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Executive Summary

This report describes the research activity in the Seventh FramewogkaPnme, Theme 3 “Inm
formation and Communication Technologies”, STREP research prHjiecarchical and Dis-
tributed Model Predictive Control of Large Scale Systems- HD-MRC, focusing on work pack
age WP2 — “Definition of the hierarchical architecture for control desi@pecifically, Task 2.2
(Definition of the control architecture), Task 2.3 (Extension of the cboanchitecture), and Tas
2.4 (Multi-level models) are considered. First, a number of methods forebel@pment and us
of multi-level models with different kinds of spatial and temporal aggregatiendescribed anfi
some model reduction methods are reported. Then, it is shown how multiledelsncan prof-
itably be used in a couple of application fields. Finally, the topic of contrdksyseconfiguratior
is addressed by considering a hierarchical structure where the systeenhigh level, with slowe
dynamics, is driven by a number of systems at the lower level, i.e., the actud@grresorting
to the MPC paradigm, it is proven that actuators’ replacement or additichraenfluence the
convergence properties of the overall control structure.

The report is organized in four chapters:

D

e Chapter 1 presents a literature review about multi-model structures in mosttitiive
control and model reduction. The methods surveyed complete and exeméstlits al-
ready presented in Deliverable D2.1. Three decomposition approacbesonsidered]
namely functional, temporal and spatial decomposition, for the design of mati-raulti-
resolution MPC regulators. For each one of them, the main contributiones®dpn the
technical literature are reported and critically examined.

e By considering two different application fields, viz., intelligent vehicle higlvgystemg
and baggage handling systems — Chapter 2 shows how an efficientchieghrcontrol
structure can be designed with the MPC approach applied to models witlediffevels of
aggregation at the various levels of the control hierarchy. In Section @&#dent vehicle
highway systems are considered, with emphasis on the control hierardfpnahe models
used. Section 2.3 deals with the complete design of a hierarchical contollebiggagg
handling system. In this case, a simulation example is also reported and dikcuss

e Chapter 3 considers the design of a two-layer control architecture.hitihelayer of the
control hierarchy corresponds to the system under control, while ther lliewyer represen
the available actuators. Focus is centered on the possibility to reconfigucerkrol sys
tem by adding or substituting an actuator. This is of major importance within thegpr
and in particular with reference to Tasks 2.3 and 2.4 to meet the requirefengroving
the availability of control schemes in response to changes in the subsysseetion 3.:
presents the problem formulation, i.e., the model of the plant at the high afwhthevels.
Section 3.2 describes the MPC control synthesis technique adopted aglHeuel and
convergence result for the overall (high and low layers) system. $e8tideals with the
extension of these results to the case of system reconfiguration due ¢tuatoaaddition|
or substitution.

e Finally, in Chapter 4 the activity performed in work package WP2 is briefiyraarized.
This is done by recalling the WP tasks as well as the results achieved in daeaiesctivity
and reported in Deliverables D2.1, D2.2, and D2.3.
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Chapter 1

Multi-models and model reduction
techniques for MPC

In this chapter, some approaches reported in the literature for the defimititiintime-scales models
and for the model reduction are surveyed. These results complete t@nd ¢ixose already presented
in Deliverable D2.1. In this chapter it is also discussed how to use theselsrfod¢he design of
hierarchical MPC regulators. The main idea in these control schemes isdamgese the original
control task into a sequence of simpler and hierarchically structuredsksbtsandled by dedicated
control layers, as proposed in [52]. The contribution of this chaptenéstd the UNC research unit.

1.1 Multi-models for MPC

According to|[52], there are three basic methods for hierarchicalmmydézomposition:
1. Functional decomposition.
2. Temporal decomposition.
3. Spatial decomposition.

The first decomposition is based on the information flow along the system artkthisions taken
based on this information. Basically three functions are identified: manageptant-wide control
and direct control. Each one of these functions has a different mogjgéndling on its objective. The
second decomposition is based on the time response of the dynamics of thelpltdre temporal
decomposition the model of the whole system is reduced based on the timecd¢hkedynamics of
the system, and for each time scale a model predictive controller is desibimethird decomposition
is based on the distribution of the system. In this case the whole system isddinideseveral places
or regions and the models are developed based on the similarities amongshstenits belonging to
the same place.

In the next sections, several approaches on each one of the wagsotmplose the system to design a
multi-model model predictive controllers are presented.

1.1.1 Functional decomposition approaches

In the authors propose to control the whole system based on emgigrset of functionally
different partial control objectives in a structure of vertical, hieraraldependence. Figure 1.1 shows
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Figure 1.1: Hierarchical control scheme[52]

an schematic diagram of this proposed scheme.
In [27], the author proposes a dual-based optimization for productigoplys and inventor plan.
The proposed optimization scheme has two steps:

1. Long-term plan: it is based on the predicted demands representechbgian sequence. The
role of the long-term plan is to impose a final condition set to the short-term plan

2. Short-term plan: it is based on the firm orders received from themess.

In [56], the authors propose a multi-level model predictive control mehbased on the use of
multi-form models. In this approach, the plant is represented by a variatyodels for different
end-uses, including:

1. Adistributed parameters model.

2. Alumped parameters model.

3. A matrix representation with off-line computed matrix elements.
4. Local linear models.
5

. Reduced order models obtained with balanced truncation methods.

It can be shown through dynamic simulations that significant reductionsnipating time can be
achieved with properly selecting the model forms. Since both open-loop dmtim#ol and closed
loop MPC rely on iterative dynamic optimization, overall computing time reductionesiak-line
applications possible [56].

In [54], the authors propose a two-layer production control method.reliptive controller is
proposed as a coordinator in the highest layer and a distributed cooli®} [ used as a follow-up
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Figure 1.2: Two-layer model predictive control scheme [54]

controller in the lowest layer. The use of a model predictive control ftetimn allows the schedul-
ing algorithm to simultaneously solve the production optimization and in-processtory control

problems at each sampling time. In Figure 1.2, a scheme of the proposed| anicture is dis-
played: a linear state-space model of the system is used to compute the opfenahce values in
the optimization layer.

1.1.2 Temporal decomposition approaches

In [59] the authors propose a multi-rate linear model predictive controllerder to avoid the trou-
bles associated with the delay in the measurements of some important variablesontiol of a
Weyerhaeuser digester. Dynamic linear models between the inputs, théalstes and the selected
manipulated variables are used. An identification procedure based pralimed moments of an
impulse response is proposed to identify general linear models of the form:

B KZs+K
- St @t as+1

G(s) glas (1.1)
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In [46], multi-scale models are used to design model-predictive controliesslting in design
techniques with several important advantages, such as:

1. Natural depiction of performance characteristics and treatment afitozdgpstraints.

2. Fast algorithms for establishing the constrained control policies ovgrpogdiction/control
horizons.

3. Rich depiction of feedback errors at several scales.

4. Optimal fusion of multi-rate measurements and control actions.

The main idea is to provide an alternative framework to design a model pxedodntroller, in
which the representation of the system captures the scale charactefigtiessgstem. To do that,
the authors propose to decompose the whole system model using binaryTineeprocedure can be
described as follows. Consider the discrete linear state-space model:

x(k+1) = Ax(k) + Bu(k) (1.2)

Taking the expressioh (1.2) as the level zero in the binary tree, the stae swdel (1.2) becomes:

X(0,k+ 1) = Ax(0,Kk) + Bu(0, k) (1.3)
Then, for any left-node at the level one in the binary tree, the model (1.2) can be transformed to
the following two-scale model
X(1) =V2(1+A) Y1 = Ax(at) — (I +A)"Bu(ar) (1.4)

or equivalently

SX(1) = (I1+A) X1 = Ax(at) —vV2(1 + A) " *Bu(at) (1.5)

wheredx(T) is the Haar wavelet coefficient of the state at the leved(7) is the Haar scaling coeffi-
cient of the state at the nodeandx(a 1), u(at) are the values of the states and control inputs at the
nodea T which is the left-offspring of the node

With this formulation, it can be shown that the dynamics of the system at leeshingoverned
by the following discrete-time model:

x(—1,'%+1) :Azx(—l,g)Jr(l +A)Bu(—1,;) (1.6)
where
Bu(—1, g) = k(l +A)HABUO,K) + (1 +-A)Bu(0,k + 1) + Bu(0,k + 2)] 1.7)
Based on[(1.6), the multi-scale model for any left-node at levéls— 3 ... — m are generated
recursively by
x(ta) = V2(1 +A?") (1) — BMu(ta) (1.8)
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Figure 1.3: Multi-model prediction scheme [62]

om- 1

whereB™ = (1 + A?")~1(1 + A?" ") ... (1 + A)B. Thus, the process model given by (1.2) describing
the process over'2points, is transformed to a multi-scale model given[by (1.8), defined oViaf2
nodes,1, of a binary tree, where each node describes process behavidooakized sections of time
and scale.

In [62], a multi-rate control strategy is proposed based on multi-rate moaeish allows to
reduce the dimensionality of the optimizations. To do that, three multi-input singfsoneural
network models are developed with different sampling times. Each neuvabrkecan be represented
as aNARXmodel of the form

y(k) = f(y(k—1),...,y(k—ny),uk—1—d),...,u(k—ny—d)) +£(t) (1.9)

Since the system outputs are coupled, the estimation of each neural n&twsed to compute
the output of the complementary output variables. The interaction amonglmeiworks and the
complete scheme used to compute the optimal input is shown in Figure 1.3.

The algorithm to compute the optimal input is illustrated in Figure 1.4.

In [18], another multi-rate model predictive control algorithm is presentiedthis work, the
problem of dimensionality is avoided using the principal component analyi$ie. reduced model
is linearized and the resulting linear state-space representation of thensgsieed to compute the
model predictive control output. Since the states have different timemesp@nd the measurements
have different arrival times, two extended Kalman filters are used: oestitmate the slow dynamics
based on the fast states and fast measurements, the other to improve #stifiration based on the
information of the slow measurements.

In [57], an iterative learning model predictive controller is proposedéich processes.

Finally, in [60], a multi-objective optimization problem is considered. The psal scheme uses
a reduced ordedvlIMO model of the system, with two inputs and two outputs, to estimate the optimal
input. The model reduction is carried out assuming that the fast dynareios steady-state.

1.1.3 Spatial decomposition approaches

In [61], a cascade model predictive control scheme is proposedisls¢heme, the internal and the
external control loops are designed with MPC. Figure 1.5 shows schethatiee proposed control
strategy.
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Figure 1.6: Multi-criteria model predictive control scheme based on heataorks [34]

In this scheme, thEARIMADblack-box model (1.10) is used for the design of each model predic-
tive controller to compute the optimal input.
¢(K)

A )y(k) =B(q Hu(k—d)+C(a ™)== (1.10)

wherey andu are the output and input, respectivalyis the input delayA is a difference operator
1-qg7%, andé&(t) is an uncorrelated random noise sequence with zero méan,B(.),C(.) are
polynomials in the backward shift operatpr?.

In [34] multi-criteria optimization is used to design a predictive controller farimear dynamical
systems. Atrtificial neural networks and genetic algorithms are considsiedal networks are used
to determine process models at each operating level and an aggregatian iated on a genetic
algorithm is used to solve the multi-criteria optimization problem. To carry out thegsed control
scheme, a generic nonlinear system of the form

y(k) = g<y(k_ 1)7' o 7y(k_ ml)>u(k>7' : .,U(k— mZ)) (1'11)

is considered, being(.) an unknown nonlinear function. To identiéy.) in each operating region, a
multilayer perceptron neural network (NN) is used. Thus the output afytbiem becomes

y(k) = NN(u(K), 8) (1.12)

where 6 denotes the parameters of the neural network ini théh operating region. The scheme
of the proposed control strategy is shown in Figure 1.6, where the optinmizaitick represents the
genetic algorithm used for multi-criteria optimization.

1.2 Model reduction

Spatially distributed systems such as tubular reactors or reactor netwastisghmultiple autocat-
alytic species demonstrate a rich spectrum of complex behavior. Frontralcgystems perspective,
these systems offer a difficult control challenge because of their digtdmature, nonlinearity, and
high order. Furthermore, manipulation of the network states may require simaiia control actions
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Table 1.1: Approximation methods

Approximation methods for dynamical systems
SVD | Krylov
Nonlinear systems Linear systems
POD methods Balanced truncation| Realization
Empirical grammians Hankel approximation Interpolation
Lanczos
Arnoldi

in different parts of the system and require to pass through sevezedtogg regimes to achieve the
desired operation, [51]. These facts justify the need to use reduceelsriacrder to improve the
numerical stability and shorten the computational efforts in the design of M§@ators.

1.2.1 Approximation of large-scale dynamical systems

Approximation methods can be cast into three broad categories: (a) S84d bzethods, (b) Krylov
based methods, (c) Iterative methods combining aspects of both the SMrdod methods.

The SVD-based approximation methods have their roots in the Singular Vaceniposition and
the resulting solution of the approximation of matrices by means of matrices of fank, which
are optimal in the 2-norm (or more generally in unitarily invariant norms). quemtities which are
important in deciding to what extent a given finite-dimensional operatobeapproximated by one
of lower rank are the so-called singular values.

Krylov-based approximation methods do not rely on the computation of singalaes. Instead
they are based on moment matching of the impulse response of the dynarsteah syfwo widely
used methods fall under this category, namely the Lanczos and the Apmotdidures, which were
put forward by C. Lanczos in 1950 and by W.E. Arnoldi in 1951, retigely. These methods have
been very influential in iterative eigenvalue computations and more recemtigdel reduction. Their
drawbacks are that the resulting reduced order systems have notgeararror bound, stability is not
necessarily preserved and some of them are not automatic./ Table 1.1 seesrtize approximation
methods considered in the following.

Balancing and Hankel Norm Approximation

In this section we describe some of the most relevant and popular methedsiteithe complexity of
models. It is assumed that a (stable) linear time-invariant system is givemeaaddress the problem
to approximate this system by a less complex (simpler) one. The approxim&endgsequired to

have a dynamic behavior which is similar, or as close as possible, to theitrebfthe system which

we wish to approximate.

State truncations [58]

Consider a (continuous-time or discrete-time) dynamical system in inputesigtet form:

X(t+1) = Ax(t) + Bu(t)
(1.13)
y(t) =Cx(t) + Du(t)
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Suppose that the stateof this system is partitioned in two components as:

_( X
X= < - > (1.14)
Any such partitioning causes a compatible partitioning of the system matricebaagsf
A A2 B1
A— B= CcC=(C C 1.15
(A21 A22> (Bz> (G &) (1.15)

If we assume that the vectry has dimensiok, thenA;; € Rk | B; € R“*MC; € RP*K andD € RP*™M,
We will view the quadrupléA;1,B1,Cq, D) as ak-th order truncation ofA,B,C,D). Thisk-th order
truncation defines a system in input-state-output form:

E(t+1) = A& (t)+Buu(t)
(1.16)
y(t) = C1&(t) + Du(t)

which will be viewed as thé&-th order truncation of the system defined by (1.13). Note that the state
variable in (1.16) has dimensiok but is not the same ag . Also, note that any system theoretic
property (like stability, controllability, minimality, etc.) which the system (1.13) mayehanay not

be inherited by the truncated system (1.16). In particular, the systen) (haynot be stable, may
not be minimal or dissipative while the system described by (1.13) may hase pneperties.

Modal truncations [58]

Consider a state space transformation:

x=TX (1.17)

for the system (1.13) witil a non-singular matrix of dimensiamx n. Since such a transformation
only amounts to rewriting the state variable in a new basis, it is well known thatr#msformation
does not affect the input-output behavior associated with (1.13)., Thus

X (t+1) = TIATX(t) + T 1Bu(t)
(1.18)
y(t) =CTX(t) + Du(t)

The non-singular transformation can be computed so that the resulting system is in the Jordan
canonical form. Now, suppose that the system (1.13) is stable. This impdiethéhabsolute values
|Ai| < 1,for alli =1,...,n. Without loss of generality we may therefore order the natural freqesnc
according to

0< [Ag] < A2 € oo < JAn| < 1 (1.19)

With this ordering, the state$ of a modal canonical form are ordered so that the first components of
the statex’ correspond to low frequency (or slow) modes, and the last componfethis state vector
X' correspond to high frequency (fast modes). If we partition

X = ( X > (1.20)

/
%Y
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wherex] has dimensiofk < n, then the truncated system is defined by leaving out the fast modes of
the system.

Balanced truncations [58]

This method, extensively described in [58], is based on a balanced ptate eepresentation that
eliminate the poorly reachable and poorly observable states from a staterspdel.

Hankel norm reductions

The Hankel norm of a continuous-time system described in state-spatbydhe matrice¢A, B,C,D)
is defined by:

00 2
|6j2:= sup Jo YUl (1.21)

ues(—w 0] Jo U(t)2dt
where 0
y(t):/ ceé=9Bu(s)ds (1.22)

The Hankel norm is a measure of the energy can be transferred fesninputs into future outputs
through the system. The Hankel-norm model reduction problem is defined a

Given an n-th order stable system G, find a k-th order stable systeso &s to minimize the Hankel
norm of the error|G — G|y -

The algorithm to find the reduced order model by means of Hankel noresizithed in [58].

Proper Orthogonal Decomposition-POD

Proper orthogonal decomposition and Galerkin projection are two weWkriechniques that have
been used together for deriving reduced order models of high-dimmedssgstems. These high-
dimensional systems are typically obtained after discretizing in space thd geitieential equations
that model many processes. In the POD method, an orthonormal basisdal deaomposition is ex-
tracted from an ensemble of data (called snapshots) obtained in the obexperiments or numerical
simulations. The basis functions calculated with the POD technique are comnatiely empirical
eigenfunctions, empirical basis functions, empirical orthogonal fungtiBroper Orthogonal Modes
(POMSs) or basis vectors. The POD method provides an orthonormal dragialso a measure of
the importance of each basis vector. This measure of importance is sometieresdréo as Proper
Orthogonal Value (POV) . Now, if we select the most relevant basis keatad project (Galerkin pro-
jection) the original high-dimensional model on the space spanned by thiststhen we can obtain
a reduced order model of the process. The most striking feature ofaBenfethod is its optimality:
“it provides the most efficient way of capturing the dominant componenés ahfinite-dimensional
process with only a finite number of modes, and often surprisingly few mddles |

Now let x(t) € ON = [x1(t),%(t),...,xn]T be the state vector of a given dynamical system, and let
X e ON*Nd with Ny > N be the so-called snapshot matrix that contain a finite number of samples
or snapshots of the evolution &ft) att =ty,tp,....,tn, . In POD, we start by observing that each
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snapshot can be written as a linear combination of a set of ordered orthahbasis vectors (POD
basis vectorsp; € ON,vj=1,2,....,N:

X(t) = ZZN aj(ti)¢j,Vi =12 ...,Ng (1.23)
j=1

wherea;(t;) is the coordinate of(t;) with respect to the basis vectgy (it is also called time-varying
coefficient or POD coefficient). Since the firstnost relevant basis vectors capture most of the energy
in the data collected, we can constructrah order approximation of the snapshots by means of the
following truncated sequence

n
X(ti): Zaj(ti)¢j,Vi =1,2,...,Ng,n< 2N (1.24)
=1

This is the essence of model reduction by POD. In POD, the orthonorrsial\ectors are calculated
in such a way that the reconstruction of the snapshots using the fitest relevant basis vectors is
optimal in the sense that the Sum-Squared-Error (SSE) betwgemndxn(ti), Vi = 1,...,Ng. The
POD basis Functions are determined from simulation or experimental datasf®ranatrix) of the
process. The dynamic model for the firstime varying coefficients can be found by means of the
Galerkin projection [2] or using subspace identification techniques [29] .

The derivation of a reduced order model|of (1.13) is done in the followiaps.

A. Generation of the Snapshot Matrix A snapshot matrixXspap € ON>Na js created from the
system response when independent step changes are made in the(tinpuid perturbation
d(t) signals.

Xsnap= [X(t = At), x(t = 2At), ..., X(t = NgAt)]

B. Derivation of the POD basis vectorsThe POD basis vectors are obtained by computing the
SVD of the snapshot matriXsnap

Xsnap — q)Zl‘IJT

whered ¢ ON*N andW € ONexNa gre unitary matrices, aritle ON*Ne js a matrix that contains
the singular values 0fsnapin a decreasing order on its main diagonal. The left singular vectors,
i.e., the columns ofp

D = [¢1,02,.... $n]

are the POD basis vectors.

C. Selection of the most relevant POD basis vectoiihe singular values oXsnap are checked.
The larger the singular value the more relevant the basis function is-Therder approxima-
tion of x(t) is given by

=}

Xti) = ajt)p; = ®na(t) (1.25)
=1

where®, = [¢1, ¢, ..., ¢n] and a(t)= [as(t),az(t), ..., an(t)]"
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D. Construction of the model for the firsh POD coefficients The Galerkin projection is used
to derive the dynamical model for the POD coefficients as follows. Defirsidual function
R(x) for equation|(1.13) as:

R(X) = x(t) — Ax(t) — Bu(t), (1.26)
and replace(t) by itsnth order approximatiom,(t) = ®na(t), the Galerkin projection sets that
the projection oR(x,) on the space spanned by the basis functibpsanishes.

Empirical Grammians

Consider a continuous-time, nonlinear controlled dynamical system:
x= f(x(t),u(t))

z(t) = h(x(t))
In [35], authors define a new resolution technique for such systemshwéig on classical model
reduction, but introduces a balancing algorithm in order to deal with narliiies. Balancing means
to apply a kind of linear transformations to two different matrices (here, thgnians) to obtain in
booth cases the same diagonal matrix. This technique includes sevesal step

(1.27)

1. To evaluate the (discrete) empirical grammians.

2. To balance both empirical grammians and to evaluate the squared eigsnvhthe common
diagonal matrix (Hankel singular values).

3. According to the magnitudes of the eigenvalues, to choose the rankfdjeetion subspace.
4. To solve the reduced model obtained by Galerkin projection onto a sustalbépace.

The construction of empirical grammians depends on some parameters:

1. n, the number of states; anxl the number of inputs;
2. T" ={Ty,..., T, }, a set of orthogonal x n matrices that will span the perturbation directions;
3. M ={c,...,Cs}, a set of s positive constants (the different sizes of the perturbations)

4. EP, the set of standard unit vectors(i?.

Letx'™(t) be the state corresponding to the impulsive ingif = ¢, Tigd(t). Recall the defini-
tion of the temporal mean of any functioyt) :

1 /T
gt) = lim = t)dt 1.28
o0 = Jim + [ a0 (1.28)
From a theoretical point of view, empirical grammians have the following idiefim
1. Controllability empirical grammian

.p Lo 1 “ ilm <ilm ilm <ilm
GC:._;;W;BC%/O (M (£) — XM (M (£) — ™) T it (1.29)
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2. Observability empirical grammian

r S 1 0
Gy = = / TWITT gt (1.30)
I;nglrscfz‘ﬂ 0

whereW'™ is then x n matrix given by

(W) = (@) 2T (@7 ) - 2™ (1.31)

For practical application, one should use a finite sum of a sampled trajecsdead an infinite inte-
gral. Also, temporal means are replaced by steady states. The later impliea¢rshould know an
input referencelss, (probably suggested by physical meaning of the underlying probleh@n, the
steady stat&ssis obtained fromf (Xss(t), Uss(t)) = 0 and the corresponding output is denotediday

1.3 Conclusions

In this chapter, a literature review about multi-model structures in modeigbireicontrol have been
presented. From this review it is possible to conclude that multi-model stegcéwe an interesting
tool to face-up complex, large-scale, control problems. Moreoveg, tdusystem decomposition,
these control structures allow one to improve the performance of moddictive controllers by
increasing the details of whole system model. Finally, system decompositiorsafmwo reduce the
computational cost associated with the optimization problem in model predicinteotlers, because
it is possible to divide the whole system optimization problem into several ones.
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Chapter 2

Design of hierarchical model predictive
control systems with multi-resolution
models

2.1 Introduction

The effectiveness of an efficient and tractable hierarchical MP@aph relying on the use of models
with different levels of aggregation is discussed in two significant applicdigdds, viz., intelligent
vehicle highway systems and baggage handling systems. The analysisettse studies is also
useful to draw quite general guidelines for the design of hierarchimahaultilevel control systems
in a wide number of applications.

This chapter is organized as follows. In Section 2.2 intelligent vehicle higlsystems are con-
sidered, while in Section 2.3 baggage handling systems are studied. ThasésnphSectionh 22 is
mainly on the control hierarchy and the models used, whereas in Sectiormifked example is
considered to illustrate the adopted hierarchical control approach.

The work reported in this chapter is based on the PhD theses of LakslekaB#&] and Alina
Tarau [48].

2.2 Multi-resolution models in hierarchical control for intelligent v ehi-
cle highway systems

In this section we propose a hierarchical control framework for inteltigehicle highway systems.
This framework consists of several levels, where at each leveleliftéypes of models are used by the
controller, depending on the temporal scale and spatial scale at whiclvéimecgntroller operates.
This section is organized as follows. In Section 2.2.1 we introduce Intell\ggnitle Highway
Systems (IVHS). We recapitulate the hierarchical traffic managementaamibtframework of [5] in
Section 2.2.2. In Section 2.2.3 we report on vehicle and traffic models.cio8&.2.4 we propose an
MPC method for the roadside controllers to determine optimal speeds, lanatialie; and on-ramp
release times for the platoons. Next, we focus on the route guidance fatles area controllers
and we present a simplified flow model and the corresponding optimal roidarge problem in
Section 2.2.5. We consider both the static (constant demands) and the dyaaei(time-varying
demands). In general, the dynamic case leads to a nonlinear non-@gtirekzation problem, but in

| Page 19/67




|HD-MPC ICT-223854 Multi-level models and architectures for HD-MPC |

Section 2.2.5 we show that this problem can be approximated using mixed ilnegeprogramming
(MILP). Section 2.2.6 concludes the worked example.

2.2.1 Intelligent vehicle highway systems (IVHS)
Introduction

The recurring traffic congestion problems and their related costs haulie@ in various solution
approaches. One of these involves the combination of the existing tréatspoinfrastructure and
equipment with advanced technologies from the field of control theorgnmanication, and informa-
tion technology. This results in integrated traffic management and constmyg, called Intelligent
Vehicle Highway Systems (IVHS), that incorporate intelligence in both theésida infrastructure and
in the vehicles. Although this step is considered to be a long-term solution pihieach is capable
of offering significant increases in the performance of the traffic sy$4¢, 30, 21].

In IVHS all vehicles are assumed to be fully automated with throttle, brakirdysteering com-
mands being determined by automated on-board controllers. Such compéetetan of the driving
tasks allows to organize the traffic in platoons, i.e., a closely spaced gfoghicles traveling to-
gether with short intervehicle distances [53, 45]. Platoons can trahéjlaspeeds and to avoid colli-
sions between platoons at these high speeds, a safe interplatoon didtaboat 20—60 m should be
maintained. Also, the vehicles in each platoon travel with small intraplatoon desaxf about 2-5m,
which are maintained by the automated on-board speed and distance contBfiéraveling at high
speeds and by maintaining short intraplatoon distances, the platoon elppitmavs more vehicles to
travel on the network, which improves the traffic throughput [12, 38].

Intelligent vehicles and IV-based traffic control measures

Intelligent Vehicles (IVs) are equipped with control systems that careséesnvironment around the
vehicle and that result in a more efficient vehicle operation by assistingitrer dr by taking partial
or complete control of the vehicle [10]. The platoon-based approasthinghis paper assumes that
all IVs are fully autonomous, i.e., complete control is taken of the vehicleatiper

There are several IV technologies that support and improve the plagpoancept by allowing
vehicle-vehicle and vehicle-roadside coordination [10, 13]:

¢ Intelligent Speed Adaptation (ISA),
e Adaptive Cruise Control (ACC),

e dynamic route planning and guidance.

In this section we will focus on ISA and ACC.

ISA is based on a speed limiter incorporated within each vehicle that can takeccount speed
limit restrictions, that can adjust the maximum driving speed to the speed limifispday the road-
side infrastructure, and that can provide feedback to the driver ergatonomous action when that
speed limit is exceeded. ISA systems could use fixed or dynamic speed limite fined case, the
driver is informed about the speed limit, which could be obtained from a statabédse. Dynamic
speed limits take into account the current road conditions such as badewatifipery roads, or major
incidents before prescribing the speed limit.

An ACC system is a radar-based system that extends conventiona congol and that is de-
signed to monitor the immediate predecessor vehicle in the same lane, and to aatityredjcst
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Figure 2.1: The hierarchical control framework for IVHS.

the speed of the equipped vehicle to match the speed of the preceding eehidiz maintain a safe
intervehicle distance [16]. Cooperative ACC is a further enhancenié&@®G systems that uses wire-
less communication technologies to obtain real-time information about the speebkration, etc. of
the preceding vehicle. Vehicles equipped with cooperative ACC caraegehthe information much
quicker and allow to set the safe minimum time headway as small as 0.5s. Hetiteeduced
headways between vehicles, the maximal traffic flow can be augmentefuetresr.

2.2.2 Hierarchical control of IVHS

In [5] a hierarchical traffic management and control framework fd#l 84s proposed that builds upon
earlier research in this field such as the PATH framework [45]. The abautchitecture of [5] consists
of a multi-level control structure with local controllers at the lowest leval ane or more higher
supervisory control levels (see Figlre|2.1).

We now briefly present the hierarchical control framework for IVHSe&loped in [5]. This frame-
work is based on the platoon concept and it distributes the intelligence betheeoadside infras-
tructure and the vehicles using control measures such as intelligent agagetion, adaptive cruise
control, lane allocation, on-ramp access control, route guidance, eteverp congestion and to im-
prove the performance of the traffic network. The control architecitifg] consists of a multi-level
control structure with local controllers at the lowest level and one or migiteer supervisory control
levels as shown in Figure 2.1. The layers of the framework can be ¢berad as follows:

e Thevehicle controllergpresent in each vehicle receive commands from the platoon controllers

(e.g., set-points or reference trajectories for speeds (for intelligeetdspdaption), headways
(for adaptive cruise control), and paths) and they translate these catarimam control signals
for the vehicle actuators such as throttle, braking, and steering actions.

e The platoon controllersreceive commands from the roadside controllers and are responsible

for control and coordination of each vehicle inside the platoon. The pilatoatrollers are
mainly concerned with actually executing the interplatoon maneuvers (sucte@es with
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other platoons, splits, and lane changes) and intraplatoon activities gsutiaintaining safe
intervehicle distances).

e The roadside controllersmay control a part of a highway or an entire highway. The main
tasks of the roadside controllers are to assign speeds for each plaf®ndjstances to avoid
collisions between platoons, appropriate platoon sizes, and ramp metelieg 2z the on-
ramps. The roadside controllers give instructions for merging, splittirdyleare changes to the
platoons.

e The higher-level controllergsuch as area, regional, and supraregional controllers) provide
network-wide coordination of the lower-level and middle-level controlldrs particular, the
area controllers provide area-wide dynamic route guidance for the p&tand they supervise
and coordinate the activities of the roadside controllers in their area lwdprg set-points
and control targets. In turn, a group of area controllers could bergspd or controlled by a
regional controller, and so on.

The lower levels in this hierarchy deal with faster time scales (typically in the mitirsgs range for

the vehicle controllers up to the seconds range for the roadside corgypiidrereas for the higher-
level layers the frequency of updating can range from few times per mifautéhe area controllers)
to a few times per hour (for the supraregional controllers).

2.2.3 \Vehicle and traffic modeling at the roadside level

There exists a wide range of traffic models [14]. An important factor te&trdhines the choice of
the model to be used in MPC is the trade-off between accuracy and compatatomplexity since
at each time step the model will be simulated repeatedly within the on-line optimizatioritlahgy.
As a consequence, very detailed microscopic traffic simulation models @abyusot suited as MPC
prediction model. Instead, simplified or more aggregate models are usualigcappherefore, we
now describe simplified traffic models for vehicles and for platoons thabeamsed as (part of the)
prediction model within the MPC-based roadside controller. We considariuman drivers and IV
models. In Section 2.2.5 we will then also present more aggregate modelartza ased by the area
controllers.

Traffic flow modeling

In this section, we deal with the longitudinal aspects of the driver taskishwdan be classified as
follows:

o free-flow behavior,
e car-following behavior,
e stop-and-go behavior.

In free-flow behavior, the vehicles can travel at their desired spsdegponding to the speed limit,
e.g., 120 km/h). As the traffic demand increases, the vehicles start to fobavptedecessors at closer
distances and at reduced speeds (50-80 km/h). Once the capacityhgjtihay is being utilized at
its maximum, then the vehicles move with stop-and-go movements (0—40 km/h).
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Vehicle models

We use general kinematics motion equations to describe the dynamics of thieselwhich, after
discretization leads to:

% (£)
Vi (f) =

Xi(£—1)+vi(€— D) Tsim+ 058 (£ — DTS, (2.1)
i(0—1)+&(f—1)Tsim (2.2)

where/ is the simulation step counteflsi, the simulation time stepg; the longitudinal position of
vehiclei, v; the speed of vehicle anda; the acceleration of vehicie The acceleration used in (2.1)—
(2.2) is calculated according to the current driving situation as will be agdabelow. Also, the
acceleration is limited between a maximum acceleration and a maximum (in absol@goahfort-
able deceleration.

We first consider models for human drivers. Next, we discuss modethdantelligent vehicles
and for the platoons. We conclude with a description of a phenomenon cajpedity drop.

Longitudinal models for human drivers

The time headwayleaq Of @ vehicle is defined as the time difference between the passing of the
rear ends of the vehicle’'s predecessor and the vehicle itself at a cledation. When there is no
predecessor or when the time headway to the predecessor is larger ¢hanitital time headway
(e.g., 105s), then the vehicle is said to be in free-flow mode. Once the velaestwith a smaller
time headway than the critical time headway to its predecessor, then the velsiald te be in car-
following mode.

Free-flow model

The acceleration for free-flow driving conditions is determined by theyeeldifference between the
current speed and the reference speed:

a(l) =K(Veeti({ —0) —vi({ —0)) (2.3)

whereK is the proportional constantet; is the reference speed, aadis the reaction deldy The
reference speed can either be issued by roadside infrastructuieaarbe driver’s desired maximum
speed.

Car-following model

As described in [11] there exist various types of car-following modeth sas stimulus response
models [41], collision avoidance models [33], psychophysical models i cellular automata
models [43].

We will use a stimulus response model to describe the behavior of humansdais this model is
most often used and also easy to implement. Stimulus response models arerbésettypothesis
that each vehicle accelerates or decelerates as a function of the refs®@ and distance between
the vehicle and its predecessor. In particular, the Gazis-Herman-R¢@idR) model [24] states that
after a reaction delay, the follower vehic¢laccelerates or decelerates in proportion to the speed of the

lWe assume here that the reaction tiffigacy Which typically has a value of 1-1.2s, is an integer multiple of the
simulation time steffgjm. S0, Treact= 0 Tsim With ¢ an integer.
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vehicle itself, to the relative speed with respect to its predecessor (vehidlg and to the inverse of
distance headway between them. The reference acceleration is thudgive

(Vita(£—d) —vi(£—d))
(Xir1(£—d) —x(£—d))Y

whereC, 3, andy are the model parameters (possibly with different values depending ethertthe
vehicle is in a congested and uncongested driving situation)jasthe driver delay.

ai(() =C\ (¢)

(2.4)

Longitudinal models for intelligent vehicles

In our approach, intelligent vehicles will use ACC and ISA measures emdraanged in platoons.
We now discuss how the accelerations for the platoon leaders and falliheer vehicles within a
platoon are calculated.

Platoon leader model

Platoon leaders have an enforced-ISA system and the calculation afdékei@tion for the platoon
leader is based on a simple proportional controller:

ai(£) = Ka(visa(£) —vi(()) (2.5)
whereK; is the proportional constant, anga is the reference ISA speed provided by the roadside
controller.

Follower vehicle model

The follower vehicles will use their on-board ACC system to maintain shorpiatoon distances.
The ACC algorithm consists of a combined speed and distance controller:

8 (£) = Ka(breti (€) — (Xi+2(€) =% (£))) + Ka(Viv1(£) —Vi(£)) (2.6)

whereK; andK3z are constants, artl; is the reference distance headway for vehiclote that the
speed controller is based on the same principle as the one used in the platimedel, but with
the platoon leader’s speed as the reference speed. The distancdieocaiculates the safe distance
headway as follows:

hreti (€) = S+ Vi(¢) Theadi + L (2.7)
where S is the minimum safe distance that is to be maintained at zero sfjged; is the time
headway for vehiclé andL; is the length of vehicle.

Platoon-based prediction model

On a more aggregate level, we can also consider a platoon of vehiclemgkeastity without taking

the detailed interactions among the individual vehicles within a platoon into atc8o essentially
we consider a platoon as one “big vehicle” with a length that is a function cffibed of the platoon
(due to the dependence of the intervehicle spacing managed by the ACE spetd (cf/ (2.7))), and

2Here we assume again thk1ay, Which typically has a value of 1-1.2 s, is an integer multipl@&gf. S0, Tgelay= dTsim
with d an integer.

Page 24/67




|HD-MPC ICT-223854 Multi-level models and architectures for HD-MPC |

of the number and lengths of the vehicles in the platoon. The dynamics equatidhe speed and
position of the platoon are the same as those of a platoon leader presemted@bnsider platoop
and assume for the sake of simplicity that the vehicles in the platoon are nuirib@east vehicle), 2
(one but last vehicle), .. np (platoon leader). The speed dependent lehgifi,(¢) of platoonp is
then given by

Lo = (p~ 1(S0+ S, () + 3 L 28)

whereS + v, (£) is the speed-dependent intervehicle spacing between the vehicles inttapla
with § the minimum safe distance that is to be maintained at zero spgadnodel constantj, the
speed of the platoon (leader), andhe length of vehicle.

Capacity drop

In general, traffic congestion occurs when the available network researe not sufficient to handle
the traffic demand (recurrent congestion), or due to irregular oeeces, such as traffic incidents
(non-recurrent congestion). In practice, traffic jams or congesésaltrin capacity drop [25]. This
phenomenon causes the expected maximum outflow from the jammed traffic tsshidda in the
case of free-flow traffic. This is mainly caused by the delay in reaction tidénmneased intervehicle
distance (time headway) when vehicles start to exit from a traffic jam. Foehurivers the capacity
drop is typically of the order of 2—7 %. With fully automated vehicles the capdoiy can be reduced
to almost 0 %.

2.2.4 Roadside controllers

In this section we propose an MPC method for the roadside controllers toriieéeoptimal speeds,
lane allocations, and on-ramp release times for the platoons. For the sakeplitity of the ex-
position we will mainly focus on intelligent speed adaptation (ISA), but the@sed approach also
applies to other control measures.

MPC for ISA

We now explain how MPC can be applied for speed control in IVHS. MPCesaise of discrete-
time models. Lefl; be the control sampling interval, i.e., the (constant) time interval between two
updates of the control signal settings. At each time kt@grresponding to the time instant kTc),
the roadside controller first measures or determines the curren&tatef the system. Recall that
the roadside control works with platoons as basic entities. So in our castatieeof the system
includes the positions and speeds of the platoon leaders and the lengtlespiditttons. Next, the
controller uses an optimization algorithm in combination with a model of the systeatdonine the
control inputsu(k), ..., u(k+ Np — 1) that optimize a performance criteridifk) over a time interval
[KTe, (k+Np)Tc], whereN, is called the prediction horizon. In our case the control signeill consist
of the speed limits for the platoon leaders.

In the previous section we have already presented some models thapecatg suited for use
in MPC for IVHS. Note however that MPC is a modular approach so thatse eagiven prediction
model does not perform well, it can easily be replaced by another picedinodel.

Possible performance criterdgk) are the total time spent in a traffic network, the total throughput,
the total fuel consumption, safety, or a combination of these. In the followmgyill in particular
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consider the total time spent (TTS) by all the vehicles in the network:

Np

Jrrs(k) = Z)nveh(kJr DTe (2.9)

=

wherenyen(k+ j) is the number of vehicles that are present in the network at tiragk + j)Tc.
Moreover, in order to prevent oscillations and frequent shifting in thrgrobsignals, one often adds
a penalty on variations in the control signghlvhich results in the total performance function

Np

Jot(k) = I(k) +a %HU(kJrJ')—U(kH—l)Hz , (2.10)
i=

wherea > 0 is a weighting factor.

The MPC controller also explicitly takes into account operational constrairmis as minimum
separation between the platoons, minimum and maximum speeds, minimum heastaais reduce
the computational complexity of the problem, one often introduces a congifaim formu(k+ j) =
u(k+j—1)for j=Nc,...,Np—1, whereN; (< Np) is called the control horizon.

In MPC the control actions are applied in a receding horizon fashion. igtiene by applying
only the first control sampla(k) of the optimal control sequence to the system. Next, the prediction
horizon is shifted one step forward, and the prediction and optimizatioregue over the shifted
horizon are repeated using new system measurements.

Optimization methods

Solving the MPC optimization problem (i.e., computing the optimal control actionsgistbst de-
manding operation in the MPC approach. In our case the MPC approaes e to nonlinear
nonconvex optimization problems that have to be solved on-line. So a prbpiee of optimization
techniques that suit the nature of the problem has to be made. In ourlobaéay multi-start local
optimization methods are required such as multi-start sequential quadragiamming [44], pattern
search [4], genetic algorithms [15], or simulated annealing [19].

2.2.5 Area controllers

In this section we describe a control approach for the area controfidiig garticular on how optimal
routes can be determined for the platoons.

Approach

In principle, the optimal route choice control problem in IVHS consists ifgagsy an optimal route
to each individual platoon in the network. However, this results in a hugknear integer optimiza-
tion problem with high computational complexity and requirements, making the pnabteactable
in practice. So, since considering each individual platoon is too compui#ltiantensive, we will
consider streams of platoons instead (characterized by (real-valee@dnds and flows expressed in
vehicles per hour). The routing problem will be recast as the probledet@mining the flows on
each link.

Once these flows are determined, they can be implemented by roadsiddlemtabthe links
and at the nodes. So the area controllers provide flow targets to thed®adstrollers, which then
have to control the platoons that are under their supervision in such thattyese targets are met as
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Figure 2.2: Piecewise constant time-varying demand prbfilg for the dynamic case.

well as possible. This corresponds to slowing down or speeding up pkatodhe links if necessary
(in combination with lane allocation and on-ramp access timing), and to steerimgitha certain
direction depending on the splitting rates for the flows.

Set-up

We consider the following set-up. We have a transportation network withad sggin nodes”, a set
of destination node¥, and a set of internal nodeg. Define the set of all nodes &= 0'U .7 U 2.
Nodes can be connected by one or more (unidirectional) links. The aétlioks is denoted by..

For each origin-destination p&dio,d) € & x 2 we define the sdt, 4 C L of links that belong to
some route going from to d. For every linkl € L we define the set/q of origin-destination pairs
(0,d) € & x 2 such that belongs to some route going froorto d.

For each paifo,d) € & x 7, there is a constant demaiy 4 (in the static case) or a dynamic,
piecewise constant demand pattByy(-) as shown in Figure 2.2 with, 4(k) the demand of vehicles
at origin o with destinationd in the time intervallkts, (k4 1)1s) for k= 0,...,K — 1 with K the
simulation horizon ands the simulation time step (we assume that beydnrdK 15 the demand is 0).

For each link € L in the networR there is a maximal capaci€. We assume that there is a fixed
average speeg on each link. Let 1 denote the travel time on link 7, = fl—: where/, is the length

of link 1. We denote the set of incoming links for node # by LI", and the set of outgoing links by
LOU Note that for origin® € & we haveLll = 0 and for destinations € Z we haveL"! = 0.

The aim is now to assign actual (real-valued) flowsq (in the static case) ax o q(k) (in the
dynamic case) for every pa{o,d) € & x & and everyl € Lyq, in such a way that the capacity
of the links is not exceeded and such that the given performance ariterig., total time spent) is
minimized. In the dynamic case, q(k) denotes the flow of vehicles from origmto destinatiord
that enter link in the time intervalkts, (K+ 1)Ts).

For the optimal route choice problem we now consider four cases withdualig increasing
complexity:

e Static case with sufficient network capacity,

3This approach can easily be extended to the case where also the inttesl & .# have a finite capacity.
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e Static case with queues at the boundaries of the network only,
e Dynamic case with queues at the boundaries of the network only,

e Dynamic case with queues inside the network.

Static case with sufficient network capacity

Here we assume that there is a constant demand for each origin-destpaiti@and that the total
network capacity is such that the entire demand can be processed, Swetieawill be no queues at
the boundaries or inside the network. Let us now describe the equatiorsil this situation.

For every origin node € ¢ we have:

X od=Doq foreachd e 2. (2.112)

leL8TM Lo g

For every internal node € .# and for every paifo,d) € ¢ x 2 we have

> Xod= Z Xiod - (2.12)
leLlMNLog €L g

We also have the following condition for every lihk

X.0d < G . (2.13)
(Ovd)ef%d,l

Finally, the objective function is given as follofvs

Jinkskn = ) > XoaniT , (2.14)
(o,d)edx 2 1€log

which is a measure for the total time the vehicles or platoons spend in the netwoikder to
minimize Jinks kN We have to solve the following optimization problem:

min JinkskN ~ S-L. (2.11)+(2.13) (2.15)

Clearly, this is a linear programming problem.

Static case with queues at the boundaries of the network only

In case the capacity of the network is less than the demand, then probl&nyalhot be feasible.
In order to be able to determine the optimal routing in this case, we have to takaccaant that
queues might appear at the origin of the network.

Let us first write down the equations for the flows inside the network.

For every origin node € ¢ we have:

Z X 0d < Doy foreachd e 2. (2.16)
leLdMLo 4

Equations|(2.12) and (2.13) also hold in this case.

4Recall thafl = KTs is the length of the simulation period.
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Let us now describe the behavior of the queues. Since the actual floaf otigin nodeo for
destinatiord is given by
F(;)(ijt: X|70,d I
’ IELS;LM

the queue length at the origofor vehicles or platoons going to destinatidrwill increase linearly
with a rateDg g — nggt (note that by (2.166) this rate is always nonnegative). At the end of thdaimm
period (which has lengtfi) the queue length will b¢Dg g — nggt)T, and hence the average queue

length is%(DO,d —Fo4HT. So the total time spent in the origin queues is

1

Jqueuek,N = z E(Do,d - Fcfgt)Tz
(0.d)EGx 2
1
= Z > (Do,d - Z Xl,o,d>-|—2 .
out
(od)cOox2 el

In order to minimize the total time spent we have to solve the following optimizatiorgrob

min Jinks kN + Jqueuesk N S-1.(2.12),[(2.13), and (2.16). (2.17)

This is also a linear programming problem.

Dynamic case with queues at the boundaries of the network only

Now we consider a piecewise constant demand pattern for every oegimdtion pair. Moreover,
we assume that the travel timieon link | is an integer multiple ofs, say

T, = K Ts Wwith K, an integer. (2.18)

Letqo,q(k) denote the partial queue length of vehicles at or@going to destinatiod at time instant
t = kts. In principle, the queue lengths should be integers as their unit is “nunivehales”, but
we will approximate them using reals.

For the sake of simplicity we also assume that initially the network is emptydj.g(k) = 0 and
X|’o"d(k) =0fork <0).

For every origin node € ¢ we now have:

o.d(K)

S

Z X.0,d(K) < Dog(k)+ for eachd € 2, (2.19)
leLgMLo g

with by definitionDg (k) = 0 for k > K andqo q(k) = 0 for k < 0. Note that the terrﬁ"‘ﬁsﬂ in (2.19)

is due to the assumption that whenever possible and feasible the queue iglem{iteenext sample
period, with lengthts.

Taking into account that every flow on linkhas a delay ok; time steps before it reaches the end of
the link, we have

X odk—1)= Z X 0,d(K) (2.20)
leLOMLy g

leLiLog
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Figure 2.3: Two possible cases for the evolution of the (continuous-tirma)eqlﬂengthqgf’d”t in the
time intervallkts, (k+ 1)Ts).

for every internal node € .# and for every paifo,d) € & x 2, with X o 4(k) = 0 fork < 0.
We also have the following condition for every lihk

X.0d(K) <G . (2.21)
(0,d)€Hd
Let us now describe the behavior of the queues. Since the actual floef otigin nodeo for
destinatiord in the time intervalkts, (k+ 1)1s) is given by

Fod (k) = X 0d(K) (2.22)

leL8T Lo g

the queue length at the origim for vehicles going to destinatiod will increase linearly with a
rateDo g(k) — F(;fgt(k) in the time intervalkts, (k+ 1)1s). Hence,

God(K+ 1) = max(0, God(K) + (Doa(K) — Fe'(k))Ts) (2.23)

In order to determine the timéyueueo,d(K) Spent in the queue at origio in the time interval
[kts, (k+ 1)15) for traffic going to destinatiod, we have to distinguish between two cases depending
on whether or not the continuous-time queue Ierqgﬁﬁt becomes equal to zeinside the interval
[kts, (k+ 1) 74| (see Cases (a) and (b) of Figure|2.3). For Case (b) we define

o Qo.d(K)
Toall) = 2k~ Doalk (224

as the time offset aftedrs at which the queue length becomes zero. Then we have

1
5(Goa(K) +dog(k+1))1s  for Case (a),

Jqueueo,d(K) = (2.25)

%QO,d(k)To,d(k) for Case (b).

53S0 we are only Case (b) d)g?d”t becomes equal to zero for some timaith krs <t < (k+1)T, i.e., if go g(k) > 0 and
Oo,d(K) + (Do, (k) — FO4(k)) Ts < 0. All other situations belong to Case (a).
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Due to the denominator term in (2.2%),eue0,d(K) is in general a nonlinear function. Now assume that
we simulate the network until time stéfaim > K (e.g., until all queues and all flows have becéme
equal to zero). Then we have
Ksim_l
Jqueuek,N = Z Z Jqueueo,d(k) .
k=0 (od)eox2

The time spent in the links is now given by

Ksim—1
Jinks kN = Zo > > Xoa(K)kK 2. (2.26)
k=0 (o,d)€0x71€lyq
In order to minimize the total time spent we have to solve the following optimizationgrob
mln (\]“nkskN +Jqueud(7N) S.t. iz.lg)). (2.27)

Due to the presence of constraint (2.23) and the nonlinear expressididueo.d(k) in Case (b) this

is a nonlinear, non-convex, and non-smooth optimization problem. In glerbese problems are
difficult to solve and require multi-start local optimization methods (such asidigl Quadratic

Programming (SQP)) or global optimization methods (such as genetic algorghmsated anneal-
ing, or pattern search) [44]. However, in the following we will proposeafiernative approximate
solution approach based on mixed integer linear programming.

Dynamic case with queues inside the network

Now we consider the case with queues inside the network. If there atmgfiermed, we assume
that they are formed at the end of the links and that the queues are vemidatt, for the sake of
simplicity and in order to obtain linear equations, we assign the queues to the mstead of the
links.

This case is similar to the previous case, the difference being that (2.26\iseplaced by (cf.
also((2.19)):

k
Z X 0d(k) < > Xodk—1) |+ Gvoa(k) 7 (2.28)
leL$MLo g leLinLo g Ts

whereqy q(K) is the partial queue length at noddor vehicles or platoons going from origmto
destinatiord at the time instant = krs. Moreover,

Ohvod(K+1) = max(0, tyoa(K) + (Fipa(K) — Foa(k))Ts

with the flow into and out of the queue being given by

ved® =Y Xoa(k—m) (2.29)
leLiNLog

vod(K) = > Xoalk) - (2.30)
leLITAL g

61f this is not the case we have to add an end-point penalty on the quetibdemgl flows at time stelfkim.
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Similar to the waylqueueo,d(K) has been defined ih (2.25) we also define the tijagueyo.d(k) spent
in the queue at nodein the time intervalkts, (k+ 1)1s) for traffic going from origino to destination
d, and we extend the definition df,eyex N iNtO

Ksim—1
Jgueuek N = Z} z (‘Jqueueo.,d(k)—l—
k=0 (0d)€lx2
Y Jouevevod(K)) s -
ves

In order to minimize the total time spent we have to solve the following optimizatiorigorob

Min (Jinkskn + Jgueuekn)  S-t. (2.19),(2.21)(2.23), and (2128)—(2.30),

with Jinks kN Still defined by [(2.26). This also results in a nonlinear, non-convex,namdsmooth
optimization problem. However, in the next section we will show that this prolg@malso be ap-
proximated using mixed integer linear programming.

Approximation based on mixed integer linear programming

Recall that the dynamic optimal route guidance problems previously statadmliBear, non-convex,
and non-smooth. Now we will show that by introducing an approximation tpesiglems can be
transformed into mixed integer linear programming (MILP) problems, for wieiicient solvers
have been developed [22].

First we consider the case with queues at the origins only, i.e., we coritBgl@ptimization
problem|(2.27). Apart from (2.23) this problem is a linear optimization prble

Now we explain how we can transform (2.23) into a system of linear equabgrintroducing
some auxiliary boolean variablés To this aim we use the following properties [7], whe¥eep-
resents a binary-valued scalar varialyl@, real-valued scalar variable, afidx function defined on a
bounded seX with upper and lower boundd andm for the function values:

P1 [f < O] < [6=1]istrueifand only if

f <M(1-9)
f>e+(m—g)d ,

wheree is a small positive numbé(typically the machine precision),

P2 y=0f is equivalent to

y< M3
y > mod

y< f—m(1-9)
y>f-M(1-9) .

Depending on the order in which these properties are applied and in wihititioaal auxiliary
variables are introduced, we may end up with more or less binary and agabhes in the final
MILP problem. The number of binary variables — and to a lesser extentuimber of real variables

"We need this construction to transform a constraint of the fpraD intoy > €, as in (mixed integer) linear program-
ming problems only non-strict inequalities are allowed.
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— should be kept as small as possible since this number has a direct imghet admputational
complexity of the final MILP problem.

To reduce the number of real variables in the final MILP problem, wedlistinateF24'(k) and
we write (2.23) as 7

Qod(k+1) = max(o, Qo.d(K)

+ (Do,a(k) — 0d(K))Ts) . 2.31
Postl~ 3 ol )Ts) (2.31)

Note that this is a nonlinear equation and thus it does not fit the MILP framkewoet D" =
max Do q(k) be the maximal demand for origin-destination p@ird), let FJ%™ = < oy, C be
the maximal possible flow out of origin node¢owards destinatiod, and |equjgxz ngngsKsim be the
maximal origin queue length at origafor traffic going to destinatiod. If we definemgy = —FJi"Ts

andmy? = qI'3*+ DJ'3*ts, then we always have
By < oK)+ (Doak) — 5 Hoalk)) e <y
leLgMLog '

Next, we introduce binary variablég (k) such that
do.d(k) =1 if and only if
Jo.d(K) + (Do.,d(k) - Z )(I,o,d(k))Ts >0.
1 €S g

Using PropertyP1 with the boundsn?} andmy"’ this condition can be transformed into a system of
linear inequalities. Now we have (cf. (2/31))

QO,d(k+1):
K) ( 0o.q(k Dod(K) — 0d(K))Ts) .
o) (a0 Poak = 5 Hoal)rs)

This expression is still nonlinear since it contains a multiplication of a binargterd, 4 (k) with a
real-valued (linear) function. However, by using PropdBthis equation can be transformed into a
system of linear inequalities.

So by introducing some auxiliary variablégq (k) we can transform the original nonlinear equation
(2.23) into a system of additional linear equations and inequalities.

Recall thatJyueueo,d(K) is in general a nonlinear function due to the occurrence of Case (b) of

Figure 2.3. However, if we also use the expression of Case (a) f& @asthen we can approximate
Jqueuald(k) a§

1
Jqueueo,d(K) = é(%,d(k) +0Qod(k+1))Ts ,

which is a linear expression. This implies that the overall objective funckiggkn + Jgueuek N 1S
now linear. So the problem (2.27) can be approximated by an MILP problem.

Several efficient branch-and-bound MILP solvers [22] are abvkléor MILP problems. More-
over, there exist several commercial and free solvers for MILP lprneg such as, e.g., CPLEX,

8This is exact for Case (a) and an approximation for Case (b). Hawespecially ifts is small enough, the error we
then make is negligible.
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Xpress-MP, GLPK, or Ipsolve (see [3, 39] for an overview). In principle, — i.e., when the algo-
rithm is not terminated prematurely due to time or memory limitations, — these algorithmengesa
to find the global optimum. This global optimization feature is not present in ther ofhtimization
methods that can be used to solve the original nonlinear, non-conugsmooth optimization prob-
lem (2.27). Moreover, if the computation time is limited (as is often the case in onelatd¢ime traffic
control), then it might occur that the MILP solution can be found within the atiditee whereas the
global and multi-start local optimization algorithm still did not converge to a gaudtion. As a
result, the MILP solution — even although it solves an approximated problemight even perform
better than the solution returned by the prematurely terminated global and multestd optimiza-
tion method. In general, we can say that the MILP solution often provide®d tyade-off between
optimality and computational efficiency.

Using a similar reasoning as above we can also transform the routing prablle queues inside
the network into an MILP problem. Note however that in this case the numbanafy variables
may become quite large.

2.2.6 Conclusions

In this section we have considered a hierarchical control framewarkfelligent vehicle highway
systems (IVHS), with a special focus on the models used at the variotreldenels. We have pre-
sented how model predictive control (MPC) can be used to determine opimeatis for platoons by
the roadside controllers. We have also considered the optimal route geligestdem for IVHS. In
particular, we have proposed an optimal route guidance approachafoops by an area controller
based on a simplified flow model. Since the resulting optimization problem could sttibdp in-
volved for on-line, real-time implementation in the case of dynamic demands, weeelxplored an
approximation resulting in a mixed integer linear programming problem, for wtifidiest solvers
exist.

2.3 Hierarchical model predictive control for baggage handling systems

In this section we propose a hierarchical control framework for stathesart baggage handling sys-
tems where the luggage is transported by fast destination coded vehi€&&)D In this control
framework switch controllers provide position instructions for each switcthénnetwork. A col-
lection of switch controllers is then supervised by a network controller thatlyntakes care of the
route choice instructions for DCVs. In general, the route choice comtodllem is a nonlinear, mixed
integer optimization problem, with high computational requirements, which makesattable in
practice. Therefore, we present an alternative approach focireglthe complexity of the computa-
tions by approximating the nonlinear optimization problem and rewriting it as a niiteger linear
programming (MILP) problem for which solvers are available that allow wftoiently compute the
global optimal solution. The solution of the MILP problem is then used in comgurtimal switch
control actions. For a benchmark case study we compare the hierarobiteol with centralized
switch control. The results indicate that the proposed hierarchical ¢affieos a balanced trade-off
between optimality and computational efficiency.

In the proposed approach two different types of models are usedndigyyg on the time scale
involved. For simulations and for the lower control levels we use a fasitéased model, while for
the higher level controller we use a model based on queues and floweathaitimately be recast into
a mixed-integer linear programming description.
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This section is organized as follows. First we introduce the backgroiimg esouting problem in
Section 2.3.1. Next, we discuss DCV-based baggage handling systenwion&e3.2. Section 2.3.3
presents the detailed event-based model for the DCV-based baggadjen¢pasystem. The actual
control approach is presented in Section 2.3.4, followed by a descriptitre digher-level route
choice controller in Section 2.3.5, including the flow-and-queue-basedinsed by the higher-
level controller. Section 2.3.6 then discusses the lower-level switch dientmhich is based on the
event-driven model of Section 2.3.3. A case study is considered in S@8ahand conclusions are
presented in Section 2.3.8.

2.3.1 Introduction

State-of-the-art baggage handling systems in airports transport kigddggh speeds using desti-
nation coded vehicles (DCVs). These vehicles transport the bags intamated way on a “mini”
railway network. The first objective of a baggage handling system isaatsport all the checked-in
or transfer bags to the corresponding end points before the planesaia® loaded. However, due to
the airport’s logistics, an end point is allocated to a plane only with a given minodtime before the
plane’s departure. Hence, the baggage handling system performs lgpifraach of the bags to be
handled arrives at its given end point within a specific time window.

Currently, the DCVs are routed through the system using routing scheases! lon preferred
routes. These routing schemes can be adapted to respond on theemcewf predefined events.
However, as argued in [17], the patterns of loads on the system allg hiaghable, depending on e.g.
season, time of the day, type of aircraft at each gate, number of gessdor each flight. Therefore, in
the research we conduct we do not consider predefined prefeutss. Instead we develop advanced
control methods to determine the optimal routing in case of dynamic demand.

The route assignment problem has been addressed in e.g. [23, 1]in Bur case we do not
deal with a shortest-path or shortest-time problem, since we need the liags abrresponding end
point within a given time window. In [20] is presented an analogy betweeB@¥ routing problems
and data transmissions via internet. Also, [26] presents a multi-agentaappfor routing DCVs.
However, this multi-agent system is faced with major challenges due to theseg@ommunication
required. The goal of our work is to develop and compare efficiertrabapproaches for route choice
control of each DCV on the track network.

Theoretically, the maximum performance of such a DCV-based baggagéirtsystem would
be obtained if one computes the optimal routes using optimal control [37]et#awas shown in [49],
for a fast event-based model of this system, this control method beconeegaiie in practice due to
the heavy computation burden. Therefore, in order to make a tradetwiEbn computational effort
and optimality, in [50], we have also implemented centralized and decentralizedl m@dictive
control (MPC), and also a decentralized heuristic approach. As tlhétgeonfirmed, centralized
MPC requires high computation time to determine a solution. The use of decestdradintrol lowers
the computation time, but at the cost of suboptimality.

In this chapter, we propose a hierarchical control framework wherkitiher level controllers use
MPC. The large computation time obtained in previous work comes from solvérggathlinear, mixed
integer optimization problems that have multiple local minima, and therefore, dicldifo solve.
So, in this paper we investigate whether the computational effort requirednipute the optimal
route choice can be lowered by using mixed integer linear programming (MILP
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Figure 2.4: Baggage handling system using DCVs.

2.3.2 DCV-based baggage handling systems

The track network of a DCV-based baggage handling system consiatseaifof loading stations as
origin nodes, a set of unloading stations as destination nodes, andfgusettions as internal nodes.
Let us call the switch that makes the connection between a junction and its irgcbnkisiswitch-in
and the switch that makes the connection between a junction and its outgoinguiit&s-out Note
that a switch-in is required only if the junction has 2 incoming links, otherwisedheection between
the one incoming link and the junction is fixed. A similar remark is valid for a switech-o

The DCV-based baggage handling system operates as follows: givemand of bags and the
network of tracks as a directed graph, the route of each DCV (fronvendoading station to the
corresponding unloading station) has to be determined subject to theéioparand safety constraints
detailed in[49] such that all the bags to be handled arrive at their entspwithin the corresponding
time window.

2.3.3 Event-driven model
Operation of the system

The baggage handling process begins after the bags have passeédkenc Then they enter the
conveyor network, being routed to loading conveyors towards loadatgpss. Depending on the
availability of empty DCVs, at each loading station a queue of bags may bedotm#he following
we focus on the transporting-using-DCVs part of the process. Tdreteone may consider that each
loading station has a buffer of bags waiting to be handled as sketched iregu The baggage
handling system operates as follows: given a finite sequence of bagdifjied by their unique code)
and a buffer of empty DCVs for each loading station, together with the nktwfdracks, the optimal
route and the optimal velocity profile of each DCV have to be computed subjegterational and
safety constraints such that the system optimum is assured.
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We consider a baggage handling system witlbbading stations and unloading stations as de-
picted in Figure 2.4. Accordingly, we hateFIFO (First In First Out) buffers of bags waiting to enter
the system.

Modeling assumptions

Later on we will use the model for on-line model-based control. So, in daléalance between
a detailed model that requires large computation time and a fast simulation we reafodidtving
assumptions:

. a sufficient number of DCVs are present in the system.
. the capacity of the network is large enough so that no overflow willroccu

1
2
3. each loading station has a finite buffer of bags waiting to be handled.
4. all buffers have the same maximum capabifyx.

5

. assume there akebags with random destinations to be handled. They are numbgted-1 X.
When using a baggage handling system withoading stations, we split this streain=
[12--- X]T with X < Lbax, in L new streame; =[12--- []T, b, =[1+11+2--- 2], -,
by =[(L—1I+1(L-1)I+2--- X]Twith| = |{ ]|, where[x] denotes the largest integer less
than or equal to.

the “mini” railway network has single-direction tracks.
a route switch at a junction can be performed in a negligible time span.

the speed of a DCV is piecewise constant.

© © N o

the laterals have infinite capacity.

10. the destinations to which the bags have to be transported are allocatedatethls when the
process starts.

Since we consider the line balancing problem solved, these assumptiaessoeable and give
a good approximation of the real baggage handling system.

Model

There are four types of events that can occur:
¢ loading a new bag into the system.
¢ unloading a bag that meets the corresponding lateral.
e updating the route switches at the junction that the DCV has to pass.

e updating the speed of a DCV.
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Figure 2.5: Speed evolution of the DEV

The model of the baggage handling system is an event-driven onetirogsita continuous part
describing the movement of the individual vehicles transporting the bagisghithe network, and of
the discrete events listed above.

DefineN; as the number of junctions that a DCV has to pass in order to reach its destinatio
track segment is the portion of the track on which a DCV is running either leet@doading station
and a junction, or between two junctions, or between a junction and an imdcstdtion. Let DCYbe
the DCV that transports théh bag that entered the system. The following situation has been assumed:
given the velocity sequence of the DC3Ayv; = [vi(0) vi(1) --- vi(N;)]" and the sequence of segment
lengthsl; = [1;(0) ;i (1) --- 1;(N))]", on each segmerjtof lengthl; (j) the velocity of DCV equalsv(j)
as illustrated in Figure 2.5. The velocity of the DCtMat passed segmeptj = 0,1,--- ;N — 1 is
updated at time instamg, 1 =tj + \I;.((JJ)) with tg the initial time.

The model of the baggage handling system is given by the algorithm belogrewhe loading
stations are denoted byiLL», ---, L, and the unloading stations are denoted hyW), - - -, Uy. We
also defineéSas the number of junctions of the track network a@Qghen(t) as the number of bags that
entered the baggage handling system up to the current time ibstant
Algorithm 1. Baggage handling

1 t—1p

2: while there are bags to be handldd

3. for/{=1toLdo

4: tioad(¢) < time that will pass until the next
loading event from k's point of view

5. end for
6. for/=1toU do
7: tunload ¢) < time that will pass until the next
unloading event from WJs point of view
8: endfor
9: fors=1toSdo
10: tswitch(S) < time that will pass until the next
route switch event from the junctics’s
point of view
11:  end for
12 for i =1 to Xcurren(t) do
13: if bagi is not at a laterathen
14: tspeedupdatd i) <— time that will pass until the
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next speed-update event from the point
of view of the DCV{

15: end if
16: end for
17: tmi min( min  tgaq(¢), min t 12
min <— (6:1.,-~,L Ioad( )’zzl,--.,u unloao( )7
mMin _tswitch(S), min t i
1.5 swutch( ) 21, Xeurentt) speedupdate( ))
18: t—t +tmin
19: update the state of the system
20:  if tmin= min t i) then
min 1 Xewrend?) speedupdate()
21: update the speed of the DEV
22:  endif
23: end while

If multiple events occur at the same time, then we take all these events into aat@mupdating

the state of the system at step 19.

Operational constraints

The operational constraints derived from the mechanical and design limgaifdhe system are the
following:

e the velocity of each DCV is bounded between 0 aggl.
e a bag can be loaded onto a DCV only if there is an empty DCV under the |loatdithgns
e a DCV can transport only one bag.

¢ collisions between DCVs have to be avoided on each track segment aaxchah&ersection.

2.3.4 Hierarchical control approach

In order to efficiently compute the route choice of each DCV we propogerarbhical control frame-
work that consists of a multi-level control structure as shown in Figure Rli6tte following layers:

e Thenetwork controllemprovides the route choice for DCVs by determining reference flow tra-

jectories over time for each link in the network. These flow trajectories arguted so that
the performance of the system is optimized. Then the optimal reference #etories are
communicated to switch controllers.

Theswitch controllerpresent in each junction receives the information sent by the network con
troller and determines the sequence of optimal positions for its ingoing andingtgwitches

at each time step so that the tracking error between the reference trajotbthe future flow
trajectory is minimal.

The DCV controller present in each vehicle detects the speed and position of the vehicle in
front of it and the position of the switch into the junction the DCV travels towaodsThis
information is then used to determine the speed to be used next such th#lisiorcwill occur

and such that the DCV stops in front of a junction the switch of which is nsitiponed on the

link that the DCV travels.
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Network controller

| Switch controller | e | Switch controller |
DCV controller *** [ DCV controller | | DCV controller L DCV controlte |

Figure 2.6: Hierarchical control for DCV-based baggage handlistesys.

The lower levels in this hierarchy deal with faster time scales (typically in the midlis#z range
for the DCV controllers up to the seconds range for the switch contrglietsyreas for the higher-
level layer (network controller) the frequency of updating is up to the mgwaege.

2.3.5 Route choice control

In this section we focus on the network controller. The switch controller willliscussed in Section

2.3.6.

Approach

The predictive switch control problem results in a huge nonlinear intggemnization problem with
high computational complexity and requirements, making the problem in facttalra in practice
[50]. So, since considering each individual switch is too computationallyéite we will consider
streams of DCVs instead (characterized by real-valued demands asdefipnessed in vehicles per
second). The routing problem will be recast as the problem of determinenfjcilvs on each link.
Once these flows are determined, they can be implemented by switch contbtleegunctions. So,
the network controller provides flow targets to the switch controllers undsujtsrvision, which then
have to control the position of the switch into and out of each junction in swyahat these targets
are met as well as possible.

Set-up

We consider the following set-up. We have a transportation network withcd sggin nodes/, a set
of destination node%, and a set of internal nodeg. Define the set of all nodes &= 00U .7 U 2.
The nodes are connected by unidirectional links. ILdenote the set of all links.

Let the time instant be defined a = kr"°with "¢ the sampling time for the network controller.
Then, for each paifo,d) € & x 2, there is a dynamic, piecewise constant demand pallgt-)
with Do 4(k) the demand of bags at origmwith destinationd in the time intervalty,ty, 1) for k=
0,...,K—1 with K the demand horizon (we assume that beyipnthe demand is 0). Ldty be the
set of links that belong to some route goingltd_g € L. We also denote the set of incoming links for
nodev € ¥ by LI", and the set of outgoing links ", Note that for origin® € ¢ we havel.l" = 0
and for destinationd € 2 we haveL.3"'= 0. Also, without loss of generality, we assume each origin
node to have only one outgoing link.f“{| = 1) and the destination nodes have only one incoming
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link (\L‘dn = 1) where|A| represents the cardinality of the get For each destinatiod € 2 and for
each linkl € Lq in the network we will define a real-valued flawg (k). The flowu 4(k) denotes the
number of DCVs per time unit traveling towards destinatidhat enter linkd during the time interval
[tk k1)

The aim is now to compute using MPC, for each steflows u; (k) for every destination € 2
and for every linkl € Lg in such a way that the capacity of the links is not exceeded and such that
the performance criterion is minimized over a given prediction petioti. n]. Possible goals for the
network controller that allow linear or piecewise affine performance @ite reaching a desired
outflow at destinationl or minimizing the lengths of the queue in the network.

Route choice model

In this section we determine the model of the DCV flows through the netwotks ldenote the free-
flow travel time on linkl. The free-flow travel time represents the time period that a DCV requires
to travel on a track segment in case of no congestion, using, hence, nmaspaed. We assume the
travel timer, to be an integer multiple af"®.

In case the capacity of a loading station is less than the demand, queues ppght at the
origin of the network. Lety, 4(k) denote the length of the partial queue of DCVs at origigoing
to destinationd at time instanty. In principle, the queue lengths should be integers as their unit is
“number of vehicles”, but we will approximate them using reals.

For every origin nod®e € ¢ and for every destinatiot € 2 we now have:

k
Ui.d(k) < Dod(k)+ QO_,[dn(C ) forl e Lgmﬂ Ly (2.32)
with Do (k) = 0 for k > K. Moreover,
q07d(k+ 1) = max(O, qo,d(k) -+ (Do’d(k) — Z Um(k))'[nc) (2.33)
1eL8TLy

But queues can form also inside the network. We assume that the DCMsthumaximum speed
along the track segment and, if necessary, they wait before crosgnfgrittion in a vertical queue.
Let qyq(k) denote the length of the vertical queue at junction .7, for destinationd € 2, at time
instantt. Note that, we do not consider outflow restrictions on queues to destirthfara junction
v connected via a link to destinatiah(qy,q(k) = O for all k).

Taking into account that every flow on likhas a delay ofk: time steps before it reaches the end
of the link, for every internal nodec .# and for everyd € & we have:

- k
Fed (k) < R (k) + Qan(c ) (2.34)
whereR}f (k) is the flow into the queue at junctionF (k) = > uia(k— k) and whereR (k)
lelLy

is the flow out of the queue at juncti(van?é”(k) = Z U d(k).
leL8TL g

The evolution of the length of the queue for every internal nede.# and for everyd € 7 is
given by: _
Aa(k+1) = max(0, qua (k) + (R (k) — Feg'(k))T™) (2.35)
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Figure 2.7: Desired arrival profile at destinatidn

We also have the following condition for every lihk
dz upg(k) < U™ (2.36)
€9

whereU™® is the maximum flow on link.

Next we define the performance index to be used for computing the optiotalgat stegk for a
prediction periodty, tiin)-

The objective is to have each bag arriving atits end point within a given titers/ad [t§°se— 1P 15059
wheret§°¢is the time instant when the end pothtloses and the last bags are loaded onto the plane,
andty™"is the time period for which the end poidistays open for a specific flight. We assut§ies®
and1,"*"to be integer multiples ofs. Without loss of generality, in this paper we consider that each
destination has only one flight assigned to it. However, this can be easihdext¢o the general case,
but where a presorting will be performed.

Hence, one MPC objective that allows a piecewise affine performaiiegian is to achieve a
desired flow at destinatiod during the prediction period. Letl®s™ddenote the desired piecewise
constant flow profile at destinatiahas sketched in Figure 2.7, where the area umﬁ‘éﬁ“edequals
the total number of bags to be sent to destinati@ut of the total demand. Note that outside the time

window [t§°¢— 737" t5°59) no bags should enter the incoming link of destinatiosutside the given

close_ ropen

time window. Consequentlyges™{k) = 0 for all k < k{**"and allk > k§os® with k"= —
| . tclose
andkg®se= < —.

Hence, one can define the following penalty for flow profile&\(k) = dz Adgludesieqk) —u g (k+
37

%}Stﬂ WherergEStis the free-flow travel time of link Lic? andAq > 0 is a penalty that expresses the
importance of the flight.

Note that using as MPC performance criteripfi,N = JPe"(i) for each time stefx, could have
adverse effects for small prediction horizons. Therefore, to coactt¢hese effects, we also con-
sider as additional controller goal maximizing the flows of all links that aredirectly connected
to unloading stations. To this aim, |e|ﬁgk be the typical time required for a DCV that just en-

tered link| to reach destinatiod. Then one can define the following penalt;fﬁg""(k) = U g(k) if

link link
kg o' — r'r—g < k < k§lose— T'T—‘S’ andJ'3¥(k) = 0 otherwise. This penalty will be later on used in the
MPC performance criterion.

Next, in order to make sure thall the bags will be handled in finite time, we also include in the
MPC performance criterion the weighted length of queues at each junctiloa network as presented
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next. Lett!" be the typical time required for a DCV in the queue at junctida reach destination

junc
d. Then we define the new penalt&@‘éerdue(k) = dJg"aua(K) if k > kgose— TVT—: andJ%erd“E(k) =0
otherwise, wherel{,f‘(;” represents the length of the shortest route from junctittndestinatiord.

Finally, let L9t denote the set of links directly connected to unloading stations. Then the MPC
performance index is defined as follows:

kiN-1 r
‘]k,N — (Jpen 0W
iZ< dzj le L\I;Sf)de
3 Jeszd“%i))
dZ yver

with a < 1 andf3 < 1 nonnegative weighting parameters.
Then the nonlinear MPC optimization problem is defined as follows:

rrgll(gl Jn  s.t (3)-(5). (2.37)

whereu(k) is the control sequence consisting of all the flawg(k) ... uj q(k+N—1) withd €
andl € Lg.
Equivalent MILP model

In this section we transform the dynamic optimal route choice problem (2.87amMILP problem.
Recalling the development described in Section 2.2.5, as an example we wilhshoequation (2.33)
of the nonlinear route choice model can be transformed into a set of liggatiens and inequalities
by introducing some auxiliary variables. For the other equations of the cbaiee model we apply
a similar procedure.

Equation|(2.33) is nonlinear and thus it does not fit the MILP framewohler&fore, we will first
introduce the binary variable® 4(k) such that

d0.d(k) =1 if and only if
Qo.d(K) + (Do’d(k) — Z Ul,d(k))TnC <0 (2.38)
leL8TNLg

and rewrite|(2.33) as follows:
Qoa(k+1) = 1 do.d(K (%d
Do d U d . (2.39)
|€L;ﬁLd )

Condition (2.38) is equivalent to:

{ f(k) < (dgq*+ Do 1) (1 — So.a)
f(k)} ( Umax nc__ )5o,d 7

wheref (k) = go.a(K) + (Do.a(k) — urg(k)) T with | € L3"'N Ly, UM is the maximal possible flow
out of origin nodeo towards destination, qgjgx is the maximal queue length at originfor traffic
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going to destinatiowl, and whereDy'3* = max Do 4(K) is the maximal demand for origin-destination
pair (o,d). '

Equation|(2.39) is still nonlinear since it contains a multiplication of a binary bli& q (k) with
a real-valued (linear) function. However, as already described itiddez.2.5, it can be transformed
into a system of linear inequalities.

Next we transform the nonlinear terms of (2.37) into sets of equality andiatiég constraints.
For example the problem

k+N—-1 desi ct
min'$ Ag Z( Jug®s"e k) — S ua(k)|
u(k) deZQ i= IEZL{,”
can be written as:
k-+N— .
minAqg Z( dz ud" (i)
i= €y
dn‘f( ) > udeswect Z U d i+ Tdest) fori=1,...,N
leld
Ug'ﬁ(i) > _ugesnecti) + z u d i+ .[dest> fori = 1,...,N.
leLly

which is a linear programming problem.
So, the overall objective functiodky can be written as a linear one. Hence, the problem (2.37)
can be written as an MILP problem.

2.3.6 Switch control

In this section we focus on the switch controller for the proposed higyarch

Recall that at each control sté&pthe network controller provides optimal flows for each link in
the network and for each destination. Let these flows be denote®ol) with d € 2 andl € LNLg.
Then the switch controller of each junction has to compute optimal switch-invaitchsout positions
such that the tracking error between the reference optimal flow trajeatwtythe flow trajectory
obtained by the switch controller is minimal for each network controller time lstef, ..., Kgim.
Next we will refer to one junctiow € .# only. For all other junctions, the switch control actions are
determined similarly.

Lets!! (k) denote the position of the switch-in at junctios .# during the time intervaft¥, t% ),
wheretdt = t + k373 with k°¢ an integer and*° the switch controller sampling timé (= t§°). Sim-
ilarly, we definesQ"!(ks°), the position of the switch-out at junctionc .# during the time interval
[t e, 1)

We want to determine the switch control sequence at most until time irtgtantHowever, the
prediction period has at molsES,, steps. As a consequence, the prediction period for the MPC switch
problem at steg¢ is defined as{tlfg’cv, tondk) With 1, = min(ti 1, G, yso) -

Hence, at each MPC sté&ff, the switch controller solves the optimization problem: gni Q"’C:&'s‘c(s,)
where

e NSCis the length of the prediction horizoNf¢ = t‘?‘:%k ,
s, = [s'?(kSC) . Sjvn(ksc_}_ NS¢ _— 1) . ﬁut(kSC) o SSUt(kSC+ NS¢ _ 1)]T’

o JiYs is the local performance index defined next.
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Figure 2.8: Case study for a DCV-based baggage handling system.

Let °|ptk denote the optimal number of DCVs to enter the outgoing lird junction v dur-
ing the period[te¥,t5%, ). Then forl € LMLy the variableX(f, is given by X(f, = (tSu, —
tost) S dew uﬁgt(k). Next letXy - be the actual number of DCVs entering lihkuring the prediction
period. The variabléX,, ks is determined via simulation for the fast event-driven model of Section

2.3.3 above. Then, at time stk&fy, the local performance index is defined as follows:

K80 = 3 X Xoeels)] + V(1™ () 175,
| €LoTNLg

wheren$"-" andns"-°Ut represent the number of toggles of the switch-in and of the switch-cqueeces
tively during the prediction perio{ilfs"é’,tg‘r’]"dk), which are obtained from simulation, and wheris a
nonnegative weighting parameter.

2.3.7 Case study

In this section we present a simple case study involving a basic set-up to thusteanetwork-level
control approach for DCV-based baggage handling systems prbjposleis section. First, we will
describe the set-up and the details of the scenarios used for our simul&textswe will discuss and
analyze the obtained results.

Set-up and scenarios

We consider the network of tracks depicted in Figure 2.8 with 4 loading stalandoading stations,
9 junctions, and 20 unidirectional links, where the free-flow travel timeasiged for each link. This
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network allows more than four possible routes to each destination fromriyily point. We consider
this network because on the one hand it is simple, allowing an intuitive undenstpof and insight
in the operation of the system and the results of the control, and becauke other hand, it also
contains all the relevant elements of a real set-up.

We assume that the velocity of each DCV varies between 0 m/s and 10 m/s. eintorfaster
assess the efficiency of our control method we assume that we do rietigtean empty network but
with a network already populated by DCVs transporting bags.

We consider 6 different scenarios where 2500 bags have to be ddadtfferent initial states of
the system, queues on different links, different piecewise constamdrmi# profiles over the first 180 s
of the simulation, and different weighting parameters. We simulate a period wiid. The control
time step for the network controller is set to 60 s, while the control time step fawvitieh controller
is setto 2 s. In these scenarios we have also considered the oceuwfenmeues at origin. Assuming
that we start the simulation at time instéft= 0 s, we consider the time window to 800, 1400 for
destinatiord;, and[100Q 1600 for destinatiords.

Results

In this section we compare the results obtained when using the proposacthieal control frame-
work and the centralized switch control of [50]. In order to solve the Rlkkptimization of the
network controller we have used the CPLEX solver of the Matlab optimizatidhdedomlah while
to solve the nonlinear optimization problem of the switch controller we haveechageneticalgo-
rithm of the Matlab optimization toolbosenetic Algorithm and Direct Seardéimplemented via the
functionga, using multiple runs. The same genetic algorithm has been used to solve the atximiz
problem of the centralized switch control. Essentially the centralized switatratdoils down to
solving a problem like| (2.37) but with(k+ 1),r(k+2),...,r(k+ N) as optimization variables for
each MPC stefk, wherer (i) is the route of thath DCV that entered the network (for details see
[50]). As prediction horizon we have considemdd= 11 for the network controller an®¢ = 15 for
the switch controller of the hierarchical control, aNd= 40 for the centralized MPC switch control.
Note that due to computational requirements reasons, for the switch cohtroth frameworks we
shift the horizon withN, respectivelyNs¢ samples at each MPC step. Also, due to the same reason
(computational requirements), we allow a limited amount of time (1 hour) for spbnoptimization
problem corresponding to the centralized switch control.

Based on simulations we now compare, for the given scenarios, the relstaised for the pro-
posed control frameworks. The results of the simulations are reportegureR2.9. For this compar-

Xd .
ison we consider the total performance of the system to be definéeka:j{ Z\‘ti’d —tdesieq with
€Pi= '

tj g the time when théth bag crossing the junction directly connected to destinatiactually crosses
that junction,ti‘fgs"e"is the desired crossing time for the same DCV, Zgdhe total number of bags
to be sent to destinatiosh during the simulation period. The time sequetf"]. .. tgesdwith

d € 2 is computed such that at each control time ey the network controller, the"udesi*qk)
bags arrive at equidistant time instants during the pgtioti 1).

Using simulations we have obtained an average performance over afirisenf 992-10°s
for the hierarchical control framework versus a performance.d;aﬂfﬁlo6 s. So, simulation results
confirm that computing the route choice using the hierarchical controidweork gives better per-
formance than using the centralized switch control. Hence, the hierarcbiaol with MILP flow
solutions performs better than the centralized switch control, the solutioniohwias returned by

Page 46/67




HD-MPC ICT-223854 Multi-level models and architectures for HD-MPC

10
o o o o o
6
» 107} o o e} o} o o
g + + + + + +
é a J centralized MPC
@) 4 . .
5 107+ O J hierarchical MPC
% + CPU time centralized MPC
” X CPU time hierarchical MPC
0 2 4 6

scenario index

Figure 2.9: Closed-loop results (the smallehe better system performance).

the prematurely terminated global and multi-start local optimization method.

However, even with these computational restrictions, the total computation tithe oéntralized
switch control (over 62 hours) is much larger than the one of the hidcalatontrol (an average of
246 s per junction, plus 12 s for solving the MILP optimization problems).

Hence, the proposed hierarchical control outperforms the centrafiziéch control of [50].

2.3.8 Conclusions

In this section we have proposed a hierarchical control frameworkffmiently computing routes
for destination coded vehicles (DCVs) that transport bags in an aiguoet railway network. In
the proposed control framework the network controller uses a highek-leggregated model of the
system and computes reference flow trajectories over time for each link methvrk so that the
performance of the DCV-based baggage handling system is optimized. tAidewitch controllers,
which use a more detailed event-based model, determine the sequence of pp#itians for their
ingoing and outgoing switches so that the tracking error between themegetrajectory and the fu-
ture flow trajectory is minimal. The problem of computing optimal routes for DC\&s i@nlinear,
non-convex, mixed integer optimization problem, and very expensive te solierms of computa-
tional efforts. Therefore, we have used an alternative approactedoicing the complexity of the
computations by rewriting the nonlinear optimization problem of the network cibetras a mixed
integer linear programming (MILP) problem. The advantage is that for Mipf#mization problems
solvers are available that allow us to efficiently compute the global optimal solufite solution of
the MILP problem is then used in computing optimal switch control actions. Benahmark case
study we have compared the hierarchical control with centralized switetitato Results indicate
that the proposed hierarchical control outperforms the centralizedrseattrol where the multi-start
local optimization method has been terminated prematurely.
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Chapter 3

Design of hierarchical control systems
with reconfiguration capabilities

In this chapter the design of a two layer hierarchical controller is coresiider cascade systems. The
high layer provides for a slow dynamics regulator, computing the refersigmals the plant would
ideally need to be suitably controlled. In turn, at the low layer, a numberstéifactuation control
loops are in charge of tracking such references as accurately asatidy accordance to their dynam-
ics, which for simplicity is supposed here to be first order. Becausevefadanaccuracies, stemming
from the real behavior of the actuation equipment, a discrepancy betWeedeal control actions
determined at the high level and those effectively afforded to the ple#sateading to a robustness
problem for the overall control system. To tackle this problem, the uppel é@ntroller is designed
by resorting to a robust MPC approach. In so doing, a convergescdt for the overall closed-loop
system is derived. The structure here considered can be viewedhascalpr case (cascade systems)
of the more general structure for hierarchical control previouslgrilesd in Deliverable D2.2.

In order to emphasize the reconfiguration capabilities of optimization-baséittive controllers in
response to changes in the subsystems (actuators), it is then showrehmwbsed MPC algorithm
may be readily extended to cope with the self reconfiguration of the controliémg to an actuator
replacement/addition. It can thus take a significant role also within the “Pldi@ky” research com-
munity, which studies the problem of control reconfiguration when a nevecelein general a sensor
or an actuator, is plugged/substituted into an already functioning constarmy(see the very recent
works [8, 9, 32]).

The results reported in this chapter will be partially presented in [55], evho some simulation
experiments will be reported and discussed.

Notation. In the mathematical developments of the proposed algorithm, we will consider two
time scales: in particular, we will denote the fast discrete-time inddx lashile we will represent the
slow discrete-time index blg. By || - || we denote the Euclidean vector or induced matrix norm. For
x € R"andR™" 5 P > 0, we let||x||s = vX'Px
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3.1 Problem formulation

Let us consider a discrete-time linear system modeling a plant operatedacjuators, whose dy-
namical behavior in the fast time scale is given by

2 x (h+1) = A'xf (h) +_ibifuif(h) (3.1)

wherex! € R™ is the measurable state whﬂé € R stands for the action provided by théh actuator.

Throughout this chapter, we suppose that simple (e.g., Pl-like) contps$lacting on all the sys-
tems placed at the low level (i.e., the actuators)eapeiori designed and already working. Moreover,
we assume that the stemming closed-loop systems can be depicted by firsirotaley gain SISO
models of the form

¢i(h+1) = fi¢i(h) + (1— fi)ui(h), &(0) = io
Sacti - Gi(h) = &i(h) (3.2)
Ifil <1

Vi=1,...,m, whose output variablag’s coincide with the inputﬂif 's of system|(3.11).

The control objective consists of achieving a stabilizing control law forctseade interconnec-
tion of systems (3/1) and (3.2). To this end, we propose a two-level bigcal regulator. The high
level provides for a controller working at a slow time scale and computingetieeence signal; to
be tracked by each actuator control loop. In turn, at the low level, all ¢heators concur to drive
the plant, tracking their own reference signal in accordance to theirctlose dynamics (3.2). For
this reason, one in general has# u;, at least in transient conditions, so consequently a robustness
problem arises. To cope with this problem, we consider the discrepamwgédre the ideal control
actions and those effectively afforded to the process as a disturt@ncthe high level controller has
to be robust to.

3.1.1 Model of the plant in the slow time scale
As for system|(3.1), we consider the control constraints

uife%:[—ai,ai],ai>0 Vi=1,...,m (3.3)
In addition, we let% = 24 x --- X %m C RMand

B'=[b] by .- by ]eR™M™ (3.4)

Assumption 1 The pair(Af,Bf) is stabilizable. ¢

For some fixed integer > 1, let us decompose the control variablé$ of system|((3.1) in the
form
uf (h) = Gi(h) + (uf ()~ G(h),
ui(h) € % being some piecewise constant signals, ¥&.€ N andVj =0,...,7 — 1, it holds that
Ui(Tk+ j) = ui(tk). Then system (3.1) can be rewritten as

x'(h+1) = A’ (h) +ibfﬁi(h) +ibifwif(h) (3.5)
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where
w (h) = uf (h) — Gi(h)

is considered as a matched disturbance term.
Letting x(k) = xf (1K), u (k) = G;(Tk) and

-1 -1
A=A =S AHT wk =T AHTI W (tk+ ),  (3.6)
2 2

the sampled version of (3.5) in the slow sampling rate is

m

m
X(K+1) = Ax(k) + ) biui(k) + ) wi(k) (3.7)
2,00 2 v
which, in turn, translates in the vector form

Psiow: X(K+ 1) = Ax(k) + B1u(k) + Baw(k) (3.8)

once the following definitions have been stated:

uk) = [ U(k) ... Upk) ]'e# crR™ (3.9a)
wk) = [ Wi(k) ... wip(k) ] e R™ (3.9b)
Bi=[by by ... by ]|eR™" (3.9¢c)
Bo=[1In, In ... In ] ER™MX (3.9d)

In conclusion, in view of the linear nature of the problem considered, lileeeplant to be con-
trolled can be viewed as driven, on one hand, by the ideal control conswamiing from the high
level controller,u;(h)’s (namely,u;(k)’s in the slow sampling rate), and, on the other hand, by the
discrepancies between such commands and the effective control sighédsed by the actuators,
wif (h)'s (namely,w; (k)'s in the slow sampling rate). Moreover, the latter differ from the usual distu
bance term affecting the system dynamics in robust control designs,tith#yaoriginate from the
high level control action itself, rather than being afforded by the “ndtasschematically portrayed
in Figure 3.1.

In the light of such a reformulation of the problem, at the high level we additee design of a
robustly stabilizing MPC controller for system (8.8) in the face of the disnecewa/(k), achieving the
piecewise constant signalgh), i.e., the references for the low level actuators’ loops.
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3.1.2 The hierarchical controller

The hierarchical controller involves a high level robust MPC algorithrayiding the references for
the actuators at any long sampling instintHence, in order to guarantee that the control signals
Gi(h)'s, accomplished by the low level systems against such reference$y #atisontrol constraints
on the process (3.3), the following hypothesis must be stated.

Assumption 2 Foralli =1,...,m
1. 4(0) € %;
2. Uy €[—g,&] where
_ ai(1-[fi])
! 1—f

For later use, we defin@; = [—&, &) and
U =W % ... %X Uy C R™.
Moreover, the feasibility of the control references computed at the high teeds the following

assumption.

Assumption 3 The high level MPC controller incorporates the actuators’ models, i.e.,awathe
parameters ifs along with the initial conditiong;(0)'s, i =1,...,m. ¢

Assumption 8 implies that the high level controller can predict the low level systeehavior, so
consequently being aware of their current state situation at any time instentai\thus define the
augmented version of system (3.8):

X (k+1) = Ax (K) + Bru(k) + Bow(k) (3.10)

where the new state variable and the corresponding state space matices ar

x(k) = [ L‘EB ] € =R¥x %,

(3.11)
~ A Onm = [B =~ [ B
S e L R P
in which
k)= [ k) ... k) | (3.12a)
F =diag(f,...,f}) (3.12b)
G=diag((1— f{),...,(1—fy)). (3.12c)

Moreover, theuk)’s, i = 1,... m, in (3.12a) are the slow time rate counterparts of the fast time rate
control actions performed by the actuators (iuglk)™= G;(7k)), which stem from output propagation
of systems/ (3.2) as follows

G (T(k+1)) = £ (TK) + (1— )G (k) (3.13)
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Ui (Tk) standing for the-th piecewise constant reference entry generated by the upper davediter,
namely

Gi(h) =ui(1})) (3.14)
in which the floor function - | has been used.
Furthermore, associated with the dynamic equation (3.10), we introducthalsatput transfor-

mation .
2(K) = [ )lj((k)) ] . (3.15)

Finally, to gain versatility in the definition of the cost function the MPC paradigiis dor, we
introduce weighted norms in both the state and control spaces. Thuggisfimmetric and positive
definite matrice®y € R™*™ andQ; e R, i =1,...,m, we let:

Qu = diag{Q1, - ,Qm} € R™M

Qi = diag{Q;,Q} e R¥?

Q; diag{Qx, Qu,Qu} € R(Mct2m)>x (nc-2m)
Qw diag{ Qx, -+, Qx} € RMkxMk

QX _ diag{Qx,Qu} c R(nerm)x(nerm).

3.2 Design and analysis of the high level controller in the basic actua-
tion configuration

In this section, we deal with the design of the high level MPC controller fob#sec low level config-
uration, i.e., the one including actuators. In the following, we will discuss how such a controller can
be extended to readily allow for a self reconfiguration subsequent tatacstaddition/replacement.

Thus, according both to Assumption 3 and to the output propagation (3hE3high level con-
troller can easily compute each matched disturbancewetk) appearing in (3.7) as follows

-1
(k) =S (AN f1a (k) — £ (Tk
Wk =3 (A [0k - G (k)

N _ -1 e i (3.16)
(Gi(k) —ui(t )),Z( )
= (l]i(k) —Ui(k)>19i

where
-1

9= Y (AHT I 1p 1] (3.17)
2,

is ana-priori known vector for every actuator. It turns out that #ék) terms are linear functions of
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the discrepanciefl(k) — ui(k)) and satisfy gain conditions of the form:

Wi (K)o < v/Amax(Qx) Wi (K)
—\/MH&H-\(W — (k)|

<VZma@loil- || 506 ||

2/\max(Qx k
Lmad o) |9,
<=7 [aie ]l

i) H [ ot } HQH

where theyy(i)'s are available to the upper level controller in view of Assumption 3. As &eon
quence, the high level regulator can be carried out via the small-gainagprby considering as a
disturbance term satisfying a gain condition of the tyjpélo,, < Val/Z||o, (for a suitableyy).

In the sequel, we will discuss first a robustly stabilizing auxiliary control éed later an MPC
controller improving both performance and region of attraction such ailiaayXaw achieves.

(3.18)

3.2.1 The auxiliary law
Under Assumption 1, we can construct an auxiliary control law for sy$8eh®) taking the form
u(k) = KawxX (K),  Kaux € R™HM, (3.19)

To this end, we consider > 0 such that there exists a symmetric and positive definite mBtex
R(M+M > (M) satisfying the Riccati inequality with constraint

—P+APA+Q, —-APBR1BPA<O

R 3.20
B,PB; — y?Qw < 0 (3.20)
where . L
B=[B1 B ] .
R— B’1P|31+Qu . I§’1P|32
B’ PB; B,PB; — ¥°Quw
and we let

Kau)(: - |: Im Om7mrk ] Rilélpﬁ\
Moreover, we define the functiofy (x) = x’Px and for anyp > 0, the set

Qp = {x € R™™M|V¢(x) < p?} CR™M.

The local robust stabilization properties of the auxiliary control law (3at8)clarified by the follow-
ing result.

Proposition 1 Define
Yo = iman>1<yd(i). (3.21)

.....

Lety > 0 be such thay- yy < 1 and assume that a positive definite solution P for the Riccati inequal-
ity (3.20)exists. Consider systef®.10)under the corresponding control la8.19)and, accordingly,
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let w(k) be the vector collecting all the disturbance terms give(8ii6) Then,3p > 0 such that the
following properties hold/ X € Qaux, Qaux = Qp:

Qaxe 2 (3.22a)
KawX € % ; (3.22b)
Iw(K)llou < Yallz(K)llo, (3.22¢)
VX(K) € Qau Vi (X(k+1)) =V (x(K) < —(l|z(k)[13, - V[w(K)I[3,) (3.22d)
Qaux IS positively invariant. (3.22¢€)

O

2

< B l1zK)]I1g,

QII

Proof 1 Properties(3.22a)and (3.22b)are guaranteed by the choice of a sufficiently snpait 0,
since P> 0, w is a neighborhood of the origin and, for the latter one, the control law KauxX is
continuous.

As far as property(3.22¢)is concerned, notice that

< || Gk
i, = 5 w1, < 3 600 | o } =iy

where the upper boun8.18)has been used.

The proof of property3.22d)can be found in [40].

Finally, the positive invariance d,,yx is guaranteed by3.22)and the small-gain conditiog-
va < 1. Infact,(3.220)ensures the satisfaction of the input constra{Bt8), while inequalitie{3.22c)
(3.22d)andy- yy < 1 ensure that ¥(x (k+1)) < V¢ (x(k)). [ |

3.2.2 The MPC controller

In this Section, we improve both the region of attractfdg,x and the performance provided by the
auxiliary control law [(3.19), by resorting to the small-gain paradigm. In paei¢c according to
Assumption 3 and the gain condition (3.18), we derive a robustly stabilizirtglaigl MPC control
law fulfilling the norm bound|w||o, < V41|2lle, (Whereyq is given in (3.21)).

In details, we letN, € N, Np > 1, be the length of the prediction horizon aNde N, Ne < Np, be
the length of the control horizon. Moreover, we define

ﬂ\(k, NC) = [ U(k)(k) U(k)(k-i— 1) U(k)(k+ Nc—l) ], (3.23)

whereuyy (kK + j) € % is the vector of the predicted control signals to be processed by the MPC
algorithm at timek. At any time instank, the control problem consists of solving the following
optimization problem:

in J(x(k),.Z.N 3.24
min. (x(k), #,Np), (3.24)

Np—1

J(x(k),F Np) = Z) (lz(k+ D112, = V2 Iw(k+ )II3,) +Ve (X (k+Np)),
=

subject to:
(i) system[(3.10)[(3.15), (3.16) under the control signal (3.23) amd,$oNc, ..., Np— 1, u(k+ j) =
KauxX (K+J);
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(i) the control constraints/j =0,...,N.— L u(k+j) € U:
(i) the terminal constrairg (K+ Np) € Qaux.

I
yomk),Nc):[ugk)(k) Wo(k+1) .. u%(k+Ne—1)

is the optimal solution to this problem, according to the Receding Horizon princigelefine the
MPC control law as

Theorem 1 Under the assumptions of Proposition 1, Iet"XNc,N,) be the set of states such that
problem(3.24)admits a solution. TherN, > 1 andVN; < Np, one has:

1. Qaux € XM°(Ne, Np),

2. X""¢(N¢,Np) is a positively invariant set,

3. the originis alocally exponentially stable equilibrium point with region of atiiaeX""*(N¢, Np),

where properties 2) and 3) hold for the closed-loop syst&i0) (3.25) (3.16) O

Proof 2 The theorem is proved for.N> 1 (the case W= 0 easily follows by Proposition/ 1).

1. Qaux € X""°(N¢,Np) because, by propertig8.22) the auxiliary law is feasible fog € Qaux
and Qg Is positively invariant.

2. If x(k) € X""°(N¢,Np), then there exists#°© such thaty (k+ Np) € Qaux. Thus, at time k-1,
consider the following control signal:

j(ku,Nc):[ugk)(kﬂ) o U (kENe—1) Kaue( (k+Ne)

This policy is still feasible fo (k+ 1), and hence X™°(Nc,Np) is a positively invariant set,
because under the auxiliary control |a, is positively invariant.

3. LetV(x(k),Nc,Np) = J(x(k),-#° Nc,Np) be the optimal performance starting froxk). In
view of the well known Theorem I11.2 proved in [36] and sitje&k)||3, > || x (k) ||3,. the stability
result holds if the following properties are satisfied:

X € XM(Ne,Np) == V(X,Ne,Np) > (1= V*- ) I X15,: (3.26a)

X € Qaux=V (X, Ne, Np) < 72200 x 2 ; (3.26b)

X(K) € XMS(Ne, Np) =V (X (K+1),Ne,Np) =V (X (K),Ne, Np) < —(1—y*- 1) [|2(K)[13,-
(3.26¢)

As far as inequality3.26a)is concerned, foy (k) € X"*°(Nc,Np), one has

Np—1

V(X (K),Ne, Np) = % (llzCk+ DIIE, = Y lIw(k+ )IIG,) +Vi (X (k+Np)) >
j=

2a- 2 BAIE > (1- - B IX K2,
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where inequality (a) holds because, in view of the gain condition exptésg8.18)and (3.21)
it holds that,

Vi=0....Np—1, [z(k+ )3~ VIwk+ )13, = (1= v?-)llz(k+ )13,
To prove inequality(3.26b) we first show that, i € X""°(N¢,Np), then
V(X,Ne+1,Np+1) <V(x,Ne,Np). (3.27)
Indeed, consider the control signal
F(kNe+ 1) = [ 7(x(k):Ne)  KaweX (k+No) |

then

Np—1

I(x (), 7 (k;Ne+2),No+1,Np + 1) = % (Ilz(k+ )11, = V2 lIw(k+§)113,) +
]:

+ Vs (X (k+Np))+
— Vi (X(K+Np)) + Vi (x(k+Np+1))+

+ (llz(k+Np) 2, = VZlIw(k+Np) 13, ).

Sincex (k+ Np) € Qaux and the value of the outputk+ Np) is obtained with the auxiliary
control law used at time % Np, using inequality(3.22d) one has

Np—1

I(x(K), Z (k,Ne+1),Ne+1,Np+1) < Z} (lzk+ )13, = VlIw(k+ §)13,)+
pa

+ Vs (X (k+Np)) =V (x(k),Ne,Np).
Consequently,
V (x(K),Nc+1,Np+1) <V (x(k),Nc,Np),
thus proving the3.27)
Now,V x (K) € Qaux

(b)
V(X(k)7chNp) SV(X<k)707 ND_NC)
Np—Ne—1
= Z) (llz(k+ D)1, = VIw(k+ D)1[5,) + Vi (X (k+Np = Ne))
j=
(C)prchl

< 3 (Ve (X (et ) = Vi Ok 1) ) +Ve (X (<-+ Np = No))
2
Vi (X09) < AmadP X0 < 32X

where inequality (b) follows by iterating t{8.27)(notice thatv Ne < Np, Qaux € X""(N¢, Np))
and inequality (c) holds in view of inequali{$.22d)(which can be applied because the length of
the control horizon is 0 and, over the prediction horizon, the systemevalder the auxiliary
law).
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Finally, let us prove inequalit{3.26¢) observe that

V(X (K),Ne,Np) = [[z(K)[[3, = VIW(K)[[5, +V (X (k+1),Ne — 1,Np — 1),
then, in view of(3.27),

V(X (k+1),Ne,Np) =V (x (k). Ne,Np) < —([2(K) 12, — V[ W(K)[[3,,)-

Hence, once again b§3.18)and (3.21)
V (X (k+1),Ne,Np) =V (X (K),Ne,Np) < —(1—y*- 1) | z(K) 13-

3.2.3 The overall system: convergence analysis

The following result provides the analysis of the overall control systehabior.

Theorem 2 Under the assumptions of Theorem 1, consider the closed loop sy3t&n(3.14)
and (3.2), where the upper level controller is defined ((B.25) Assume that, at time & 0, the
initial states of the actuatorg3.2) fulfill Assumption 2.1,4+ 1,...,m. Let

Uio
Uz20

Ho = .

Umo

Assume also that the MPC controller at the upper level is initialized with

x(0)

x|

} € 27C(Ng, Np).

Then it holds that
Iimhﬁwx (h)=0
limp. 0di(h)=0, Vi=1,....m

|

Proof 3 Sincex (0) € 2™*°(Nc, Np) then, by Theorem 1, it holds thiéh_. ;.. X (k) = 0. This means
that

limy_+wXx(k) =0

limy_ o u(k) =0,
and, according to equatio(8.14),

lim ui(hy=0 Vi=1,....m
h~>+oo

Hence, in view of the stability of the low level control loops, such a coeveryto zero translates into
the convergence to zero of the internal state of the actuators, namely

lim ¢i(h)y=0, Vi=1,....m

—>+oo
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and, as a consequendenp_, 1 Ui(h) = 0.

Finally, we have to prove thdimy,_._.,x" (h) = 0. To this end, it is sufficient to show thad, =
1,...,1—1, it holds thatimy_. . ||x" (Tk+1)|| = 0. Indeed, combining equatiof3.1)and (3.4), one
has .

xf(tk+ 1) = (AN)'x" (k) + 515 (A" T *Bfa(rk + ),

where

Thusvl =1,...,7—1, it holds that
f N f P . ;
X (Tk+D)[ < [(A) ][I (Tk)H+%H(A ) B[ [[a(tk+ -
J:

As X (k) = x(Kk), it holds that

li k) =
Jm X9 =0
and
Vi=1,....m  lim Gi(h)=0,
h— 40
so the thesis follows. [ |

3.3 Control system reconfiguration

According to the receding horizon paradigm, the high level MPC contratéed in Theorem 1 calls
for solving the optimization problem (3.24) at each time step. It can thus edisiy for a “Plug
and Play” flexibility for actuators’ addition/replacement. To this end, assutheigonly one actuator
per (slow) time step can be plugged/substituted into the overall system, pluglandashion is
guaranteed as follows.

Actuator addition

As an actuator addition happens, variabfes, 0, w andz contain additional components accounting
for such a new actuator. Hence, we introduce the notafi6iV) to denote the variablg related to
the new low level configuration, i.e., the one composenhefl actuators. Accordingly, we let

U ™Y =% x [—E&mt1, Emeal

be the corresponding set of admissible control commands.

Let us discuss how the high level controller, hence problem (3.24)bearconfigured after the
actuator addition.

The auxiliary control law[(3.19) is largely independent of the low leveladgits. As a conse-
quence, even if it has to feed also the plugged actuator, it can send it iefievence, so keeping
unchanged.
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In details, letting

u(m+1) _ KéT;l)X(erl) _ 0 Kaux Ongl X(m+1) (3.28)
1x (ny+m)
and .
Qgﬂi = Qaux x {0}, (3.29)
it is straightforward to show that the feasibility of the auxiliary law (3.28) hdxld@gf};l) defined in
(3.29).

Moreover, within the enlarged setting, problém (3.24) has to be reghiaserms of thep (™1
variables and the auxiliary law (3.28). Care has only to be payed in the folidgsues:

1. Vi should be replaced byf(ml), where

Vf(m+1) (X(m+1)) _ X(m+1)’p(m+l)X(m+l)

)

P(M+1) being matrixP bordered with a null row and column;
2. constrain{ii) becomes
U™ (k+j)ez ™Y, Vvj=0,... No—1,

while (iii) translates in
X ™D (k+Np) € QY

3. if yy(m+1) > yg, in order to still guarantee the exponential stability of the origin, the optimiza-
tion problem has to be solved under the further constraint

WD et )2y < RBIZ D k) B VIO, Ne— 1 (3:30)

With this position, Theorem 1 holds true and the overall control system esstihfigures, only
requiring the minor formal adjustments mentioned above. _

As far as the feasibility issue of the high level control inputs is conceiifieat,timek = k, a new
actuator is plugged into the system, the enlarged state reads

X (k) = [ Gn)fflk()i) } :

wheretn1(K) = {m+1(TK), {mt1(TK) being the internal state of such an actuatouqJf1{k) = O, then

x (™D (k) belongs to the feasibility region of problem (3.24) for the new actuation gorstion. As

a matter of fact, problem (3.24) fér< k can be seen as a particular instance of the same problem for
the enlarged system, under the additional constraint

Ot (k+j)=0,¥j=0,...,Ng— 1. (3.31)

We hence make the following assumption.

Assumption 4 The value of the control action afforded by the new actuator in corredgace to the

addition time instant is null, nameB.1(k) = 0. ¢
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Finally, considering the stability requirement, we‘ilg( n;}} (x(”‘“)(k),Nc,Np) be the optimal
value of the optimization problem for the enlarged system with constrainf)(@r@l/ ™ (x (™ (k),
Ne, Np) be the same quantity for the corresponding unconstrained problem. tutimssout that

V(X (K). Ne:Np) = Véanci? (X (k). Ne, Np).
Moreover, since at timkit holds that
V(¢ (k), Ne,Np) <Vegner (X ™ (K), Ne, Np)
then by inequality (3.26¢) applied at tirke- 1, one obtains
VD (XM (), Ne, Np) =V (x (k= 1),Ne, Np) < —(1— - @) [2(k— 1) 3, (3.32)

This inequality stands for the counterpart [of (3/26c) in the instant of theatr addition. Conse-
quently, since all the above arguments iteratively apply to any of suchrecmes, one can conclude
that stability is preserved irrespective of any actuator plugging event.

Actuator replacement

Differently from the previous case, when thth actuator is replaced with a new one, dimensionality
of system|(3.10) is not an issue, whilst matriéein (3.128) andG in (3.12¢), and hencA and B,
in (3.11), change in view of the valug'®" characterizing the new device (namely matriées (3.6)
andB; in (3.9¢) remain unaltered). Let us hence discuss the reconfigurabitibtgon of the high
level controller.

The auxiliary control law can be maintained. However, its robust stabilizgtioperties given
in Proposition 1 still hold, provided that the following conditions are satisffest, letting y;"(i)
be the gain defined in (3.18) for the new actuator, inequadity]®(i) < 1 is valid; secondly, the
left-hand-side of the Riccati inequality (3120), evaluated with the st with the matriceé\ and
B: replaced by those associated with the new low level configuration, is negfinite. Notice
that, by continuity arguments, the latter property is ensured by the choiceest actuator such that
|f,"eW— f;| < ¢, for a sufficiently smalk > 0, which also allows for fulfilling Assumptian/2.2.

In order to save the feasibility of problem (3.24) in the replacement time inktdmé following
assumption is considered.

Assumption 5 The value of the control action afforded by the new actuator at kroeincides with
the one the old actuator was giving in such an instant, nari&N(k) = Gi(k). ¢

If all the above conditions hold, the result of Theorlem 1 is guaranteedutitny further ma-
nipulations, provided that the weighting mat@{®" coincides with the one applied to the replaced
actuator. However, it is worth noting that the optimal !aw“@""(x(k)) of problem|(3.24) in the new
configuration may be larger than the optimal valtig((k)) in the old configuration. Therefore, the
counterpart of relation (3.32) for the replacement case is not ensii@eertheless, stability of the
overall process can be preserved as long as a sufficiently large timeainbetween two consec-
utive replacement events is held on. This corresponds to the well-knomcept of dwell-time in
switching control [28], thereby a sufficient decrease of the optimakviinction is ensured and, as a
consequence, its possible increases in the replacement instants aderacted.
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3.4 Conclusions

In this chapter, a two level hierarchical control problem has beereaddd. At the high level a robust
MPC regulator has been designed in order to compute the ideal controisaogeded by the plant
to be controlled. A number of already controlled actuators placed at the \@hdee in charge of
driving the plant by tracking such control actions. A convergencatrés the overall control system
has been derived by resorting to the small gain approach. The algonitipuged can also be used in
a Plug and Play framework as a new actuator is added/replaced into tlad ovatrol system.
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Chapter 4

Conclusions

In the HD-MPC project, Work Package 2 was intended to be a preliminaryasteed at defining
and establishing appropriate control architectures for the developrhdistidbuted and hierarchical
control and estimation methods. Its main outcomes had to be the basis for thevothgrackages.
For these reasons, WP2 was organized into four main tasks, listed in theifg/ltogether with the
main results achieved.

Task 2.1: Survey

The main approaches to hierarchical and distributed control and estimatjposed so far in the tech-
nical literature have been critically examined (see Deliverable D2.1). Titvey has been useful to
define the different control problems which can be tackled with hieraathtouctures (cascade con-
trol systems, singularly perturbed systems, Real Time Optimization based alswath different
levels of abstraction). Moreover, the approaches proposed in thediterfar the design of distributed
control systems have been classified according to their goals (e.qg., migpesubsystems, interact-
ing subsystems) and their nature (e.g., iterative, cooperating).

Task 2.2: Definition of the control architecture

A very general architecture for hierarchical control has been eléfand described in Deliverable
D2.2. It is based on a three layer structure, where at each layer eediffime scale is considered,
which allows one to cope with the different cases devised in task 2.1. Mereparadigmatic hier-
archical control algorithm has been defined and some inter-layer comationiprotocols have been
proposed. As for the definition of the architecture for distributed consahe preliminary results
based on classical partitioning approaches have been proposedvierBlglie D2.1, while some other
methods have been surveyed in Chapter 1 of this deliverable (D2.3).

Task 2.3: Extension of the control architecture (to adapt the architedturesponse to changes)
This topic has been studied in the final part of the Work Package anagbaslescribed in this deliver-
able (D2.3, Chapter 3). It has been shown how the MPC approach alosvi® partially reconfigure
a hierarchical control system in front of actuators’ addition or reptes® (plug and play control)
without the need to redesign the overall control structure and maintainingyitgiieal convergence
properties. This result can be viewed as the basis of further exterigiatiser WPs, such as WP3
or WP5, in order to consider more general cases of control recoafign due to a time varying ex-
change of information among local subsystems in a distributed control enwvénat.
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Task 2.4: Multi-level models (models consistent with the hierarchical leweli-resolution models,
reduction and aggregation methods)

The derivation of multi-level models, with different kinds of spatial and terab@solution, has been
considered in Deliverable D2.1 and in this report (Chapter 1). Moreawalti-level models have
been used to derive hierarchical control systems in a couple of sigriigzamples where a global
approach is not suitable due to the complexity of the underlying optimizatiorigmnotsee Chapter 2
of this report). It is believed that new partitioning criteria for distributedtoarand estimation will
naturally stem from the synthesis methods studied in other work packaties mfoject.
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