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Executive Summary

Important literature of the 1960s and 1970s on hierarchical and distributed model predictive con-
trol (HD-MPC) is reviewed. Main properties of the existing methods are stated. Though, a compar-
ison is quite difficult, as methods of that time period are more conceptual methodsthan applicaple
methods. This report tries the descibe the relationships between the different methods. It focuses
on literature, which has been neglected in recent research. Then, present literature is reviewed,
in order to get a summary of today’s research in the field of hierarchical and distributed control
methods. Present methods are quite heterogeneous with repsect to the considered class of systems,
thus an objective and comprehensive analysis is almost impossible. Hence this report is giving an
overview on the current focus in research. Focus of present research is mainly on linear methods
and there is a clear lack for nonlinear methods. Hence, there has to be a shift in research from
linear to nonlinear HD-MPC methods. Furthermore, it seems to be interesting to look back on
some ideas of the first HD-MPC literature of the 1960s and 1970s for the upcoming research.
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Chapter 1

Introduction

Hierarchical and distributed model predictive control methods have quite along history. First hier-
archical and distributed control structures have been introduced for linear frequency based control
methods: On the one hand cascade control structures as depicted in Figure 1.1 and on the other hand
dectralized SISO Controllers for a MIMO type of process as depicted in Figure 1.2. Both methods still
belong to the most important control structures in industry, as the methods offer some nice properties:
For instance they can easily be implemented, they require only little computational power, they offer
easy maintainability, and the methods are well understood.

However, there are some limits to these control methods. The most important onemight be the
fact, that these control methods are not optimal control methods. Though,as optimality, either eco-
nomically or ecologically, is of increasing importance today, hierarchical and distibuted optimization
based control methods, namely model predictive control methods get into thefocus of research. An-
other limit of the classical control methods is the fact, that interactions within spatially distributed
systems as within the MIMO processP in Figure 1.2 are either neglected or assumed to be distur-
bances [1, 2, 3, 4]. As a result stability and robustness of the control structure might be decreased
[5, 4]. Even if these properties are not jeopardized, and if the decentralized controllersC1 andC2

are optimal controllers, the neglection of interactions will result in a global control structure, that is
not necessarily optimal [6, 7]. Furthermore, many of today’s control methods do not feature the ex-
plicit consideration of constraints on the input variables or on the state variables. Other methods only
consider linear systems, such asH∞-control [8].

However, centralized model predictive control features all of the above-mentioned properties:
Optimality, guaranteed stability for MIMO processes, consideration of input and path contraints, and
applicability to nonlinear systems. But there are some disadvantages of centralized model predictive

C2 P2P1C1

− −

P

Figure 1.1: Classical hierarchical cascade control structure: Control is separated into a low level
controllerC1 and a high level conrtollerC2.
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Figure 1.2: Classical decentralized control structure: Multiple SISO controllersCi control a MIMO
processP.

control methods:

• If the size of the considered processes increases or the process time constants decrease, central-
ized model predictive control will demand tremendous computing power and thus will not be
appplicable for a real-time application [6, 4];

• in case of a spatially distributed system, e.g. a water supply network, communication among
different subsystems of the global process might be limited;

• maintainability of a centralized large-scale control structure is difficult [9];

• and reliability of a decentralized control structure might be better than the oneof a centralized
control structure [6].

Hence, hierarchical and distributed model predictive control methods are assumed to be the methods
combining the advantages of centralized and decentralized model predictive control, while solving
their disadvantages.

In the following some nomenclature is introduced. On the one hand we consider a hierarchical
spatially distributed control structure as depicted in Figure 1.3 [10]. The MIMO processP is con-
sidered of beeing composed of multiple interacting subprocessesPi . The control structure consists of
multiple local controllersCi , i = 1, . . . ,N and a supervisory controllerC0. The local controllers, also
called infimal [10] controllers, only interact with the corresponding subprocesses and the supervisory
controller. The latter one, which is also called coordinator [11] or supremal [10] controller, only in-
teracts with the local controllers. This hierarchical control structure is also referred to as coordinated
control [11].

On the other hand distributed control structures with only a single control layer can be considered,
as depicted in Figure 1.4 [10]. While in case of the hierarchical control structure, communication
between local controllers is achieved by coordination of the supervisor,in case of the distributed
control, which is also called cooperative control [11], the supervisor iscompletely missing. Thus,
all local controllers have to communicate directly with each other. The hierarchical and distributed
control structures can be furtherly classified, e.g. by the type of communication protocol: A wide
overview is presented in [11].

These two control structures possess different advantages and disadvantages: As the distributed
structure does not rely on the supervisor, this structure seems to have better reliability properties,
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P
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Figure 1.3: Hierarchical spatially distributed control structure: A MIMO processP is considered of
beeing composed of multiple interacting subprocessesPi . The control structure consists of multiple
local controllersCi , i = 1, . . . ,N and a supervisory controllerC0.

while the hierarchical structure will fail, in case of a breakdown of the supervisor. On the other hand,
the topological structure will be easier for the hierarchical, as the number of subsystems and local
controllersN increases: While in case of the hierarchical structure it is necessary theimplementN
bidirectional links between the supervisor and the local controllers, in case of one-layer control struc-
ture it will be necessary to implementN · (N−1)/2∼ N2 bidirectional links, if each local controller
needs to communicate to all other local controllers. Hence, for processesconsisting of many subsys-
tems, it appears to be reasonable to have a hierarchical control structure at least in order to simplify
the communication among different local controllers.

In model-predictive control, even for centralized MPC structures, it is quite common already today
to have a hierarchy within the control structure. That hierarchy, however, deals with the different time

P

P1 P2

C2C1 CN

PN

Figure 1.4: One-layer distributed control structure: A MIMO processP is considered of beeing com-
posed of multiple interacting subprocessesPi . The control structure consists of multiple local cooper-
ating controllersCi , i = 1, . . . ,N.
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scales [12, 13] of the controlled processes and is also referred to as vertical decomposition [14, 15,
16]. This vertical decomposition has to be distinguished from the horizontalor spatially decomposed
problems, that we like to consider in hierarchical and distributed MPC. Usually, there are at least
two control layers in a vertically decomposed system: A linear or nonlinear MPC on the lower layer
and a static real time optimization or set point optimization on the upper control layer [11, 6]. Other
topologies in vertical decomposition additionally include PID-based control on the lowest level [11,
12]. Another variation of that topology replaces the static real time optimization layer by a dynamic
real time optimization (D-RTO) layer [16, 17]. Alternatively, there may be multipleMPC layers, that
take into account different time-scales of the controlled processes [13]. However, recently there is
also some effort in order to reduce the number of different control layers and replace them by a single
economic nonlinear control layer [18].

The basis for all of these layers in model predictive control is the optimizationof static or dyamic
systems, i.e. the minimization of an objective function subject to the system equations, its initial val-
ues, its input constraints, the constraints on the state variables, and some endpoint constraints. Thus,
in the following section the mathematical problem for hierarchical and distributed model predictive
control is formulated. In order to be more general, we stick to the dynamic nonlinear formulation of
the optimization problem.
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Chapter 2

Mathematical problem formulation

The idea of model predictive control is to numerically solve a dynamic optimizationproblem at each
sampling time. Though only the control signals for the first subsequent period of time are applied
to the process. Then the optimization problem has to be solved again for new initial conditions and
again also only the first values for the manipulated variables are applied to theprocess. This method
is repeated for each of the following sampling times of the control problem.

The same idea is to be implemented in hierarchical and distributed MPC. Thus, thebasis for HD-
MPC is an optimization problem, that has to be decomposed for different subsystems. As various
versions of MPC are considered, e.g. linear and nonlinear MPC, discete-time and continuous-time
MPC, there exist also many different formulations of the optimization problem. Exemplarily in the
following a quite general mathematical formulation of the control problem is introduced. We consider
the global nonlinear optimal control problem:

min
u

Φ(t,x,u,m), (2.1a)

w.r.t. ẋ = f (t,x,u,m), x(0) = x0, (2.1b)

0≤ g(t,x,u,m), (2.1c)

0≤ π(t f ,x(t f ),u(t f ),m(t f )), (2.1d)

m= H [xT ,uT ]T , (2.1e)

whereΦ ∈ R is the objective function,t ∈ R is the time,x∈ R
n is the state vector,u∈ R

p is the input
vector,m∈ R

q is the the vector of coupling or interaction variables, i.e. the variables, that represent
the couplings between different subsystems, andt f is the final time of the optimization problem. The
system dynamics are represented by equation (2.1b), the input and state constraints are summarized in
equation (2.1c), and equation (2.1d) contains the constraints for the finaltime. The last equation (2.1e)
describes the couplings within the system and are called coupling constraints.

In case of the hierarchical and distributed model predictive control problem, the global optimiza-
tion problem (2.1) has to be solved by the solution process of local problemsfor theN subsystems,
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which are described by the following local optimization problems:

min
ui

Φi(t,xi ,ui ,mi), (2.2a)

w.r.t. ẋi = fi(t,xi ,ui ,mi), xi(0) = xi,0 (2.2b)

0≤ gi(t,xi ,ui ,mi) (2.2c)

0≤ πi(t f ,xi(t f ),ui(t f ),mi(t f )), (2.2d)

mi = Hi [x
T ,uT ]T . (2.2e)

Therebyxi is the local state vector,ui is the local input vector andmi are the local coupling variables
of the subsystemi. The local interaction variables depend on the global state and input variables.
Hence, in case of hierarchical and distributed model predictive controlone task of coordination or
cooperation is to provide meaningful information on how to derive the local interaction variables.
Keep in mind, that the objective function is not necessarily additive, i.e. in general

Φ(t,x,u,m) 6=
N

∑
i=1

Φi(t,xi ,ui ,mi) . (2.3)

Furthermore, the set of state variables{xi |i = 1, . . . ,N} does not necessarily have to be a disjunct set.
However, usually the objective functionΦ is assumed to be additive and the set of state variables is
assumed to be disjunct.

The second task of coordination and cooperation is to modify the local optimization problems (2.2),
such that the accumulated result{uopt

i |i = 1, . . . ,N} of the local optimization problems (2.2) is the
same as the resultuopt of the global optimization problem:

uopt !
=

[

uopt
1 ,uopt

2 , . . . ,uopt
N

]T
(2.4)

For this purpose, the local optimization problems (2.2) can be adapted in different ways: Different
ideas are stated in the following section.
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Chapter 3

Origins of hierarchical and distributed
MPC methods

Development of spatially distibuted optimization methods has started already in the 1960s. As there
exist already many literature reviews in the field of hierarchical and distributed model predictive con-
trol and large-scale systems, which cover the literature of the 1960s and 1970s, we will first refer to
these review papers and then stress some important literature of that periodof time.

3.1 Introductory and survey literature

In 1973, Smith et al. published an introductory overview on the topic of hierarchical systems theory
[19]. Singh et al. concentrated on available control methods for interacting dynamical systems, which
can practically be applied [20]. In 1977, Mahmoud presented a very comprehensive overview [21],
which is considered to the most important survey paper of the 1970s. The paper covers a wide range
of the research progress in literature. While the main subject of that article covers multilevel, i.e. hier-
archical, optimization techniques, it also covers the early progress in multilevel systems identification
as well as the application to water resource systems. Mahmoud emphasizes thedifference of fesible
and infeasible methods [22]. The difference is especially important in real-time applications, when
full convergence of the methods migtht not be possible. In 1978, Sandellet al. presented another sur-
vey [23]. This survey covered the topics of model simplifications, stability analysis of interconnected
systems and decentralized control methods.

3.2 Fundamental literature in early HD-MPC research

In 1960, Dantzig and Wolfe proposed a decomposition method for linear programs [24], which is
often referred to asDantzig-Wolfe decomposition. Dantzig and Wolfe consider a large-scale linear
programming problem, i.e. a linear objective with respect to linear constraints.The problem is de-
composed into subproblems, which can be solved independently. These subproblems are coordinated
by a master problem [6]; thus the method belongs to the hierarchical methods.

Presumably the initially most important progress has been achieved and summarized in a mono-
graph by Mesarovic et al. [10]. A summary of the main concepts of Mesarovic can also be found in
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[21]. Mesarovic et al. formulated some very general principles on how acoordinated control struc-
ture can be implemented, namely theInteraction Balance Principleand theInteraction Prediction
Principle [25].

The Interaction Balance Principle considers the interaction variablesmi as degrees of freedom for
the local controllersCi , which compute desired interaction variables ˆmi . The task of the coordinator
C0 is to calculate coordinating signalsαi , based on the errors of desired and real interaction variables
εi = m̂i −mi . The overall optimum is achieved if the actual interaction inputsmi are precisely those,
which are calculated by the local optimizations, i.e. ˆmi = mi , ∀ i ∈ [1, . . . ,N] [25]. An illustration
of that principle is depicted in Figure 3.1 for the case of a decomposition of theprocessP into two
subsystemsP1 andP2.

On the other hand within the Interaction Prediction Principle only the local inputvariablesui are
considered as degrees of freedom for the local controllersCi . The task of the coordinatorC0 is to
predict interaction inputsβi . The overall optimum will then be achieved, if the predicted interaction
inputsβi are correct, i.e.βi = mi , ∀ i ∈ [1, . . . ,N] [25]. The control topology of the Interaction Pre-
diction Principle is depicted in Figure 3.2 for a systemP, which is decomposed into two subsystems.

The very general theory of the Interaction Balance and Prediction Principles is augmented by
further important properties of decomposed control structures [10]. The notion ofcoordinability is
defined and necessary as well as sufficient conditions for this property are given. Coordinability
can be defined as follows [21]: The examined system is coordinable by a coordination principle if
the principle is applicaple and if there exists a coordination parameter such that the corresponding
coordination condition is satisfied. Hence, this is a convergence condition,whether the method of the
decomposed problem will converge to the optimal solution of the centralized problem or not.

Coordination can be achieved by the intervention of the subsystems using coordination parame-
ters, which can be divided into two subsets [21]: On the one hand the submodels can be modified,
which is called model coordination, on the other hand in goal coordination theobjective function of
the local problems are modified. Other important properties, which are defined, are theadditivity (see
Chapter 2) of objective functions andharmonyof different objective functionsφ andφ̃ : The objective
functionφ is in harmony with another objcetive functioñφ , if the optimal solutionuopt for the mini-
mization problem ofφ is also the the vector that minimizesφ̃ , i.e. uopt = ũopt. However, the values of
the objective functions do not necessarily have to match.

Moreover, Mesarovic et al. introduce some new operators, the so-called goal-interaction oper-
ators [10], which can be applied to modify local objective functions. These operators descibe the
influence of input variables on the objective function of the global control problem:

• TheTotal Goal-Interaction Operator[10] gives a measure of the change in the overall cost/objec-
tive function, which is causes by the change of a local control input through nonlocal variables.

• The Partial Goal-Interaction Operator[10] is also a measure of the change in the overall
cost/objective function, which is caused by the change of a local controlinput through a specific
interaction input.

• TheInterface Goal-Interaction Operator[10] describes the change of the overall cost/objective
function, which is caused by a change of a interaction input.

Surprisingly, the theory of interaction operators has hardly or even notall been persued in subsequent
research.
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Figure 3.1: Interaction Balance Principle for two subsystems [25].
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Figure 3.2: Interaction Prediction Principle for two subsystems [25].
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Another important monograph of the 1970s has been presented by Lasdon [26]. The monograph
starts at basics of linear as well as of nonlinear optimization theory. The main part discusses meth-
ods for the optimization of large scale systems with some focus on decomposition methods, e.g. the
Dantzig-Wolfe decomposition [24] is reviewed. Although Lasdon discussed many other methods in
detail, the one, which has been in the interest of subsequent research and which has later been denoted
as one of the most promising methods for decentralized optimization [20] is the dual optimization
method [27]. The basic idea of dual optimization will be descibed in the followingparagraph.

In dual optimization, additionally to the primal optimization problem (2.1) also its dualproblem
is considered. We assume that the objective function is additivie. Then, thedual problem is

max
λ

ϕ(t,x,z,u,m,λ ) (3.1a)

s.t. ϕ(t,x,z,u,m,λ ) = min
x,u

L(t,x,z,u,m,λ ) = min
xi ,ui

N

∑
i=1

Li(t,xi ,zi ,ui ,mi ,λ ) (3.1b)

with respect to

Li(t,xi ,zi ,ui ,mi ,λ ) = Φi(t,xi ,ui ,mi)+λ T ·hi(xi ,ui ,mi), (3.2a)

ẋi = fi(t,xi ,ui ,mi), xi(0) = xi,0 (3.2b)

0≤ gi(t,xi ,ui ,mi) (3.2c)

0≤ πi(t f ,xi(t f ),ui(t f ),mi(t f )), (3.2d)

hi(xi ,ui ,mi) = mi −Hi [x
T ,uT ]T . (3.2e)

Here we consider an equality form of the interacion constraints (3.2e) as described in [28]. The set of
new local optimization problems

min
xi ,ui

Li(t,xi ,zi ,ui ,mi ,λ ) (3.3a)

w.r.t (3.2) (3.3b)

can then be solved independently. In order to achieve a solution of the global problem, the dual
problem (3.1) has to be solved, e.g. by a coordinator. The resulting updated Lagrange multipliersλ ,
which can be interpreted as prices, are used to coordinate the infimal problems (3.3). Hence dual-
optimization belongs to the class of price-driven coordination methods. It is arealization of the Inter-
action Balance Principle and, as the objective function is modified, belongs tothe goal-coordination
methods. A clear disadvantage of the method is the fact, that the method is infeasible and thus requires
full convergence to achieve a feasible solution. Here, infeasibility means,that the interconnection con-
straints (3.2e) are only fulfilled after full convergence of the method.

In 1980, Findeisen et al. presented a monograph [28], that is based onmany of the methods
which have been presented in the books of Mesarovic et al. and Lasdon: e.g. there are extensions to
constrained and dynamic optimization. A short review can be found in [29].
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Chapter 4

Present focus in research

There is also some recent summarizing literature on hierarchical and distributed model-predictive
control, e.g. Rawlings and Stewart [30] discuss oppurtunities and challenges of research in HD-MPC,
e.g. the robustness to model errors or how to deal with communication disruption. Scattolini [11]
focuses on different hierarchical and distributed control topologies and also discusses the states open
questions for the future, such as how to partition the system.

In the following sections the present focus in research for hierarchical and distributed control
systems is summarized. On the one hand, methods for multi agent systems are summarized. On the
other hand, the main focus is on methods for systems in process engineering.

4.1 Distributed control for multi agent systems

Recent research in the field of distributed and hierarchical control is mainlydriven by applications
such as unmanned and autonomous vehicles [31, 32, 33], and in particular wireless communication.
Typically these systems are modelled by linear dynamics as kinematic agents with ˙xi = ui , xi ∈ R

ν , as
dynamic agents with ¨xi = ui , xi ∈ R

ν or sometimes by dynamics of even higher order [34]. Thereby
ν is the dimension of the considered space which is typicallyν = 2 or ν = 3. An important property
of this class of systems, commonly referred to as Multi Agent Systems (MAS),is that the different
subsystems, the agents, are origininally not coupled. But there are some common goals such as con-
sensus [34], pattern formation, flocking or the avoidance of collisions [31, 35, 36]. In order to achieve
these common goals coupling control methods are introduced. Even though MPC is an important
control method in the field of MAS, research is not limited to optimization based control methods.
Other modern control tools applied, are for instance linear matrix inequalities [33] or control barrier
certificates [36].

4.2 Hierarchical and distributed control in process engineering

If energy or process engineering systems are considered, the topology of the systems will change
noticably compared to one of a MAS. The subsystems of these applications strongly interact with
each other already without any futher coupling controls, e.g. by the exchange of energy or mass
streams, while the subsystems of a MAS do not interact without any control. Thus, the objective of
the control problem also changes. Furthermore, dynamics of these systems cannot be discribed by
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simple linear dynamics as for MASs. The dynamics are normally characterizedby large nonlinear
descriptor systems.

The subsystems are often controlled using optimization-based control methods such as MPC, but
the controllers are usually implemented in a decentralized manner today, i.e. without accounting for
interactions between the subsystems. Hence, the goal of coordinated andcooperative control focuses
on how to expand existing control structures, such that the optimal solution of the global problem can
be achieved. Although normally these systems can be described as couplednonlinear ODE ore DAE
systems, the main research focus is attached to linear time-invariant systems, either in continuous time
or in discrete time description.

While in process systems engineering the focus in hierarchical and distributed control is on MPC,
there are also other approches. E.g. Sun et al. [37] discuss a controltopology based on linear state-
feedback for control of distributed (and possibly renewable) energyresources.

4.2.1 Linear HD-MPC methods

Wakasa et al. apply the dual decomposition method of Lasdon to linear time-invariant systems. As the
objective function of the dual problem there is non nondifferentiable, thedual problem is solved using
a subgradient optimization algorithm [38]. They apply the proposed method intwo case studies with
3 and 15 scalar double-ingegrator subsystems. Necoara et al. propose a dual decomposition based
method, called the proximal center method, which can be applied for the optimization of linear time-
invariant systems with convex objective functions [39]. Another price-driven coordination method
for linear systems is suggested by Cheng et al. [9] and Marcos et al. [3],respectively. There, the
coordinator updates the prices based on the gradients of given resources using Newton’s method. In
contrast, in dual optimization, the Lagrange multipliers are updated based on the deviation of the
interaction constraints.

Delvenne et al. [40] derived a value for the worst-case performanceof any distributed control
strategy. They consider LTI discete-time systems with an identity input matrix. Thus the considered
class of systems is quite restrictive. Vaccarini et al. [4] consider an unconstrained distributed MPC
solution for a class of linear time-invariant discrete-time processes. Their method guarantees closed-
loop stability, while no stability constraints have to be used. The stability results can be used for
the tuning of the decentralized controller. Zhang and Li also present an MPC method for linear
time-invariant discrete-time systems [41]. However they only consider a class of serially connected
subsystems, i.e. cascade processes. They could derive stability resultsin case of unconstrained control
systems. Jia et al. propose a distributed MPC scheme with stability constraint (DMPC-SC) [42, 43] for
linear time-invariant systems. This scheme ensures stability for a class of controllable systems. The
method is successfully applied to the load frequency control problem of a power network. Richards
and How [44] propose a distributed MPC method for LTI discrete time systems.The methed is
proven to guarantee robust constraint satisfaction and convergenceunder the assumption of bounded
disturbances.

Rawlings et al. also consider linear time-invariant discrete-time systems [30, 45, 46]. However,
they propose a feasible cooperation-based distributed model predictivecontrol method, thus the itera-
tion can be terminated at any time in order to get a feasible, but suboptimal solution. Global optimality
is achieved for full convergence. Thereby local controllers requireknowledge on the full global ob-
jective function. Cooperation is achieved, as at each iteration, the trajectory of inputs is a convex
combination of the current local solution and the previous iteration. Performance of the coordination-
based method is compared to the performace of fully centralized MPC, fully decentralized MPC and
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communication-based MPC. In communication-based MPC, communication of variables is assumed,
though that method does not calculate convex combinations of the optimal inputs. The cooperation-
based MPC is extended by Pannocchia et al. using Partial Enumeration [5]. A solution table is used
to increase the speed of computations. For this purpose the solution table stores some of the most
recently optimal active sets.

Negenborn combines methods of multi-agent control theory and methods of model predictive
control [47, 48]. The thesis focuses on methods for linear time-invariantsystems, though also non-
linear optimization methods such as pattern search are applied. Thereby different control topologies,
single-layer and multi-layer topolgies, are considered. The methods are exemplarily applied to various
problems from the domain of power networks.

Aske et al. propose a practical coordinator MPC [49], that fits to the specific problem of a large-
scale gas plant, namely the Kårstø gas processing plant in Norway. The hierarchical MPC structure
consists of several local model predictive controllers and a coordinator, that controls the variables,
which are economically relevant. The decomposed MPC structure is implementedusing the standard
in-house MPC software SEPTIC.

Dantzig-Wolfe decomposition [24] is still a method, which is in the interest of research, although
it is restricted to linear problems. Gunnerud et al. [50] apply this method for the real-time optimiza-
tion of oil production in a petroleum asset, namely the Troll west oil rim. However, this real-time
optimization is only static. Cheng et al. [6] also apply the Dantzig-Wolfe decompostion method for
a static optimization of large scale-systems. They regard the static set-point optimization as a an op-
timization of a linear process with linear objective function. The method is illustrated for a simple
case-study, consisting of three static subsystems.

4.2.2 Nonlinear HD-MPC methods

Nonlinear model predictive control methods are quite rare in research. The most popular nonlinear
method is still the dual optimization method [27]. Though, research for that method is mainly focused
on the application to linear systems as described in the sections above. Talukdar et al. propose a
cooperative distributed model predictive control method for nonlinear systems [51]. They assume that
subsystems are only able to communicate and cooperate with neighboring subsystems. The method
is applied to the IEEE 118 bus test case in order to study how to prevent cascading failures of that
network. Another nonlinear method is proposed by Liu et al [52]: Their Lyapunov-based model
predictive control method requires only one directional communication between the different control
units. However, control is distributed only into two different controllers. The method is applied to a
chemical process example consisting of two CSTRs and one flash tank separator. Gromov et al. [53]
considered a very special type of system: The considered chromatographic batch process is descibed
by nonlinear partial differential equations on the one hand and by discrete variables, which represent
different configurations of that process, on the other hand. The hierarchical control appoach is split
into two layers: On the lower layer, continuous optimzations of the partial differential equations are
performed, while on the higher layer different configurations are considered. Dunbar [54] proposes
a distributed MPC method and applies the method to a system of coupled oscillators. Magni and
Scattolini [55] propose a stabilizing decentralized MPC scheme for nonlinear discrete-time systems.
However, as the method does not involve any coordination or cooperation, the resulting control will
be suboptimal.
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Chapter 5

Conclusions

Hierarchical and distributed methods have now been studied for approximately 50 years. Based on the
reviewed literature, we conclude, that the main interest for hierarchical and distributed model predic-
tive control has been focused on methods for linear time-invariant systemswith respect to quadratic
objective functions in the past, where meaningful progress has been achieved. Hierarchical methods
have been considered as well as distributed methods; feasible as well as infeasible methods.

However, research for methods, which can be applied to nonlinear systems, and which are neces-
sary for economical or ecological dynamic optimization are still quite sparselyspread. Furthermore,
the application of the methods to real large-scale processes has still to be done. Normally the methods
have been applied only to small simple-toy problems. Then, many of the proposed hierarchical and
distributed MPC methods suffer from bad performance [6], which is oftenworse than the performance
of centralized MPC. This means that computational requirements for hierarchical and distributed MPC
methods are often higher than those for centralized MPC methods. Hence, one of the main goals of
HD-MPC methods has clearly not been achieved so far. Usually this problem is caused by the iterative
nature of most of the proposed MPC methods, although a single iteration of a local problem can be
solved much faster than the centralized global problem.

From the author’s point of view, many of the ideas which have been established in the 1960s and
1970s and summrized by Lasdon [26], Mesarovic [10] and Findeisen [28] have only little or not at
all been persued in subsequent research. In the author’s point of view, it is worth looking into that
literature again, in order to improve existing hierarchical and distributed MPCmethods or even derive
new HD-MPC approaches.

As the existing methods are really heterogeneous, an objective and comprehensive comparison of
existing methods is almost impossible. The methods especially differ at first in theconsidered types
of distributed systems: e.g. on the one hand linear systems and on the other hand nonlinear systems
are examined; systems are considered in continuous-time and in discrete-time form; special types of
systems as cascade systems as well as the most general interconnection toplogies are taken into ac-
count; some methods only fit to a special application; and the interactions of systems are described in
various ways. Additionally methods can be devided into feasible and infeasible methods. There are
model-coordination methods and goal-coordination methods, though the latter dominate the existing
HD-MPC methods.
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Furthermore, in order to judge the different methods one has to differentiate between different
applications. While for steady-state control, as in centralized methods, linearmethods can be applied
very well, for processes, that are run in different operational stateswith transient changes of state,
nonlinear methods are required in order to get a real economically and ecologically optimal control
system. Then, the time constants of the process as well as the considered time horizon have to be con-
sidered, as these values define the requirements on computational performance of the model predictive
control methods. Moreover, the topology of the real processes has to be known: An MPC method for
the most general system topology, i.e. a system with a uniform coupling of allstate variables, will
most likely not be the optimal solution in application. In particular, the considered type of distributed
systems usually consists of subsystem with a strong internal coupling. However the interaction with
other subsystems will most likely be less strong.

Summarizing, it can be said, that, although hierarchical and distributed methods have been studied
already half a century, research in this area still seems to be more in the beginning. There are still
various open questions, which have to be solved, e.g.: What is the appropriate control structure for
large-scale systems? How should different time-scales within different subsystems be considered in
a distributed control topology? When do we have to consider nonlinear methods, for which purpose
could linear methods be sufficient?

Due to an increasing competition on market as well as an increasing awareness of environmental
problems and decresing resources, it is necessary to operate processes such as chemical and power
plants always in an economical and ecological optimal manner. In order to achieve this high goal, it
is necessary to apply nonlinear control methods for the operation of the considered plants. However,
according to the literature, there is clear lack of nonlinear HD-MPC methods so far. Thus, it has to be
one goal for the following years, to shift the focus from linear to nonlinear methods. Though, research
on linear methods will still have some importance, as most of the analytic properties, such as stability,
robustness, and convergence, can mainly be prooven for linear systems.

An important aspect, which has to be considered, is the fact that the developed methods will be
applied only in future systems with future computer architectures. Hence, computational power will
then be further increased, such that an application of nonlinear methods becomes more realistic than
it is today.
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