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Executive Summary

Important literature of the 1960s and 1970s on hierarchical and distlibubelel predictive con
trol (HD-MPC) is reviewed. Main properties of the existing methods aredtdigough, a compa
ison is quite difficult, as methods of that time period are more conceptual mettedapplicapl
methods. This report tries the descibe the relationships between thertiffiezénhods. It focuse
on literature, which has been neglected in recent research. Theenpiierature is reviewed,
in order to get a summary of today’s research in the field of hierarchimhdastributed contro
methods. Present methods are quite heterogeneous with repsect todidei@ahclass of systemis,
thus an objective and comprehensive analysis is almost impossible. Hengepibrt is giving a
overview on the current focus in research. Focus of preserdneses mainly on linear metho
and there is a clear lack for nonlinear methods. Hence, there has to life ia sksearch fro
linear to nonlinear HD-MPC methods. Furthermore, it seems to be interestingkdéxk on
some ideas of the first HD-MPC literature of the 1960s and 1970s for ttmmipg research.
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Chapter 1

Introduction

Hierarchical and distributed model predictive control methods have qudegahistory. First hier-
archical and distributed control structures have been introduced farlimequency based control
methods: On the one hand cascade control structures as depicted igl Eijand on the other hand
dectralized SISO Controllers for a MIMO type of process as depicted im&it.2. Both methods still
belong to the most important control structures in industry, as the meth@tsofhe nice properties:
For instance they can easily be implemented, they require only little computatiomet,bey offer
easy maintainability, and the methods are well understood.

However, there are some limits to these control methods. The most importantighiebe the
fact, that these control methods are not optimal control methods. Thasgiptimality, either eco-
nomically or ecologically, is of increasing importance today, hierarchicdidastibuted optimization
based control methods, namely model predictive control methods get intoctie of research. An-
other limit of the classical control methods is the fact, that interactions withitiafigadistributed
systems as within the MIMO proce$sin Figure/ 1.2 are either neglected or assumed to be distur-
bances [1, 2, 3, 4]. As a result stability and robustness of the contrmitsre might be decreased
[5, 4]. Even if these properties are not jeopardized, and if the dedized controllersC; andC;
are optimal controllers, the neglection of interactions will result in a globatrobstructure, that is
not necessarily optimal [6, 7]. Furthermore, many of today’s control autiio not feature the ex-
plicit consideration of constraints on the input variables or on the stateblesicOther methods only
consider linear systems, such.#$,-control [8].

However, centralized model predictive control features all of the edmogntioned properties:
Optimality, guaranteed stability for MIMO processes, consideration of inpdifpath contraints, and
applicability to nonlinear systems. But there are some disadvantages dalizentmodel predictive

|
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Figure 1.1: Classical hierarchical cascade control structure: Gadstseparated into a low level
controllerC; and a high level conrtolleC,.
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Figure 1.2: Classical decentralized control structure: Multiple SISO olaits C; control a MIMO
process.

control methods:

e If the size of the considered processes increases or the process tist@nts decrease, central-
ized model predictive control will demand tremendous computing power arsdviiil not be
appplicable for a real-time application [6, 4];

e in case of a spatially distributed system, e.g. a water supply network, comrianieanong
different subsystems of the global process might be limited;

e maintainability of a centralized large-scale control structure is difficult [9];

e and reliability of a decentralized control structure might be better than thefameentralized
control structure [6].

Hence, hierarchical and distributed model predictive control methadassumed to be the methods
combining the advantages of centralized and decentralized model prediotirol, while solving
their disadvantages.

In the following some nomenclature is introduced. On the one hand we comslderarchical
spatially distributed control structure as depicted in Figuré 1.3 [10]. THd®™processP is con-
sidered of beeing composed of multiple interacting subprocéss&le control structure consists of
multiple local controller<C;, i = 1,...,N and a supervisory controll€p. The local controllers, also
called infimal [10] controllers, only interact with the corresponding sabgsses and the supervisory
controller. The latter one, which is also called coordinator [11] or suprgBhcontroller, only in-
teracts with the local controllers. This hierarchical control structure sraferred to as coordinated
control [11].

On the other hand distributed control structures with only a single contret tzan be considered,
as depicted in Figure 1.4 [10]. While in case of the hierarchical controtttre, communication
between local controllers is achieved by coordination of the supeniis@ase of the distributed
control, which is also called cooperative control [11], the supervisaompletely missing. Thus,
all local controllers have to communicate directly with each other. The hidcaicand distributed
control structures can be furtherly classified, e.g. by the type of comiutioricprotocol: A wide
overview is presented in [11].

These two control structures possess different advantages andatisages: As the distributed
structure does not rely on the supervisor, this structure seems to hiee fedability properties,
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Figure 1.3: Hierarchical spatially distributed control structure: A MIMOgassP is considered of
beeing composed of multiple interacting subproce&se3he control structure consists of multiple
local controllersCi, i = 1,...,N and a supervisory controll€l.

while the hierarchical structure will fail, in case of a breakdown of theestipor. On the other hand,
the topological structure will be easier for the hierarchical, as the nunflbarbsystems and local
controllersN increases: While in case of the hierarchical structure it is necessamphementN
bidirectional links between the supervisor and the local controllers, mafsne-layer control struc-
ture it will be necessary to implement- (N — 1) /2 ~ N2 bidirectional links, if each local controller
needs to communicate to all other local controllers. Hence, for processsisting of many subsys-
tems, it appears to be reasonable to have a hierarchical control stratteast in order to simplify
the communication among different local controllers.

In model-predictive control, even for centralized MPC structures, itieqgommon already today
to have a hierarchy within the control structure. That hierarchy, heweeals with the different time

— - —
Cl Cz ........ CN

~— - —
L T I — IS
1 P |
! P ....... !
: Ll P |- R
| |

Figure 1.4: One-layer distributed control structure: A MIMO prodess considered of beeing com-
posed of multiple interacting subproces&esThe control structure consists of multiple local cooper-
ating controllerCi, i=1,...,N.
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scales|[12, 13] of the controlled processes and is also referred ®riisal decomposition [14, 15,
16]. This vertical decomposition has to be distinguished from the horizontgatially decomposed
problems, that we like to consider in hierarchical and distributed MPC. llystizere are at least
two control layers in a vertically decomposed system: A linear or nonlineda® biPthe lower layer
and a static real time optimization or set point optimization on the upper control[lbye6]. Other
topologies in vertical decomposition additionally include PID-based contrdhe lowest level [11,
12]. Another variation of that topology replaces the static real time optimizati@r lay a dynamic
real time optimization (D-RTO) layer [16, 17]. Alternatively, there may be mult\dRC layers, that
take into account different time-scales of the controlled processes H@pever, recently there is
also some effort in order to reduce the number of different controlsgped replace them by a single
economic nonlinear control layer [18].

The basis for all of these layers in model predictive control is the optimizafistatic or dyamic
systems, i.e. the minimization of an objective function subject to the system ewgjatginitial val-
ues, its input constraints, the constraints on the state variables, and stpwenéconstraints. Thus,
in the following section the mathematical problem for hierarchical and distdoutedel predictive
control is formulated. In order to be more general, we stick to the dynamimean formulation of
the optimization problem.
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Chapter 2

Mathematical problem formulation

The idea of model predictive control is to numerically solve a dynamic optimizatioblem at each
sampling time. Though only the control signals for the first subsequeitdoef time are applied
to the process. Then the optimization problem has to be solved again for ii@vdonditions and

again also only the first values for the manipulated variables are applied podbess. This method
is repeated for each of the following sampling times of the control problem.

The same idea is to be implemented in hierarchical and distributed MPC. Thimdis€for HD-
MPC is an optimization problem, that has to be decomposed for differenystebss. As various
versions of MPC are considered, e.g. linear and nonlinear MPC, disgeteand continuous-time
MPC, there exist also many different formulations of the optimization problexeniplarily in the
following a quite general mathematical formulation of the control problem isdoired. We consider
the global nonlinear optimal control problem:

muin d(t,x,u,m), (2.1a)
w.rt. x= f(t,x,u;m), X(0)=Xo, (2.1b)
0 <g(t,x,u,m), (2.1c)

0 < mr(ty, X(tr), u(te), mitr)), (2.1d)
m=H[x",u"]T, (2.1e)

where® € R is the objective functiort, € R is the time x € R" is the state vectory € RP is the input
vector,m € RY is the the vector of coupling or interaction variables, i.e. the variables, apag¢sent
the couplings between different subsystems, tanslthe final time of the optimization problem. The
system dynamics are represented by equation|(2.1b), the input ancoststi@imts are summarized in
equation/(2.1c), and equation (2.1d) contains the constraints for théfivealThe last equation (2.1€)
describes the couplings within the system and are called coupling constraints

In case of the hierarchical and distributed model predictive contrdileno, the global optimiza-
tion problem|(2.1) has to be solved by the solution process of local prolitamtise N subsystems,
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which are described by the following local optimization problems:

min ®;(t, %, U, m), (2.2a)
w.rt. X = fi(t,x, u,m), %(0)=Xio (2.2b)
0 <gi(t, X, ui,m) (2.2c)

0 < m(te,xi(te), ui(ts), mi(tr)), (2.2d)

m =H[x",u"]". (2.2e)

Therebyx; is the local state vectoy is the local input vector anah are the local coupling variables
of the subsystem. The local interaction variables depend on the global state and inpubleia
Hence, in case of hierarchical and distributed model predictive cont®ltask of coordination or
cooperation is to provide meaningful information on how to derive the lotatastion variables.
Keep in mind, that the objective function is not necessarily additive, i.e.nerge

d(t, X, u,m) # ‘id%(t,m,ui,m) : (2.3)

Furthermore, the set of state variab{egi = 1,...,N} does not necessarily have to be a disjunct set.
However, usually the objective functigh is assumed to be additive and the set of state variables is
assumed to be disjunct.

The second task of coordination and cooperation is to modify the local optiorizaoblems((2.2),
such that the accumulated res{ulfpt“ =1,...,N} of the local optimization problems (2.2) is the
same as the resulfP! of the global optimization problem:

.
opt ! opt , opt opt
uoPt = [ulp,uzp,...,uNp (2.4)

For this purpose, the local optimization problems (2.2) can be adapted irediff@ays: Different
ideas are stated in the following section.
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Chapter 3

Origins of hierarchical and distributed
MPC methods

Development of spatially distibuted optimization methods has started already i8@Bs.1As there
exist already many literature reviews in the field of hierarchical and disé&rbanodel predictive con-
trol and large-scale systems, which cover the literature of the 1960s%ad,lwe will first refer to
these review papers and then stress some important literature of that qfetirod.

3.1 Introductory and survey literature

In 1973, Smith et al. published an introductory overview on the topic of hikigal systems theory
[19]. Singh et al. concentrated on available control methods for integadyinamical systems, which
can practically be applied [20]. In 1977, Mahmoud presented a very i@vapsive overview [21],
which is considered to the most important survey paper of the 1970s. afjes povers a wide range
of the research progress in literature. While the main subject of that aiedescmultilevel, i.e. hier-
archical, optimization techniques, it also covers the early progress in mulsiestems identification
as well as the application to water resource systems. Mahmoud emphasidéfetieace of fesible
and infeasible methods [22]. The difference is especially important intireelapplications, when
full convergence of the methods migtht not be possible. In 1978, Sastdsll presented another sur-
vey [23]. This survey covered the topics of model simplifications, stabiliafyasis of interconnected
systems and decentralized control methods.

3.2 Fundamental literature in early HD-MPC research

In 1960, Dantzig and Wolfe proposed a decomposition method for linegrars [24], which is
often referred to a®antzig-Wolfe decompositiorDantzig and Wolfe consider a large-scale linear
programming problem, i.e. a linear objective with respect to linear constraihts.problem is de-
composed into subproblems, which can be solved independently. THes®slems are coordinated
by a master problem [6]; thus the method belongs to the hierarchical methods.

Presumably the initially most important progress has been achieved and saetriara mono-
graph by Mesarovic et al. [10]. A summary of the main concepts of Megaocan also be found in
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[21]. Mesarovic et al. formulated some very general principles on hoaoadinated control struc-
ture can be implemented, namely timéeraction Balance Principlend thelnteraction Prediction
Principle [25].

The Interaction Balance Principle considers the interaction variatplas degrees of freedom for
the local controller<;, which compute desired interaction variabigs The task of the coordinator
Cp is to calculate coordinating signads, based on the errors of desired and real interaction variables
& = My —m,. The overall optimum is achieved if the actual interaction inpatare precisely those,
which are calculated by the local optimizations, irs.=m, Vi € [1,...,N] [25]. An illustration
of that principle is depicted in Figure 3.1 for the case of a decomposition gfreessP into two
subsystem®; andP.

On the other hand within the Interaction Prediction Principle only the local ivgmigiblesy; are
considered as degrees of freedom for the local controllersThe task of the coordinatdly is to
predict interaction input§;. The overall optimum will then be achieved, if the predicted interaction
inputs B are correct, i.efi =m, Vi e [1,...,N] [25]. The control topology of the Interaction Pre-
diction Principle is depicted in Figure 3.2 for a systBpwhich is decomposed into two subsystems.

The very general theory of the Interaction Balance and Predictionipleéscis augmented by
further important properties of decomposed control structures [16& rbtion ofcoordinability is
defined and necessary as well as sufficient conditions for this gyopes given. Coordinability
can be defined as follows [21]: The examined system is coordinable bgrdination principle if
the principle is applicaple and if there exists a coordination parameter sucthéheorresponding
coordination condition is satisfied. Hence, this is a convergence conditigather the method of the
decomposed problem will converge to the optimal solution of the centralizddgmn or not.

Coordination can be achieved by the intervention of the subsystems usirdjraiion parame-
ters, which can be divided into two subsets [21]: On the one hand the sléisntan be modified,
which is called model coordination, on the other hand in goal coordinationtjeetive function of
the local problems are modified. Other important properties, which are defiretheadditivity (see
Chapter 2) of objective functions ahdrmonyof different objective functions and@: The objective
function @ is in harmony with another objcetive functign if the optimal solutioru®P! for the mini-
mization problem ofp is also the the vector that minimizesi.e. u°Pt = (i°Pt. However, the values of
the objective functions do not necessarily have to match.

Moreover, Mesarovic et al. introduce some new operators, the sa cpibd-interaction oper-
ators [10], which can be applied to modify local objective functions. Theseaipes descibe the
influence of input variables on the objective function of the global coptablem:

e TheTotal Goal-Interaction Operatofl0] gives a measure of the change in the overall cost/objec-
tive function, which is causes by the change of a local control inputifitrmonlocal variables.

e The Partial Goal-Interaction Operatorf10] is also a measure of the change in the overall
cost/objective function, which is caused by the change of a local canpat through a specific
interaction input.

e Thelnterface Goal-Interaction Operatdd.0] describes the change of the overall cost/objective
function, which is caused by a change of a interaction input.

Surprisingly, the theory of interaction operators has hardly or evealhio¢en persued in subsequent
research.
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Figure 3.1: Interaction Balance Principle for two subsystems [25].
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Figure 3.2: Interaction Prediction Principle for two subsystems [25].
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Another important monograph of the 1970s has been presented byrL&]o The monograph
starts at basics of linear as well as of nonlinear optimization theory. The madimliscusses meth-
ods for the optimization of large scale systems with some focus on decompositibodsee.g. the
Dantzig-Wolfe decomposition [24] is reviewed. Although Lasdon disalissany other methods in
detail, the one, which has been in the interest of subsequent resadrainizh has later been denoted
as one of the most promising methods for decentralized optimization [20] is #leodtimization
method [27]. The basic idea of dual optimization will be descibed in the followarggraph.

In dual optimization, additionally to the primal optimization problem (2.1) also its dr@tlem
is considered. We assume that the objective function is additivie. Thedu#ig@roblem is

m/\axd)(t,x, z,umA) (3.1a)

N
st.g(t,x,zumA)= rQLnL(t,x,z,u,m,)\) =min ZlLi(t,xi,zi,ui,m,/\) (3.1b)
) i=

X, Ui

with respect to

Li(t, %, 21, Ui, My, A) = i (t, %, U, m) + AT (x, Ui, my), (3.2a)
xi = fi(t,x,ui,m), Xi(0)=Xpo (3.2b)

0 < gi(t,x,ui,m) (3.2c)

0 < 75 (ts, X (ts), ui(ts), m(tr)), (3.2d)

hi (%, Ui, m) = m —H; [x",u’]" . (3.2e)

Here we consider an equality form of the interacion constraints|(3.2esasided in [28]. The set of
new local optimization problems

min Li(t, %z, U, m,A) (3.3a)
w.r.t (3.2) (3.3b)

can then be solved independently. In order to achieve a solution of thalgiotblem, the dual
problem|(3.1) has to be solved, e.g. by a coordinator. The resultingaghtagrange multipliera,
which can be interpreted as prices, are used to coordinate the infimémwolB.3). Hence dual-
optimization belongs to the class of price-driven coordination methods. Heigliation of the Inter-
action Balance Principle and, as the objective function is modified, belortge @oal-coordination
methods. A clear disadvantage of the method is the fact, that the method ihilgeasl thus requires
full convergence to achieve a feasible solution. Here, infeasibility méaaisthe interconnection con-
straints|(3.2e) are only fulfilled after full convergence of the method.

In 1980, Findeisen et al. presented a monograph [28], that is basethoy of the methods
which have been presented in the books of Mesarovic et al. and Lasdprthere are extensions to
constrained and dynamic optimization. A short review can be found in [29].
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Chapter 4

Present focus In research

There is also some recent summarizing literature on hierarchical and distfimodel-predictive
control, e.g. Rawlings and Stewart [30] discuss oppurtunities and chebesf research in HD-MPC,
e.g. the robustness to model errors or how to deal with communication distuSizattolini [11]
focuses on different hierarchical and distributed control topologidsaéso discusses the states open
questions for the future, such as how to partition the system.

In the following sections the present focus in research for hierarchiw distributed control
systems is summarized. On the one hand, methods for multi agent systemmarargaed. On the
other hand, the main focus is on methods for systems in process engineering

4.1 Distributed control for multi agent systems

Recent research in the field of distributed and hierarchical control is mdrign by applications
such as unmanned and autonomous vehicles [31, 32, 33], and in panigkess communication.
Typically these systems are modelled by linear dynamics as kinematic agenss with X € RY, as
dynamic agents with; = uj, x; € RY or sometimes by dynamics of even higher order [34]. Thereby
v is the dimension of the considered space which is typicaly2 orv = 3. An important property
of this class of systems, commonly referred to as Multi Agent Systems (Mé&®)at the different
subsystems, the agents, are origininally not coupled. But there are sonmean goals such as con-
sensus [34], pattern formation, flocking or the avoidance of collisiohsd3, 36]. In order to achieve
these common goals coupling control methods are introduced. Even thou@Ghisviih important
control method in the field of MAS, research is not limited to optimization basettaanethods.
Other modern control tools applied, are for instance linear matrix inequal®83f control barrier
certificates [36].

4.2 Hierarchical and distributed control in process engineering

If energy or process engineering systems are considered, the tgpufldlge systems will change
noticably compared to one of a MAS. The subsystems of these applicationglgtioteract with

each other already without any futher coupling controls, e.g. by theaegghof energy or mass
streams, while the subsystems of a MAS do not interact without any contnois, The objective of
the control problem also changes. Furthermore, dynamics of thesensystenot be discribed by
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simple linear dynamics as for MASs. The dynamics are normally charactdrizé&tge nonlinear
descriptor systems.

The subsystems are often controlled using optimization-based control reetiicllas MPC, but
the controllers are usually implemented in a decentralized manner today, i.eutateounting for
interactions between the subsystems. Hence, the goal of coordinated@petative control focuses
on how to expand existing control structures, such that the optimal soldttbe global problem can
be achieved. Although normally these systems can be described as coapliegar ODE ore DAE
systems, the main research focus is attached to linear time-invariant systbardpecontinuous time
or in discrete time description.

While in process systems engineering the focus in hierarchical and disttibantrol is on MPC,
there are also other approches. E.g. Sun et al. [37] discuss a coptoidgy based on linear state-
feedback for control of distributed (and possibly renewable) eneggurces.

421 Linear HD-MPC methods

Wakasa et al. apply the dual decomposition method of Lasdon to linear timéaimvsystems. As the
objective function of the dual problem there is non nondifferentiabledtia¢ problem is solved using
a subgradient optimization algorithm [38]. They apply the proposed methimebinase studies with
3 and 15 scalar double-ingegrator subsystems. Necoara et al. praghsl decomposition based
method, called the proximal center method, which can be applied for the optimizdtioear time-
invariant systems with convex objective functions [39]. Another prideed coordination method
for linear systems is suggested by Cheng et al. [9] and Marcos et atedBéctively. There, the
coordinator updates the prices based on the gradients of givenecesawging Newton’s method. In
contrast, in dual optimization, the Lagrange multipliers are updated basec ateviation of the
interaction constraints.

Delvenne et al. [40] derived a value for the worst-case performaheay distributed control
strategy. They consider LTI discete-time systems with an identity input matrixs frte considered
class of systems is quite restrictive. Vaccarini et al. [4] consider annst@ined distributed MPC
solution for a class of linear time-invariant discrete-time processes. Th#ioohguarantees closed-
loop stability, while no stability constraints have to be used. The stability resuitbeaised for
the tuning of the decentralized controller. Zhang and Li also presentR@ Method for linear
time-invariant discrete-time systems [41]. However they only consider a ofaserially connected
subsystems, i.e. cascade processes. They could derive stability iesalte of unconstrained control
systems. Jia et al. propose a distributed MPC scheme with stability constr®IRGESC) [42, 43] for
linear time-invariant systems. This scheme ensures stability for a classtobltairie systems. The
method is successfully applied to the load frequency control problem ofvarpnetwork. Richards
and How [44] propose a distributed MPC method for LTI discrete time systehie methed is
proven to guarantee robust constraint satisfaction and convergadee the assumption of bounded
disturbances.

Rawlings et al. also consider linear time-invariant discrete-time systems%3@6# However,
they propose a feasible cooperation-based distributed model predictitt®l method, thus the itera-
tion can be terminated at any time in order to get a feasible, but suboptimal solGtimbal optimality
is achieved for full convergence. Thereby local controllers reckricviedge on the full global ob-
jective function. Cooperation is achieved, as at each iteration, the tngjemftanputs is a convex
combination of the current local solution and the previous iteration. Redoce of the coordination-
based method is compared to the performace of fully centralized MPC, fudgnd@lized MPC and
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communication-based MPC. In communication-based MPC, communicationialbhess is assumed,
though that method does not calculate convex combinations of the optimal.iffhesooperation-
based MPC is extended by Pannocchia et al. using Partial Enumeratioh $6Jution table is used
to increase the speed of computations. For this purpose the solution talele stone of the most
recently optimal active sets.

Negenborn combines methods of multi-agent control theory and methods & medlictive
control [47, 48]. The thesis focuses on methods for linear time-invasigstems, though also non-
linear optimization methods such as pattern search are applied. Theradrgmtiffontrol topologies,
single-layer and multi-layer topolgies, are considered. The methodserg&¢ily applied to various
problems from the domain of power networks.

Aske et al. propose a practical coordinator MPC [49], that fits to theifsp@eroblem of a large-
scale gas plant, namely theaksta gas processing plant in Norway. The hierarchical MPC structure
consists of several local model predictive controllers and a coordjrtatat controls the variables,
which are economically relevant. The decomposed MPC structure is implemesibgcthe standard
in-house MPC software SEPTIC.

Dantzig-Wolfe decomposition [24] is still a method, which is in the interest afaesh, although
it is restricted to linear problems. Gunnerud et al. [50] apply this method éorgél-time optimiza-
tion of oil production in a petroleum asset, namely the Troll west oil rim. Hawethis real-time
optimization is only static. Cheng et al. [6] also apply the Dantzig-Wolfe decstiggomethod for
a static optimization of large scale-systems. They regard the static set-ptimizagion as a an op-
timization of a linear process with linear objective function. The method is illustriatea simple
case-study, consisting of three static subsystems.

4.2.2 Nonlinear HD-MPC methods

Nonlinear model predictive control methods are quite rare in reseatto@.mbst popular nonlinear
method is still the dual optimization method [27]. Though, research for thatotéhmainly focused
on the application to linear systems as described in the sections above. araftlkal. propose a
cooperative distributed model predictive control method for nonlinestesys [51]. They assume that
subsystems are only able to communicate and cooperate with neighboriygtenis The method
is applied to the IEEE 118 bus test case in order to study how to prevesadiag failures of that
network. Another nonlinear method is proposed by Liu et al [52]: Thgapunov-based model
predictive control method requires only one directional communication leette different control
units. However, control is distributed only into two different controllerbe Tnethod is applied to a
chemical process example consisting of two CSTRs and one flash tankteep&romov et al. [53]
considered a very special type of system: The considered chromalidgteatch process is descibed
by nonlinear partial differential equations on the one hand and by tiseagiables, which represent
different configurations of that process, on the other hand. Tharckgcal control appoach is split
into two layers: On the lower layer, continuous optimzations of the partialrdifteal equations are
performed, while on the higher layer different configurations areidensd. Dunbar [54] proposes
a distributed MPC method and applies the method to a system of coupled oscillstaghi and
Scattolini [55] propose a stabilizing decentralized MPC scheme for nonliiserete-time systems.
However, as the method does not involve any coordination or cooper#immnesulting control will
be suboptimal.
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Chapter 5

Conclusions

Hierarchical and distributed methods have now been studied for appriayb years. Based on the
reviewed literature, we conclude, that the main interest for hierarchicedisstributed model predic-
tive control has been focused on methods for linear time-invariant systémsespect to quadratic
objective functions in the past, where meaningful progress has be@ved. Hierarchical methods
have been considered as well as distributed methods; feasible as wédasbie methods.

However, research for methods, which can be applied to nonlineansysé&d which are neces-
sary for economical or ecological dynamic optimization are still quite spasgead. Furthermore,
the application of the methods to real large-scale processes has still tadaeNtrmally the methods
have been applied only to small simple-toy problems. Then, many of the maoisrarchical and
distributed MPC methods suffer from bad performance [6], which is oftense than the performance
of centralized MPC. This means that computational requirements for Higzakand distributed MPC
methods are often higher than those for centralized MPC methods. Hewcef the main goals of
HD-MPC methods has clearly not been achieved so far. Usually this pnableaused by the iterative
nature of most of the proposed MPC methods, although a single iteration célgpimblem can be
solved much faster than the centralized global problem.

From the author’s point of view, many of the ideas which have been establia the 1960s and
1970s and summrized by Lasdon [26], Mesarovic [10] and Findeisginhi@e only little or not at
all been persued in subsequent research. In the author’s poirgvafivis worth looking into that
literature again, in order to improve existing hierarchical and distributed MBtBods or even derive
new HD-MPC approaches.

As the existing methods are really heterogeneous, an objective and ¢mmgpire comparison of
existing methods is almost impossible. The methods especially differ at first cotisiddered types
of distributed systems: e.g. on the one hand linear systems and on the otberdminear systems
are examined; systems are considered in continuous-time and in discrete#imespecial types of
systems as cascade systems as well as the most general interconnetdigiesare taken into ac-
count; some methods only fit to a special application; and the interactionstefisy are described in
various ways. Additionally methods can be devided into feasible and infean#thods. There are
model-coordination methods and goal-coordination methods, though the latténate the existing
HD-MPC methods.
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Furthermore, in order to judge the different methods one has to diffefeit@ween different
applications. While for steady-state control, as in centralized methods, timethods can be applied
very well, for processes, that are run in different operational statistransient changes of state,
nonlinear methods are required in order to get a real economically atabezily optimal control
system. Then, the time constants of the process as well as the consideredrtiroe have to be con-
sidered, as these values define the requirements on computationat@eréerof the model predictive
control methods. Moreover, the topology of the real processes haskiadwn: An MPC method for
the most general system topology, i.e. a system with a uniform coupling sfaadl variables, will
most likely not be the optimal solution in application. In particular, the consithgmee of distributed
systems usually consists of subsystem with a strong internal coupling. vdote interaction with
other subsystems will most likely be less strong.

Summarizing, it can be said, that, although hierarchical and distributed nsdtawd been studied
already half a century, research in this area still seems to be more in thaibnggiThere are still
various open questions, which have to be solved, e.g.: What is the aiapeogontrol structure for
large-scale systems? How should different time-scales within differdastystems be considered in
a distributed control topology? When do we have to consider nonlinear deetfar which purpose
could linear methods be sufficient?

Due to an increasing competition on market as well as an increasing awsi@environmental
problems and decresing resources, it is necessary to operategg®sesh as chemical and power
plants always in an economical and ecological optimal manner. In ordehteva this high goal, it
is necessary to apply nonlinear control methods for the operation of tiegdewed plants. However,
according to the literature, there is clear lack of nonlinear HD-MPC methmots.sThus, it has to be
one goal for the following years, to shift the focus from linear to nonlimeethods. Though, research
on linear methods will still have some importance, as most of the analytic prapesieh as stability,
robustness, and convergence, can mainly be prooven for lineanmsyste

An important aspect, which has to be considered, is the fact that the dedehoethods will be
applied only in future systems with future computer architectures. Henogwational power will
then be further increased, such that an application of nonlinear meteodmbs more realistic than
it is today.
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