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Executive Summary

This report describes the research activity in the Seventh Framework Programme, Theme 3 “In-
formation and Communication Technologies”, STREP research projectHierarchical and Dis-
tributed Model Predictive Control of Large Scale Systems- HD-MPC, focusing on work pack-
age WP2 – “Definition of the hierarchical architecture for control design”. Specifically, Task 2.2
(Definition of the control architecture), Task 2.3 (Extension of the control architecture), and Task
2.4 (Multi-level models) are considered. First, a number of methods for the development and use
of multi-level models with different kinds of spatial and temporal aggregationare described and
some model reduction methods are reported. Then, it is shown how multilevel models can prof-
itably be used in a couple of application fields. Finally, the topic of control system reconfiguration
is addressed by considering a hierarchical structure where the systemat the high level, with slower
dynamics, is driven by a number of systems at the lower level, i.e., the actuators. By resorting
to the MPC paradigm, it is proven that actuators’ replacement or addition does not influence the
convergence properties of the overall control structure.
The report is organized in four chapters:

• Chapter 1 presents a literature review about multi-model structures in model predictive
control and model reduction. The methods surveyed complete and extend the results al-
ready presented in Deliverable D2.1. Three decomposition approachesare considered,
namely functional, temporal and spatial decomposition, for the design of multi-level, multi-
resolution MPC regulators. For each one of them, the main contributions proposed in the
technical literature are reported and critically examined.

• By considering two different application fields, viz., intelligent vehicle highway systems
and baggage handling systems — Chapter 2 shows how an efficient hierarchical control
structure can be designed with the MPC approach applied to models with different levels of
aggregation at the various levels of the control hierarchy. In Section 2.2 intelligent vehicle
highway systems are considered, with emphasis on the control hierarchy and on the models
used. Section 2.3 deals with the complete design of a hierarchical controller for a baggage
handling system. In this case, a simulation example is also reported and discussed.

• Chapter 3 considers the design of a two-layer control architecture. Thehigh layer of the
control hierarchy corresponds to the system under control, while the lower layer represents
the available actuators. Focus is centered on the possibility to reconfigure the control sys-
tem by adding or substituting an actuator. This is of major importance within the project,
and in particular with reference to Tasks 2.3 and 2.4 to meet the requirement of improving
the availability of control schemes in response to changes in the subsystems.Section 3.1
presents the problem formulation, i.e., the model of the plant at the high and thelow levels.
Section 3.2 describes the MPC control synthesis technique adopted at the high level and a
convergence result for the overall (high and low layers) system. Section 3.3 deals with the
extension of these results to the case of system reconfiguration due to an actuator addition
or substitution.

• Finally, in Chapter 4 the activity performed in work package WP2 is briefly summarized.
This is done by recalling the WP tasks as well as the results achieved in the research activity
and reported in Deliverables D2.1, D2.2, and D2.3.

Page 5/67



HD-MPC ICT-223854 Multi-level models and architectures for HD-MPC

Chapter 1

Multi-models and model reduction
techniques for MPC

In this chapter, some approaches reported in the literature for the definitionmulti time-scales models
and for the model reduction are surveyed. These results complete and extend those already presented
in Deliverable D2.1. In this chapter it is also discussed how to use these models for the design of
hierarchical MPC regulators. The main idea in these control schemes is to decompose the original
control task into a sequence of simpler and hierarchically structured subtasks, handled by dedicated
control layers, as proposed in [52]. The contribution of this chapter is due to the UNC research unit.

1.1 Multi-models for MPC

According to [52], there are three basic methods for hierarchical system decomposition:

1. Functional decomposition.

2. Temporal decomposition.

3. Spatial decomposition.

The first decomposition is based on the information flow along the system and the decisions taken
based on this information. Basically three functions are identified: management, plant-wide control
and direct control. Each one of these functions has a different model, depending on its objective. The
second decomposition is based on the time response of the dynamics of the plant. In the temporal
decomposition the model of the whole system is reduced based on the time scalesof the dynamics of
the system, and for each time scale a model predictive controller is designed.The third decomposition
is based on the distribution of the system. In this case the whole system is divided into several places
or regions and the models are developed based on the similarities among the subsystems belonging to
the same place.
In the next sections, several approaches on each one of the ways to decompose the system to design a
multi-model model predictive controllers are presented.

1.1.1 Functional decomposition approaches

In [52] the authors propose to control the whole system based on assigning a set of functionally
different partial control objectives in a structure of vertical, hierarchical dependence. Figure 1.1 shows
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Figure 1.1: Hierarchical control scheme[52]
.

an schematic diagram of this proposed scheme.
In [27], the author proposes a dual-based optimization for production, supply and inventor plan.

The proposed optimization scheme has two steps:

1. Long-term plan: it is based on the predicted demands represented by arandom sequence. The
role of the long-term plan is to impose a final condition set to the short-term plan.

2. Short-term plan: it is based on the firm orders received from the customers.

In [56], the authors propose a multi-level model predictive control scheme based on the use of
multi-form models. In this approach, the plant is represented by a variety ofmodels for different
end-uses, including:

1. A distributed parameters model.

2. A lumped parameters model.

3. A matrix representation with off-line computed matrix elements.

4. Local linear models.

5. Reduced order models obtained with balanced truncation methods.

It can be shown through dynamic simulations that significant reductions in computing time can be
achieved with properly selecting the model forms. Since both open-loop optimal control and closed
loop MPC rely on iterative dynamic optimization, overall computing time reduction makes on-line
applications possible [56].

In [54], the authors propose a two-layer production control method. A predictive controller is
proposed as a coordinator in the highest layer and a distributed control policy is used as a follow-up
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Figure 1.2: Two-layer model predictive control scheme [54]
.

controller in the lowest layer. The use of a model predictive control formulation allows the schedul-
ing algorithm to simultaneously solve the production optimization and in-process inventory control
problems at each sampling time. In Figure 1.2, a scheme of the proposed control structure is dis-
played: a linear state-space model of the system is used to compute the optimal reference values in
the optimization layer.

1.1.2 Temporal decomposition approaches

In [59] the authors propose a multi-rate linear model predictive controller inorder to avoid the trou-
bles associated with the delay in the measurements of some important variables in the control of a
Weyerhaeuser digester. Dynamic linear models between the inputs, the disturbances and the selected
manipulated variables are used. An identification procedure based on normalized moments of an
impulse response is proposed to identify general linear models of the form:

G(s) =
Kζs+K

a3s3 +a2s2 +a1s+1
etas (1.1)
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In [46], multi-scale models are used to design model-predictive controllers,resulting in design
techniques with several important advantages, such as:

1. Natural depiction of performance characteristics and treatment of output constraints.

2. Fast algorithms for establishing the constrained control policies over long prediction/control
horizons.

3. Rich depiction of feedback errors at several scales.

4. Optimal fusion of multi-rate measurements and control actions.

The main idea is to provide an alternative framework to design a model predictive controller, in
which the representation of the system captures the scale characteristics of the system. To do that,
the authors propose to decompose the whole system model using binary trees. The procedure can be
described as follows. Consider the discrete linear state-space model:

x(k+1) = Ax(k)+Bu(k) (1.2)

Taking the expression (1.2) as the level zero in the binary tree, the state space model (1.2) becomes:

x(0,k+1) = Ax(0,k)+Bu(0,k) (1.3)

Then, for any left-nodeτ at the level one in the binary tree, the model (1.2) can be transformed to
the following two-scale model

x(τ) =
√

2(I +A)−1(I −A)x(ατ)− (I +A)−1Bu(ατ) (1.4)

or equivalently

δx(τ) = (I +A)−1(I −A)x(ατ)−
√

2(I +A)−1Bu(ατ) (1.5)

whereδx(τ) is the Haar wavelet coefficient of the state at the levelτ, x(τ) is the Haar scaling coeffi-
cient of the state at the nodeτ, andx(ατ), u(ατ) are the values of the states and control inputs at the
nodeατ which is the left-offspring of the nodeτ.

With this formulation, it can be shown that the dynamics of the system at level one are governed
by the following discrete-time model:

x(−1,
k
2

+1) = A2x(−1,
k
2
)+(I +A)Bu(−1,

k
2
) (1.6)

where

Bu(−1,
k
2
) =

1√
2
(I +A)−1[ABu(0,k)+(I +A)Bu(0,k+1)+Bu(0,k+2)] (1.7)

Based on (1.6), the multi-scale model for any left-node at levels−2 −3 . . .−m are generated
recursively by

x(τα) =
√

2(I +A2m
)−1x(τ)−B(m)u(τα) (1.8)
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Figure 1.3: Multi-model prediction scheme [62]

whereB(m) = (I +A2m
)−1(I +A2m−1

) . . .(I +A)B. Thus, the process model given by (1.2) describing
the process over 2N points, is transformed to a multi-scale model given by (1.8), defined over 2N left-
nodes,τ, of a binary tree, where each node describes process behavior over localized sections of time
and scale.

In [62], a multi-rate control strategy is proposed based on multi-rate models,which allows to
reduce the dimensionality of the optimizations. To do that, three multi-input single-output neural
network models are developed with different sampling times. Each neural network can be represented
as aNARXmodel of the form

y(k) = f (y(k−1), . . . ,y(k−ny),u(k−1−d), . . . ,u(k−nu−d))+ ε(t) (1.9)

Since the system outputs are coupled, the estimation of each neural networkis used to compute
the output of the complementary output variables. The interaction among neural networks and the
complete scheme used to compute the optimal input is shown in Figure 1.3.

The algorithm to compute the optimal input is illustrated in Figure 1.4.
In [18], another multi-rate model predictive control algorithm is presented. In this work, the

problem of dimensionality is avoided using the principal component analysis.The reduced model
is linearized and the resulting linear state-space representation of the system is used to compute the
model predictive control output. Since the states have different time responses and the measurements
have different arrival times, two extended Kalman filters are used: one toestimate the slow dynamics
based on the fast states and fast measurements, the other to improve the first estimation based on the
information of the slow measurements.

In [57], an iterative learning model predictive controller is proposed for batch processes.
Finally, in [60], a multi-objective optimization problem is considered. The proposed scheme uses

a reduced orderMIMO model of the system, with two inputs and two outputs, to estimate the optimal
input. The model reduction is carried out assuming that the fast dynamics are in steady-state.

1.1.3 Spatial decomposition approaches

In [61], a cascade model predictive control scheme is proposed. In this scheme, the internal and the
external control loops are designed with MPC. Figure 1.5 shows schematically the proposed control
strategy.
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Figure 1.4: Algorithm to compute the optimal input using the multi-model prediction scheme [62]
.

Figure 1.5: Cascade Model Predictive Control Scheme [61]
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Figure 1.6: Multi-criteria model predictive control scheme based on neural networks [34]
.

In this scheme, theCARIMAblack-box model (1.10) is used for the design of each model predic-
tive controller to compute the optimal input.

A(q−1)y(k) = B(q−1)u(k−d)+C(q−1)
ξ (k)

∆
(1.10)

wherey andu are the output and input, respectively,d is the input delay,∆ is a difference operator
1− q−1, and ξ (t) is an uncorrelated random noise sequence with zero mean.A(.),B(.),C(.) are
polynomials in the backward shift operatorq−1.

In [34] multi-criteria optimization is used to design a predictive controller for nonlinear dynamical
systems. Artificial neural networks and genetic algorithms are considered. Neural networks are used
to determine process models at each operating level and an aggregation method based on a genetic
algorithm is used to solve the multi-criteria optimization problem. To carry out the proposed control
scheme, a generic nonlinear system of the form

y(k) = g(y(k−1), . . . ,y(k−m1),u(k), . . . ,u(k−m2)) (1.11)

is considered, beingg(.) an unknown nonlinear function. To identifyg(.) in each operating region, a
multilayer perceptron neural network (NN) is used. Thus the output of thesystem becomes

y(k) = NN(u(k),θi) (1.12)

whereθi denotes the parameters of the neural network in thei− th operating region. The scheme
of the proposed control strategy is shown in Figure 1.6, where the optimization block represents the
genetic algorithm used for multi-criteria optimization.

1.2 Model reduction

Spatially distributed systems such as tubular reactors or reactor networks hosting multiple autocat-
alytic species demonstrate a rich spectrum of complex behavior. From a control systems perspective,
these systems offer a difficult control challenge because of their distributed nature, nonlinearity, and
high order. Furthermore, manipulation of the network states may require simultaneous control actions
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Table 1.1: Approximation methods
Approximation methods for dynamical systems

SVD Krylov
Nonlinear systems Linear systems

POD methods Balanced truncation Realization
Empirical grammians Hankel approximation Interpolation

Lanczos
Arnoldi

in different parts of the system and require to pass through several operating regimes to achieve the
desired operation, [51]. These facts justify the need to use reduced models in order to improve the
numerical stability and shorten the computational efforts in the design of MPC regulators.

1.2.1 Approximation of large-scale dynamical systems

Approximation methods can be cast into three broad categories: (a) SVD based methods, (b) Krylov
based methods, (c) Iterative methods combining aspects of both the SVD andKrylov methods.
The SVD-based approximation methods have their roots in the Singular Value Decomposition and
the resulting solution of the approximation of matrices by means of matrices of lower rank, which
are optimal in the 2-norm (or more generally in unitarily invariant norms). Thequantities which are
important in deciding to what extent a given finite-dimensional operator canbe approximated by one
of lower rank are the so-called singular values.
Krylov-based approximation methods do not rely on the computation of singular values. Instead
they are based on moment matching of the impulse response of the dynamical system. Two widely
used methods fall under this category, namely the Lanczos and the Arnoldiprocedures, which were
put forward by C. Lanczos in 1950 and by W.E. Arnoldi in 1951, respectively. These methods have
been very influential in iterative eigenvalue computations and more recently inmodel reduction. Their
drawbacks are that the resulting reduced order systems have no guaranteed error bound, stability is not
necessarily preserved and some of them are not automatic. Table 1.1 summarizes the approximation
methods considered in the following.

Balancing and Hankel Norm Approximation

In this section we describe some of the most relevant and popular methods to reduce the complexity of
models. It is assumed that a (stable) linear time-invariant system is given andwe address the problem
to approximate this system by a less complex (simpler) one. The approximate system is required to
have a dynamic behavior which is similar, or as close as possible, to the behavior of the system which
we wish to approximate.

State truncations [58]

Consider a (continuous-time or discrete-time) dynamical system in input-state-output form:

x(t +1) = Ax(t)+Bu(t)

y(t) = Cx(t)+Du(t)
(1.13)
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Suppose that the statex of this system is partitioned in two components as:

x =

(
x1

x2

)
(1.14)

Any such partitioning causes a compatible partitioning of the system matrices as follows

A =

(
A11 A12

A21 A22

)
,B =

(
B1

B2

)
,C =

(
C1 C2

)
(1.15)

If we assume that the vectorx1 has dimensionk, thenA11∈Rk×k , B1∈Rk×mC1∈Rp×k andD∈Rp×m.
We will view the quadruple(A11,B1,C1,D) as ak-th order truncation of(A,B,C,D). Thisk-th order
truncation defines a system in input-state-output form:

ξ (t +1) = A11ξ (t)+B1u(t)

y(t) = C1ξ (t)+Du(t)
(1.16)

which will be viewed as thek-th order truncation of the system defined by (1.13). Note that the state
variableξ in (1.16) has dimensionk but is not the same asx1 . Also, note that any system theoretic
property (like stability, controllability, minimality, etc.) which the system (1.13) may have, may not
be inherited by the truncated system (1.16). In particular, the system (1.16) may not be stable, may
not be minimal or dissipative while the system described by (1.13) may have these properties.

Modal truncations [58]

Consider a state space transformation:

x = Tx′ (1.17)

for the system (1.13) withT a non-singular matrix of dimensionn×n. Since such a transformation
only amounts to rewriting the state variable in a new basis, it is well known that thistransformation
does not affect the input-output behavior associated with (1.13). Thus,

x′(t +1) = T−1ATx′(t)+T−1Bu(t)

y(t) = CTx′(t)+Du(t)
(1.18)

The non-singular transformationT can be computed so that the resulting system is in the Jordan
canonical form. Now, suppose that the system (1.13) is stable. This implies that the absolute values
|λi | < 1,for all i = 1, ...,n. Without loss of generality we may therefore order the natural frequencies
according to

0≤ |λ1| ≤ |λ2| ≤ ......≤ |λn|< 1 (1.19)

With this ordering, the statesx′ of a modal canonical form are ordered so that the first components of
the statesx′ correspond to low frequency (or slow) modes, and the last components of the state vector
x′ correspond to high frequency (fast modes). If we partition

x′ =

(
x′1
x′2

)
(1.20)
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wherex′1 has dimensionk < n, then the truncated system is defined by leaving out the fast modes of
the system.

Balanced truncations [58]

This method, extensively described in [58], is based on a balanced state space representation that
eliminate the poorly reachable and poorly observable states from a state space model.

Hankel norm reductions

The Hankel norm of a continuous-time system described in state-space form by the matrices(A,B,C,D)
is defined by:

‖G‖2H := sup
u∈L2(−∞,0]

∫ ∞
0 y(t)2dt∫ ∞
0 u(t)2dt

(1.21)

where

y(t) =
∫ 0

−∞
CeA(t−s)Bu(s)ds (1.22)

The Hankel norm is a measure of the energy can be transferred from past inputs into future outputs
through the system. The Hankel-norm model reduction problem is defined as:

Given an n-th order stable system G, find a k-th order stable system Gk so as to minimize the Hankel
norm of the error‖G−Gk‖H .

The algorithm to find the reduced order model by means of Hankel norm is described in [58].

Proper Orthogonal Decomposition-POD

Proper orthogonal decomposition and Galerkin projection are two well known techniques that have
been used together for deriving reduced order models of high-dimensional systems. These high-
dimensional systems are typically obtained after discretizing in space the partial differential equations
that model many processes. In the POD method, an orthonormal basis for modal decomposition is ex-
tracted from an ensemble of data (called snapshots) obtained in the courseof experiments or numerical
simulations. The basis functions calculated with the POD technique are commonly called empirical
eigenfunctions, empirical basis functions, empirical orthogonal functions, Proper Orthogonal Modes
(POMs) or basis vectors. The POD method provides an orthonormal basisand also a measure of
the importance of each basis vector. This measure of importance is sometimes referred to as Proper
Orthogonal Value (POV) . Now, if we select the most relevant basis vectors and project (Galerkin pro-
jection) the original high-dimensional model on the space spanned by this subset, then we can obtain
a reduced order model of the process. The most striking feature of the POD method is its optimality:
“it provides the most efficient way of capturing the dominant components ofan infinite-dimensional
process with only a finite number of modes, and often surprisingly few modes [1]”.

Now let x(t) ∈ ℜN = [x1(t),x2(t), ...,xN]T be the state vector of a given dynamical system, and let
X ∈ ℜN×Nd with Nd ≥ N be the so-called snapshot matrix that contain a finite number of samples
or snapshots of the evolution ofx(t) at t = t1, t2, ..., tNd . In POD, we start by observing that each
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snapshot can be written as a linear combination of a set of ordered orthonormal basis vectors (POD
basis vectors)ϕ j ∈ℜN,∀ j = 1,2, ...,N :

x(ti) =
2N

∑
j=1

a j(ti)ϕ j ,∀i = 1,2, ...,Nd (1.23)

wherea j(ti) is the coordinate ofx(ti) with respect to the basis vectorϕ j (it is also called time-varying
coefficient or POD coefficient). Since the firstn most relevant basis vectors capture most of the energy
in the data collected, we can construct annth order approximation of the snapshots by means of the
following truncated sequence

x(ti) =
n

∑
j=1

a j(ti)ϕ j ,∀i = 1,2, ...,Nd,n≪ 2N (1.24)

This is the essence of model reduction by POD. In POD, the orthonormal basis vectors are calculated
in such a way that the reconstruction of the snapshots using the firstn most relevant basis vectors is
optimal in the sense that the Sum-Squared-Error (SSE) betweenx(ti) andxn(ti), ∀i = 1, ...,Nd. The
POD basis Functions are determined from simulation or experimental data (Snapshot matrix) of the
process. The dynamic model for the firstn time varying coefficients can be found by means of the
Galerkin projection [2] or using subspace identification techniques [29] .
The derivation of a reduced order model of (1.13) is done in the followingsteps.

A. Generation of the Snapshot Matrix. A snapshot matrixXsnap∈ ℜN×Nd is created from the
system response when independent step changes are made in the inputu(t) and perturbation
d(t) signals.

Xsnap= [x(t = ∆t),x(t = 2∆t), ...,x(t = Nd∆t)]

B. Derivation of the POD basis vectors. The POD basis vectors are obtained by computing the
SVD of the snapshot matrixXsnap

Xsnap = ΦΣΨT

whereΦ∈ℜN×N andΨ∈ℜNd×Nd are unitary matrices, andΣ∈ℜN×Nd is a matrix that contains
the singular values ofXsnapin a decreasing order on its main diagonal. The left singular vectors,
i.e., the columns ofΦ

Φ = [ϕ1,ϕ2, ...,ϕN]

are the POD basis vectors.

C. Selection of the most relevant POD basis vectors. The singular values ofXsnap are checked.
The larger the singular value the more relevant the basis function is. Then-th order approxima-
tion of x(t) is given by

x(ti) =
n

∑
j=1

a j(ti)ϕ j = Φna(t) (1.25)

whereΦn = [ϕ1,ϕ2, ...,ϕn] and a(t)= [a1(t),a2(t), ...,an(t)]
T
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D. Construction of the model for the firstn POD coefficients. The Galerkin projection is used
to derive the dynamical model for the POD coefficients as follows. Define aresidual function
R(x) for equation (1.13) as:

R(x) = ẋ(t)−Ax(t)−Bu(t), (1.26)

and replacex(t) by itsnthorder approximationxn(t) = Φna(t), the Galerkin projection sets that
the projection ofR(xn) on the space spanned by the basis functionsΦn vanishes.

Empirical Grammians

Consider a continuous-time, nonlinear controlled dynamical system:

ẋ = f (x(t),u(t))

z(t) = h(x(t))
(1.27)

In [35], authors define a new resolution technique for such systems which rely on classical model
reduction, but introduces a balancing algorithm in order to deal with nonlinearities. Balancing means
to apply a kind of linear transformations to two different matrices (here, the grammians) to obtain in
booth cases the same diagonal matrix. This technique includes several steps:

1. To evaluate the (discrete) empirical grammians.

2. To balance both empirical grammians and to evaluate the squared eigenvalues of the common
diagonal matrix (Hankel singular values).

3. According to the magnitudes of the eigenvalues, to choose the rank of theprojection subspace.

4. To solve the reduced model obtained by Galerkin projection onto a suitablesubspace.

The construction of empirical grammians depends on some parameters:

1. n, the number of states; andp, the number of inputs;

2. T
r = {T1, ...,Tr}, a set of orthogonaln×n matrices that will span the perturbation directions;

3. M = {c1, ...,cs}, a set of s positive constants (the different sizes of the perturbations);

4. E
p, the set of standard unit vectors inℜp.

Let xilm(t) be the state corresponding to the impulsive inputu(t) = cmTl eiδ (t). Recall the defini-
tion of the temporal mean of any functiong(t) :

g(t) = lim
T→∞

1
T

∫ T

0
g(t)dt (1.28)

From a theoretical point of view, empirical grammians have the following definition:

1. Controllability empirical grammian

Gc =:
p

∑
i=1

r

∑
l=1

s

∑
m=1

1
rsc2

m

∫ ∞

0
(xilm(t)−xilm)(xilm(t)−xilm)Tdt (1.29)
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2. Observability empirical grammian

Go =:
r

∑
l=1

s

∑
m=1

1
rsc2

m

∫ ∞

0
Tl ΨlmTT

l dt (1.30)

whereΨlm is then×n matrix given by

(Ψlm)i, j = (zilm(t)−zilm)T(zilm(t)−zilm) (1.31)

For practical application, one should use a finite sum of a sampled trajectoryinstead an infinite inte-
gral. Also, temporal means are replaced by steady states. The later implies that one should know an
input referenceuss , (probably suggested by physical meaning of the underlying problem). Then, the
steady statexss is obtained fromf (xss(t),uss(t)) = 0 and the corresponding output is denoted byzss .

1.3 Conclusions

In this chapter, a literature review about multi-model structures in model predictive control have been
presented. From this review it is possible to conclude that multi-model structures are an interesting
tool to face-up complex, large-scale, control problems. Moreover, due to system decomposition,
these control structures allow one to improve the performance of model predictive controllers by
increasing the details of whole system model. Finally, system decomposition allows one to reduce the
computational cost associated with the optimization problem in model predictive controllers, because
it is possible to divide the whole system optimization problem into several ones.
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Chapter 2

Design of hierarchical model predictive
control systems with multi-resolution
models

2.1 Introduction

The effectiveness of an efficient and tractable hierarchical MPC approach relying on the use of models
with different levels of aggregation is discussed in two significant application fields, viz., intelligent
vehicle highway systems and baggage handling systems. The analysis of these case studies is also
useful to draw quite general guidelines for the design of hierarchical and multilevel control systems
in a wide number of applications.

This chapter is organized as follows. In Section 2.2 intelligent vehicle highway systems are con-
sidered, while in Section 2.3 baggage handling systems are studied. The emphasis in Section 2.2 is
mainly on the control hierarchy and the models used, whereas in Section 2.3 aworked example is
considered to illustrate the adopted hierarchical control approach.

The work reported in this chapter is based on the PhD theses of Lakshmi Baskar [6] and Alina
Tar̆au [48].

2.2 Multi-resolution models in hierarchical control for intelligent v ehi-
cle highway systems

In this section we propose a hierarchical control framework for intelligent vehicle highway systems.
This framework consists of several levels, where at each level different types of models are used by the
controller, depending on the temporal scale and spatial scale at which the given controller operates.

This section is organized as follows. In Section 2.2.1 we introduce IntelligentVehicle Highway
Systems (IVHS). We recapitulate the hierarchical traffic management and control framework of [5] in
Section 2.2.2. In Section 2.2.3 we report on vehicle and traffic models. In Section 2.2.4 we propose an
MPC method for the roadside controllers to determine optimal speeds, lane allocations, and on-ramp
release times for the platoons. Next, we focus on the route guidance tasks of the area controllers
and we present a simplified flow model and the corresponding optimal route guidance problem in
Section 2.2.5. We consider both the static (constant demands) and the dynamiccase (time-varying
demands). In general, the dynamic case leads to a nonlinear non-convexoptimization problem, but in
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Section 2.2.5 we show that this problem can be approximated using mixed integerlinear programming
(MILP). Section 2.2.6 concludes the worked example.

2.2.1 Intelligent vehicle highway systems (IVHS)

Introduction

The recurring traffic congestion problems and their related costs have resulted in various solution
approaches. One of these involves the combination of the existing transportation infrastructure and
equipment with advanced technologies from the field of control theory, communication, and informa-
tion technology. This results in integrated traffic management and control systems, called Intelligent
Vehicle Highway Systems (IVHS), that incorporate intelligence in both the roadside infrastructure and
in the vehicles. Although this step is considered to be a long-term solution, this approach is capable
of offering significant increases in the performance of the traffic system [47, 30, 21].

In IVHS all vehicles are assumed to be fully automated with throttle, braking, and steering com-
mands being determined by automated on-board controllers. Such complete automation of the driving
tasks allows to organize the traffic in platoons, i.e., a closely spaced group of vehicles traveling to-
gether with short intervehicle distances [53, 45]. Platoons can travel athigh speeds and to avoid colli-
sions between platoons at these high speeds, a safe interplatoon distanceof about 20–60 m should be
maintained. Also, the vehicles in each platoon travel with small intraplatoon distances of about 2–5 m,
which are maintained by the automated on-board speed and distance controllers. By traveling at high
speeds and by maintaining short intraplatoon distances, the platoon approach allows more vehicles to
travel on the network, which improves the traffic throughput [12, 38].

Intelligent vehicles and IV-based traffic control measures

Intelligent Vehicles (IVs) are equipped with control systems that can sense the environment around the
vehicle and that result in a more efficient vehicle operation by assisting the driver or by taking partial
or complete control of the vehicle [10]. The platoon-based approach used in this paper assumes that
all IVs are fully autonomous, i.e., complete control is taken of the vehicle operation.

There are several IV technologies that support and improve the platooning concept by allowing
vehicle-vehicle and vehicle-roadside coordination [10, 13]:

• Intelligent Speed Adaptation (ISA),

• Adaptive Cruise Control (ACC),

• dynamic route planning and guidance.

In this section we will focus on ISA and ACC.

ISA is based on a speed limiter incorporated within each vehicle that can take into account speed
limit restrictions, that can adjust the maximum driving speed to the speed limit specified by the road-
side infrastructure, and that can provide feedback to the driver or take autonomous action when that
speed limit is exceeded. ISA systems could use fixed or dynamic speed limits. Inthe fixed case, the
driver is informed about the speed limit, which could be obtained from a static database. Dynamic
speed limits take into account the current road conditions such as bad weather, slippery roads, or major
incidents before prescribing the speed limit.

An ACC system is a radar-based system that extends conventional cruise control and that is de-
signed to monitor the immediate predecessor vehicle in the same lane, and to automatically adjust
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Platoon controller

Supraregional controller

Regional controllerRegional controller

Area controller Area controller

Roadside controller Roadside controller

Platoon controller

Vehicle controllerVehicle controller

Figure 2.1: The hierarchical control framework for IVHS.

the speed of the equipped vehicle to match the speed of the preceding vehicleand to maintain a safe
intervehicle distance [16]. Cooperative ACC is a further enhancement of ACC systems that uses wire-
less communication technologies to obtain real-time information about the speed, acceleration, etc. of
the preceding vehicle. Vehicles equipped with cooperative ACC can exchange the information much
quicker and allow to set the safe minimum time headway as small as 0.5 s. Hence, with reduced
headways between vehicles, the maximal traffic flow can be augmented evenfurther.

2.2.2 Hierarchical control of IVHS

In [5] a hierarchical traffic management and control framework for IVHS is proposed that builds upon
earlier research in this field such as the PATH framework [45]. The control architecture of [5] consists
of a multi-level control structure with local controllers at the lowest level and one or more higher
supervisory control levels (see Figure 2.1).

We now briefly present the hierarchical control framework for IVHS developed in [5]. This frame-
work is based on the platoon concept and it distributes the intelligence between the roadside infras-
tructure and the vehicles using control measures such as intelligent speedadaption, adaptive cruise
control, lane allocation, on-ramp access control, route guidance, etc. to prevent congestion and to im-
prove the performance of the traffic network. The control architectureof [5] consists of a multi-level
control structure with local controllers at the lowest level and one or morehigher supervisory control
levels as shown in Figure 2.1. The layers of the framework can be characterized as follows:

• Thevehicle controllerspresent in each vehicle receive commands from the platoon controllers
(e.g., set-points or reference trajectories for speeds (for intelligent speed adaption), headways
(for adaptive cruise control), and paths) and they translate these commands into control signals
for the vehicle actuators such as throttle, braking, and steering actions.

• The platoon controllersreceive commands from the roadside controllers and are responsible
for control and coordination of each vehicle inside the platoon. The platoon controllers are
mainly concerned with actually executing the interplatoon maneuvers (such asmerges with
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other platoons, splits, and lane changes) and intraplatoon activities (suchas maintaining safe
intervehicle distances).

• The roadside controllersmay control a part of a highway or an entire highway. The main
tasks of the roadside controllers are to assign speeds for each platoon, safe distances to avoid
collisions between platoons, appropriate platoon sizes, and ramp metering values at the on-
ramps. The roadside controllers give instructions for merging, splitting, and lane changes to the
platoons.

• The higher-level controllers(such as area, regional, and supraregional controllers) provide
network-wide coordination of the lower-level and middle-level controllers. In particular, the
area controllers provide area-wide dynamic route guidance for the platoons, and they supervise
and coordinate the activities of the roadside controllers in their area by providing set-points
and control targets. In turn, a group of area controllers could be supervised or controlled by a
regional controller, and so on.

The lower levels in this hierarchy deal with faster time scales (typically in the milliseconds range for
the vehicle controllers up to the seconds range for the roadside controllers), whereas for the higher-
level layers the frequency of updating can range from few times per minute(for the area controllers)
to a few times per hour (for the supraregional controllers).

2.2.3 Vehicle and traffic modeling at the roadside level

There exists a wide range of traffic models [14]. An important factor that determines the choice of
the model to be used in MPC is the trade-off between accuracy and computational complexity since
at each time step the model will be simulated repeatedly within the on-line optimization algorithm.
As a consequence, very detailed microscopic traffic simulation models are usually not suited as MPC
prediction model. Instead, simplified or more aggregate models are usually applied. Therefore, we
now describe simplified traffic models for vehicles and for platoons that canbe used as (part of the)
prediction model within the MPC-based roadside controller. We consider both human drivers and IV
models. In Section 2.2.5 we will then also present more aggregate models that can be used by the area
controllers.

Traffic flow modeling

In this section, we deal with the longitudinal aspects of the driver tasks, which can be classified as
follows:

• free-flow behavior,

• car-following behavior,

• stop-and-go behavior.

In free-flow behavior, the vehicles can travel at their desired speed (corresponding to the speed limit,
e.g., 120 km/h). As the traffic demand increases, the vehicles start to follow their predecessors at closer
distances and at reduced speeds (50–80 km/h). Once the capacity of thehighway is being utilized at
its maximum, then the vehicles move with stop-and-go movements (0–40 km/h).
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Vehicle models

We use general kinematics motion equations to describe the dynamics of the vehicles, which, after
discretization leads to:

xi(ℓ) = xi(ℓ−1)+vi(ℓ−1)Tsim+0.5ai(ℓ−1)T2
sim (2.1)

vi(ℓ) = vi(ℓ−1)+ai(ℓ−1)Tsim (2.2)

whereℓ is the simulation step counter,Tsim the simulation time step,xi the longitudinal position of
vehiclei, vi the speed of vehiclei, andai the acceleration of vehiclei. The acceleration used in (2.1)–
(2.2) is calculated according to the current driving situation as will be explained below. Also, the
acceleration is limited between a maximum acceleration and a maximum (in absolute value) comfort-
able deceleration.

We first consider models for human drivers. Next, we discuss models forthe intelligent vehicles
and for the platoons. We conclude with a description of a phenomenon calledcapacity drop.

Longitudinal models for human drivers

The time headwayThead of a vehicle is defined as the time difference between the passing of the
rear ends of the vehicle’s predecessor and the vehicle itself at a certainlocation. When there is no
predecessor or when the time headway to the predecessor is larger than the critical time headway
(e.g., 10 s), then the vehicle is said to be in free-flow mode. Once the vehicle travels with a smaller
time headway than the critical time headway to its predecessor, then the vehicle issaid to be in car-
following mode.

Free-flow model

The acceleration for free-flow driving conditions is determined by the delayed difference between the
current speed and the reference speed:

ai(ℓ) = K(vref,i(ℓ−σ)−vi(ℓ−σ)) (2.3)

whereK is the proportional constant,vref,i is the reference speed, andσ is the reaction delay1. The
reference speed can either be issued by roadside infrastructure or itcan be driver’s desired maximum
speed.

Car-following model

As described in [11] there exist various types of car-following models such as stimulus response
models [41], collision avoidance models [33], psychophysical models [42], and cellular automata
models [43].

We will use a stimulus response model to describe the behavior of human drivers as this model is
most often used and also easy to implement. Stimulus response models are basedon the hypothesis
that each vehicle accelerates or decelerates as a function of the relativespeed and distance between
the vehicle and its predecessor. In particular, the Gazis-Herman-Rothery (GHR) model [24] states that
after a reaction delay, the follower vehiclei accelerates or decelerates in proportion to the speed of the

1We assume here that the reaction timeTreact, which typically has a value of 1–1.2 s, is an integer multiple of the
simulation time stepTsim. So,Treact= σTsim with σ an integer.
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vehicle itself, to the relative speed with respect to its predecessor (vehiclei +1), and to the inverse of
distance headway between them. The reference acceleration is thus given by

ai(ℓ) = Cvβ
i (ℓ)

(vi+1(ℓ−d)−vi(ℓ−d))

(xi+1(ℓ−d)−xi(ℓ−d))γ (2.4)

whereC, β , andγ are the model parameters (possibly with different values depending on whether the
vehicle is in a congested and uncongested driving situation), andd is the driver delay2.

Longitudinal models for intelligent vehicles

In our approach, intelligent vehicles will use ACC and ISA measures and are arranged in platoons.
We now discuss how the accelerations for the platoon leaders and for the follower vehicles within a
platoon are calculated.

Platoon leader model

Platoon leaders have an enforced-ISA system and the calculation of the acceleration for the platoon
leader is based on a simple proportional controller:

ai(ℓ) = K1(vISA(ℓ)−vi(ℓ)) (2.5)

whereK1 is the proportional constant, andvISA is the reference ISA speed provided by the roadside
controller.

Follower vehicle model

The follower vehicles will use their on-board ACC system to maintain short intraplatoon distances.
The ACC algorithm consists of a combined speed and distance controller:

ai(ℓ) = K2(href,i(ℓ)− (xi+1(ℓ)−xi(ℓ)))+K3(vi+1(ℓ)−vi(ℓ)) (2.6)

whereK2 andK3 are constants, andhref,i is the reference distance headway for vehiclei. Note that the
speed controller is based on the same principle as the one used in the platoon leader model, but with
the platoon leader’s speed as the reference speed. The distance controller calculates the safe distance
headway as follows:

href,i(ℓ) = S0 +vi(ℓ)Thead,i +Li (2.7)

whereS0 is the minimum safe distance that is to be maintained at zero speed,Thead,i is the time
headway for vehiclei, andLi is the length of vehiclei.

Platoon-based prediction model

On a more aggregate level, we can also consider a platoon of vehicles as a single entity without taking
the detailed interactions among the individual vehicles within a platoon into account. So essentially
we consider a platoon as one “big vehicle” with a length that is a function of thespeed of the platoon
(due to the dependence of the intervehicle spacing managed by the ACC on the speed (cf. (2.7))), and

2Here we assume again thatTdelay, which typically has a value of 1–1.2 s, is an integer multiple ofTsim. So,Tdelay= dTsim
with d an integer.
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of the number and lengths of the vehicles in the platoon. The dynamics equations for the speed and
position of the platoon are the same as those of a platoon leader presented above. Consider platoonp
and assume for the sake of simplicity that the vehicles in the platoon are numbered 1 (last vehicle), 2
(one but last vehicle), . . . ,np (platoon leader). The speed dependent lengthLplat,p(ℓ) of platoonp is
then given by

Lplat,p = (np−1)(S0 +S1vnp(ℓ))+
np

∑
i=1

Li , (2.8)

whereS0 +S1vnp(ℓ) is the speed-dependent intervehicle spacing between the vehicles in the platoon,
with S0 the minimum safe distance that is to be maintained at zero speed,S1 a model constant,vnp the
speed of the platoon (leader), andLi the length of vehiclei.

Capacity drop

In general, traffic congestion occurs when the available network resources are not sufficient to handle
the traffic demand (recurrent congestion), or due to irregular occurrences, such as traffic incidents
(non-recurrent congestion). In practice, traffic jams or congestion result in capacity drop [25]. This
phenomenon causes the expected maximum outflow from the jammed traffic to be less than in the
case of free-flow traffic. This is mainly caused by the delay in reaction time and increased intervehicle
distance (time headway) when vehicles start to exit from a traffic jam. For human drivers the capacity
drop is typically of the order of 2–7 %. With fully automated vehicles the capacitydrop can be reduced
to almost 0 %.

2.2.4 Roadside controllers

In this section we propose an MPC method for the roadside controllers to determine optimal speeds,
lane allocations, and on-ramp release times for the platoons. For the sake ofsimplicity of the ex-
position we will mainly focus on intelligent speed adaptation (ISA), but the proposed approach also
applies to other control measures.

MPC for ISA

We now explain how MPC can be applied for speed control in IVHS. MPC makes use of discrete-
time models. LetTc be the control sampling interval, i.e., the (constant) time interval between two
updates of the control signal settings. At each time stepk (corresponding to the time instantt = kTc),
the roadside controller first measures or determines the current statex(k) of the system. Recall that
the roadside control works with platoons as basic entities. So in our case thestate of the system
includes the positions and speeds of the platoon leaders and the lengths of the platoons. Next, the
controller uses an optimization algorithm in combination with a model of the system to determine the
control inputsu(k), . . . ,u(k+Np−1) that optimize a performance criterionJ(k) over a time interval
[kTc,(k+Np)Tc], whereNp is called the prediction horizon. In our case the control signalu will consist
of the speed limits for the platoon leaders.

In the previous section we have already presented some models that are especially suited for use
in MPC for IVHS. Note however that MPC is a modular approach so that in case a given prediction
model does not perform well, it can easily be replaced by another prediction model.

Possible performance criteriaJ(k) are the total time spent in a traffic network, the total throughput,
the total fuel consumption, safety, or a combination of these. In the followingwe will in particular
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consider the total time spent (TTS) by all the vehicles in the network:

JTTS(k) =
Np

∑
j=0

nveh(k+ j)Tc , (2.9)

wherenveh(k+ j) is the number of vehicles that are present in the network at timet = (k+ j)Tc.
Moreover, in order to prevent oscillations and frequent shifting in the control signals, one often adds
a penalty on variations in the control signalu, which results in the total performance function

Jtot(k) = J(k)+α
Np

∑
j=0

‖u(k+ j)−u(k+ j−1)‖2 , (2.10)

whereα > 0 is a weighting factor.
The MPC controller also explicitly takes into account operational constraintssuch as minimum

separation between the platoons, minimum and maximum speeds, minimum headways, etc. To reduce
the computational complexity of the problem, one often introduces a constraintof the formu(k+ j) =
u(k+ j−1) for j = Nc, . . . ,Np−1, whereNc (< Np) is called the control horizon.

In MPC the control actions are applied in a receding horizon fashion. Thisis done by applying
only the first control sampleu(k) of the optimal control sequence to the system. Next, the prediction
horizon is shifted one step forward, and the prediction and optimization procedure over the shifted
horizon are repeated using new system measurements.

Optimization methods

Solving the MPC optimization problem (i.e., computing the optimal control actions) is the most de-
manding operation in the MPC approach. In our case the MPC approach gives rise to nonlinear
nonconvex optimization problems that have to be solved on-line. So a properchoice of optimization
techniques that suit the nature of the problem has to be made. In our case global or multi-start local
optimization methods are required such as multi-start sequential quadratic programming [44], pattern
search [4], genetic algorithms [15], or simulated annealing [19].

2.2.5 Area controllers

In this section we describe a control approach for the area controllers and in particular on how optimal
routes can be determined for the platoons.

Approach

In principle, the optimal route choice control problem in IVHS consists in assigning an optimal route
to each individual platoon in the network. However, this results in a huge nonlinear integer optimiza-
tion problem with high computational complexity and requirements, making the problem intractable
in practice. So, since considering each individual platoon is too computationally intensive, we will
consider streams of platoons instead (characterized by (real-valued) demands and flows expressed in
vehicles per hour). The routing problem will be recast as the problem ofdetermining the flows on
each link.

Once these flows are determined, they can be implemented by roadside controllers at the links
and at the nodes. So the area controllers provide flow targets to the roadside controllers, which then
have to control the platoons that are under their supervision in such a waythat these targets are met as
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Figure 2.2: Piecewise constant time-varying demand profileDo,d for the dynamic case.

well as possible. This corresponds to slowing down or speeding up platoons in the links if necessary
(in combination with lane allocation and on-ramp access timing), and to steering them in a certain
direction depending on the splitting rates for the flows.

Set-up

We consider the following set-up. We have a transportation network with a set of origin nodesO, a set
of destination nodesD , and a set of internal nodesI . Define the set of all nodes asV = O ∪I ∪D .
Nodes can be connected by one or more (unidirectional) links. The set ofall links is denoted byL.

For each origin-destination pair(o,d) ∈ O×D we define the setLo,d ⊆ L of links that belong to
some route going fromo to d. For every linkl ∈ L we define the setSod,l of origin-destination pairs
(o,d) ∈ O×D such thatl belongs to some route going fromo to d.

For each pair(o,d) ∈ O ×D , there is a constant demandDo,d (in the static case) or a dynamic,
piecewise constant demand patternDo,d(·) as shown in Figure 2.2 withDo,d(k) the demand of vehicles
at origin o with destinationd in the time interval[kτs,(k+ 1)τs) for k = 0, . . . ,K − 1 with K the
simulation horizon andτs the simulation time step (we assume that beyondT = Kτs the demand is 0).

For each linkl ∈ L in the network3 there is a maximal capacityCl . We assume that there is a fixed
average speedvl on each linkl . Let τl denote the travel time on linkl : τl = ℓl

vl
whereℓl is the length

of link l . We denote the set of incoming links for nodev∈ V by Lin
v , and the set of outgoing links by

Lout
v . Note that for originso∈ O we haveLin

o = /0 and for destinationsd ∈D we haveLout
d = /0.

The aim is now to assign actual (real-valued) flowsxl ,o,d (in the static case) orxl ,o,d(k) (in the
dynamic case) for every pair(o,d) ∈ O ×D and everyl ∈ Lo,d, in such a way that the capacity
of the links is not exceeded and such that the given performance criterion (e.g., total time spent) is
minimized. In the dynamic casexl ,o,d(k) denotes the flow of vehicles from origino to destinationd
that enter linkl in the time interval[kτs,(k+1)τs).

For the optimal route choice problem we now consider four cases with a gradually increasing
complexity:

• Static case with sufficient network capacity,

3This approach can easily be extended to the case where also the internal nodesv∈I have a finite capacity.
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• Static case with queues at the boundaries of the network only,

• Dynamic case with queues at the boundaries of the network only,

• Dynamic case with queues inside the network.

Static case with sufficient network capacity

Here we assume that there is a constant demand for each origin-destinationpair and that the total
network capacity is such that the entire demand can be processed, so thatthere will be no queues at
the boundaries or inside the network. Let us now describe the equations tomodel this situation.

For every origin nodeo∈O we have:

∑
l∈Lout

o ∩Lo,d

xl ,o,d = Do,d for eachd ∈D . (2.11)

For every internal nodev∈I and for every pair(o,d) ∈ O×D we have

∑
l∈Lin

v ∩Lo,d

xl ,o,d = ∑
l∈Lout

v ∩Lo,d

xl ,o,d . (2.12)

We also have the following condition for every linkl :

∑
(o,d)∈Sod,l

xl ,o,d 6 Cl . (2.13)

Finally, the objective function is given as follows4:

Jlinks,k,N = ∑
(o,d)∈O×D

∑
l∈Lo,d

xl ,o,dτl T , (2.14)

which is a measure for the total time the vehicles or platoons spend in the network. In order to
minimizeJlinks,k,N we have to solve the following optimization problem:

min Jlinks,k,N s.t. (2.11)–(2.13) (2.15)

Clearly, this is a linear programming problem.

Static case with queues at the boundaries of the network only

In case the capacity of the network is less than the demand, then problem (2.15) will not be feasible.
In order to be able to determine the optimal routing in this case, we have to take intoaccount that
queues might appear at the origin of the network.

Let us first write down the equations for the flows inside the network.
For every origin nodeo∈O we have:

∑
l∈Lout

o ∩Lo,d

xl ,o,d 6 Do,d for eachd ∈D . (2.16)

Equations (2.12) and (2.13) also hold in this case.

4Recall thatT = Kτs is the length of the simulation period.
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Let us now describe the behavior of the queues. Since the actual flow out of origin nodeo for
destinationd is given by

Fout
o,d = ∑

l∈Lout
o ∩Lo,d

xl ,o,d ,

the queue length at the origino for vehicles or platoons going to destinationd will increase linearly
with a rateDo,d−Fout

o,d (note that by (2.16) this rate is always nonnegative). At the end of the simulation
period (which has lengthT) the queue length will be(Do,d−Fout

o,d )T, and hence the average queue

length is1
2(Do,d−Fout

o,d )T. So the total time spent in the origin queues is

Jqueue,k,N = ∑
(o,d)∈O×D

1
2
(Do,d−Fout

o,d )T2

= ∑
(o,d)∈O×D

1
2

(
Do,d− ∑

l∈Lout
o

xl ,o,d

)
T2 .

In order to minimize the total time spent we have to solve the following optimization problem:

min Jlinks,k,N +Jqueue,k,N s.t. (2.12), (2.13), and (2.16). (2.17)

This is also a linear programming problem.

Dynamic case with queues at the boundaries of the network only

Now we consider a piecewise constant demand pattern for every origin-destination pair. Moreover,
we assume that the travel timeτl on link l is an integer multiple ofτs, say

τl = κl τs with κl an integer. (2.18)

Let qo,d(k) denote the partial queue length of vehicles at origino going to destinationd at time instant
t = kτs. In principle, the queue lengths should be integers as their unit is “number of vehicles”, but
we will approximate them using reals.

For the sake of simplicity we also assume that initially the network is empty (i.e.,qo,d(k) = 0 and
xl ,o,d(k) = 0 for k 6 0).

For every origin nodeo∈O we now have:

∑
l∈Lout

o ∩Lo,d

xl ,o,d(k) 6 Do,d(k)+
qo,d(k)

τs
for eachd ∈D , (2.19)

with by definitionDo,d(k) = 0 for k > K andqo,d(k) = 0 for k 6 0. Note that the termqo,d(k)
τs

in (2.19)
is due to the assumption that whenever possible and feasible the queue is emptied in the next sample
period, with lengthτs.
Taking into account that every flow on linkl has a delay ofκl time steps before it reaches the end of
the link, we have

∑
l∈Lin

v ∩Lo,d

xl ,o,d(k− τl ) = ∑
l∈Lout

v ∩Lo,d

xl ,o,d(k) (2.20)

Page 29/67



HD-MPC ICT-223854 Multi-level models and architectures for HD-MPC

(b)(a)

qcont
o,d qcont

o,d

t t
kτs kτs(k+1)τs (k+1)τs

slope:
−(Do,d(k)−Fout
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Figure 2.3: Two possible cases for the evolution of the (continuous-time) queue lengthqcont
o,d in the

time interval[kτs,(k+1)τs).

for every internal nodev∈I and for every pair(o,d) ∈ O×D , with xl ,o,d(k) = 0 for k≤ 0.
We also have the following condition for every linkl :

∑
(o,d)∈Sod,l

xl ,o,d(k) 6 Cl . (2.21)

Let us now describe the behavior of the queues. Since the actual flow out of origin nodeo for
destinationd in the time interval[kτs,(k+1)τs) is given by

Fout
o,d (k) = ∑

l∈Lout
o ∩Lo,d

xl ,o,d(k) , (2.22)

the queue length at the origino for vehicles going to destinationd will increase linearly with a
rateDo,d(k)−Fout

o,d (k) in the time interval[kτs,(k+1)τs). Hence,

qo,d(k+1) = max
(
0, qo,d(k)+(Do,d(k)−Fout

o,d (k))τs
)

(2.23)

In order to determine the timeJqueue,o,d(k) spent in the queue at origino in the time interval
[kτs,(k+1)τs) for traffic going to destinationd, we have to distinguish between two cases depending
on whether or not the continuous-time queue lengthqcont

o,d becomes equal to zeroinside5 the interval
[kτs,(k+1)τs] (see Cases (a) and (b) of Figure 2.3). For Case (b) we define

To,d(k) =
qo,d(k)

Fout
o,d (k)−Do,d(k)

(2.24)

as the time offset afterkτs at which the queue length becomes zero. Then we have

Jqueue,o,d(k) =





1
2
(qo,d(k)+qo,d(k+1))τs for Case (a),

1
2

qo,d(k)To,d(k) for Case (b).
(2.25)

5So we are only Case (b) ifqcont
o,d becomes equal to zero for some timet with kτs < t < (k+1)τs, i.e., if qo,d(k) > 0 and

qo,d(k)+(Do,d(k)−Fout
o,d (k))τs < 0. All other situations belong to Case (a).
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Due to the denominator term in (2.24)Jqueue,o,d(k) is in general a nonlinear function. Now assume that
we simulate the network until time stepKsim > K (e.g., until all queues and all flows have become6

equal to zero). Then we have

Jqueue,k,N =
Ksim−1

∑
k=0

∑
(o,d)∈O×D

Jqueue,o,d(k) .

The time spent in the links is now given by

Jlinks,k,N =
Ksim−1

∑
k=0

∑
(o,d)∈O×D

∑
l∈Lo,d

xl ,o,d(k)κl τ2
s . (2.26)

In order to minimize the total time spent we have to solve the following optimization problem:

min
(
Jlinks,k,N +Jqueue,k,N

)
s.t. (2.19)–(2.23). (2.27)

Due to the presence of constraint (2.23) and the nonlinear expression for Jqueue,o,d(k) in Case (b) this
is a nonlinear, non-convex, and non-smooth optimization problem. In general, these problems are
difficult to solve and require multi-start local optimization methods (such as Sequential Quadratic
Programming (SQP)) or global optimization methods (such as genetic algorithms,simulated anneal-
ing, or pattern search) [44]. However, in the following we will propose an alternative approximate
solution approach based on mixed integer linear programming.

Dynamic case with queues inside the network

Now we consider the case with queues inside the network. If there are queues formed, we assume
that they are formed at the end of the links and that the queues are vertical.In fact, for the sake of
simplicity and in order to obtain linear equations, we assign the queues to the nodes instead of the
links.

This case is similar to the previous case, the difference being that (2.20) is now replaced by (cf.
also (2.19)):

∑
l∈Lout

v ∩Lo,d

xl ,o,d(k) 6


 ∑

l∈Lin
v ∩Lo,d

xl ,o,d(k− τl )


+

qv,o,d(k)

τs
, (2.28)

whereqv,o,d(k) is the partial queue length at nodev for vehicles or platoons going from origino to
destinationd at the time instantt = kτs. Moreover,

qv,o,d(k+1) = max
(
0,qv,o,d(k)+(F in

v,o,d(k)−Fout
v,o,d(k)

)
τs

with the flow into and out of the queue being given by

F in
v,o,d(k) = ∑

l∈Lin
v ∩Lo,d

xl ,o,d(k− τl ) (2.29)

Fout
v,o,d(k) = ∑

l∈Lout
v ∩Lo,d

xl ,o,d(k) . (2.30)

6If this is not the case we have to add an end-point penalty on the queue lengths and flows at time stepKsim.
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Similar to the wayJqueue,o,d(k) has been defined in (2.25) we also define the timeJqueue,v,o,d(k) spent
in the queue at nodev in the time interval[kτs,(k+1)τs) for traffic going from origino to destination
d, and we extend the definition ofJqueue,k,N into

Jqueue,k,N =
Ksim−1

∑
k=0

∑
(o,d)∈O×D

(
Jqueue,o,d(k)+

∑
v∈I

Jqueue,v,o,d(k)
)

τs .

In order to minimize the total time spent we have to solve the following optimization problem:

min
(
Jlinks,k,N +Jqueue,k,N

)
s.t. (2.19), (2.21)–(2.23), and (2.28)–(2.30),

with Jlinks,k,N still defined by (2.26). This also results in a nonlinear, non-convex, andnon-smooth
optimization problem. However, in the next section we will show that this problemcan also be ap-
proximated using mixed integer linear programming.

Approximation based on mixed integer linear programming

Recall that the dynamic optimal route guidance problems previously stated arenonlinear, non-convex,
and non-smooth. Now we will show that by introducing an approximation theseproblems can be
transformed into mixed integer linear programming (MILP) problems, for whichefficient solvers
have been developed [22].

First we consider the case with queues at the origins only, i.e., we considerthe optimization
problem (2.27). Apart from (2.23) this problem is a linear optimization problem.

Now we explain how we can transform (2.23) into a system of linear equations by introducing
some auxiliary boolean variablesδ . To this aim we use the following properties [7], whereδ rep-
resents a binary-valued scalar variable,y a real-valued scalar variable, andf a function defined on a
bounded setX with upper and lower boundsM andm for the function values:

P1: [ f 6 0] ⇐⇒ [δ = 1] is true if and only if

{
f 6 M(1−δ )
f > ε +(m− ε)δ ,

whereε is a small positive number7 (typically the machine precision),

P2: y = δ f is equivalent to 



y 6 Mδ
y > mδ
y 6 f −m(1−δ )
y > f −M(1−δ ) .

Depending on the order in which these properties are applied and in which additional auxiliary
variables are introduced, we may end up with more or less binary and real variables in the final
MILP problem. The number of binary variables — and to a lesser extent the number of real variables

7We need this construction to transform a constraint of the formy > 0 into y > ε, as in (mixed integer) linear program-
ming problems only non-strict inequalities are allowed.
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— should be kept as small as possible since this number has a direct impact ofthe computational
complexity of the final MILP problem.

To reduce the number of real variables in the final MILP problem, we firsteliminateFout
o,d (k) and

we write (2.23) as

qo,d(k+1) =max
(

0,qo,d(k)

+
(
Do,d(k)− ∑

l∈Lout
o ∩Lo,d

xl ,o,d(k)
)
τs

)
. (2.31)

Note that this is a nonlinear equation and thus it does not fit the MILP framework. Let Dmax
o,d =

maxk Do,d(k) be the maximal demand for origin-destination pair(o,d), let Fmax
o,d = ∑l∈Lout

o ∩Lo,d
Cl be

the maximal possible flow out of origin nodeo towards destinationd, and letqmax
o,d = Dmax

o,d τsKsim be the

maximal origin queue length at origino for traffic going to destinationd. If we definemlow
o,d =−Fmax

o,d τs

andmupp
o,d = qmax

o,d +Dmax
o,d τs, then we always have

mlow
o,d 6 qo,d(k)+

(
Do,d(k)− ∑

l∈Lout
o ∩Lo,d

xl ,o,d(k)
)

τs 6 mupp
o,d .

Next, we introduce binary variablesδo,d(k) such that

δo,d(k) = 1 if and only if

qo,d(k)+
(
Do,d(k)− ∑

l∈Lout
o ∩Lo,d

xl ,o,d(k)
)
τs > 0 .

Using PropertyP1 with the boundsmlow
o,d andmupp

o,d this condition can be transformed into a system of
linear inequalities. Now we have (cf. (2.31))

qo,d(k+1) =

δo,d(k)
(

qo,d(k)+
(
Do,d(k)− ∑

l∈Lout
o ∩Lo,d

xl ,o,d(k)
)
τs

)
.

This expression is still nonlinear since it contains a multiplication of a binary variableδo,d(k) with a
real-valued (linear) function. However, by using PropertyP2 this equation can be transformed into a
system of linear inequalities.
So by introducing some auxiliary variablesδo,d(k) we can transform the original nonlinear equation
(2.23) into a system of additional linear equations and inequalities.

Recall thatJqueue,o,d(k) is in general a nonlinear function due to the occurrence of Case (b) of
Figure 2.3. However, if we also use the expression of Case (a) for Case (b), then we can approximate
Jqueue,o,d(k) as8

Jqueue,o,d(k) =
1
2
(qo,d(k)+qo,d(k+1))τs ,

which is a linear expression. This implies that the overall objective functionJlinks,k,N + Jqueue,k,N is
now linear. So the problem (2.27) can be approximated by an MILP problem.

Several efficient branch-and-bound MILP solvers [22] are available for MILP problems. More-
over, there exist several commercial and free solvers for MILP problems such as, e.g., CPLEX,

8This is exact for Case (a) and an approximation for Case (b). However, especially ifτs is small enough, the error we
then make is negligible.
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Xpress-MP, GLPK, or lpsolve (see [3, 39] for an overview). In principle, — i.e., when the algo-
rithm is not terminated prematurely due to time or memory limitations, — these algorithms guarantee
to find the global optimum. This global optimization feature is not present in the other optimization
methods that can be used to solve the original nonlinear, non-convex, non-smooth optimization prob-
lem (2.27). Moreover, if the computation time is limited (as is often the case in on-linereal-time traffic
control), then it might occur that the MILP solution can be found within the allotted time whereas the
global and multi-start local optimization algorithm still did not converge to a goodsolution. As a
result, the MILP solution — even although it solves an approximated problem —might even perform
better than the solution returned by the prematurely terminated global and multi-start local optimiza-
tion method. In general, we can say that the MILP solution often provides a good trade-off between
optimality and computational efficiency.

Using a similar reasoning as above we can also transform the routing problem with queues inside
the network into an MILP problem. Note however that in this case the number ofbinary variables
may become quite large.

2.2.6 Conclusions

In this section we have considered a hierarchical control framework for intelligent vehicle highway
systems (IVHS), with a special focus on the models used at the various control levels. We have pre-
sented how model predictive control (MPC) can be used to determine optimalspeeds for platoons by
the roadside controllers. We have also considered the optimal route guidance problem for IVHS. In
particular, we have proposed an optimal route guidance approach for platoons by an area controller
based on a simplified flow model. Since the resulting optimization problem could still be too in-
volved for on-line, real-time implementation in the case of dynamic demands, we have explored an
approximation resulting in a mixed integer linear programming problem, for which efficient solvers
exist.

2.3 Hierarchical model predictive control for baggage handling systems

In this section we propose a hierarchical control framework for state-of-the-art baggage handling sys-
tems where the luggage is transported by fast destination coded vehicles (DCVs). In this control
framework switch controllers provide position instructions for each switch inthe network. A col-
lection of switch controllers is then supervised by a network controller that mainly takes care of the
route choice instructions for DCVs. In general, the route choice controlproblem is a nonlinear, mixed
integer optimization problem, with high computational requirements, which makes it intractable in
practice. Therefore, we present an alternative approach for reducing the complexity of the computa-
tions by approximating the nonlinear optimization problem and rewriting it as a mixedinteger linear
programming (MILP) problem for which solvers are available that allow us toefficiently compute the
global optimal solution. The solution of the MILP problem is then used in computing optimal switch
control actions. For a benchmark case study we compare the hierarchical control with centralized
switch control. The results indicate that the proposed hierarchical control offers a balanced trade-off
between optimality and computational efficiency.

In the proposed approach two different types of models are used, depending on the time scale
involved. For simulations and for the lower control levels we use a fast event-based model, while for
the higher level controller we use a model based on queues and flows thatcan ultimately be recast into
a mixed-integer linear programming description.
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This section is organized as follows. First we introduce the background of the routing problem in
Section 2.3.1. Next, we discuss DCV-based baggage handling systems in Section 2.3.2. Section 2.3.3
presents the detailed event-based model for the DCV-based baggage handling system. The actual
control approach is presented in Section 2.3.4, followed by a description of the higher-level route
choice controller in Section 2.3.5, including the flow-and-queue-based model used by the higher-
level controller. Section 2.3.6 then discusses the lower-level switch controller, which is based on the
event-driven model of Section 2.3.3. A case study is considered in Section2.3.7 and conclusions are
presented in Section 2.3.8.

2.3.1 Introduction

State-of-the-art baggage handling systems in airports transport luggage at high speeds using desti-
nation coded vehicles (DCVs). These vehicles transport the bags in an automated way on a “mini”
railway network. The first objective of a baggage handling system is to transport all the checked-in
or transfer bags to the corresponding end points before the planes have to be loaded. However, due to
the airport’s logistics, an end point is allocated to a plane only with a given amount of time before the
plane’s departure. Hence, the baggage handling system performs optimally if each of the bags to be
handled arrives at its given end point within a specific time window.

Currently, the DCVs are routed through the system using routing schemes based on preferred
routes. These routing schemes can be adapted to respond on the occurrence of predefined events.
However, as argued in [17], the patterns of loads on the system are highly variable, depending on e.g.
season, time of the day, type of aircraft at each gate, number of passengers for each flight. Therefore, in
the research we conduct we do not consider predefined preferredroutes. Instead we develop advanced
control methods to determine the optimal routing in case of dynamic demand.

The route assignment problem has been addressed in e.g. [23, 31]. But, in our case we do not
deal with a shortest-path or shortest-time problem, since we need the bags attheir corresponding end
point within a given time window. In [20] is presented an analogy between theDCV routing problems
and data transmissions via internet. Also, [26] presents a multi-agent approach for routing DCVs.
However, this multi-agent system is faced with major challenges due to the extensive communication
required. The goal of our work is to develop and compare efficient control approaches for route choice
control of each DCV on the track network.

Theoretically, the maximum performance of such a DCV-based baggage handling system would
be obtained if one computes the optimal routes using optimal control [37]. However, as shown in [49],
for a fast event-based model of this system, this control method becomes intractable in practice due to
the heavy computation burden. Therefore, in order to make a trade-off between computational effort
and optimality, in [50], we have also implemented centralized and decentralized model predictive
control (MPC), and also a decentralized heuristic approach. As the results confirmed, centralized
MPC requires high computation time to determine a solution. The use of decentralized control lowers
the computation time, but at the cost of suboptimality.

In this chapter, we propose a hierarchical control framework where the higher level controllers use
MPC. The large computation time obtained in previous work comes from solving the nonlinear, mixed
integer optimization problems that have multiple local minima, and therefore, are difficult to solve.
So, in this paper we investigate whether the computational effort required tocompute the optimal
route choice can be lowered by using mixed integer linear programming (MILP).
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Figure 2.4: Baggage handling system using DCVs.

2.3.2 DCV-based baggage handling systems

The track network of a DCV-based baggage handling system consists ofa set of loading stations as
origin nodes, a set of unloading stations as destination nodes, and a set of junctions as internal nodes.
Let us call the switch that makes the connection between a junction and its incoming links switch-in,
and the switch that makes the connection between a junction and its outgoing linksswitch-out. Note
that a switch-in is required only if the junction has 2 incoming links, otherwise theconnection between
the one incoming link and the junction is fixed. A similar remark is valid for a switch-out.

The DCV-based baggage handling system operates as follows: given ademand of bags and the
network of tracks as a directed graph, the route of each DCV (from a given loading station to the
corresponding unloading station) has to be determined subject to the operational and safety constraints
detailed in [49] such that all the bags to be handled arrive at their end points within the corresponding
time window.

2.3.3 Event-driven model

Operation of the system

The baggage handling process begins after the bags have passed the check-in. Then they enter the
conveyor network, being routed to loading conveyors towards loading stations. Depending on the
availability of empty DCVs, at each loading station a queue of bags may be formed. In the following
we focus on the transporting-using-DCVs part of the process. Therefore, one may consider that each
loading station has a buffer of bags waiting to be handled as sketched in Figure 2.4. The baggage
handling system operates as follows: given a finite sequence of bags (identified by their unique code)
and a buffer of empty DCVs for each loading station, together with the network of tracks, the optimal
route and the optimal velocity profile of each DCV have to be computed subjectto operational and
safety constraints such that the system optimum is assured.
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We consider a baggage handling system withL loading stations andU unloading stations as de-
picted in Figure 2.4. Accordingly, we haveL FIFO (First In First Out) buffers of bags waiting to enter
the system.

Modeling assumptions

Later on we will use the model for on-line model-based control. So, in orderto balance between
a detailed model that requires large computation time and a fast simulation we make the following
assumptions:

1. a sufficient number of DCVs are present in the system.

2. the capacity of the network is large enough so that no overflow will occur.

3. each loading station has a finite buffer of bags waiting to be handled.

4. all buffers have the same maximum capacitybmax.

5. assume there areX bags with random destinations to be handled. They are numbered 1,2, · · · ,X.
When using a baggage handling system withL loading stations, we split this streamb =
[1 2 · · · X]T with X ≤ Lbmax, in L new streamsb1 = [1 2 · · · l ]T, b2 = [l +1 l +2 · · · 2l ]T, · · · ,
bL = [(L−1)l +1 (L−1)l +2 · · · X]T with l =

⌊
X
L

⌋
, where⌊x⌋ denotes the largest integer less

than or equal tox.

6. the “mini” railway network has single-direction tracks.

7. a route switch at a junction can be performed in a negligible time span.

8. the speed of a DCV is piecewise constant.

9. the laterals have infinite capacity.

10. the destinations to which the bags have to be transported are allocated to the laterals when the
process starts.

Since we consider the line balancing problem solved, these assumptions arereasonable and give
a good approximation of the real baggage handling system.

Model

There are four types of events that can occur:

• loading a new bag into the system.

• unloading a bag that meets the corresponding lateral.

• updating the route switches at the junction that the DCV has to pass.

• updating the speed of a DCV.
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Figure 2.5: Speed evolution of the DCVi .

The model of the baggage handling system is an event-driven one consisting of a continuous part
describing the movement of the individual vehicles transporting the bags through the network, and of
the discrete events listed above.

DefineNi as the number of junctions that a DCV has to pass in order to reach its destination. A
track segment is the portion of the track on which a DCV is running either between a loading station
and a junction, or between two junctions, or between a junction and an unloading station. Let DCVi be
the DCV that transports theith bag that entered the system. The following situation has been assumed:
given the velocity sequence of the DCVi sayvi = [vi(0) vi(1) · · · vi(Ni)]

T and the sequence of segment
lengthsl i = [l i(0) l i(1) · · · l i(Ni)]

T, on each segmentj of lengthl i( j) the velocity of DCVi equalsvi( j)
as illustrated in Figure 2.5. The velocity of the DCVi that passed segmentj, j = 0,1, · · · ,Ni −1 is
updated at time instantt j+1 = t j +

l i( j)
vi( j) with t0 the initial time.

The model of the baggage handling system is given by the algorithm below, where the loading
stations are denoted by L1, L2, · · · , LL, and the unloading stations are denoted by U1, U2, · · · , UU . We
also defineSas the number of junctions of the track network andXcurrent(t) as the number of bags that
entered the baggage handling system up to the current time instantt.

Algorithm 1. Baggage handling

1: t← t0
2: while there are bags to be handleddo
3: for ℓ = 1 toL do
4: tload(ℓ)← time that will pass until the next

loading event from Lℓ’s point of view
5: end for
6: for ℓ = 1 toU do
7: tunload(ℓ)← time that will pass until the next

unloading event from Uℓ’s point of view
8: end for
9: for s= 1 toSdo

10: tswitch(s)← time that will pass until the next
route switch event from the junctions’s
point of view

11: end for
12: for i = 1 toXcurrent(t) do
13: if bagi is not at a lateralthen
14: tspeedupdate(i)← time that will pass until the
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next speed-update event from the point
of view of the DCVi

15: end if
16: end for
17: tmin←min( min

ℓ=1,··· ,L
tload(ℓ), min

ℓ=1,··· ,U
tunload(ℓ),

min
s=1,··· ,S

tswitch(s), min
i=1,··· ,Xcurrent(t)

tspeedupdate(i))

18: t← t + tmin

19: update the state of the system
20: if tmin = min

i=1,··· ,Xcurrent(t)
tspeedupdate(i) then

21: update the speed of the DCVi

22: end if
23: end while

If multiple events occur at the same time, then we take all these events into account when updating
the state of the system at step 19.

Operational constraints

The operational constraints derived from the mechanical and design limitations of the system are the
following:

• the velocity of each DCV is bounded between 0 andvmax.

• a bag can be loaded onto a DCV only if there is an empty DCV under the loading station.

• a DCV can transport only one bag.

• collisions between DCVs have to be avoided on each track segment and at each intersection.

2.3.4 Hierarchical control approach

In order to efficiently compute the route choice of each DCV we propose a hierarchical control frame-
work that consists of a multi-level control structure as shown in Figure 2.6 with the following layers:

• Thenetwork controllerprovides the route choice for DCVs by determining reference flow tra-
jectories over time for each link in the network. These flow trajectories are computed so that
the performance of the system is optimized. Then the optimal reference flow trajectories are
communicated to switch controllers.

• Theswitch controllerpresent in each junction receives the information sent by the network con-
troller and determines the sequence of optimal positions for its ingoing and outgoing switches
at each time step so that the tracking error between the reference trajectory and the future flow
trajectory is minimal.

• The DCV controller present in each vehicle detects the speed and position of the vehicle in
front of it and the position of the switch into the junction the DCV travels towardsto. This
information is then used to determine the speed to be used next such that no collision will occur
and such that the DCV stops in front of a junction the switch of which is not positioned on the
link that the DCV travels.
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Figure 2.6: Hierarchical control for DCV-based baggage handling systems.

The lower levels in this hierarchy deal with faster time scales (typically in the milliseconds range
for the DCV controllers up to the seconds range for the switch controllers), whereas for the higher-
level layer (network controller) the frequency of updating is up to the minutes range.

2.3.5 Route choice control

In this section we focus on the network controller. The switch controller will be discussed in Section
2.3.6.

Approach

The predictive switch control problem results in a huge nonlinear integer optimization problem with
high computational complexity and requirements, making the problem in fact intractable in practice
[50]. So, since considering each individual switch is too computationally intensive we will consider
streams of DCVs instead (characterized by real-valued demands and flows expressed in vehicles per
second). The routing problem will be recast as the problem of determining the flows on each link.
Once these flows are determined, they can be implemented by switch controllersat the junctions. So,
the network controller provides flow targets to the switch controllers under itssupervision, which then
have to control the position of the switch into and out of each junction in such away that these targets
are met as well as possible.

Set-up

We consider the following set-up. We have a transportation network with a set of origin nodesO, a set
of destination nodesD , and a set of internal nodesI . Define the set of all nodes asV = O ∪I ∪D .
The nodes are connected by unidirectional links. LetL denote the set of all links.

Let the time instanttk be defined astk = kτnc with τnc the sampling time for the network controller.
Then, for each pair(o,d) ∈ O ×D , there is a dynamic, piecewise constant demand patternDo,d(·)
with Do,d(k) the demand of bags at origino with destinationd in the time interval[tk, tk+1) for k =
0, . . . ,K−1 with K the demand horizon (we assume that beyondtK the demand is 0). LetLd be the
set of links that belong to some route going tod, Ld ⊆ L. We also denote the set of incoming links for
nodev∈ V by Lin

v , and the set of outgoing links byLout
v . Note that for originso∈ O we haveLin

o = /0
and for destinationsd ∈D we haveLout

d = /0. Also, without loss of generality, we assume each origin
node to have only one outgoing link (|Lout

o | = 1) and the destination nodes have only one incoming
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link (|Lin
d | = 1) where|Λ| represents the cardinality of the setΛ. For each destinationd ∈ D and for

each linkl ∈ Ld in the network we will define a real-valued flowul ,d(k). The flowul ,d(k) denotes the
number of DCVs per time unit traveling towards destinationd that enter linkl during the time interval
[tk, tk+1).

The aim is now to compute using MPC, for each stepk, flowsul ,d(k) for every destinationd ∈D

and for every linkl ∈ Ld in such a way that the capacity of the links is not exceeded and such that
the performance criterion is minimized over a given prediction period[tk, tk+N]. Possible goals for the
network controller that allow linear or piecewise affine performance criteria are reaching a desired
outflow at destinationd or minimizing the lengths of the queue in the network.

Route choice model

In this section we determine the model of the DCV flows through the network. Let τl denote the free-
flow travel time on linkl . The free-flow travel time represents the time period that a DCV requires
to travel on a track segment in case of no congestion, using, hence, maximum speed. We assume the
travel timeτl to be an integer multiple ofτnc.

In case the capacity of a loading station is less than the demand, queues might appear at the
origin of the network. Letqo,d(k) denote the length of the partial queue of DCVs at origino going
to destinationd at time instanttk. In principle, the queue lengths should be integers as their unit is
“number of vehicles”, but we will approximate them using reals.

For every origin nodeo∈O and for every destinationd ∈D we now have:

ul ,d(k) 6 Do,d(k)+
qo,d(k)

τnc for l ∈ Lout
o ∩Ld (2.32)

with Do,d(k) = 0 for k > K. Moreover,

qo,d(k+1) = max(0, qo,d(k)+(Do,d(k)−∑
l∈Lout

o ∩Ld

ul ,d(k))τnc) (2.33)

But queues can form also inside the network. We assume that the DCVs runwith maximum speed
along the track segment and, if necessary, they wait before crossing the junction in a vertical queue.
Let qv,d(k) denote the length of the vertical queue at junctionv∈ I , for destinationd ∈ D , at time
instanttk. Note that, we do not consider outflow restrictions on queues to destinationd for a junction
v connected via a link to destinationd (qv,d(k) = 0 for all k).

Taking into account that every flow on linkl has a delay ofτl
τnc time steps before it reaches the end

of the link, for every internal nodev∈I and for everyd ∈D we have:

Fout
v,d (k)6 F in

v,d(k)+
qv,d(k)

τnc (2.34)

whereF in
v,d(k) is the flow into the queue at junctionv, F in

v,d(k) = ∑
l∈Lin

v ∩Ld

ul ,d(k− τl
τnc) and whereFout

v,d (k)

is the flow out of the queue at junctionv, Fout
v,d (k) = ∑

l∈Lout
v ∩Ld

ul ,d(k).

The evolution of the length of the queue for every internal nodev ∈ I and for everyd ∈ D is
given by:

qv,d(k+1) = max(0,qv,d(k)+(F in
v,d(k)−Fout

v,d (k))τnc) (2.35)
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Figure 2.7: Desired arrival profile at destinationd.

We also have the following condition for every linkl :

∑
d∈D

ul ,d(k) 6 Umax
l . (2.36)

whereUmax
l is the maximum flow on linkl .

Next we define the performance index to be used for computing the optimal routing at stepk for a
prediction period[tk, tk+N).

The objective is to have each bag arriving at its end point within a given time interval[tclose
d − τopen

d , tclose
d ]

wheretclose
d is the time instant when the end pointd closes and the last bags are loaded onto the plane,

andτopen
d is the time period for which the end pointd stays open for a specific flight. We assumetclose

d
andτopen

d to be integer multiples ofτs. Without loss of generality, in this paper we consider that each
destination has only one flight assigned to it. However, this can be easily extended to the general case,
but where a presorting will be performed.

Hence, one MPC objective that allows a piecewise affine performance criterion is to achieve a
desired flow at destinationd during the prediction period. Letudesired

d denote the desired piecewise
constant flow profile at destinationd as sketched in Figure 2.7, where the area underudesired

d equals
the total number of bags to be sent to destinationd out of the total demand. Note that outside the time
window [tclose

d − τopen
d , tclose

d ) no bags should enter the incoming link of destinationd outside the given

time window. Consequently,udesired
d (k) = 0 for all k < kopen

d and allk > kclose
d with kopen

d =
tclose
d −τopen

τs

andkclose
d =

tclose
d
τs

.

Hence, one can define the following penalty for flow profilesJpen(k) = ∑
d∈D

λd|udesired
d (k)−ul ,d(k+

τdest
d
τs

)| whereτdest
d is the free-flow travel time of linkl ∈ Lin

d andλd > 0 is a penalty that expresses the
importance of the flight.

Note that using as MPC performance criterion∑k+N−1
i=k Jpen(i) for each time stepk, could have

adverse effects for small prediction horizons. Therefore, to counteract these effects, we also con-
sider as additional controller goal maximizing the flows of all links that are notdirectly connected
to unloading stations. To this aim, letτ link

l ,d be the typical time required for a DCV that just en-

tered link l to reach destinationd. Then one can define the following penalty:Jflow
l ,d (k) = ul ,d(k) if

kopen
d − τ link

l ,d

τs
≤ k≤ kclose

d − τ link
l ,d

τs
andJflow

l ,d (k) = 0 otherwise. This penalty will be later on used in the
MPC performance criterion.

Next, in order to make sure thatall the bags will be handled in finite time, we also include in the
MPC performance criterion the weighted length of queues at each junction inthe network as presented
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next. Letτ junc
v,d be the typical time required for a DCV in the queue at junctionv to reach destination

d. Then we define the new penalty:Joverdue
v,d (k) = dmin

v,d qv,d(k) if k≥ kclose
d − τ junc

v,d

τs
andJoverdue

v,d (k) = 0

otherwise, wheredmin
v,d represents the length of the shortest route from junctionv to destinationd.

Finally, let Ldest denote the set of links directly connected to unloading stations. Then the MPC
performance index is defined as follows:

Jk,N =
k+N−1

∑
i=k

(
Jpen(i)−α ∑

d∈D

∑
l∈(L\Ldest)∩Ld

Jflow
l ,d (i)+

β ∑
d∈D

∑
v∈I

Joverdue
v,d (i)

)

with α ≪ 1 andβ ≪ 1 nonnegative weighting parameters.
Then the nonlinear MPC optimization problem is defined as follows:

min
u(k)

Jk,N s.t. (3)–(5). (2.37)

whereu(k) is the control sequence consisting of all the flowsul ,d(k) . . . ul ,d(k+ N−1) with d ∈ D

andl ∈ Ld.

Equivalent MILP model

In this section we transform the dynamic optimal route choice problem (2.37) into an MILP problem.
Recalling the development described in Section 2.2.5, as an example we will show how equation (2.33)
of the nonlinear route choice model can be transformed into a set of linear equations and inequalities
by introducing some auxiliary variables. For the other equations of the routechoice model we apply
a similar procedure.

Equation (2.33) is nonlinear and thus it does not fit the MILP framework. Therefore, we will first
introduce the binary variablesδo,d(k) such that

δo,d(k) = 1 if and only if

qo,d(k)+
(
Do,d(k)− ∑

l∈Lout
o ∩Ld

ul ,d(k)
)
τnc 6 0 (2.38)

and rewrite (2.33) as follows:

qo,d(k+1) =
(
1−δo,d(k)

)
·
(

qo,d(k)+
(
Do,d(k)− ∑

l∈Lout
o ∩Ld

ul ,d(k)
)
τnc

)
. (2.39)

Condition (2.38) is equivalent to:

{
f (k) 6 (qmax

o,d +Dmax
o,d τnc)(1−δo,d)

f (k) > ε +(−Umax
l τnc− ε)δo,d ,

where f (k) = qo,d(k)+
(
Do,d(k)−ul ,d(k)

)
τnc with l ∈ Lout

o ∩Ld, Umax
l is the maximal possible flow

out of origin nodeo towards destinationd, qmax
o,d is the maximal queue length at origino for traffic
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going to destinationd, and whereDmax
o,d = maxk Do,d(k) is the maximal demand for origin-destination

pair (o,d).
Equation (2.39) is still nonlinear since it contains a multiplication of a binary variableδo,d(k) with

a real-valued (linear) function. However, as already described in Section 2.2.5, it can be transformed
into a system of linear inequalities.

Next we transform the nonlinear terms of (2.37) into sets of equality and inequality constraints.
For example the problem

min
u(k)

∑
d∈D

λd

k+N−1

∑
i=k

|udesired
d (k)− ∑

l∈Lin
d

ul ,d(k)|

can be written as:

minλd

k+N−1

∑
i=k

∑
d∈D

udiff
d (i)

s.t.
udiff

d (i) > udesired
d (i)− ∑

l∈Lin
d

ul ,d(i + τdest
d ) for i = 1, . . . ,N

udiff
d (i) >−udesired

d (i)+ ∑
l∈Lin

d

ul ,d(i + τdest
d ) for i = 1, . . . ,N.

which is a linear programming problem.
So, the overall objective functionJk,N can be written as a linear one. Hence, the problem (2.37)

can be written as an MILP problem.

2.3.6 Switch control

In this section we focus on the switch controller for the proposed hierarchy.
Recall that at each control stepk, the network controller provides optimal flows for each link in

the network and for each destination. Let these flows be denoted byuopt
l ,d (k) with d∈D andl ∈ L∩Ld.

Then the switch controller of each junction has to compute optimal switch-in and switch-out positions
such that the tracking error between the reference optimal flow trajectoryand the flow trajectory
obtained by the switch controller is minimal for each network controller time stepk = 0, . . . ,Ksim.
Next we will refer to one junctionv∈I only. For all other junctions, the switch control actions are
determined similarly.

Letsin
v (ksc) denote the position of the switch-in at junctionv∈I during the time interval

[
tsw
ksc, tsw

ksc+1

)
,

wheretsw
ksc = tk +kscτsc with ksc an integer andτsc the switch controller sampling time (tk = tsc

0 ). Sim-
ilarly, we definesout

v (ksc), the position of the switch-out at junctionv ∈ I during the time interval[
tsw
ksc, tsw

ksc+1

)
.

We want to determine the switch control sequence at most until time instanttk+1. However, the
prediction period has at mostNsc

max steps. As a consequence, the prediction period for the MPC switch
problem at stepksc is defined as

[
tsw
ksc, tsw

end,k

)
with tsw

end,k = min(tk+1, tsw
ksc+Nsc).

Hence, at each MPC stepksc, the switch controller solves the optimization problem: minsv Jsw,v,k
ksc,Nsc(sv)

where

• Nsc is the length of the prediction horizon (Nsc =
tsw
end,k
τsc ),

• sv = [sin
v (ksc) . . . sin

v (ksc+Nsc−1) . . . sout
v (ksc) . . . sout

v (ksc+Nsc−1)]T,

• Jsw,v,k
ksc,Nsc is the local performance index defined next.
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Figure 2.8: Case study for a DCV-based baggage handling system.

Let Xopt
v,l ,k denote the optimal number of DCVs to enter the outgoing linkl of junction v dur-

ing the period
[
tsw
ksc, tsw

end,k

)
. Then for l ∈ Lout

v ∩ Ld the variableXopt
v,l ,k is given byXopt

v,l ,k = (tsw
end,k−

tsw
ksc)∑d∈D uopt

l ,d (k). Next letXv,l ,ksc be the actual number of DCVs entering linkl during the prediction
period. The variableXv,l ,ksc is determined via simulation for the fast event-driven model of Section
2.3.3 above. Then, at time stepksc, the local performance index is defined as follows:

Jsw,v,k
ksc,Nsc(sv) = ∑

l∈Lout
v ∩Ld

|Xopt
v,l ,k−Xv,l ,ksc(sv)|+ γ

(
nsw in(sv)+nsw out(sv)

)

wherensw in andnsw out represent the number of toggles of the switch-in and of the switch-out respec-
tively during the prediction period

[
tsw
ksc, tsw

end,k

)
, which are obtained from simulation, and whereγ is a

nonnegative weighting parameter.

2.3.7 Case study

In this section we present a simple case study involving a basic set-up to illustrate the network-level
control approach for DCV-based baggage handling systems proposed in this section. First, we will
describe the set-up and the details of the scenarios used for our simulations. Next, we will discuss and
analyze the obtained results.

Set-up and scenarios

We consider the network of tracks depicted in Figure 2.8 with 4 loading stations, 2 unloading stations,
9 junctions, and 20 unidirectional links, where the free-flow travel time is provided for each link. This
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network allows more than four possible routes to each destination from any origin point. We consider
this network because on the one hand it is simple, allowing an intuitive understanding of and insight
in the operation of the system and the results of the control, and because onthe other hand, it also
contains all the relevant elements of a real set-up.

We assume that the velocity of each DCV varies between 0 m/s and 10 m/s. In order to faster
assess the efficiency of our control method we assume that we do not start with an empty network but
with a network already populated by DCVs transporting bags.

We consider 6 different scenarios where 2500 bags have to be handled for different initial states of
the system, queues on different links, different piecewise constant demand profiles over the first 180 s
of the simulation, and different weighting parameters. We simulate a period of 40 min. The control
time step for the network controller is set to 60 s, while the control time step for theswitch controller
is set to 2 s. In these scenarios we have also considered the occurrence of queues at origin. Assuming
that we start the simulation at time instantt0 = 0 s, we consider the time window to be[800,1400] for
destinationd1, and[1000,1600] for destinationd2.

Results

In this section we compare the results obtained when using the proposed hierarchical control frame-
work and the centralized switch control of [50]. In order to solve the MILP optimization of the
network controller we have used the CPLEX solver of the Matlab optimization toolbox Tomlab, while
to solve the nonlinear optimization problem of the switch controller we have chosen ageneticalgo-
rithm of the Matlab optimization toolboxGenetic Algorithm and Direct Searchimplemented via the
functionga, using multiple runs. The same genetic algorithm has been used to solve the optimization
problem of the centralized switch control. Essentially the centralized switch control boils down to
solving a problem like (2.37) but withr(k+ 1), r(k+ 2), . . . , r(k+ N) as optimization variables for
each MPC stepk, wherer(i) is the route of theith DCV that entered the network (for details see
[50]). As prediction horizon we have consideredN = 11 for the network controller andNsc = 15 for
the switch controller of the hierarchical control, andN = 40 for the centralized MPC switch control.
Note that due to computational requirements reasons, for the switch controlof both frameworks we
shift the horizon withN, respectivelyNsc samples at each MPC step. Also, due to the same reason
(computational requirements), we allow a limited amount of time (1 hour) for solving an optimization
problem corresponding to the centralized switch control.

Based on simulations we now compare, for the given scenarios, the resultsobtained for the pro-
posed control frameworks. The results of the simulations are reported in Figure 2.9. For this compar-

ison we consider the total performance of the system to be defined asJ = ∑
d∈D

Xd

∑
i=1

|ti,d− tdesired
i,d | with

ti,d the time when theith bag crossing the junction directly connected to destinationd actually crosses
that junction,tdesired

i,d is the desired crossing time for the same DCV, andXd the total number of bags

to be sent to destinationd during the simulation period. The time sequencetdesired
1,d , . . . , tdesired

Xd,d with

d ∈ D is computed such that at each control time stepk of the network controller, theτncudesired
d (k)

bags arrive at equidistant time instants during the period[tk, tk+1).
Using simulations we have obtained an average performance over all scenarios of 9.92· 105 s

for the hierarchical control framework versus a performance of 6.44· 106 s. So, simulation results
confirm that computing the route choice using the hierarchical control framework gives better per-
formance than using the centralized switch control. Hence, the hierarchical control with MILP flow
solutions performs better than the centralized switch control, the solution of which was returned by
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Figure 2.9: Closed-loop results (the smallerJ the better system performance).

the prematurely terminated global and multi-start local optimization method.
However, even with these computational restrictions, the total computation time ofthe centralized

switch control (over 62 hours) is much larger than the one of the hierarchical control (an average of
246 s per junction, plus 12 s for solving the MILP optimization problems).

Hence, the proposed hierarchical control outperforms the centralizedswitch control of [50].

2.3.8 Conclusions

In this section we have proposed a hierarchical control framework forefficiently computing routes
for destination coded vehicles (DCVs) that transport bags in an airporton a railway network. In
the proposed control framework the network controller uses a higher-level, aggregated model of the
system and computes reference flow trajectories over time for each link in thenetwork so that the
performance of the DCV-based baggage handling system is optimized. Then the switch controllers,
which use a more detailed event-based model, determine the sequence of optimal positions for their
ingoing and outgoing switches so that the tracking error between the reference trajectory and the fu-
ture flow trajectory is minimal. The problem of computing optimal routes for DCVs isa nonlinear,
non-convex, mixed integer optimization problem, and very expensive to solve in terms of computa-
tional efforts. Therefore, we have used an alternative approach for reducing the complexity of the
computations by rewriting the nonlinear optimization problem of the network controller as a mixed
integer linear programming (MILP) problem. The advantage is that for MILPoptimization problems
solvers are available that allow us to efficiently compute the global optimal solution. The solution of
the MILP problem is then used in computing optimal switch control actions. For abenchmark case
study we have compared the hierarchical control with centralized switch control. Results indicate
that the proposed hierarchical control outperforms the centralized switch control where the multi-start
local optimization method has been terminated prematurely.
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Chapter 3

Design of hierarchical control systems
with reconfiguration capabilities

In this chapter the design of a two layer hierarchical controller is considered for cascade systems. The
high layer provides for a slow dynamics regulator, computing the reference signals the plant would
ideally need to be suitably controlled. In turn, at the low layer, a number of faster actuation control
loops are in charge of tracking such references as accurately as theycan, in accordance to their dynam-
ics, which for simplicity is supposed here to be first order. Because of several inaccuracies, stemming
from the real behavior of the actuation equipment, a discrepancy betweenthe ideal control actions
determined at the high level and those effectively afforded to the plant arises, leading to a robustness
problem for the overall control system. To tackle this problem, the upper level controller is designed
by resorting to a robust MPC approach. In so doing, a convergence result for the overall closed-loop
system is derived. The structure here considered can be viewed as a particular case (cascade systems)
of the more general structure for hierarchical control previously described in Deliverable D2.2.
In order to emphasize the reconfiguration capabilities of optimization-based predictive controllers in
response to changes in the subsystems (actuators), it is then shown how the proposed MPC algorithm
may be readily extended to cope with the self reconfiguration of the controller, owing to an actuator
replacement/addition. It can thus take a significant role also within the “Plug and Play” research com-
munity, which studies the problem of control reconfiguration when a new device, in general a sensor
or an actuator, is plugged/substituted into an already functioning control system (see the very recent
works [8, 9, 32]).
The results reported in this chapter will be partially presented in [55], where also some simulation
experiments will be reported and discussed.

Notation. In the mathematical developments of the proposed algorithm, we will consider two
time scales: in particular, we will denote the fast discrete-time index byh, while we will represent the
slow discrete-time index byk. By ‖ · ‖ we denote the Euclidean vector or induced matrix norm. For
x∈ R

n andR
n×n ∋ P > 0, we let‖x‖P =

√
x′Px
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3.1 Problem formulation

Let us consider a discrete-time linear system modeling a plant operated bym actuators, whose dy-
namical behavior in the fast time scale is given by

P : xf (h+1) = Af xf (h)+
m

∑
i=1

bf
i uf

i (h) (3.1)

wherexf ∈R
nx is the measurable state whileuf

i ∈R stands for the action provided by thei-th actuator.
Throughout this chapter, we suppose that simple (e.g., PI-like) control loops acting on all the sys-

tems placed at the low level (i.e., the actuators) area-priori designed and already working. Moreover,
we assume that the stemming closed-loop systems can be depicted by first order unitary gain SISO
models of the form

Sacti :





ζi(h+1) = fiζi(h)+(1− fi)ui(h), ζi(0) = ζi0

ûi(h) = ζi(h)

| fi |< 1

(3.2)

∀i = 1, . . . ,m, whose output variables ˆui ’s coincide with the inputsuf
i ’s of system (3.1).

The control objective consists of achieving a stabilizing control law for thecascade interconnec-
tion of systems (3.1) and (3.2). To this end, we propose a two-level hierarchical regulator. The high
level provides for a controller working at a slow time scale and computing the reference signalui to
be tracked by each actuator control loop. In turn, at the low level, all the actuators concur to drive
the plant, tracking their own reference signal in accordance to their closed loop dynamics (3.2). For
this reason, one in general has ˆui 6= ui , at least in transient conditions, so consequently a robustness
problem arises. To cope with this problem, we consider the discrepancy between the ideal control
actions and those effectively afforded to the process as a disturbanceterm the high level controller has
to be robust to.

3.1.1 Model of the plant in the slow time scale

As for system (3.1), we consider the control constraints

uf
i ∈Ui = [−αi ,αi ], αi > 0 ∀i = 1, . . . ,m. (3.3)

In addition, we letU = U1×·· ·×Um⊂ R
m and

Bf =
[

bf
1 bf

2 · · · bf
m

]
∈ R

nx×m. (3.4)

Assumption 1 The pair(Af ,Bf ) is stabilizable. �

For some fixed integerτ ≥ 1, let us decompose the control variablesuf
i ’s of system (3.1) in the

form
uf

i (h) = ūi(h)+
(
uf

i (h)− ūi(h)
)
,

ūi(h) ∈ Ui being some piecewise constant signals, i.e.,∀k ∈ N and∀ j = 0, . . . ,τ − 1, it holds that
ūi(τk+ j) = ūi(τk). Then system (3.1) can be rewritten as

xf (h+1) = Af xf (h)+
m

∑
i=1

bf
i ūi(h)+

m

∑
i=1

bf
i wf

i (h) (3.5)
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Figure 3.1: Hierarchical control scheme (P: plant,HL MPC: high level MPC,Sact: actuators).

where
wf

i (h) = uf
i (h)− ūi(h)

is considered as a matched disturbance term.
Lettingx(k) = xf (τk), ui(k) = ūi(τk) and

A = (Af )τ , bi =
τ−1

∑
j=0

(Af )τ− j−1bf
i , wi(k) =

τ−1

∑
j=0

(Af )τ− j−1bf
i wf

i (τk+ j), (3.6)

the sampled version of (3.5) in the slow sampling rate is

x(k+1) = Ax(k)+
m

∑
i=1

biui(k)+
m

∑
i=1

wi(k) (3.7)

which, in turn, translates in the vector form

Pslow : x(k+1) = Ax(k)+B1u(k)+B2w(k) (3.8)

once the following definitions have been stated:

u(k) =
[

u′1(k) . . . u′m(k)
]′ ∈U ⊂ R

m (3.9a)

w(k) =
[

w′1(k) . . . w′m(k)
]′ ∈ R

mnx (3.9b)

B1 =
[

b1 b2 . . . bm
]
∈ R

nx×m (3.9c)

B2 =
[

Inx Inx . . . Inx

]
∈ R

nx×mnx. (3.9d)

In conclusion, in view of the linear nature of the problem considered here, the plant to be con-
trolled can be viewed as driven, on one hand, by the ideal control commands coming from the high
level controller, ¯ui(h)’s (namely,ui(k)’s in the slow sampling rate), and, on the other hand, by the
discrepancies between such commands and the effective control signalsachieved by the actuators,
wf

i (h)’s (namely,wi(k)’s in the slow sampling rate). Moreover, the latter differ from the usual distur-
bance term affecting the system dynamics in robust control designs, in that they originate from the
high level control action itself, rather than being afforded by the “nature”, as schematically portrayed
in Figure 3.1.

In the light of such a reformulation of the problem, at the high level we address the design of a
robustly stabilizing MPC controller for system (3.8) in the face of the disturbancew(k), achieving the
piecewise constant signals ¯ui(h), i.e., the references for the low level actuators’ loops.
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3.1.2 The hierarchical controller

The hierarchical controller involves a high level robust MPC algorithm, providing the references for
the actuators at any long sampling instantk. Hence, in order to guarantee that the control signals
ûi(h)’s, accomplished by the low level systems against such references, satisfy the control constraints
on the process (3.3), the following hypothesis must be stated.

Assumption 2 For all i = 1, . . . ,m

1. ζi(0) ∈Ui ;

2. ui ∈ [−εi ,εi ] where

εi =
αi(1−| fi |)

1− fi
.

�

For later use, we definẽUi = [−εi ,εi ] and

Ũ = Ũ1× . . .× Ũm⊂ R
m.

Moreover, the feasibility of the control references computed at the high level needs the following
assumption.

Assumption 3 The high level MPC controller incorporates the actuators’ models, i.e., it knows the
parameters fi ’s along with the initial conditionsζi(0)’s, i = 1, . . . ,m. �

Assumption 3 implies that the high level controller can predict the low level systems’ behavior, so
consequently being aware of their current state situation at any time instant. We can thus define the
augmented version of system (3.8):

χ(k+1) = Ãχ(k)+ B̃1u(k)+ B̃2w(k) (3.10)

where the new state variable and the corresponding state space matrices are

χ(k) =

[
x(k)
ũ(k)

]
∈X = R

nx×U ,

Ã =

[
A 0nx,m

0m,nx F

]
, B̃1 =

[
B1

G

]
, B̃2 =

[
B2

0m,mnx

] (3.11)

in which

ũ(k) =
[

ũ′1(k) . . . ũ′m(k)
]′

(3.12a)

F = diag( f τ
1 , . . . , f τ

m) (3.12b)

G = diag
(
(1− f τ

1 ), . . . ,(1− f τ
m)

)
. (3.12c)

Moreover, the ˜ui(k)’s, i = 1, . . . m, in (3.12a) are the slow time rate counterparts of the fast time rate
control actions performed by the actuators (i.e., ˜ui(k) = ûi(τk)), which stem from output propagation
of systems (3.2) as follows

ûi
(
τ(k+1)

)
= f τ

i ûi(τk)+(1− f τ
i )ūi(τk) (3.13)
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ūi(τk) standing for thei-th piecewise constant reference entry generated by the upper level controller,
namely

ūi(h) = ui
(
⌊h

τ ⌋
)

(3.14)

in which the floor function⌊·⌋ has been used.
Furthermore, associated with the dynamic equation (3.10), we introduce alsothe output transfor-

mation

z(k) =

[
χ(k)
u(k)

]
. (3.15)

Finally, to gain versatility in the definition of the cost function the MPC paradigm calls for, we
introduce weighted norms in both the state and control spaces. Thus, for fixed symmetric and positive
definite matricesQx ∈ R

nx×nx andQi ∈ R, i = 1, . . . ,m, we let:

Qu = diag{Q1, · · · ,Qm} ∈ R
m×m

Qii = diag{Qi ,Qi} ∈ R
2×2

Qz = diag{Qx,Qu,Qu} ∈ R
(nx+2m)×(nx+2m)

Qw = diag{Qx, · · · ,Qx} ∈ R
mnx×mnx

Qχ = diag{Qx,Qu} ∈ R
(nx+m)×(nx+m).

3.2 Design and analysis of the high level controller in the basic actua-
tion configuration

In this section, we deal with the design of the high level MPC controller for thebasic low level config-
uration, i.e., the one includingmactuators. In the following, we will discuss how such a controller can
be extended to readily allow for a self reconfiguration subsequent to actuators’ addition/replacement.

Thus, according both to Assumption 3 and to the output propagation (3.13),the high level con-
troller can easily compute each matched disturbance termwi(k) appearing in (3.7) as follows

wi(k) =
τ−1

∑
j=0

(Af )τ− j−1bf
i

[
f j
i ûi(τk)− f j

i ūi(τk)
]

=
(
ûi(τk)− ūi(τk)

) τ−1

∑
j=0

(Af )τ− j−1bf
i f j

i

=
(
ũi(k)−ui(k)

)
ϑi

(3.16)

where

ϑi =
τ−1

∑
j=0

(Af )τ− j−1bf
i f j

i (3.17)

is ana-priori known vector for every actuator. It turns out that thewi(k) terms are linear functions of
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the discrepancies
(
ũi(k)−ui(k)

)
and satisfy gain conditions of the form:

‖wi(k)‖Qx ≤
√

λmax(Qx)‖wi(k)‖
=

√
λmax(Qx)‖ϑi‖ ·

∣∣(ũi(k)−ui(k)
)∣∣

≤
√

2λmax(Qx)‖ϑi‖ ·
∥∥∥∥
[

ũi(k)
ui(k)

]∥∥∥∥

≤
√

2λmax(Qx)

Qi
‖ϑi‖ ·

∥∥∥∥
[

ũi(k)
ui(k)

]∥∥∥∥
Qii

=γd(i)

∥∥∥∥
[

ũi(k)
ui(k)

]∥∥∥∥
Qii

(3.18)

where theγd(i)’s are available to the upper level controller in view of Assumption 3. As a conse-
quence, the high level regulator can be carried out via the small-gain approach, by consideringw as a
disturbance term satisfying a gain condition of the type‖w‖Qw ≤ γd‖z‖Qz (for a suitableγd).

In the sequel, we will discuss first a robustly stabilizing auxiliary control lawand later an MPC
controller improving both performance and region of attraction such an auxiliary law achieves.

3.2.1 The auxiliary law

Under Assumption 1, we can construct an auxiliary control law for system(3.10) taking the form

u(k) = Kauxχ(k), Kaux∈ R
m×(nx+m). (3.19)

To this end, we considerγ > 0 such that there exists a symmetric and positive definite matrixP ∈
R

(nx+m)×(nx+m) satisfying the Riccati inequality with constraint

−P+ Ã′PÃ+Qχ − Ã′PB̃R−1B̃′PÃ < 0
B̃′2PB̃2− γ2Qw < 0

(3.20)

where
B̃ =

[
B̃1 B̃2

]

R=

[
B̃′1PB̃1 +Qu B̃′1PB̃2

B̃′2PB̃1 B̃′2PB̃2− γ2Qw

]

and we let
Kaux =−

[
Im 0m,mnx

]
R−1B̃′PÃ.

Moreover, we define the functionVf (χ) = χ ′Pχ and for anyρ > 0, the set

Ωρ = {χ ∈ R
nx+m|Vf (χ)≤ ρ2} ⊂ R

nx+m.

The local robust stabilization properties of the auxiliary control law (3.19)are clarified by the follow-
ing result.

Proposition 1 Define
γ̄d = max

i,...,m
γd(i). (3.21)

Let γ > 0 be such thatγ · γ̄d < 1 and assume that a positive definite solution P for the Riccati inequal-
ity (3.20)exists. Consider system(3.10)under the corresponding control law(3.19)and, accordingly,
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let w(k) be the vector collecting all the disturbance terms given in(3.16). Then,∃ρ > 0 such that the
following properties hold∀χ ∈Ωaux, Ωaux = Ωρ :

Ωaux∈X (3.22a)

Kauxχ ∈ Ũ ; (3.22b)

‖w(k)‖Qw ≤ γ̄d‖z(k)‖Qz (3.22c)

∀χ(k) ∈Ωaux, Vf
(
χ(k+1)

)
−Vf

(
χ(k)

)
≤−

(
‖z(k)‖2Qz

− γ2‖w(k)‖2Qw

)
(3.22d)

Ωaux is positively invariant. (3.22e)

2

Proof 1 Properties(3.22a)and (3.22b)are guaranteed by the choice of a sufficiently smallρ > 0,
since P> 0, Ũ is a neighborhood of the origin and, for the latter one, the control law u= Kauxχ is
continuous.

As far as property(3.22c)is concerned, notice that

‖w(k)‖2Qw
=

m

∑
i=1

‖wi(k)‖2Qx
≤

m

∑
i=1

γ2
d(i)

∥∥∥∥
[

ũi(k)
ui(k)

]∥∥∥∥
2

Qii

≤ γ̄2
d

m

∑
i=1

∥∥∥∥
[

ũi(k)
ui(k)

]∥∥∥∥
2

Qii

≤ γ̄2
d ‖[z(k)]‖2Qz

where the upper bound(3.18)has been used.
The proof of property(3.22d)can be found in [40].
Finally, the positive invariance ofΩaux is guaranteed by(3.22)and the small-gain conditionγ ·

γ̄d < 1. In fact,(3.22b)ensures the satisfaction of the input constraints(3.3), while inequalities(3.22c),
(3.22d)andγ · γ̄d < 1 ensure that Vf

(
χ(k+1)

)
≤Vf

(
χ(k)

)
. �

3.2.2 The MPC controller

In this Section, we improve both the region of attractionΩaux and the performance provided by the
auxiliary control law (3.19), by resorting to the small-gain paradigm. In particular, according to
Assumption 3 and the gain condition (3.18), we derive a robustly stabilizing high level MPC control
law fulfilling the norm bound‖w‖Qw ≤ γ̄d‖z‖Qz (whereγ̄d is given in (3.21)).

In details, we letNp ∈N, Np≥ 1, be the length of the prediction horizon andNc ∈N, Nc≤Np, be
the length of the control horizon. Moreover, we define

F (k,Nc) =
[

u(k)(k) u(k)(k+1) . . . u(k)(k+Nc−1)
]
, (3.23)

whereu(k)(k+ j) ∈ Ũ is the vector of the predicted control signals to be processed by the MPC
algorithm at timek. At any time instantk, the control problem consists of solving the following
optimization problem:

min
F (k,Nc)

J
(
χ(k),F ,Np

)
, (3.24)

J
(
χ(k),F ,Np

)
=

Np−1

∑
j=0

(
‖z(k+ j)‖2Qz

− γ2‖w(k+ j)‖2Qw

)
+Vf

(
χ(k+Np)

)
,

subject to:

(i) system (3.10), (3.15), (3.16) under the control signal (3.23) and, for j = Nc, . . . ,Np−1, u(k+ j) =
Kauxχ(k+ j);
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(ii) the control constraints:∀ j = 0, . . . ,Nc−1,u(k+ j) ∈ Ũ ;

(iii) the terminal constraintχ(k+Np) ∈Ωaux.

If
F

o(χ(k),Nc
)

=
[

uo
(k)(k) uo

(k)(k+1) . . . uo
(k)(k+Nc−1)

]

is the optimal solution to this problem, according to the Receding Horizon principle, we define the
MPC control law as

u
(
χ(k)

)
= uo

(k)(k). (3.25)

Theorem 1 Under the assumptions of Proposition 1, let XMPC(Nc,Np) be the set of states such that
problem(3.24)admits a solution. Then∀Np≥ 1 and∀Nc≤ Np, one has:

1. Ωaux⊆ XMPC(Nc,Np),

2. XMPC(Nc,Np) is a positively invariant set,

3. the origin is a locally exponentially stable equilibrium point with region of attraction XMPC(Nc,Np),

where properties 2) and 3) hold for the closed-loop system(3.10), (3.25), (3.16). 2

Proof 2 The theorem is proved for Nc≥ 1 (the case Nc = 0 easily follows by Proposition 1).

1. Ωaux⊆ XMPC(Nc,Np) because, by properties(3.22), the auxiliary law is feasible forχ ∈ Ωaux

andΩaux is positively invariant.

2. If χ(k) ∈ XMPC(Nc,Np), then there existsF o such thatχ(k+ Np) ∈ Ωaux. Thus, at time k+ 1,
consider the following control signal:

F̂ (k+1,Nc) =
[

uo
(k)(k+1) · · · uo

(k)(k+Nc−1) Kauxχ(k+Nc)
]
.

This policy is still feasible forχ(k+ 1), and hence XMPC(Nc,Np) is a positively invariant set,
because under the auxiliary control lawΩaux is positively invariant.

3. Let V
(
χ(k),Nc,Np

)
= J

(
χ(k),F o,Nc,Np

)
be the optimal performance starting fromχ(k). In

view of the well known Theorem III.2 proved in [36] and since‖z(k)‖2Qz
≥‖χ(k)‖2Qx

, the stability
result holds if the following properties are satisfied:

χ ∈ XMPC(Nc,Np)⇒⇒ V(χ,Nc,Np)≥
(
1− γ2 · γ̄2

d

)
‖χ‖2Qχ ; (3.26a)

χ∈Ωaux⇒V(χ,Nc,Np)≤ λmax(P)
λmin(Qχ )‖χ‖2Qχ ; (3.26b)

χ(k) ∈ XMPC(Nc,Np)⇒V
(
χ(k+1),Nc,Np

)
−V

(
χ(k),Nc,Np

)
≤−

(
1− γ2 · γ̄2

d

)
‖z(k)‖2Qz

.

(3.26c)

As far as inequality(3.26a)is concerned, forχ(k) ∈ XMPC(Nc,Np), one has

V
(
χ(k),Nc,Np

)
=

Np−1

∑
j=0

(
‖z(k+ j)‖2Qz

− γ2‖w(k+ j)‖2Qw

)
+Vf

(
χ(k+Np)

)
≥

(a)
≥

(
1− γ2 · γ̄2

d

)
‖z(k)‖2Qz

≥
(
1− γ2 · γ̄2

d)
)
‖χ(k)‖2Qχ ,
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where inequality (a) holds because, in view of the gain condition expressed by(3.18)and(3.21),
it holds that,

∀ j = 0, . . . ,Np−1, ‖z(k+ j)‖2Qz
− γ2‖w(k+ j)‖2Qw

≥
(
1− γ2 · γ̄2

d

)
‖z(k+ j)‖2Qz

.

To prove inequality(3.26b), we first show that, ifχ ∈ XMPC(Nc,Np), then

V(χ,Nc +1,Np +1)≤V(χ,Nc,Np). (3.27)

Indeed, consider the control signal

F̃ (k,Nc +1) =
[

F o
(
χ(k),Nc

)
Kauxχ(k+Nc)

]
,

then

J
(
χ(k),F̃ (k,Nc +1),Nc +1,Np +1

)
=

Np−1

∑
j=0

(
‖z(k+ j)‖2Qz

− γ2‖w(k+ j)‖2Qw

)
+

+Vf
(
χ(k+Np)

)
+

−Vf
(
χ(k+Np)

)
+Vf

(
χ(k+Np +1)

)
+

+
(
‖z(k+Np)‖2Qz

− γ2‖w(k+Np)‖2Qw

)
.

Sinceχ(k+ Np) ∈ Ωaux and the value of the output z(k+ Np) is obtained with the auxiliary
control law used at time k+Np, using inequality(3.22d), one has

J
(
χ(k),F̃ (k,Nc +1),Nc +1,Np +1

)
≤

Np−1

∑
j=0

(
‖z(k+ j)‖2Qz

− γ2‖w(k+ j)‖2Qw

)
+

+Vf
(
χ(k+Np)

)
= V

(
χ(k),Nc,Np

)
.

Consequently,
V

(
χ(k),Nc +1,Np +1

)
≤V

(
χ(k),Nc,Np

)
,

thus proving the(3.27).

Now,∀χ(k) ∈Ωaux,

V
(
χ(k),Nc,Np

) (b)

≤V
(
χ(k),0,Np−Nc

)

=
Np−Nc−1

∑
j=0

(
‖z(k+ j)‖2Qz

− γ2‖w(k+ j)‖2Qw

)
+Vf

(
χ(k+Np−Nc)

)

(c)
≤

Np−Nc−1

∑
j=0

(
Vf

(
χ(k+ j)

)
−Vf

(
χ(k+ j +1)

))
+Vf

(
χ(k+Np−Nc)

)

=Vf
(
χ(k)

)
≤ λmax(P)‖χ(k)‖2≤ λmax(P)

λmin(Qχ)
‖χ‖2Qχ ,

where inequality (b) follows by iterating the(3.27)(notice that∀Nc≤Np, Ωaux⊆XMPC(Nc,Np))
and inequality (c) holds in view of inequality(3.22d)(which can be applied because the length of
the control horizon is 0 and, over the prediction horizon, the system evolves under the auxiliary
law).
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Finally, let us prove inequality(3.26c): observe that

V
(
χ(k),Nc,Np

)
= ‖z(k)‖2Qz

− γ2‖w(k)‖2Qw
+V

(
χ(k+1),Nc−1,Np−1

)
,

then, in view of(3.27),

V
(
χ(k+1),Nc,Np

)
−V

(
χ(k),Nc,Np

)
≤−

(
‖z(k)‖2Qz

− γ2‖w(k)‖2Qw

)
.

Hence, once again by(3.18)and (3.21),

V
(
χ(k+1),Nc,Np

)
−V

(
χ(k),Nc,Np

)
≤−

(
1− γ2 · γ̄2

d

)
‖z(k)‖2Qz

.

�

3.2.3 The overall system: convergence analysis

The following result provides the analysis of the overall control system behavior.

Theorem 2 Under the assumptions of Theorem 1, consider the closed loop system(3.1), (3.14)
and (3.2), where the upper level controller is defined in(3.25). Assume that, at time h= 0, the
initial states of the actuators(3.2) fulfill Assumption 2.1, i= 1, . . . ,m. Let

µ0 =




u10

u20
...

um0


 .

Assume also that the MPC controller at the upper level is initialized with

χ(0) =

[
x(0)
µ0

]
∈X

MPC(Nc,Np).

Then it holds that {
limh→+∞ xf (h) = 0
limh→+∞ ζi(h) = 0, ∀i = 1, . . . ,m.

2

Proof 3 Sinceχ(0) ∈X MPC(Nc,Np) then, by Theorem 1, it holds thatlimk→+∞ χ(k) = 0. This means
that {

limk→+∞ x(k) = 0
limk→+∞ u(k) = 0,

and, according to equation(3.14),

lim
h→+∞

ūi(h) = 0 ∀i = 1, . . . ,m.

Hence, in view of the stability of the low level control loops, such a convergence to zero translates into
the convergence to zero of the internal state of the actuators, namely

lim
h→+∞

ζi(h) = 0, ∀i = 1, . . . ,m
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and, as a consequence,limh→+∞ ûi(h) = 0.
Finally, we have to prove thatlimh→+∞ xf (h) = 0. To this end, it is sufficient to show that,∀l =

1, . . . ,τ−1, it holds thatlimk→+∞ ‖xf (τk+ l)‖= 0. Indeed, combining equations(3.1)and(3.4), one
has

xf (τk+ l) = (Af )
l
xf (τk)+∑l−1

j=0(Af )
l− j−1

Bf û(τk+ j),

where

û(h) =




û1(h)
û2(h)
. . .

ûm(h)


 .

Thus,∀l = 1, . . . ,τ−1, it holds that

‖xf (τk+ l)‖ ≤ ‖(Af )
l‖ · ‖xf (τk)‖+

l−1

∑
j=0

‖(Af )
l− j−1

Bf ‖ · ‖û(τk+ j)‖.

As xf (τk) = x(k), it holds that
lim

k→+∞
x(k) = 0

and
∀i = 1, . . . ,m, lim

h→+∞
ûi(h) = 0,

so the thesis follows. �

3.3 Control system reconfiguration

According to the receding horizon paradigm, the high level MPC controller stated in Theorem 1 calls
for solving the optimization problem (3.24) at each time step. It can thus easily allow for a “Plug
and Play” flexibility for actuators’ addition/replacement. To this end, assumingthat only one actuator
per (slow) time step can be plugged/substituted into the overall system, plug andplay fashion is
guaranteed as follows.

Actuator addition

As an actuator addition happens, variablesχ, u, ũ, w andzcontain additional components accounting
for such a new actuator. Hence, we introduce the notationη(m+1) to denote the variableη related to
the new low level configuration, i.e., the one composed ofm+1 actuators. Accordingly, we let

Ũ
(m+1) = Ũ × [−εm+1,εm+1]

be the corresponding set of admissible control commands.
Let us discuss how the high level controller, hence problem (3.24), canbe reconfigured after the

actuator addition.
The auxiliary control law (3.19) is largely independent of the low level dynamics. As a conse-

quence, even if it has to feed also the plugged actuator, it can send it a null reference, so keeping
unchanged.
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In details, letting

u(m+1) = K(m+1)
aux χ(m+1) =

[
Kaux 0m×1

01×(nx+m) 0

]
χ(m+1) (3.28)

and
Ω(m+1)

aux = Ωaux×{0}, (3.29)

it is straightforward to show that the feasibility of the auxiliary law (3.28) holdsin Ω(m+1)
aux defined in

(3.29).
Moreover, within the enlarged setting, problem (3.24) has to be rephrased in terms of theη(m+1)

variables and the auxiliary law (3.28). Care has only to be payed in the following issues:

1. Vf should be replaced byV(m+1)
f , where

V(m+1)
f

(
χ(m+1)

)
= χ(m+1)′P(m+1)χ(m+1),

P(m+1) being matrixP bordered with a null row and column;

2. constraint(ii) becomes

u(m+1)(k+ j) ∈ Ũ
(m+1), ∀ j = 0, . . . ,Nc−1,

while (iii) translates in
χ(m+1)(k+Np) ∈Ω(m+1)

aux ;

3. if γd(m+1) > γ̄d, in order to still guarantee the exponential stability of the origin, the optimiza-
tion problem has to be solved under the further constraint

‖w(m+1)(k+ j)‖2
Q(m+1)

w
≤ γ̄2

d‖z(m+1)(k+ j)‖2
Q(m+1)

z
, ∀ j = 0, . . . ,Nc−1. (3.30)

With this position, Theorem 1 holds true and the overall control system self reconfigures, only
requiring the minor formal adjustments mentioned above.

As far as the feasibility issue of the high level control inputs is concerned,if, at timek = k̄, a new
actuator is plugged into the system, the enlarged state reads

χ(m+1)(k̄) =

[
χ(k̄)

ũm+1(k̄)

]
,

whereũm+1(k̄) = ζm+1(τ k̄), ζm+1(τ k̄) being the internal state of such an actuator. If ˜um+1(k̄) = 0, then
χ(m+1)(k̄) belongs to the feasibility region of problem (3.24) for the new actuation configuration. As
a matter of fact, problem (3.24) fork < k̄ can be seen as a particular instance of the same problem for
the enlarged system, under the additional constraint

ũm+1(k+ j) = 0,∀ j = 0, . . . ,Nc−1. (3.31)

We hence make the following assumption.

Assumption 4 The value of the control action afforded by the new actuator in correspondence to the
addition time instant is null, namelỹum+1(k̄) = 0. �
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Finally, considering the stability requirement, we letV(m+1)
constr

(
χ(m+1)(k),Nc,Np

)
be the optimal

value of the optimization problem for the enlarged system with constraint (3.31) andV(m+1)
(
χ(m+1)(k),

Nc,Np
)

be the same quantity for the corresponding unconstrained problem. It thusturns out that

V
(
χ(k),Nc,Np

)
= V(m+1)

constr

(
χ(m+1)(k),Nc,Np

)
.

Moreover, since at timēk it holds that

V(m+1)
(
χ(m+1)(k̄),Nc,Np

)
≤V(m+1)

constr

(
χ(m+1)(k̄),Nc,Np

)

then by inequality (3.26c) applied at timēk−1, one obtains

V(m+1)
(
χ(m+1)(k̄),Nc,Np

)
−V

(
χ(k̄−1),Nc,Np

)
≤−(1− γ2 · γ̄2

d)‖z(k̄−1)‖2Qz
. (3.32)

This inequality stands for the counterpart of (3.26c) in the instant of the actuator addition. Conse-
quently, since all the above arguments iteratively apply to any of such occurrences, one can conclude
that stability is preserved irrespective of any actuator plugging event.

Actuator replacement

Differently from the previous case, when thei-th actuator is replaced with a new one, dimensionality
of system (3.10) is not an issue, whilst matricesF in (3.12b) andG in (3.12c), and hencẽA andB̃1

in (3.11), change in view of the valuef new
i characterizing the new device (namely matricesA in (3.6)

andB1 in (3.9c) remain unaltered). Let us hence discuss the reconfigurability problem of the high
level controller.

The auxiliary control law can be maintained. However, its robust stabilizationproperties given
in Proposition 1 still hold, provided that the following conditions are satisfied:first, letting γnew

d (i)
be the gain defined in (3.18) for the new actuator, inequalityγ · γnew

d (i) < 1 is valid; secondly, the
left-hand-side of the Riccati inequality (3.20), evaluated with the sameP but with the matrices̃A and
B̃1 replaced by those associated with the new low level configuration, is negative definite. Notice
that, by continuity arguments, the latter property is ensured by the choice of anew actuator such that
| f new

i − fi |< ε, for a sufficiently smallε > 0, which also allows for fulfilling Assumption 2.2.
In order to save the feasibility of problem (3.24) in the replacement time instantk̄, the following

assumption is considered.

Assumption 5 The value of the control action afforded by the new actuator at timek̄ coincides with
the one the old actuator was giving in such an instant, namelyũnew

i (k̄) = ũi(k̄). �

If all the above conditions hold, the result of Theorem 1 is guaranteed without any further ma-
nipulations, provided that the weighting matrixQnew

i coincides with the one applied to the replaced
actuator. However, it is worth noting that the optimal valueVnew

(
χ(k̄)

)
of problem (3.24) in the new

configuration may be larger than the optimal valueV
(
χ(k̄)

)
in the old configuration. Therefore, the

counterpart of relation (3.32) for the replacement case is not ensured. Nevertheless, stability of the
overall process can be preserved as long as a sufficiently large time interval between two consec-
utive replacement events is held on. This corresponds to the well-known concept of dwell-time in
switching control [28], thereby a sufficient decrease of the optimal value function is ensured and, as a
consequence, its possible increases in the replacement instants are counteracted.
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3.4 Conclusions

In this chapter, a two level hierarchical control problem has been addressed. At the high level a robust
MPC regulator has been designed in order to compute the ideal control actions needed by the plant
to be controlled. A number of already controlled actuators placed at the low level are in charge of
driving the plant by tracking such control actions. A convergence result for the overall control system
has been derived by resorting to the small gain approach. The algorithm proposed can also be used in
a Plug and Play framework as a new actuator is added/replaced into the overall control system.
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Chapter 4

Conclusions

In the HD-MPC project, Work Package 2 was intended to be a preliminary stepaimed at defining
and establishing appropriate control architectures for the development of distributed and hierarchical
control and estimation methods. Its main outcomes had to be the basis for the otherwork packages.
For these reasons, WP2 was organized into four main tasks, listed in the following together with the
main results achieved.

Task 2.1: Survey
The main approaches to hierarchical and distributed control and estimation proposed so far in the tech-
nical literature have been critically examined (see Deliverable D2.1). The survey has been useful to
define the different control problems which can be tackled with hierarchical structures (cascade con-
trol systems, singularly perturbed systems, Real Time Optimization based on models with different
levels of abstraction). Moreover, the approaches proposed in the literature for the design of distributed
control systems have been classified according to their goals (e.g., independent subsystems, interact-
ing subsystems) and their nature (e.g., iterative, cooperating).

Task 2.2: Definition of the control architecture
A very general architecture for hierarchical control has been defined and described in Deliverable
D2.2. It is based on a three layer structure, where at each layer a different time scale is considered,
which allows one to cope with the different cases devised in task 2.1. Moreover, a paradigmatic hier-
archical control algorithm has been defined and some inter-layer communication protocols have been
proposed. As for the definition of the architecture for distributed control,some preliminary results
based on classical partitioning approaches have been proposed in Deliverable D2.1, while some other
methods have been surveyed in Chapter 1 of this deliverable (D2.3).

Task 2.3: Extension of the control architecture (to adapt the architecturein response to changes)
This topic has been studied in the final part of the Work Package and has been described in this deliver-
able (D2.3, Chapter 3). It has been shown how the MPC approach allowsone to partially reconfigure
a hierarchical control system in front of actuators’ addition or replacement (plug and play control)
without the need to redesign the overall control structure and maintaining theoriginal convergence
properties. This result can be viewed as the basis of further extensionsin other WPs, such as WP3
or WP5, in order to consider more general cases of control reconfiguration due to a time varying ex-
change of information among local subsystems in a distributed control environment.
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Task 2.4: Multi-level models (models consistent with the hierarchical levels, multi-resolution models,
reduction and aggregation methods)
The derivation of multi-level models, with different kinds of spatial and temporal resolution, has been
considered in Deliverable D2.1 and in this report (Chapter 1). Moreover, multi-level models have
been used to derive hierarchical control systems in a couple of significant examples where a global
approach is not suitable due to the complexity of the underlying optimization problem (see Chapter 2
of this report). It is believed that new partitioning criteria for distributed control and estimation will
naturally stem from the synthesis methods studied in other work packages ofthe project.
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