 (WP2), as different communication protocols and constraints have been considered between
adjacent layers of the hierarchical control structures. Finally, it allowsfor the use of multi-level, multi-
resolution models, i.e., models with various levels of spatial and temporal aggregation, as required in
Task 2.4 (WP2). Concerning this last point, it is worth recalling that existing reduction and aggrega-
tion methods to obtain such models have been extensively reviewed in Deliverable D2.1.
The present work can be seen as partially preliminary to the activities planned in Work Package 3,
which will concern the modification of the basic MPC algorithms here proposedto achieve guaranteed
stability and robustness properties, see the papers [7] and [6] on theseaspects.
Secondly, while only the regulation problem has been considered here, the output feedback, tracking
and disturbance rejection problems are of paramount importance and require further developments.
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