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Executive Summary

We present different approaches for distributed model predictimralodeveloped in the HD
MPC project. On the one hand we present a completely new approactstidowted nonlinea
MPC, which is driven by a new coordination mechanism. The embedded metitstl gradient
based distributed dynamic optimization (GBDDO), is based on linearized infamnaf the over-
all system to coordinate the overall system.

Then we present a DMPC scheme based on Han's method. The predistitibdited version o
Han’s method is an improved version, and it is successfully applied to in theot@f a canal
system, described by a linear system. The third method presented is basedaperative game.
There, from a game theoretic point of view, at each time the agents are glayinoperativ
game. The description is limited to a decomposition of the problem into two subprsbénd
the method is applied to the well-known four tanks example. The fourth methedestansio
to an existing cooperative DMPC scheme in order to track time-varying platg-target outpu
signals. The method is also applied to the nonlinear four tanks system.

In order to cope with economical objective functions, we present a digiddMPC method bas
on Benders’ decomposition. The method is successfully applied to the multiestamperatur
control in buildings. Finally we present an infinite horizon model prediatiwetrol with target
and zone control. Hence, in contrast to the other methods presented,higsaechical contro
approach and combines an economic stage (real time optimization) with infinizemdAPC.
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Chapter 1

Overview

In the beginning of the project, we have reviewed the existing methods f@rbiecal and distributed
model predictive control, as reported [n [51] 55, 56]. There we haea she lack of methods for
nonlinear hierarchical and distributed MPC as well as robust methott¥dvIPC, which is the basis
for our ongoing research. First results related to robust MPC aoetespin [57]. Thus, in this report
we will not focus on robust methods. In addition, we report the developmienew coordination
mechanisms [41], which are used for hierarchical and distributed moelgigtive control, but which
are not included in this report in order to avoid a duplication.

Chaptel 2 presents a new method for distributed MPC, in particular noniBC. The gradient-
based distributed dynamic optimization features a new coordination mechaniendifferent con-
trollers are coordinated by means of an inclusion of linear information of Weeal process and
overall optimality. A strength of this new method is its fast convergence. Thieaués applied to a
four tanks system and compared to centralized, decentralized andeicatydosition-based methods.

Chaptei.B an improved version of a distributed version of Han’'s method sempied, that can
be used for distributed model predictive control (DMPC) of dynamicallypbed linear systems,
under coupling constraints. Some DMPC problems of water networks ceasb@to this type. The
method is applied to a canal system. The simulation results show that the modi§da#dro faster
convergence of the method.

Chaptel# reviews the distributed MPC based on a cooperative game, Trber a game theoretic
point of view, at each time the agents are playing a cooperative game. oE#th agent proposes
values for the decision variables. In the last step, the decision varial@ahasen by consensus.
Because the controller chooses among a small finite number of differeresmaicdoperation, the
resulting input trajectories are not smooth. This control scheme is specsigraed for only two
controllers, because the number of possible modes increases in a comainey with the number
of controllers.

In Chaptei.b an existing DMPC methdd [46] is extended, such that it is palrack time-
dependent output variables. The way this controller handle the trackaigdem is characterized
by considering an artificial steady state and input as decision varial@ealizing the deviation of
the predicted trajectory with the artificial steady conditions, adding a qtiadffset-cost function
to penalize the deviation between the artificial and the target equilibrium poidtc@nsidering an
extended terminal constraint.

In contrast, the distributed MPC presented in Chdgter 6 does not coadideking or regulation
problem, but a linear cost function. Hence, economic objectives caeflred. The proposed method
is based on Benders’ decomposition. The method can handle both locglicdnad linear constraints
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but it is particular effective when the number of local constraints is sigmiflg greater than the
number of global constraints. The method is successfully applied to the multiestemperature
control in buildings.

Finally, a hierarchical MPC approach is given in Chapler 7. In thatreeheénput targets are
calculated on an upper control layer based on an economic objectiggdiunwhile on the lower
layer an infinite horizon MPC is implemented. The scheme features a zonelcoatrthe outputs of
the system are kept within a predefined zone.
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Chapter 2

Nonlinear distributed dynamic
optimization based on first order
sensitivities

The results of this chapter have been developed by Holger Scheuydah 81rd Wolfgang Marquardt
(AVT - Process Systems Engineering, RWTH Aachen University). Itshat version of the paper
[54], presented at ACC2010. Furthermore, an extensive analyie afiethod has been derived and
submitted to Journal of Process Control.

Abstract

A method for the distributed optimization of dynamic nonlinear systems is presehtedmethod
is based on partial goal-interaction operators [35]. Partial goal-interagperators provide gradient
information of non-local objective functions. Hence, these operaterased to modify the objective
functions of infimal optimization problems in order to take non-local informatiém &rcount and to
achieve an optimum for the overall objective, i.e. the objective of the entireeps. However, that
optimum is achieved by a decentralized but cooperative optimization, while coroation between
the different infimal optimization units is limited. An important part of the method is duedtralized
calculation of sensitivities. The method is applied to a nonlinear differentiabadgc simple-toy sys-
tem and compared to the dual-optimization method [25] as well as to the solutifully aentralized
and fully decentralized optimizations.

2.1 Introduction

Decentralized control and optimization methods are rapidly gaining intereslay’soresearch. This
development is driven by many reasons:

» Better computational performance is anticipated [1];
e communication in distributed systems may be limited;
« reliability and maintainability could be increased compared to a centralized sojd8%

« and completely new applications are considered.
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These new applications are positioned mainly in the field of autonomous vefgkS 33], such
as air crafts or satellites. In process system engineering, optimizatiod bas#ol methods such
as linear and nonlinear model predictive control or dynamic real-time optimizati® the methods
of choice. These systems differ to the above-mentioned multi-agent systanig imahe fact, that
different subsystems usually interact with each other. Though, normaléytthese subsystems are
controlled independently by decentralized methods, which do not take ioboiaicthe interaction of
the subsystems. Performance, optimality, reliability and maintainability are kegrslfior research
in distributed cooperative and coordinated control methods.

Already in the beginning of the 1970s, Mesarovic etlall [35] presenfaddamental monograph
on distributed and hierarchical systems. They formulated some veryajgrarciples on how a
coordinated control structure can be implemented, namely the ’Interactiond®@aRrinciple’ and
the ’Interaction Prediction Principle [36]. In 1970, Lasdon publishedther important monograph
[26]: The dual optimization method is presented, which has gained a lot oésttm research of
hierarchical and distributed optimization.

There exist already various survey papers on the topic of hieratemdalistributed control litera-
ture. In 1973, Smith et al. [61] published an introductory overview on thie tf hierarchical systems
theory. In 1975, Singh et al. presented a review on practical hiecatatontrol methods for intercon-
nected systems. In 1977, Mahmoud presented a very comprehensiveeor32]. While the main
subject of that article covers multilevel optimization techniques, it also cdliergarly progress in
multilevel systems identification as well as the application to water resourcersydte1978, Sandell
et al. presented another survey|[50], which covered the topics ofIreimaglifications, stability anal-
ysis of interconnected systems and decentralized control methods. ¢erst egticle Rawlings and
Stewart [47] summarize the present status of research in the field aficated optimization-based
control, as well as opportunities and challenges for future researtdt. ok different control topolo-
gies can be considered in hierarchical and distributed control, whickuanenarized by Scattolini in
a recent review paper [52].

The main research focus in hierarchical and distributed model predminiol is attached to
systems of linear ordinary differential equations (ODEs). Wakasa {@4lapply the dual decom-
position method of Lasdon to linear time-invariant systems, where the duaépmas solved using a
subgradient optimization algorithm. Necoara etlall [40] propose a deahg@osition based method,
called the proximal center method, which can be applied for the optimization af limee-invariant
systems with convex objective functions. Scherer et al. [53] implementésirdbdted optimization
method for discrete-time LTI systems for the regulation of a distillation column.

In the following we will focus on distributed dynamic optimization methods for noalireystems,
which is a basis for nonlinear DMPC and nonlinear dynamic-real time optimizafiorthe one hand
the dual optimization method is shortly reviewed and on the other hand a newdnsthesented,
which is based on partial goal-interaction operators [35]. This grathased distributed dynamic
optimization (GBDDO) method belongs to the class of goal-coordination metfiddsinfimal ob-
jective functions are modified using information of the whole process, iaraodachieve optimality
for the overall process. The remainder of this chapter is organizenllaw$: Sectiol 22 states the
nonlinear distributed dynamic optimization problem considered. Sdctibn Z8missboth optimiza-
tion methods considered. In sectlonl2.4 a case study is performed. The matbalso compared to
a completely decentralized as well as a fully centralized solution. Finally theribis summarized
in Sectior 2.b.
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2.2 Problem Formulation
We consideN subsystems, which are described by the nonlinear differential-algedzyaétions

Mi% = fi(t,x,z,u,m), %(0)=Xo (2.1a)
0=gi(t,%,z,u,m), (2.1b)

of differential index 1, fori = 1,...,N. t is the time,M; is the constant mass matrix, andx; o are
the differential state vector and its initial conditianis the algebraic state vecta,is the local input
vector andm are the interaction variables of the subsystienThe interaction variables are those
variables, which depend on other subsystems, i.e.

m=[m ... mN]T:H[x,z,u}T, (2.2)

with a constant matrii. The interaction variables depend only on the variables of other subsyste
i.e. m is not a function ok, y; oru;, i = 1,...,N. There may be some constraints for the state vectors
X, andz as well the input vectau;, i.e.

X
Ibi< |z| <ub, i=1,...,N, (2.3)
Ui

wherelb; anduly are the lower and upper bounds respectively. Finally the infimal dynaniimiap-
tion problems can be formulated as

rrlin ®i(t,x,z,u,m), i=1...,N (2.4)

with respect to equations (2.1)[- (R.3). As optimality for the overall prosksdl be achieved in
cooperative optimization methods, the overall optimization problem

N
mljncbzi;cbi(t»q,zhui,m), (2.5a)
s.tMix = fi(t,x,z,u,m), X(0)=xXo, (2.5b)
0=gi(t,%,z,u,m), (2.5¢)

Xi
b < |z | <ub, (2.5d)

Ui
m=Hxzu", i=1..N, (2.5e)

has to be solved. It is important to note, that the objective function has tedagable, i.e. additive
as formulated in[(2.5a). As that dynamic optimization problem is not to be solyextralized
methods, we are looking for methods to solve this dynamic optimization probleradmntposing it
into infimal subproblems. Thereby solving the infimal optimization probléms (243 ih general
not lead to the optimum of the overall problem (2.5).

For this purpose, the infimal optimization problems|2.4) can be adapted inediff@ays: Two
different methods are stated in the following section.
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2.3 Optimization methods for distributed systems

Mesarovic et al.[[35] state that coordinated optimization can be achievedidiffgrent ways: On
the one hand the model can be adapted; on the other hand the goal, i.getltiw®unctionsd;, can
be adapted. Here, we will focus upon the latter methods, which areedferras goal coordination
[35] methods. Within goal coordination methods the infimal objective functinef the infimal
optimization problemd(214) are modified, i.e.

&)i = &Di(q)i,fi), (2.6)

whereé; is an additional input variable to the adapted infimal objective funatipn

In the following, the main idea of the dual optimization method [25, 26] will be wged which
has gained a lot of attention. Subsequently, a new method is presenteigndinat method is based
on the rather old notion of ‘partial goal-interaction operatars| [35].

Both methods are iterative methods as described in the following: In a figst thte infimal
optimization problems are solved. Then, part of the local information is dpgceather optimization
units: either directly or via a coordinator. Using the new information, the optiinizan the previous
step is restarted until some convergence criterion is achieved. Herexesaf infimal optimization
problems have to be solved in order to get an optimum for the overall problem.

2.3.1 Dual optimization

We briefly review Lasdon’s dual optimization method, for a full descriptibthe method we refer

to [25/26)].
We consider the dual problem of problelm {2.5), which is
mAaxd) (A) (2.7a)
w.r.t. equations[(2]1) an@ (2.3) (2.7b)
where
d(A) = rRriTQqu“a'(t,x, zu,mA), (2.7¢)
with

o — d(t,x,z,u,m)+ AT -h(x,z,u,m)

S P (t JFAT S hi ( ) (2.7d)
= i 7Xivzivu'7m + : 'Xi7zivu'7m .
I; | | I; | |

oduals the Lagrangian function and the vecibrcontains the Lagrange multipliers. Moreover, not
only the local inputsy; but also the interaction variables are degrees of freedom. The coupling
constraints[(2]2) are reformulated as

0=h(x,zu,m)=m—H[x,zu]" (2.8)

with

N
h(X,Z,U, m) :'Zhi(xhziauiym) . (29)
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Now it is possible to decompose the overall optimization problem into the N lodahéb subprob-
lems

umr'Q ol — i (t,%,2, Ui, m) + A Thi(x,z, u, m) (2.10a)

s.t. equations[(211) and (2,3) (2.10b)

which are called primal problems.

The remaining unknowns are the Lagrange multiplierBased on an initial guess®, the dual
problem [2.7) is solved, to obtain these multipliers. For this purpose, attfiesprimal optimization
problems[(2.110) have to be solved. The Lagrange multipliers can then ibewgatated [60], as the
gradient ofg can be directly calculated from equation (2.7d), i.e.

N

Therebyh is the error in the interaction constraints. The Lagrange multipheran then be improved
using a steepest ascent method [60], i.e.

A=A 4y H, (2.12)

where! is the iteration index, ang is the step length at iteratidn

The Lagrange multipliers can be interpreted as prices, which are adjugtttd lwoordinator,
such that all coupling constraints are fulfilled and an optimum of the overalilpm is achieved.
Furthermore the dual optimization method can be interpreted as in implementatianiofataction
Balance Principle [35].

2.3.2 Gradient-based distributed dynamic optimization

Mesarovic et al.[[35] have proposed another modification of infimal ¢ikgéunctions, namely the
so called ’interaction operators’. In the following we shortly review thetiphgoal-interaction oper-
ator’, and then we discuss how it can be applied in distributed dynamic optinmizatio

Theij-th 'partial goal-interaction operator’ describes the effect ofittie local inputu; on the
overall objectived® via the j-th interaction inputn;. The operatof ;;({) is defined at a given point
G as a mappingj (G) : U — V [35]. TherebyU; is the domain of the control inpuk of subsysten
andV is the domain of the objective functiab, i.e.,u; € Ui and®d € V.

Furthermore, Mesarovic et al. [35] define the 'linearized partial gdakaction operator’. These
linearized partial goal-interaction operators can be applied to modify infibjattive functionsb;,
in order to consider overall process information in infimal optimizations. Theification leads to
the new infimal objective functions

GBDDO _ A do;
] =+ J:Z du
J#i
Another interpretation of this new objective function is the following: Therall@bjective function
® is assumed to be additive as in equat[on (2.5a). For the infimal optimizationsatadl @bjective is
considered, though all nonlocal summands are simplified to linear terms. gtdg@for the application
of the method, is to calculate the sensitivit%‘%, which will be explained in the following part of
this section. These sensitivities will in the following be referred to as interasgasitivities.
First we notice two different facts:

) (ui —G). (2.13)

u
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1. The interaction sensﬂmﬂe%r contain information of two different subsystems. Hence, one
important issue is how to calculate these sensitivities in a distributed method.

2. The input vector; is a function of time, e.g. an infinite-dimensional vector. In order to solve
the problem, these functions have to be described by discrete parameters.

We first deal with the second fact: It is a common approach to explicitly digerthe input variables
U, e.g. by some B-splines representation [12,58], i.e.

n“l k

Uik = ZU.H g+ (2.14)

wherei is the index of the subsysterkjs the index of the input signal arids the index of the base
function (g“‘) and the corresponding coefficiemi . u is the order of the B-splines.
Now we come back to the first fact: In order to calculate the interaction setysiiti is written as
a product of local sensitivities as follows:
do; d®; dm;

— = C . 2.15
dui,kJ dmj dui7k,| ( )

It can again be noticed, that the interaction variastgsare functions of time. Thus, in order to
calculate the first factog%!', which we call local input sensitivity, we again apply a discretization by
B-splines:

nm] o

mlo—szOp% t) (2.16)

Here,]j is the index of the subsystemis the index of the signal anglis the index of the base function
(pé’” and the corresponding coefficiemj , ,. Then, we get

chJ Nm; Nm 4 |: dCDJ ) drﬁJ,Op:| (2 17)

ddi k| - Z pzl dijop dlik

o=1

Nm, is the dimension of the interaction variabtg while ny, , is the number of parameters for the
discretization ofn; ,. The term”'d”l}i'*;"lp can be written as

o o T N
dnjj,o,p _ OMjop dBf,o,l n 0”21'70,p’ (2.18)
ddi OYio) dlix) Uik

Where% and a;ﬂ‘*‘"lp can be derived directly from the coupling constraifisl(2y2), summarizes

the parameters of the state variableandz for the corresponding base functhnﬁ’ The derivatives
dy' WI|| be referred to as local output sensitivities. Finally, the requiredigradnformation can be
wrltten as follows:

chJ nmj nmj,o d@] amj 0,p dy| 0 dmj o,p
@) _ i 4 9Mio, ‘ 2.19
ddi x| oZl le dMjop \ OYier dliki Ol ( )

These gradients have to be calculated once, after the infimal optimizatiofisiahed. Then the
infimal objective functiond(2.13) are updated using the new gradiemhiraiion and the optimization
is started again.
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2.4 Optimization example

The methods discussed in the preceeding section have been implementesirfgrlea nonlinear,
differential-algebraic system, namely a 4-tank system, which is depicted i@.Big.

The mathematical model describes the heightas well as the flow rate, of the four tanks
(g=1,...,4) using mass balances and Toricelli's law. The heightare differential variables while
the flow rates, are algebraic variables. The system is decomposed into two subsystekssl &md
2 on the one hand and tank 3 and 4 on the other hand. This decomposititia re$he two coupled
nonlinear DAE subsystems

X1 :AIl (Ul—Z]_), (2.20a)
%2 =AM (az+ (1-B)m —2), (2.20b)
Xl(O) = X1.,07 Xz(O) = X2707 (Z.ZOC)
O0=z1—a1\/20%, (2.20d)
O0=2z—ax\/20% (2.20e)
and
X3 =Agt (Up—23), (2.21a)
%a =AM (Bzz+(1—a)m—2z), (2.21b)
x3(0) =x30, X4(0) =X40, (2.21c)
0=1z3—a3\/20xs, (2.214d)
O=z—as\/20X% (2.21e)
with controlled input flow rates; and coupling constraints
m—273 m —Z3
h= = : 2.22
a5 [ @22

Additionally there are the following input and path constraints:

0<u<0.6-1073, (2.23a)
0<z (2.23b)
0<x<03 . (2.23c)

The overall objective functiom is defined as

tf

®— /xz—x;*)?dw/ — xde924t. (2.24)

0

=P, =P,

There x$eSandx$eSare setpoints for the lower tanks of the system.

For the solutlon of the dynamic optimization problems we applied a full discretizatidrsolved
the problems simultaneously using the Matlab nonlinear constrained optimizaken fsoi ncon.
The optimization horizon has been set to 25 seconds with a sampling time ofridseco
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Figure 2.1: Considered 4 tank system

For comparison, on the one hand a centralized optimization of the problebebasmplemented,
which serves as the reference for all methods. On the other hand, etelydecentralized optimiza-
tion has been realized, which neglects all interaction between subsystedthsiilasystem 2, i.e. the
interaction variablesy andmy, are assumed to be zero.

Results of the offline optimization studies are exemplarily displayed in Eig$..2, 2vhich con-
tain the trajectories of the heights, x4. The coupling between the subsystems has been varied with
[a, B] = [1,1] (completely decoupled)a,B] = [0.9,0.8] (weakly coupled), anda, 3] = [0.7,0.6]
(strongly coupled). As one might expect, the decentralized optimization mettach neglects all
interaction within the system, does not lead to reasonable results, excty tase of the decoupled
subsystems. The corresponding trajectories differ substantially frose thicthe optimal 'reference’
solution.

Although the system seems quite simple and nonlinearities appear to be quitetieakial-
optimization method did not converge in these studies. FEig$. 2.8 ahd 2.4 corgadpttmization
results for 50 iterations and a constant step giz&imilar results have been achieved for different
step sizeg/ and for far more iterations. In all cases, the dual-optimization method waaht®to
adjust the Lagrange multipliers, such that all coupling constrdints|(2.2&) be fulfilled.

Finally, the gradient based distributed dynamic optimization (GBDDO) metho@sdhe opti-
mization problem of the 4 tank system very well: The trajectories of the GBDDtdse of the
‘reference’ solution. Thereby convergence is quite fast: The figooatain the trajectories after only
four iterations of the method.

2.5 Conclusions and future works

A distributed optimization method, the GBDDO method, which is based on the notipartal
goal-interaction operators, has been presented. This method usiEngnairmation of the overall
objective function in order to modify the infimal objective functions for aficefnt optimization of
distributed dynamic systems.

A key part of the method is the decentralized computation of the interactioitigiies, i.e.
those sensitivities, which describe the dependence of an infimal obj&atis®on on a nonlocal input
variable. These sensitivities are derived by a product of local sdtisii in particular the local input
sensitivities and the local output sensitivities. However, there are soaédcks for GBDDO: If
a continuous-time system is considered, gradient information of the intaraci@ablesm has to
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0.14¢
= 012 reference||
X' — dec. opt.
o1 v dual opt. |
~ | ~ |--- GBDDO
0 5 10 15 20 25
t
0.1 ]
=
X
0.09¢ :
0 5 10 15 20 25
t

Figure 2.2: Trajectories of the heightsandx, for the 4 different implemented methods for, 3] =
[1,1]: centralized optimization (reference), decentralized optimization (dec., dpg) optimization
(dual opt.), and gradient-based distributed optimization (GBDDO); 1 iteration

0.14} = -
= 012l reference ||
Q! dec. opt.
01 ki v dual opt. |
‘ ‘ ‘ ~-- GBDDO
0 5 10 15 20 25
t
i S . ]
0 5 10 15 20 25
t

Figure 2.3: Trajectories of the heights and x4 for the 4 different implemented methods for
[a,B] =[0.9,0.8]: centralized optimization (reference), decentralized optimization (dec., dph)
optimization (dual opt.) after 50 iterations, and gradient-based distributéiination (GBDDO)
after 4 iterations
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0.14| I NI
P T ]
012t ot reference||
< : dec. opt.
o1 dual opt. |
' ‘ | -- GBDDO
0 5 10 15 20 25

Figure 2.4. Trajectories of the heighks and x4 for the 4 different implemented methods for
[a, B] = [0.7,0.6]: centralized optimization (reference), decentralized optimization (dec., dpg)
optimization (dual opt.) after 50 iterations, and gradient-based distributihipation (GBDDO)
after 4 iterations

be approximated by discretization. As, for large-scale systems, the daloutd sensitivities is a
demanding task of dynamic optimization, it is to be decided whether to chooseseascretization,
which results in an unprecise sensitivity information, or a fine discretizétianleads to an additional
computational burden.

The GBDDO method has been successfully applied to a simple nonlineaedifdralgebraic
system, namely a 4-tank system, where convergence has been achigvediyfew iterations.

Future work will concentrate on the implementation of the GBDDO method for aamiis+time
systems and on improving the computation of the interaction sensitivities. Im trdesrify the
results presented above, the application to a real application problem witiystmonlinearities will
be considered.
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Chapter 3

An improved distributed version of Han’s
method for distributed MPC of canal
systems

The work of this chapter has been developed by Minh Dang Doana3dfeviczky and Bart De
Schutter, and it has been published inl [14].

Abstract

Recently, we have introduced a distributed version of Han's method thateased for distributed
model predictive control (DMPC) of dynamically coupled linear systemdeunoupling constraints
[13]. Some DMPC problems of water networks can be cast into this typeidpéper, we propose
an improved version of this method and apply it to a canal system. The simulasiolisrshow that
the modifications lead to faster convergence of the method, thus making it mamtécal in control
of water networks.

3.1 Introduction

Optimization techniques have played a fundamental role in designing automatiiol®ystems for
most part of the past half century. This dependence is even more obmidtoday’s wide-spread
use of online optimization-based control methods, such as Model Predi@introl (MPC)[[30, 46].
The ability to express important process constraints and characterizegtmmpive economic objec-
tive functions has made MPC the industry standard for controlling largke-systems ranging from
chemical processes to basic infrastructure.

For control of large-scale networked systemantralizedMPC may be considered impractical,
inflexible, and unsuitable due to information exchange requirements andutatiopal aspects. The
subsystems in the network may belong to different authorities that preseding all necessary in-
formation to one processing center. Moreover, the optimization problemegidig centralized MPC
can be excessively large for real-time computation. In order to deal wile timitations distributed
model predictive controlDMPC) has been proposed for control of such large-scale systgnug-
composing the overall system into small subsystéms [9, 22,47]. Thestabsythen employ distinct
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MPC controllers that only solve local optimization problems, use local informditam neighboring
subsystems, and collaborate to achieve globally attractive solutions.

Approaches to DMPC design differ from each other in the problem sekqu. systems with
decoupled dynamics|,_[16] proposed a DMPC scheme focusing on multiplele® with coupled
cost functions, and utilizing predicted trajectories of the neighbors in gatasystem’s optimization.
A DMPC scheme with a sufficient stability test for dynamically decoupled systeassproposed
by [24], in which each subsystem optimizes also over the behaviors ofigsbuws. [48] proposed a
robust DMPC method for decoupled systems with coupled constraintg] basmnstraint tightening
and a serial solution approach. For systems with coupled dynamics aodpiied constraints [63]
proposed a distributed MPC scheme, based on a Jacobi algorithm ttsaviteahe primal problem,
using a convex combination of new and old solutions. Other researchdétatte DMPC field is
reported by([8,4,10,15,21,27,/34]40]. A recent survey on @\MBN be found in [52].

Recently, we have developed a distributed version of Han’s parallel shéh@onvex optimiza-
tion [13]. The method aims to define local controllers for dynamically couplésystems, which
share coupling constraints and minimize a separable objective functioringely a decomposition
of the dual optimization problem such that local problems have analyticdlawdthe algorithm has
an iterative update procedure which converges asymptotically to the gipbalizer of the primal
problem. At each iteration, the controllers exchange information with otheghtoring” subsys-
tems, with which they are “connected” in terms of dynamics or constraintlicoup

In this paper, we present an improved distributed version of Han'dlgleaigorithm for a class of
convex optimization problemis [1.3,20] and show that it is applicable for DMB&ater networks. The
improvements are illustrated in a simulation of the new DMPC scheme for a 4-caaah system.
The paper is organized as follows. The problem setup is described fio88&2. In Section 313,
we summarize the original Han’s method and the distributed version, followedebnew modified
distributed version to speed up the convergence of the algorithm. The simuiasidlts in Section 3.4
illustrate the properties of the DMPC scheme for the example setup of thel-ganal. Section 3.5
concludes the paper and indicates some directions for future research.

3.2 Problem setup

3.2.1 The canal system

In this paper we illustrate the application of the novel DMPC approach to thieat@f a system of
irrigation canals. Irrigation canals are large systems, consisting of mamgétitey components, and
spanning vast geographical areas. For the most safe and effipienattion of these canals, maintain-
ing the levels of the water flows close to pre-specified reference valeesdsl, both under normal
operating conditions as well as in extreme situations. Manipulation of the wates ih irrigation
canals is done using devices such as pumps and gates.

The example irrigation canal to be considered is a 4-reach canal systbnstmated in Figurg 3] 1.
In this system, water flows from an upstream reservoir through theeesaghder the control of 4 gates
and a pump at the end of the canal system that discharges water.

The control design is based on the master-slave control paradigm, in thieichaster controllers
compute the flows through the gates, while each slave controller uses thedat@l actuators to
guarantee the flow set by master controller [59]. We will use the new DMP@adédo design the
master controllers.
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gate 1

upstream

reservoir reach 1

gate 2

gate 3

reach 3
gate 4

reach 4

pump

Figure 3.1: The example canal system

3.2.2 Modeling the canal
Subsystem modeling

The canal system is divided into 4 subsystems, each of which corrdspma reach and also includes
the local controller at the upstream gate of the reach. Theubsystem has one more controller,
corresponding to the pump at its downstream end.

We first use a simplified model for each subsystem as illustrated in HigdrariZhen obtain an
overall model by connecting subsystem models. A subsystem is approlimmatgeled by a reservoir
with upstream in-flow and downstream out-flow.

The discrete-time model of reacks represented by:

1 h = ,IS (@) — (Qhut)] (3.1)

where superscriptrepresents the subsystem index, subs&rigfor the time indexJs is the sampling
time, his the downstream water level of the reach (zero level is set at the antarscsteady statedg
is the water surface (volume of reservoih=As), Qi and Qg are in-flow and out-flow of the canal
which are measured at the upstream and downstream ends, redpeddeaote the flow passing
ith gate byq', and the flow passing the pump Ipf. Due to the mass conservation law, we have
b= Q1 =d*, fori =1,2,3, andQ?, = p*.
In order to derive local dynamics, we choose input and state vectgrshsf/sten as

—
d i=1,2,3
RIS
k

The dynamics of each subsystem can be represented by a discrete-tisae, tilne-invariant
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Figure 3.2: Model of a reach

model of the form:

hia= 3 ABIY 32
=4
with the state-space matrices:

Al= 1, i=1--.4 Al= 0, i#]j

B = TyA, , i=123 B"=[T/A} —T/A}]

B = _Ty/AL , i=12; B¥=[ -TyA? 0]

Bi=0, jé&{ii+1}

Centralized MPC problem

The centralized MPC problem makes use of a quadratic cost function:

4 N-1

J= Zi kZO ((UL)TRUH (XL+1)TQiXL+1) (3.3)

in which N is the prediction horizon, anfl);, R }i—1 ... 4 are given positive definite weights. It is easy
to verify that this cost function can be rewritten as- x" Hx whereH is a block-diagonal, positive
definite matrix.

The constraints of the optimization problem include dynamical constraints (eendidel equa-
tions), initial state constraint, terminal constraykht: 0,i=1,---,4, and local state and input con-

straints:
Ul <Umase Xl < Ximax

Following the method ofi [13], the optimization problem to be solved by the cerachlizPC
controller at each sampling interval can be represented in a compacasorm

min  x'Hx (3.4)
X
st. a'x=b, I=1... ng

ax<b, |=neg+1,....s

With S = Neq+ Nineq: Wherenegq andnineq are the number of scalar equality and inequality constraints,
respectively.
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3.3 Distributed Model Predictive Control method

The optimization probleni(3.4) will be solved by a distributed algorithm that isdbas Han’s parallel
method for convex programs [20]. In the following we will give a summanHah's method for

convex quadratic programs, and then describe the distributed versidants method for quadratic
programs in the form_(3l4). Then we will proceed by describing the modifigtiltlited version,

which is the main contribution in this paper.

3.3.1 Han’s parallel method for convex quadratic programs

The original Han’s method considers general convex optimization probMrese the constraint is
an intersection of many convex sets. The algorithm is based on Fenchaliydo perform a dual
decomposition, and iteratively projects the dual variables onto local eamissets. The sum of dual
variables can be shown to converge to the minimizer of the dual problem A26inplified version
of Han’s method for the quadratic optimization probléml(3.4) is summarized inrithgo3.3.7.

Assumption 3.3.1 Han’s method for convex programs

Choose parametar big enough. For p=1,2,...:

1) Forl=1,...,s, findZ® that solves
o1 (p-1) —1)°
min  Z||z+ay, —xP=)2
st. a'z=b or a'z<h
2) Assigny” =P+ (1/a) (37 —x(PV)

3) Sety® =y{P 4 ... 4y
4) Computex(P) = H-1y(P)

In this representation, each vecipis a dual variable correspondingltb constraint. For problem
(3.4), Han’s method was proved to converge to the global optimum if thefanstion is strongly
convex, or equivalently iH is positive definite[[20]. An interesting property of this method is that
the number of parallel processes is equal to the number of constraintpgased to other dual
decomposition methods where the number of parallel processes oftdsa gguaumber of variables).

3.3.2 Distributed version of Han's method

Han'’s algorithm involves calculation of the global variables, therefolelaadcoordination method is
required. A distributed version of Han’s method was proposed by @t jt makes use of the explicit
solutions in Step 1 of Algorithm 1, and exploits the structuré ofl (3.4) to deceefh® computations,
hence avoiding global communications.

1 [20] recommended = ag £ s/p, wheresis the number of constraints apds one half of the smallest eigenvalue of
H.
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The main idea behind the distributed version of Han’s method is illustrated indsS@8 and 314,
with a simple system consisting of 4 subsystems and the coupling matrix that sbawvgsibsystems
are coupled via their variables (boxes on the same row illustrate the varibatese coupled in one
constraint). In Han’s method using global variables, a subsystem hasnmmgnicate with all other
subsystems in order to compute the updates of the global variables. Fastifileuted version of
Han’s method, each subsystem only communicates with the other subsystetnistothe variables
are necessary for computing the updates of its local variables.

The distributed version of Han’s method was proved to achieve the samergence property as
the original method of Han [13].

3.3.3 Moadifications of Han’s method to speed up convergence

A disadvantage of Han’s method (and its distributed version) is the sloweogerce rate, due to the
fact that it is essentially a projection method to solve the dual probleim of (Brefore, we need to
modify the method to achieve better convergence rate.

In this paper, we present 2 modifications of the distributed version ofsHaathod:

 Scaling of the step sizes related to dual variables by using diffeieralues for the update of
each dual variableinstead of the same for all dual variables.

« Use of nonzero initial guesses, which allows taking the current MPQGignlas the start for the
next sample step.

We will use the same notations aslin|[13, Section VI], which are briefly sumathhalow:

 L;: the set of indices of constraints that subsystésresponsible for updating their dual vari-
ables throughout the algorithm.

« N': theneighborhoodf subsysteni, consisting of itself and other subsystems that have direct
dynamical or constraint couplings with subsystem

* Lyi: the set of indices of constraints within responsibility of all subsysterd€ in

« x(Pli: the self imageof the global variable vectofP made by subsystemthis vector has the
same size as'P), containing all variables of subsystérat the right positions, and zeros for the
other entries.

« x(PN': theneighborhood imagef x(P’ made by subsystemusing variables of all subsystems
insideN' at the right positions, and zeros for the other entries.

(PN

assuniwe i

x(Pandx(PM is that only the values of variables belonging to subsystera correct, while

for the variables of other neighboring subsystgras\' \ {i}, the values could be different from

the real ones.

* X 4 theassumed neighborhood imagé®xmade by subsystein The difference between

« J': index matrix of subsystem it is the mask for the global variablesuch that only variables
of subsysteni are kept, i.ex(Pll = Fix(P).

We present the improved distributed version of Han’s method in the followguayithm:
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Assumption 3.3.2 Improved distributed algorithm for the MPC optimization problem

Pre-computed parameters: Each subsystem i computes and stofelkdivng parameters through-
out the control scheme:

* Foreachleli: o= (ko,)| oo, where kg is the scaling vectomy; acts as local step size regarding
I dual variable, and thereforekshould be chosen such that the convergence rates of all s dual
variables are improved. The method to choogewkl be discussed in this section.

* Foreachlel: ¢ = 611;—;‘Hflaq. We can see thaf can be computed locally by a local controller

with a priori knowledge of the parameter and the weighting blocks on the diagonal of H that
correspond to the non-zero elements (of a

MPC step:

At the beginning of the MPC step, the current states of all subsystenmeasured. The sequences
of predicted states and inputs generated in the previous MPC step are dbifteatd one step, then
we add zero states and zero inputs to the end of the shifted sequenceseewlbequences are then
used as the initial guess for solving the optimization problem in the current BtB& The initial
guess for each subsystem can be defined locally. For subsystemte temnitial guess as(©Oli, At
the first MPC step, we have?ll = 0, vi.

The idea of using previously predicted states and inputs for initialization is alppgechnique
in MPC [46]. Especially with Han’s method, whose convergence rate 18, €l initial guess that is
close to the optimal solution will be very helpful to reduce the number of iteratio

The current state is plugged into the MPC problem, then we get an optimizatbhem of the
form (3.4). This problem will be solved in a distributed way by the following iterative proeed

Distributed iterative procedure to solve the optimization problem:

Initialize with p= 0. Each subsystem i communicates with the neighberd\j to getx(©1i, then
constructsx O = 5, i x(Oll. Subsystem i computes its local dual variaf™ = Hx(O™', and
then computes initial intermediate variables:

K = maxial (O —yOR) —by,0}, 1L
Next, for p=1,2,..., the following steps are executed:

1) Communications to get the updated main variables

Each controller i communicates with its neighbors N' to get updated values of their vari-
ables, contained ix(P-Vli. Vice versa, i also sends its updated variablexifirVli to its
neighbors as requested.

After getting information from the neighbors, controller i constructs riegghborhood image
)((p*]-)p\fI as:
x(PIN' _ x(P)I]
JEN

2) Update intermediate variables y in parallel

In this step, the local controllers update corresponding to each constraint | under their re-
sponsibility. More specifically, each local controller i updatg$or each | L; in the following
manner:
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+ If constraint | is an equality constraint @ {1,..., neq}), theny® = al x(P-DIN 4 (P~1 _

b.
« If constraint | is an inequality constraint & {neq+1, .., s}), theny'”’ = max{al x(P-2N"
yl(p—l) —by,0}.

3) Communications to get the updated intermediate variables

Each local controller i communicates with its neighbors to get updazf@ﬁvalues that the
neighbors just computed in Step 2).

4) Update main variablesin parallel

Local controller i uses allyl(p) values that it has (by communications and those computed by
itself) to compute aassumed neighborhood imagkx:

X S aiv.“’)c_l (3.5)
€0y
Then controller i selects the values of its variablexi@ﬂﬂ;e(}to construct the newelf image
X(PI = 3O (3.6)
which contains §* ..., uy®) 5P

After updating their variables, each local controller checks the local teatiom criteria. When
all local controllers have convergédthe algorithm stops and the local control actions are
implemented, otherwise the controllers proceed to Step 1) to start a netidtera

Implement MPC input: ‘
When the iterative procedure finishes, each subsystem applies thepﬁnsdgFP), then waits for
the next state measurement to start a new MPC step.

Method to choose the scaling vector

In the modified version of distributed Han’s method, a good choice of tHmgagector helps to
dramatically improve the convergence speed. We have observed thantteegence rate of some dual
variables under the responsibility of a subsysienill affect the convergence rate of dual variables
under the responsibility of its neighborslifi. Therefore the choice of scaling vector should focus on
improving the convergence rate of “slower convergent” dual variatblesur simulation, we rely on
the Hessian to find the scaling vector. Specifically, for a subsystemose variables have the average
weighth; (e.g. average of entries relatedi® states and inputs in the diagonal of the Hessian), we
choose the scale facttéko,)I = 1/h;, with all | € Lj. We also multiply the scaling vectdg with a
factor 8 < 0 for enlarging the step sizes of all dual variables; this tuned in the first MPC step.

The choice of the scaling vector depends on the structure of the cerdrapaenization problem,
thus we only need to choose it once in the first MPC step. Then for thevMfetsteps, we can reuse
the same scaling vector.

2Checking the termination criteria in a distributed fashion requires a dedilcafiecscheme, the description of which is
omitted for brevity.
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3.4 Simulation results and discussion

DMPC methods are applied to the regulation problem of the simulated canahsystectior 3.2,
which has a perturbed initial state. We use distributed Han’s method with andutvitre modifica-
tions described in Sectign_3.8.3 for the same setup, and compare the raguits[F5 shows that the
distributed Han’s method with modifications achieves better convergencalfateing the distributed
optimization to converge within an acceptable number of iterations. A simulatidos#a:-loop MPC
is performed for 20 sample steps. Figure 3.6 shows that the distributed selatiaverge to the cen-
tralized solutions in every sample step.

Although the new scheme is verified by this simulation, there are still seve@ietial issues
that need to be addressed:

Firstly, there is no convergence proof for the modified distributed versidtian’s method yet.
We observe that in setups that are more complicated, the method to chdosg\seetor proposed in
this simulation does not always work well (sometimes after several sampte #temlgorithm does
not converge in the next sample steps). Note that with this method we aim talselgdaal problem,
therefore the primal iterate would be infeasible unless the algorithm caserg

Secondly, in the MPC formulation we keep both inputs and states as varidllesaentralized
optimization problem. This formulation is advantageous in distributed MPC bedhesHessian
will have a diagonal structure, and theighborhoodof each subsystem will only contain its direct
neighbors (theeighborhoodvould be greatly extended if we eliminate the states in the optimization
problem). However, using states as variables requires consideringrthmgtal equations as equality
constraints of the optimization problem, and the existence of equality constiygitally requires
an exact solution in order to guarantee feasibility. In future researehwill also study MPC for-
mulations in which all states are eliminated, so that the centralized optimization anigdguality
constraints. Such formulation would allow stopping the algorithm in a finite nuofiseps, and the
final iterate could be feasible (although it may be suboptimal).

Another problem is that the proposed method isdoadratic programsonly. Although many
MPC problems for linear time-invariant systems are formulated as quadratjcamns, there are other
variants that use different objective functions, and nonlinear MPQadnadso yield more complicated
optimization problems than quadratic programs. With such problems, we migberatble to im-
plement Han’s parallel method in a distributed fashion. This issue motivatesgbarch for other
decomposition methods that can handle more general problems, e.g. poakéems with linear or
decoupled nonlinear constraints.

Last but not least, the MPC formulation in this paper employs the terminal edmtstg = O,
which is conservative since it reduces the domain of attraction of MPC. Arowvement could be
made by replacing this constraint with less restrictive conditions (e.g. termdmsitraint set and
terminal controller). However, there is still no distributed scheme to congtracerminal constraint
set and the terminal controller (and also the terminal penalty matrix that is sobftitre Riccati
equation), other than assuming them to be completely decoupled.

3.5 Conclusions

The modified distributed version of Han’s method has an improved conveggate, thus it is more
suitable for DMPC of large-scale water networks. Future research willia finding a way to con-
struct the scaling vector of the modified distributed version of Han's mettysdhier with a theoretical
proof of the convergence. We will also investigate different distributgitrozation methods using
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dual decomposition techniques to address nonlinear MPC with more gepdralzation problem.
Another direction is to find distributed MPC schemes for suboptimal MPC.
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Figure 3.3: Communication links of thé'®subsystem in theentralizedcoordination version of
Han’s algorithm for an example 4-subsystem problem. An update for alglabiable requires the
2"d subsystem to communicate with all the others.

Figure 3.4: Communication link of thé'2subsystem in thdistributedcoordination version of Han’s
algorithm for an example 4-subsystem problem. THesBbsystem only cares about its local variable,
therefore it does not need to communicate with the others that do not coittipli. w
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Figure 3.5: Comparison of convergence rates of the former and theigibuted versions of Han’s
method in the first sampling timé&£1)
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Figure 3.6: Normalized norm of difference between the centralized amliigtnbuted solutions versus
the iteration step and sample stelp
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Chapter 4

Distributed MPC based on a cooperative
game

In this chapter we present the distributed MPC based on a cooperativesghieme presented in [31].
This control scheme considers the following class of distributed linearragstewhich two subsys-
tems coupled with the neighbor subsystem through the inputs are defined

X1 (t+1) = Apxa(t) 4+ Braug (t) + Bioua(t)
Xz(t + 1) = AxXo (t) + 821u1(t) + BzzUz(t)

wherex; € R", i = 1,2 are the states of each subsystem@ar@R™, i = 1,2 are the different inputs.

The control objective is to regulate the system to the origin while guarantéeima given set
of state and input constraints are satisfied. The proposed distributetheassumes that for each
subsystem, there is an agent that has access to the model and the stateulddyistem. The agents
do not have any knowledge of the dynamics of their neighbor, but camemicate freely among them
in order to reach an agreement. The proposed strategy is based diati@ybetween the agents on
behalf of a global performance index. At each sampling time, agents magegals to improve an
initial feasible solution on behalf of their local cost function, state and modeésd@ proposals are
accepted if the global cost improves the corresponding to the curremibso The trajectories chose
are denoted ad¢ andUy.

To this end, the MPC controllers to minimize the sum of two local performance ésdeandJ,
that depend on the future evolution of both states and inputs. Each afyarg a sequence of reduced
dimension optimization problems to determine the future input trajectoiiendU, based on the
model of its subsystem. We summarize next, the DMPC algorithm proposed]in [31

(4.1)

1. Attime stept, each ageritreceives its corresponding partial state measurem@nt

2. Both agents communicate. Agent 1 seKghg; y and agent 2 send&xo n, wherex y is the N-
steps ahead predicted state obtained from the current state aﬂpﬁ(Ihg 1),U§(t —1) shifted
one time step. This information is used to generate the shifted traject§ifes which is the
initial solution.

3. Each agentminimizesJ; assuming that the neighbor keeps applying the shifted optimal trajec-
tory evaluated at the previous time stép(t). The optimal solution is denotedf(t).

4. Each agentminimizesJ; optimizing the neighbor input assuming that it applies the shifted in-
put trajectory>. Solving this optimization problem, agerdefines an input trajectory denoted
U (t) for its neighbor that optimizes its local cost functign
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Table 4.1: Cost function table used for the decision making.

U3(t) U (t) U'(t)
us(t) J(xa(t),Uz(t), Us(1)) J(xa(t),Uz(t),Us (1)) J(xa (1), U(t), U5'(t))
! +h00(t),U3(t),Ur(t)) +J2(%2(t),Us (1), UZ(t)) +J2(Xe(t), U7 (1), Uz(1))
U (1) J(xa(t), U7 (1), U3(1)) J1(xa(t),Ug (1),U3 (1)) J(xa(t),Ug (1), U5 (1))
! +R200(t),U3(t),Ur (1)) +h(xe(t), Uz (), U7 (t) | +J(x(t),Us'(t),Us(t))
UW(t) J1()(1 t)vui\l.lv(t)vués(t)) Jl(xl(t)vui\LN(t)?U;(t)) Jl(xl(t),UiN(t),Ugv(t))
! Ta2(xe(t), U3(1), Uy (1) | +J(xe(t),Uz (1), U (t) | +Ja(xe(t),U3'(t),Ur'(t))

5. Both agents communicate. Agent 1 sebigst) andU)'(t) to agent 2 and receivés; (t) and
Ui'().

6. Each agent evaluates the local cost funcfidior each the nine different possible combination
of input trajectories; that i1 € {U3(t),U}"(t),U;(t)} andU; € {U3(t),UJ(t),U(t)}.

7. Both agents communicate and share the information of the value of lo¢&linogson for each
possible combination of input trajectories. In this step, both agents rezmeowegh information
to take a cooperative decision.

8. Each agent applies the input trajectory that minimixesJ; + J,. Because both agents have
access to the same information after the second communication cycle, both elgeose the
same optimal input setsd(t),US(t).

9. The first input of each optimal sequence is applied and the procedageated the next sam-
pling time.

From a game theory point of view, at each time step both agents are playirgparative game.
This game can be synthesized in strategic form by a three by three matrixr&acepresents one of
the three possible decisions of agent 1, and each column represenfsloméree possible decisions
of agent 2. The cells contain the sum of the cost functions of both aganésfarticular choice of
future inputs. At each time step, the option that yields a lower global cosbisech Note that both
agents share this information, so they both choose the same option. Thessilgilies are shown
in tablel4.1.

The proposals made are suboptimal because each agent has an incomepleté the system
and they propose the best solutions from their point of view. The pesbalkyorithm has low com-
munication and computational burdens and provides a feasible solution terhalized problem.
In addition, sufficient conditions that guarantee practical stability of theecldoop system as well
as an optimization based procedure to design the controller so that thegorsnare satisfied are
provided, se€ [31] for more details.

4.1 Design procedure

The proposed benchmark is based on a nonlinear model and consiste @l seference steps of the
levels of tanks 1 and 2. In order to test the proposed DMPC scheme atdisore linear model around
the equilibrium pointhg, go (which corresponds to the first reference) has been obtained liimggariz
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the nonlinear model of the quadruple tank process with a sampling time of Bsstate and input
variables of the linearized model are defined as follows

_ _ _ [ha—hyo e
X1 = |:h3 o h30:| ) Uy = [Qa - qao] 7X2 - |:h4 o h40:| 7u2 - [qb qbo]

The objective of the MPC controllers is to minimize a performance index tharpon the
future evolution of both states and inputs based on the following local anstibns

N-1

N

Ji(x1,U1,Up) = kzl(XLk —xar) T Q1 (X k — Xar) + kZO (Upk — Uar) TRy (U k — Ugr)
N N—1

J(X2,Uz,U1) = kzl(Xz,k —Xor) T Qa(Xok — Xor ) + ) O(Uz,k — Uzr) TRy (Up k — Uz )

whereN = 5, x x andui i are the k-steps ahead predicted states and inputs of iagspiectively. The
variables; ; andu; , are the target state and input obtained from the difference betweerifibragm
point and the reference levels and flows. To determine these valuesmiireear model has been used
to obtain the levels ohs, hs and the corresponding equilibrium flowag, g, that guarantee that the
references are an equilibrium point of the system. This implies that it hasdme® in a centralized
manner. The agents receive the appropriate references as inpthts point we have to remark the
fact that when the reference is switched from one working point to anaffe it is necessary to reset
the value olJs to a feasible solution. This is necessary in order to guarantee a degreastrand the
stability. Note that for this particular benchmark, no terminal region has tad&emn into account.

The weighting matrices were chosen to minimize the benchmark objective furttisdms,Q; =
Q2=1, Ry =R, = 0.01. The local controller gains for each agent wife= [0.17 0.21] andK; =
[—0.16 — 0.14]. These gains were designed with LMI techniques in order to stabilize bblystems
independently while assuring the stability of the centralized system. Followimrdicedure detailed
previously it is possible to calculate a distributed invariant set corre$pgmnal this gain. The role of
these gains is important because the option in the game that allows to guatasgeklcop stability
is constructed shifting the last decided control action; that is, the first eleiméropped after it is
applied in the system and a term evaluated with these gains is added at tHetentarizon control
vector, see [31] for more details.

The proposed distributed MPC controller only needs three communicatianisteqer to obtain
a cooperative solution to the centralized optimization problem, has low communiatt com-
putational burdens and provides a feasible solution to the centralizeteprofhe simulation and
experimental results show that the distributed scheme is able to control teensysote that in this
case, because the control input is decided by consensus, the paiesgaot affect the performance
of the distributed control scheme if the states are grouped correctly.
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Chapter 5

Cooperative Distributed MPC for
tracking

The work of this chapter has been developed by Daniel Limon at UrtiyefsSeville.

5.1 Problem statement
Consider a system described by a linear invariant discrete time model

x" = Ax+Bu (5.1)
y = Cx+Du

wherex € IR" is the system statej € IR™ is the current control vectoy € IRP is the controlled
output andk™ is the successor state. The solution of this system for a given sequerw#rol inputs

u and initial statex is denoted ag(j) = @(j,x,u) wherex = @(0,x,u). The state of the system and
the control input applied at sampling tirkeare denoted ag(k) andu(k) respectively. The system is
subject to hard constraints on state and control:

x(k) € X, u(k)eU (5.2)

forallk > 0. X c R"andU c R™ are compact convex polyhedra containing the origin in its interior.
It is assumed that the following hypothesis hold.

Assumption 1 The pair (A,B) is stabilizable and the state is measured at each sampling time.

In this work, a decentralized control framework is considered. Thus,dassumed that system

(5.1) can be partitioned iM subsystems of the form [46]:
M _
=1

M —

Yi = Gx+ Z Djju

=1

wherex; € R™, uj € R™, y; € IRP, A € R™™ andBjj € R™*™.
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For the sake of simplicity of the exposition, the results will be presented faathe of two players
game. In this case, the plant can be represented in the form:

+ —_— —
X1 Ay X1 B11 B12
= = |u —< |u
[XZ] [ AzHXZ]JF[Bn]ﬁ[Bzz]Z
yi| _ |G X1 D11 [512]
HEAES e AT

The steady state, input and output of the plagtus, ys) are such thaf(5l1) is fulfilled, i.exs =
Axs+ Bus andys = Cxs+ Dus. Under assumptidn 1, the set of steady states and inputs of systém (5.1)
is am-dimensional linear subspace of"IR" [5] given by

(Xs,Us) = Mgb (5.4)
Ys = Ngb (5.5)

whereMg is a full column rank such thafA — I, B]Mg = 0 andNg = [C D]Mg. Therefore, every pair
of steady state and inpuks,Us) € IR"™ is characterized by a given parameée IR™. For the
partitioned model of the plant this can be rewritten as

(XsiUsi) =Mg; 8

The problem we consider is the design of a distributed MPC contraller k; (X, y;) to track a
(possible time-varying) plant-wide target output such that the subsystems are steered (as close as
possible) to the target while fulfilling the constraints.

5.2 Cooperative MPC

Among the existing solutions for the decentralized predictive control pnobhee focus our attention
on the cooperative game [46]. In this case, the two players share a coobjemtive, which can be
considered as the overall plant objective.

N—1
V (X1, %2, Jt; Uz, Uz) = Z}HX(k)—XtHZQJr [[u(k) — ][R+ [IX(N) =[5
K=

where(x, U, y;) defines the state, input and output of the target.

In cooperative decentralized MPC, eagh agent calculates its corresponding inguby solving
an iterative decentralized optimization problem. At the sampling &piee solution of the agent
at the iterationp will be denoted aﬂi(k)“’]. The optimization problem to be solved byh agent at
iterationp+ 1 and at the statéx;, x) is the following:

VP = arg minV (X1, X2, Yt; V1, V2) (5.6)
st. (5.3) withx(0) = (x1,%2),u;j(i) = vj(i) (5.7)
vi=vlP jel\{il, (5.8)

v; € Ui, (5.9)

Fx(N) =0 (5.10)
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where it is assumed that the agent knows the whole state of the plant arautiensof the decen-
tralized controller at the last iteratign Denoting the optimal solution of this problem 5 then the
solution at the current iteratiop+ 1 will be given by

VP = wpvg 4w (5.11)
viprd wivi? + wovg (5.12)

After a certain number of iterations, the each controller provides the sold¢inoted as; .

It has been demonstrated that this decentralized approach ensunss/eeteasibility, optimality
and asymptotic stability under mild assumptions. $ee [46, Chapter 6] for a miatied exposition.

As in the centralized case, when the target changes the decentralizealleomay fail to track
the new target due to the loss of feasibility. Inl[17, 28] a novel formulatfathe MPC for tracking
is presented. The way this controller handle the tracking problem is ¢kdrad by (i) considering
an artificial steady state and input as decision variables, (ii) penalizingethatidn of the predicted
trajectory with the artificial steady conditions, (iii) adding a quadratic offest-function to penalize
the deviation between the artificial and the target equilibrium point and gin3idering an extended
terminal constraint. In this work, this controller is extended to the case obpetative distributed
MPC formulation.

5.3 Cooperative MPC for tracking

As in the centralized case, an artificial equilibrium pdixgt us,ys) (represented by the corresponding
parameteB) is added as decision variable and the following modified cost function sidered:

N-1
Ve(Xe, %2, Y5 Uz, U2, 8) = 3 [[X(K) — ]|+ [lu(k) —UsllR + [X(N) —Xs]|3 +Vo(ys — yt)
K=0

whereVo(ys — Vi) is a convex function which penalizes the deviation of the artificial output to the
target. Typically this is chosen as a nhorm of this distahce [17].

At each sampling timé and iterationp+ 1, each subsystemme I|; 5 solves the following opti-
mization problem:

(uioa Gio) = arg mlerw (X1,X27yt; Uz, Uz, e) (513)

Ui,
st.  (B.3) withx(0) = (x1,%2), (5.14)
up=uP, jelp\{i}, (5.15)
ui € U, (5.16)
(X(N),0) € Qtk (5.17)

The solution of thgp+ 1-iteration is given by

uP = waud+ woulP (5.18)
uP = Wl 4 w,ug (5.19)
oIPtl — w09+ w,69 (5.20)

The solutions to this problem are given by:

u1(xa(k),x2(K), yt,1,u2(k))  us(xa(k),x2(k), %2, u1(k))
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As in [46], given the current iterationu((k), uz(k)) and @1(k), 82(k)), the next iteration is given by:

(ur(k+1),uz(k+1)) = wi(uz(Xa(k),%2(K), yt,1,u2(K)), uz(k))
+Wa (U1 (k), uz(Xa(K), x2(K), yt,2, us(K)))
wit+wr, =1 wi,wp >0 (5.21)

Remark 1 (Target selection) At each iteration, each agent solves the global tracking problem, by
finding a global@. This means that each agent has to minimize an offset cost function w.r.t. the
overall system. The other ingredients of the MPC for tracking, the invaseaifor tracking, is hence
calculates as the invariant set for tracking of the centralized probler.[28]

Remark 2 (Stability) A stability proof has not been obtained yet, and it is one of the works in
progress.

5.4 Example: Application to the 4 tanks system

The presented controller has been tested in simulation on a 4 tanks systeim mode

5.4.1 Distributed model

The four tanks plant [23] is a multivariable laboratory plant of intercates tanks with nonlinear
dynamics and subject to state and input constraints. A scheme of this plassenfed in Figure
5.I(a). A real experimental plant developed at the University of SeWbllés| presented in Figure
5.1(b).

A state space continuous time model of the quadruple tank process sy&&mdadn be derived
from first principles as follows

dh a a

T = *A*i Zgh1+A—j 2ghg+Aqua (5.22)
dhy a a

i _A% 29h2+A72 29h4+A%Qb

d a 1-—

d}'is = —AZ\/ZQVB‘F(A;@%

dy & (1-va)

at T A 2ghy + A Oa

The plant parameters, estimated on the real plant are shown in the followieg ta
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Qa

|
\-

7. S S e oy

(a) Scheme of the 4 tank process. (b) The real plant.

Figure 5.1: The 4 tanks process.

| | Value | Unit | Description |

H1imax 1.36 m Maximum level of the tank 1
Homax 1.36 m Maximum level of the tank 2
H3smax 1.30 m Maximum level of the tank 3
Hamax 1.30 m Maximum level of the tank 4

Hmin 0.3 m Minimum level in all cases
Q1max 2.8 m/h | Maximal inflow of tank 1
Qomax | 245 | m*/h | Maximal inflow of tank 2
Qamax 2.3 m/h | Maximal inflow of tank 3
Qumax 2.4 m/h | Maximal inflow of tank 4

Qmin 0 m?/h | Minimal inflow in all cases
0 1.6429 | m3/h | Equilibrium flow Q1 + Qa4)
QP 2.0000 | m?/h | Equilibrium flow Q2 + Q3)

a1 1.341e-4| P Discharge constant of tank 1
ap 1.533e-4| n? Discharge constant of tank 2
asz 9.322e-5| n? Discharge constant of tank 3
a 9.061e-5| n? Discharge constant of tank 4
A v

0.06 Cross-section of all tanks
Ya 0.3 Parameter of the 3-ways valve
Vo 04 Parameter of the 3-ways valve
h9 0.627 | m Equilibrium level of tank 1
h9 0.636 | m Equilibrium level of tank 2
hS 0.652 | m Equilibrium level of tank 3
hg 0.633 | m Equilibrium level of tank 4
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The minimum level of the tanks has been taken greater than zero to preneffects in the
discharge of the tank. One important property of this plant is that the dysaresent multivariable
transmission zeros which can be located in the right hand side of fit@ne for some operating
conditions. Hence, the values gf and y, have been chosen in order to obtain a system with non-
minimum phase multivariable zeros.

Linearizing the model at an operating point giventyand defining the deviation variablgs=
hi —hP andu; = q; — q‘j’ wherej =a,bandi =1,---,4 we have that:

& _ 10 5 0 %H 0 Zo |

dt 0 4 0o & "
o o o ¢

y = X

wheret; = g %h'o >0,i=1---,4, are the time constants of each tank. This model has been
discretized using the zero-order hold method with a sampling time of 5 seconds.

In order to test de cooperative distributed MPC for tracking presentbe ipaper, the linear model
has been partitioned in two subsystems in such a way that the two subsystemtesronnected
through the inputs. The two subsystems model are the following:

Xm %1 AiAB | [ Ya

B 1 173 | x At |u B U.
o R S e I L O
do [ A 0 Tl k]
e 2 2la | x. -~ u A | U,
dt 0 ' Per| o |Wt| G

wherex; = (hy,hs), xo = (hp, hs), ug = g4 @anduy = qp.
The overall control objective is to control the level of tanks 1 and 2 whililing the constraints
on the levels and on the inputs.

5.4.2 Simulations

The controller has been tested in a simulation with four changes of reéer&he starting points for
agent 1 and 2 arg; = 0.65 andy, = 0.65 respectively. The references used for agent Rark =
(0.65,0.5,0.8,1.25,0.3,0.65). The references used for agent 2Besb = (0.65,0.8,0.5,1.25,0.3,0.65).
The controllers’ setups are the followings:

Agent1l Q1 =100, Ry =11, N=3,p1 =0.5,w; = 0.5.

Agent 2 Q, = 1005, Ry =13, N=3,p2, = 0.5, w, = 0.5.

The results of the simulation are plotted in Figures 5.2[and 5.3. In figure 5.2 #ie Eitank 1
and tank 2 are plotted. The evolutions of the systems are plotted in solid linés,tixd reference
and the artificial references are plotted respectively in dotted anddléisks. The optimal setpoints
for the centralized system are plotted in dashed-dotted lines. See hownthelleo always steers the
system to the optimal setpoint of the centralized control. In Figude 5.3 theot@actions, which are
the flows from the pumps, are plotted.
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Figure 5.2: Time evolution of the levels.
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Figure 5.3: Time evolution of the flows.
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Chapter 6

Distributed MPC based on Benders’
decomposition

The research in this chapter has been developed by P.-D. Moros&guirdais, D. Dumur and J.
Buisson (SUPELEC).

Abstract

Even if most of the MPC formulations are based on a quadratic cost fupctiany economical
objectives of the controlled processes are expressed in a linear fordar§e scale systems, even the
linear programming problem can become prohibitive from the computatiomat pbview. In this
work we propose a distributed MPC algorithm based on Benders’ decitigpo in order to reduce
the computational demand of the online optimization by using a network of paraitguting agents.
The method can handle both local and global linear constraints but it isydarteffective when the
number of local constraints is significantly greater than the number of gtolbatraints.

6.1 Introduction

During the last two decades a growing interest has been granted to nrediltipe control (MPC)
due to its ability to handle constraints in an optimal control environment. In MRCgahtrol input
is calculated by solving an optimal control problem (minimization of a cost fungtiwer a given
horizon. Only the first element of the open-loop command sequence is@ppliee system. At the
next instant, a new optimization is performed based on current measurefieatsredictive control
has been successfully used in many and varied applications [8)37, 44].

Traditionally, the model predictive cost function has been formulated asdrgtic criterion. A
part of the popularity of this type of criterion is due to their mathematical ptgserconvexity, dif-
ferentiability, ..., without forgetting about the equivalent linear control l@tamed using an uncon-
strained quadratic cost function and a linear prediction model, which fwasrigea strong opponent
of PID controller.

The operation cost of the processes has become important, and nevilaglayptimization of the
energy consumption has become an important control objective. Usuallgpgh is linear dependent
on the energy flow. Many control problems can be formulated as minimizingnig)e cost while
maintaining some parameters (inputs, states or outputs) within some predefimatspwhich leads
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to a linear programming (LP) problem. Using the linear cost function in MPCtia novel ideal[45].
Even if a linear criterion should be more attractive than a quadratic one, ckeofahe analytic
solution and the non-smoothness of the objective function makes linear MiRI&tions very rarely
in the literature. This work presents a distributed method for a class of linB& poblems for large
scale systems.

A practical drawback of the predictive control technique is the computtiowst. As a conse-
guence, the action area of MPC has been limited to linear are relatively séb@nsy. The necessity to
solve the optimization problem in real time is especially troublesome for large paailesses. This
is why many works has been focused on distributed model predictiveot¢BtMPC) algorithms,
where the objective is to decrease the computational demand by a paralleliziatiee online op-
timization using multiple local agents. Many DMPC strategies have been pijgoske last ten
years [52]. In this research field we can see two axes. The firstamesds on achieving the cen-
tralized optimum through the distributed control structure, also called cadidimbased approach.
Convergence and stability conditions were formulated in a constrainédf@Rlinconstrained [65]
quadratic criterion environment. Usually, the necessary number of itesatieeded to achieve the
optimum with a certain error cannot be reached within a sample time. For theggosit) but not
only, different communication-based DMPC strategies have been mopddinimizing the local
cost function by each agent and iterating the optimization and communicatioeduwne, the control
system reaches a Nash equilibrium![27]. [Ih [2], the authors propasethod for the interconnec-
tion model type between subsystem in order to optimize a performance ind®VIRC approach
based on a cooperative game with three communication cycles per sample tipepased in[[31].
A communication-based distributed strategy for regulating the temperature ittiszzone building
was proposed and compared with the centralized and the decentralizedapn [38]. In order to
provide a better rejection of high frequency perturbations, a dynamdigpien horizon DMPC law
was presented in [39]. In this paper we propose a distributed predactivieol architecture, based on
Benders’ decomposition technigue [6].

6.2 Problem formulation

6.2.1 Benders’ decomposition

Benders’ decomposition, also known as the dual of Dantzig-Wolfe deositigm [11], uses the block-
angular structure of the constraint matrix (see[Fig.6.1) in order to paraltbéizeomputation of a
linear optimization problem. This decomposition method splits a single large-scade fireyram-

ming problem into several independent problems which are coordinatadsingle master problem
(MP). The optimal solution of the original large-scale problem can be showe identical to the
solution obtained after a finite number of iterations, solving sequentially the npastdem and the
subproblems [6], as we will detail in Section 3.

6.2.2 Linear criterion MPC

With eitherl; or I, criterion, we may transform the optimal control problem to a linear program b
introducing slack variables. Usually, for large scale systems, the glokafunction can be written
as the sum of the local objectives:
S S
J= ZlJi = Zlc{Tui’,
i= i=

Page 41/66




HD-MPC ICT-223854 New HD-MPC methods for complex control prodems

Figure 6.1: Primal block-angular matrix structure (left, favors the Darli¢idfe decomposition
method) and dual block-angular matrix structure (right, favors the Behdecomposition method)

wheresis the number of subsystemg represents the future sequence of the control inputs of subsys-
temi and eventually the necessary slack variables due to the transformatie@nafghnal criterion.

The two block-angular structured matrices presented ifi Flg.6.1 can beobft@ned in the case
of large scale systems. The primal block-angular structure corresgonidcal independent con-
straints on each system (the block-diagonal elements) and a globalgdpapnstraint, represented
by the first block-row of the constraint matrix. The dual block-angularcsure can correspond to
a case where all the subsystems share a common input, and they haveohstedints on states or
outputs. Note that if the first block-row, in the case of the primal blockatargonstraint matrix (the
first block-column, in the case of the primal block-angular constraint mjdteig only the first block
element non-zero, then the constraint matrix will have a block-diagonaitate, and the solution of
the global problem can be easily computed as the solutions of each lopabblém.

6.3 Decomposition method synthesis

Even if any linear programming problem can be solved applying this decatimpotechnique, the
method is recommended for structured linear programs. For the sake of #iynplithis section we
present the Benders’ decomposition for a linear programming probleindhawdual block-angular
structured constraint matrix, as:

u’C,L::'q,g]ieS c/cTulc + clfull et C/sTu/s
subjectto Du; =49
Eiu, + FU] — h
e 1 _ ! (6.1)
Esu; + Fu, = he
ui‘; ’ u€|_ ; u/s > 0)

In (6.7), the optimization variable,, also called complicating variable, prevents obtaining the opti-
mal solution by solving each subproblem independently. But, for a fixaeewa this complicating
variable, we know that solving independently the subproblems leads to thal giptimum. This is
the main idea of this iterative decomposition technique, where at each iterdtiermaster problem
optimal solutioru’c' tends to the optimal valud’. In order to write explicitly the master problem and
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the subproblems, we will firstly rewrite the linear programming problend (6:1) as

S
VAL=min clu+ zizi(u’c),
c i=

N—_——
z
subject to
Du; =g, u; >0,
where
z(u) =mindu,vieS (6.2a)
Ui
subject to
Fiiui/ = hi — Eiu(,:, (6.2b)
u >0. (6.2¢c)

We call (6.2) the subproblem once the complicating variabl€ has been chosen. Applying the
duality, z (u) can also be computed through the dualof](6.2), defined as:

% (ug) = max pl (hi —Eiu), (6.3a)

subject to
Fip <c. (6.3b)

The reason of using the dual subproblem is that the polyhefirea{p; | F{f pi < ¢{} that defines
the feasible region of (6.3) is independenugf The solution of[(6.3) is an extreme point Bf due
to the fact that[(6]3) is always feasible and bounded, which is a coeseguf the feasibility and
boundedness of the primal problem, by its definition. Using an algorithm t@ sdactly the dual
subproblemd (613), it will return one of the extreme po'pl‘tsk: 1...l; of the feasible regioD; and
the subproblem objective function can be expressed as:

7 (Ug) =P/ (h —Eiup) = max (p)" (i — Eiuc).

Now we are able to write the MP at iteratibnknowing the solutions of all dual subproblems at

every previous iteratioh, < |:

min clu;+z, (6.4a)
subject to
Du; =g, u;>0,2>0, (6.4b)
S S
‘Zl(p:p)TEiu’chzz _Z(p!p)Thi, Vip=1.1-1, (6.4¢)
I= 1=

whereﬁ!p denotes the solution of the dual subproblecomputed at iteratioh,.

The algorithm that solve§ (6.1) using the Benders’ decomposition is iter&aeh iteration will
have two main steps, consisting of solving the master problem and then salviparéllel) the
subproblems using the current value of the complicating variable. We adwketheonstrainti(6.4c)
to the master problem (also called Benders’ cut) and a new iteration can bégia that over the
iterations, the constraint matrix dimensions of subproblems remains condtdattie constraint
matrix of MP increases (by one line) after each iteration. The algorithnihesathe optimal solution
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whenZ = 25:14. In practice at each iteratidnan upper and a lower bound of the optimum are
computed as:

s
VALLp = C::Tu/cl + Zl‘-"i/-rui/I ) VAL|I0W = c::Tui:I +7 (6.5)
=

and the stop condition will bb/AL'up—VAL{OW < €. Algorithm[1 summarizes the decomposition
method.

Algorithm 1 DMPC procedure for multi-source multi-zone heating system based oneBeruk-
composition
Require: Problem formulation(6]1k, X, Vi € S
Ensure: Optimal control input sequence§ andu*, i € S
1: Initialization: 1 =1
. MPC; solves the MP[{6]4), obtaining andZ
. MPC, broadcasts!] to local controllers MPC Vi € S
: Al MPC; solve (in parallel) the subproblems (in both prinial [6.2) and (6.3) fpams send
the resultsy! andp!, to MPC,
: Compute the current criterion bounds {6.5)
: if VAL, — VAL, < € (andl < Inay) then
u) =ul andu* =u', vi € S, Stop
else
Update the constraints of the MP (by adding the new Benders’lcst),+ 1 and Goto step 2
10: end if

A WN

© o N g

The procedure presented in Algoritiiin 1 is executed at each sample time dyntinel structure.
The central controller, MPEC acts like a coordinator for the local controllers, MP@ also tests
the stop condition of the algorithm after every iteration. The local predictdrollers solve their
subproblems once they have received from the master the curren¥ahescomplicating variable.

6.4 Simulation

6.4.1 Multi-source temperature control in buildings

To show the performances of the proposed distributed MPC scheme wigleonow the temperature
control problem in multi-zone buildings. In order to reduce the energyscosany buildings are
equipped with several heating sources with different dynamics, gatheraergy prices, an example is
the use of a hot water based central heating and local electric corvastarcomplementary heating
source. This is the case that we will consider in the followings. Using a listedé¢ space model
describing the thermal behavior, we can write the local model of zase

(k1) = Ax(K+ B B 10

U(K) (6.6)

yi(k) = Cixi(k),

where the vectox; € R" is the local statey;,uc,y; € R are the local and the shared input (electrical
heating power and power input of the boiler) and the output (measuced t@mperature), respec-
tively.
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The control objective is to minimize the energy bill due to the indoor heating,hwikicisually
a linear function of the consumed energy (our control inputs). The tHeyomafort (defined here
by an uppemw;(k+ j) and a lowem; (k+ j) temperature bound) and the physical limitations of the
process are the constraints of our optimization problem. The thermal comftefined only during
the occupation periods (see Fig.16.2). So dedotk) = [&(k+1) --- &(k+ Nz)]T as the future
occupation profile over the prediction horizon for the roioat time stegk. Intuitively, each element
of this vector is defined as:

&(k+ j) = 1, k+ j € Occupatiop 6
= 0, k+ j € Inoccupation :

— A W

Ooo5l .. T i

o 20 |- e s —--Wi---

§ Ny

—~ 15 yl >

< ‘ : Time

=

z ! :

Q- .

3 o :

3] - N —>

° k ’ Time

Figure 6.2: Occupation profile illustration

If, at a certain time step, one of the thermal comfort constraints cannaittsfied, the global
optimization problem becomes infeasible. In practice, to avoid this issue the@darohstraints are
softened, we add a penaltiy, to the cost criterion if they are not satisfied. Then, the minimization
problem becomes:

N,
uc(k),rlP(iS,VieSJ(k) :i; (ciT(k)ui(k) * J; filke+ D) * (6.8a)
et (Kug(k),
subject to
O<u(k+j)<u, ¥Vj=0.Ny—1,Vies (6.8b)
0<uc(k+])<Ug Vj=0..N,— 1, (6.8c)

where the comfort penalty functiof, is defined as:

0, u'P(k+j) < 0 andy®(k+ j) <0
fi(k+ i) = ¢ ApP(k+ ), uP(k+j)>0
A (k+ ), H(k+j) >0,
with
HO(k+ ) = &K+ J) (Wi (k+ ) = i (k+ j[K)),
P+ ) = & (K+ ) (i (k+ jK) — Wi (k+ ),
VieS Vj=1.Ny,
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;
6=l - ak+N—2) 3Hd ek

ok = ool okt Ny-2) SN el )]

whereci(k+ j) andcc(k+ j) are the energy prices for local and shared inputs, respectively, at time
stepk+ j. The sum, defining the last element of the cost sequences, is due totttiefabe control
input is considered constant out of the control horizon and equal t@the corresponding to the time
stepk+ Ny — 1. A; is the weighting factor that penalizes the criterion when the comfort contstiaia
not accomplished.

The linear programming probleri (6.8) can be written in a standard form, withah ldock-
diagonal constraint matrix, as in (6.1), with the following notations:

CfTZ[CiT Oun, Oine Oun, Ailan, Ailing,

Cé:T = [c;:r 0., Nu] , D= [I Nu;Ny INu=NU] 9= [Uc] ’

@ (HQ 0
b = .J ’ . )
Np—1 Na—Ngt1l <NpN
R D 1
.
@ = CAIBi, Wi = [(GADT - (CGAM)T],
Ong N Onong 1]
Ei= | AP ON},,NU , hi = | -4 (\L\Ii —q-’iXi) ,
A®i; Oy, A; (Wi —Wix;)
PN TGN, ONU,N}, ONU,N(i, ONU,NJJ onNg
Fi=|-Ai®1 Oyn, Iniony Ongni —Inini Oning
A®in  Oyn, Ongni TNy Ongni —Ining

The optimization variables; andu; are obtained by adding the required number of slack variables to
theu; andu;, respectively.

6.4.2 Empirical study of efficiency

Since the distributed algorithm was implemented on a sequential machine, thetatomau time
required by the decomposition algorithm to solve a linear programming probiem is

|
tseq= I; (tMPCc(I) + ggtmpcj (|)> :

wherel is the number of Benders iterations needed to solve the probig@(!) is the time required

by the central MPC to solve the master problem at iteraltjomhile typc, (1) is the computational
time to solve the subproblem The computational time using a distributed computing environment,
ignoring the communication time required at each iteration, can be expressed a

taistr = ) (tMPCC(I) +r}1€%>¢MPq(|)) -

I=1
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In order to study the complexity of the distributed algorithm compared to theatizetit solver,
we will use a very simple thermal model of a room and supposing (withoubfogsnerality) that all
the subsystems have the same model. The values of the rhadel (6.6) matrices are

- [09921 0 - [02595 0 T [1
A'_[ 0 0.9931}’8'_[ 0 o.1376]’c' _M'

The efficiency of the distributed algorithm will be measured regarding th&/algnt distributed
computational time and the number of iteratidnsThe main parameters of the algorithm are: the
number of subproblems (subsysteraghe dimension of the subproblerds= (N, +2N}) x (2N, +
4N}), whereN! € {0,1,...,N,} is the number of occupation time steps within the prediction period
(i.e. the number of lines dA;) and the tolerance. The dimension of the prediction horizdw
should be chosen sufficiently large in order to offer enough time to the lgegtétem to increase the
indoor temperature up to the desired setpoint in the worst situation (low initiaeleyes). In the
following simulation results, we usédh = 30. For the three scenarios presented below we considered
five different cases (in each case we changed the initial state values siflikystems) for each value
of the variable parameter, in order to have more consistent statistical results

Scenario 1

se{21,22...,2"}, N, =5,N! =15, = 102. Fig. [6.3 shows a very good scaling behavior of the
algorithm in a distributed computing environment, regarding the number ofchblgms. In the mean
time, for a small number of subsystems the centralized (Simplex) method offites performances.
Concerning the number of iterations, we observe a logarithmic dependehoas. This fact shows
a good convergence speed of the algorithm and its slight dependetioe mmmber of subproblems.

o tcentr
2
% 10 S e
° (@]
£ ° ;
[ 100 y X 5 Q X ¥
& o]
10_2 0 ‘ 1 ‘ 2
10 10 10
s
20 T T
[%]
5
= 15+ o
©
2 o 8 ¢ 8
s 10 8 &
: §
Qo
e 5 O o
2 ¢
0 0 ‘ 1 2
10 10 10

Figure 6.3: The influence of the number of subsystens,
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Scenario 2

s=50,N, € {1,5,10,...,30}, N} € {1,5,10,...,30}, £ = 10°3. Here we study the algorithm per-
formances with respect to the subproblem sizigs,The control horizon dimensiof,, is a tuning
parameter, whil&\! depends on the occupation profiles. As Fig] 6.4 shddyias a more important
influence over the computational time thig, which is normal as\! has a greater weight on the
dimension of the subproblem.

150 T T T T T

O tow (NiO:conSt)
o 100 Xt (NL:const)
_é O toontr (Nu:const) g
= 50 O g (N =const) 8
g 8§ ¢
= = 2 .
1 5 10 15 20 25 30
i_ i _
N, (NL=15) /N (N =15)
150 T T T T T
[%2]
S i
kel & N_=const
© ° 0
g 100 o N =const %
S % b
g 50
s}
E @
z -]
4 ¢ o 9

1 5 10 15 20 25 30
N (N'=15)/N' (N =15)
u o] o] u

Figure 6.4: The influence of the control horizdt,, and of the occupation time stepdﬁ,

Scenario 3

s=50,Ny=10,N}, = 15, € {10°,10°5,...,10°1}. Fig.[6.5 shows that the toleraneénfluences
very slightly the computational demand of the distributed algorithm. The numbBemders itera-
tions has a logarithmic dependence on the tolerance which shows the etigloc@mergence of the
method.

6.5 Conclusion

A distributed model predictive control strategy has been proposedofeing a class of LP large
scale problems. The distributed control strategy is based on Bendemhgesition, which allows
the decrease of the computational demand by using a network of locablbersty coordinated by
a master controller. This decomposition method is very effective when thetraont matrix has a
specific block structure (dual block-angular). The effective of tis&ributed algorithm, regarding the
computational time, has been shown using a simple multi-source temperatuie gobtrildings.
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Figure 6.5: The influence of the stop condition tolerarzce,
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Chapter 7

Infinite Horizon Model Predictive
Control with targets and zone control

Abstract

This work deals with an Infinite Horizon MPC (IHMPC) developed for theeaontrol and input
target. The IHMPC with zone control and input targets includes on the additian economic stage
in order to compute the desired values of the manipulated variables basadcoarsmic objective.
The computed values of the manipulated variables on the economic stagaae the controller
(IHMPC controllers are assumed in this work), and the objective of théralter is to drive the
manipulated variables, to their desired values, keeping the outputs of teensyithin a predefined
zone (range of values).

7.1 Infinite Horizon Model Predictive Control

Consider the nonlinear system given by

(7.1)

<
—~
—
S~—
Il
«Q
—~
pas
—
S~—
o
—
~
S~—

wheref(-), g(-) are smoottC? functions,x € 0™, uc 0", andy € O™ denote the states, the inputs,
and the outputs of the dynamical systém|(7.1).

In order to design a model predictive controller for the sysfen (7.1),arltirea invariant model{712)
is considered. The construction of the linear time invariant model in the glate sepresentation can
be conducted by linearizing the systenét u*|:

(7.2)
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where
E=f(Xx",u")
F =g(x",u")
~ df(x,u)
A= ox
X, U*
~ df(x,u)
B= Ju
X*,ut
_dg(x,u)
C= X
X*,U*
_dg(x,u)
D= Jdu
X, U*

Often, the output of the systewik) is independent of the inputgk) (i.e., D = 0). In this work we
also assume the same. However, the approach presented here cailybexeended to systems in
which D # 0.
A modeling approach frequently adopted in model predictive controlleidMi@nsiders a discrete-
time state -space model in incremental forml [49],
K(k+ 1) = AX(k) + BAu(k)

y(k) = CK(K) (73

whereA, B, C, are matrices of the system in the so called “incremental form” fapd= U — Ug_1 is
the input increment.
The model[(Z.B) can be represented in Jordan canonical form as:

ern =16 o 1L ]+ 3 Jowo

(7.4)

v = ca]| 1 |

wherex; (k) = ViX(k), xo(k) = VoX(k—1), V1,V are transformation matriceB,is a block diagonal
matrix with components corresponding to the poles of the systemaisda identity matrix of size
ny. In the state equation defined [n_(7.4), the state compax€k} corresponds to the integrating
poles produced by the incremental form of the model, xartll) corresponds to the system modes.
For stable systems, it is easy to show that if the system approaches to thesstgax; tends to zero.
Based on(7]3), the cost function of the output-tracking problem for fiméthorizon MPC (IHMPC)
can be defined as follows [49]:

-1

5 Au(k+ j|k) TRAU(K+ jK) (7.5)

o N
Jeoo = _Zle(k+ jlk)TQe(k+ jk) +
J:

wheree(k+ j|K) = y(k+ j|k) —r(]); y(k+ j|k) is the output prediction at time instak#- ] made at
timek; r(j) is the desired output value at timeN. is the control horizonQ € O™*™ andR € "M
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are positive definite weighting matrices. The controller based on the minimizédtibe above cost
function corresponds to the IHMPC for the output-tracking case. Gthierinfinite horizon controllers
reduce to finite horizon controllers by defining a terminal state pe@alfor the cost defined il (7.5)
such a terminal penalty is computed by the following Lyapunov equation :
Q-P'QP=P'C;"QGP (7.6)

Since an infinite horizon is used and the model definef in (7.4) has integnatidgs, terminal con-
straints must be added. Accordingtol[49], these constraints can be vastfetiows:

Coxa(k) — 1 +CBoAug = 0 (7.7)

where -
Bo=[ Bp,---,Bp | € OMXNe™

62 = d|ag[C27 cee 7Cz] € DNc'nyXNc'nx
With the terminal penalt®, the cost defined i (7.5) can be written as

Ne—1 _ Ne—1
o= 3 e(k+j[K)TQe(k+ j[k) +x1(k+Nelk)TQxa (k+Nelk) + 5 ~Au(k+ j|K)TRAU(K+ j[K)
=1 =1

(7.8)
Finally, the control optimization problem of the IHMPC can be formulated as:

Ne o Ne—1
nijan,m: 5 e(k+ jk)TQe(k+ jlk) +x1(k+ Nek) TQxa(k+ Nc|k) + 5 Au(k+ j|k)TRAU(k+ j|K)
k =1 =1

(7.9)
subject to
xiuk+1) ] [P 0 [ x(k) By
{xz(k+l) } B [ 0 Iny] [ X2(K) %[ B2 }Au(k)
vio=[ e ca]| 0 |
Coxa(K) —r +CoBoAu =0 (7.10)

— AU < Au(K+ j[K) < AumaX

Au(k+jlk)=0; j>m

. j _
umn < uk_1+_zOAuk+i <u™ j=0,1,...m-1
1=

Using model equation (7.4) to represent the output prediction as a fundtioa future control actions
and the current state, the control objective representéd in (7.9) caritten as follows:

Jcoo = SAUTHAW + ] Aug +© (7.11)
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where
H = (CyFy +CoFay) Q1 (CiFry + CoFay) + R+ FLQoF 1w

¢t = (C1Fwu+ CoFou) "Qy(CrFexa (K) +Calxa(K) — ) + FyyQa(C1Fxa (K))

c= (ClFXX]_(k) + CzTXZ(k) — T)Tél (élFXX]_(k) + ézTXz(k) — T) + (Cl FXX]_(k))TGZ (ClFXX]_(k))

B, 0 .0
ny i P B :
I= o= Fu= Bl .l
I PNC . . e .
" pN—1p, PN2B;, ... B
B, 0 .- O
, Au(k|k) r
B, B> . - .
Fou = ) ) ,Aug = : =1
P e Au(k+ N — 1K) r
B B ... B

Cl - diag[C17 U 7C1] 762 - diag[C27 U 7C2] 761 - dlag[Qv e )Q] 762 = d|ag[0, e 7Q2]
Finally the control optimization problem can be formulated as:

MinJe = 3AUTHAUK + ¢ Auy + ¢ (7.12)
Aug '

subject to B o
CzXz(k) —r+CoBoAu, =0

—AuM* < Au(k+ jlk) < Aum

Au(k+jlk)=0; j>m

. j
um™ <1+ Y Al U™ j=0,1,...m-1

Note that for large changes oa(k), or for large changes on= [rT(1),...,r"(Ne—1)]T, or if r
corresponds to an unreachable steady state, the optimization problenddbfimegh 7.8-7.10 may
become infeasible because of a conflict between constraints. Condlggtiee IHMPC as defined
above cannot be implemented in practice.

7.2 Extended Infinite Horizon Model Predictive Control

The results presented in this section are based dn [42].
In order to design an IHMPC which is implementable in practice, the objectivetiin of infinite
horizon MPC is re-defined as follows:

do=3 (e(kt jK) —8)TQe(k+ k) — 3+ 5 Au(k+ j[KTRAUK j[K) +8TSA  (7.13)

=1 j=1
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whered, € O is a vector of slack variables a8k O™*™ is a assumed positive definite. Observe
that each slack variable refers to a given controlled output. Weight nfasirould be selected such
that controller pulls to zero the slacks or at least minimize them depending omhiger of inputs,
which are not constrained.

Analogously to the IHMPC, the extended infinite horizon controllers redodaite horizon con-
trollers by defining a terminal state penafythat is obtained by solving (4.6). Hence, the control
objective defined in(7.13) can be written as

Ne

oo = Z (e(k+ j|K) — 3) " Q(e(k+ j|k) — &) + X1 (K+ Ne|k) TQxq (k+ N¢|)
=1

Ne—1
+ 3 Auk+ jlk)TRAU(K+ j[K) + & Sk
=1

Since the prediction model has integrating states, terminal constraints muktdok Such constraint
can be written as follows:

62X2(k) —r +62§2Auk —&=0 (7.14)

Finally, the control optimization problem for the extended IHMPC can be ftatad as:

Ne
Amig(Jk’m = Z (e(k+ j|K) — 3) " Q(e(k+ j|K) — &) + X1 (K+ Ne|K) T Qxa (k+ Ne|K)
Uk, J:]-
(7.15)
Ne—1

+ 3 Bu(k+ j[k)TRAU(K k) + & S
=1

subject to
Xl(k—l- 1) . P O Xl(k) B,
{xz(kJrl) } = [ 0 |ny] [ Xo(K) %[ B, }A“(k)
_ x1(K)
v =[ e ca]| 18 |
Coxo(K) — 1 +CoBoAug — & =0
—AUm> < Au(k+ j|K) < Aumax

Au(k+jlk)=0; j>m

. i ,
umn < Uk—1+_ZOAUk+i <um* j=0,1,...m-1
i=

Using model equation 7.4 to represent the output prediction as a functiba ffture control actions
and as a function of the current state, the control objective represieifed can be written as

ho=2[ AU & ]H[A(;("]JFCI[A;"]JFC (7.16)
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where
[ (C1F1u+ CoFa) Q1 (CaF1u + CoFoy) + R+FLQoFy  —(CiFy+CoFou) TQuT ]
H—
L _@1(61F1u+62F2u) S+ TT61+T+ Q
[ (C1Fw +CoFau) TQ1 (C1Fxa (K) + Calxa(K) — 1) + FT Qx(C1Fexa (K)) ]
Ci =
L —wl(élFXXﬂk) + 62TX2(|() — T) — Q(ézsz(k) — T)

C= (ClFXxl(k) + CzTXz(k) — T)Tél (ClFxxl(k) + CzTXz(k) — T) + (Cl Fxxl(k))Téz (ClFXxl(k))

Finally the control optimization problem becomes:

. Au Au
minJeo =3[ AW & TH K|l l+c 7.17
AR X, 2[k5k][d( +f5k+ (7.17)
subject to B o
C2X2(k) —r+CyBoAug— & =0
—AumX < Au(k+ j|k) < Aumax
Au(k+jlk)=0; j>m
. j
umin < Uk_1+_z Augyi < umex ] =01,...,m-1

7.3 Infinite Horizon Model Predictive Control with input targets and
zone control

The IHMPC with input targets and zone control is a variation of the IHMPi@&s® presented in
section[(7.11), consisting in the addition of an economic stage in order to cotmgudesired values,
Uges Of the manipulated variableg, at each time stek, based on an economic objective.

The computed values of.s0n the economic stage are sent to the controller (IHMPC are assumed in
this work), and the objective of the controller is to drive the manipulated Masau, to their desired
values,uges keeping the outputs of the systeynjnside a predefined zone (range of values). Figure
[7.1 show the IHMPC scheme with input targets and zone control.

Below, the economic optimization stage and the controller stage of the contrctiuse presented in
Figure[7.1 are described.

7.3.1 The economic stage

The economic stage has the aim of maximizing some economic objective (getleealijlity asso-
ciated with the production of some good), subject to the constraints deterbyreetlll steady-state
model of the system, and by the feasible set of control actibns

Let us define the profit functioR as

P(x(t), u(t)) = ky(t) — c(x(t), u(t)) - I (7.18)
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economic

objective

x(k) Economic Op- |
»| timization b
(RTO)
Udes,k
v input and output range:
i(k) w (ymin’.ymaxi umin’ umax)
MPC
Au(k)
v
y(k)
Observer < System

System 1|+ |System 2|+ o o o} System n

Figure 7.1: Schematic diagram of the infinite horizon model predictive certrith input target(
[18])

wherek is the price per unit of(t), c(x(t),u(t)) denotes the total cost of produce one uniyoénd

| denotes the taxes per unityf By definition, fixed and variable costs are respectively independent
and dependent on product quantity. It should be noted that the fixstsl @od taxes are not under the
influence of operation. So, in an optimization problem these terms are ctsnat@hmaximization of
equation[(7.1B) simplifies to the maximization of operational profit

O(x(t), u(t)) = ky(t) =V (x(t),u(t)) (7.19)

whereV (x(t),u(t)) denotes the variable costs. Based on the model of the plant (7.1), eq{afiéh
becomes

O(x(t),u(t)) = kg(x(t),u(t)) — V(x(t), u(t)) (7.20)
Therefore, the optimization problem of the economical stage can be formalate

t
max [ O(X(t), Ugeg)dt

Udes JO
subject to:f (X(t), Uges) =0
Udese Q

(7.21)

wherets denotes the time at which the functi@it) is expected to be maximal. Additional to the
behavior constraintsf(x(t),u(t)) = 0), and operational constraints € Q), scheduling constraints
also can be included (at tinte; the requirements arg(ts1) and so on). If the required product
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guantity is not allowed to vary, then problein (7.21) can be reduced to

1
min [ V(x(t), ugegdt

Udes /O
subject to:f (x(t),Ugeg =0
Udes€ Q

(7.22)

Here, the economic optimization is complete. Below, the control stage is prdsente

7.3.2 Control stage
Infinite Horizon MPC with input target [19]

The IHMPC with targets and control zones, is an optimal control problem singiléhe IHMPC
problem presented in sectipnl7.1, but in the case in which the targets amdaatnol are added, the
cost functiond defined in [[7Z.6) must be modified in order to minimize also the offset between the
current inputs and their desired values. So, the cost function becomes

Jk,m:Z(e(k+j|k)_ ) Q( (k‘i‘”k Z (k+jlk) — ) Qu( k+J|k 6KU)
=1 =1
N.—1
+ 3 Au(k+ jK)TRAU(K+ j[K) + &7 ST+ & Sudcu
=1

(7.23)

whereeyjjk = U(k+ j) — Udes, Udesis the vector of desired values for the system inpdtsg,is a
vector of slack variables related to the inputs, which have the economit, @@gandS, are positive
weighting matrices of appropriate dimensions.

To deal with the new control objective function of the IHMPC, it is necassa redefine the state
space model as follows:

Xl(k-i- 1) P O 0 Xl(k) B,
{ Xo(k+ 1) ] = { 0 Iny O ] { X2(K) } + { B2 ] Au(k)
)

u(k) 0 0 Iny uk—1 lhu 7,20
7.24
yk' ] [C C 0 X (k)
=S % lnu][ug;q)

In order to force the extended objective function definedin (7.24) toooeded, the constraint rep-
resented in[(7.14) must be satisfied, and a new constraint related ta staee to be imposed also.
This new constraint is similar to the constraint represented in equéation @tidhas the following
form:

U(k— 1) — Uges+ Buluk — &y = 0 (7.25)

where,
Bu= [ Inu, -+ Inu ] € QxR

With this extended state space model defined en equation (7.24), the cwstrdefined en equation
(Z.23) can be written as follows:
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1= - 1= (7.26)
(K4 NK)TQxa (K Nelk) 5 AUk -+ ][K)TRAUCK+ ][K) + 8T S5 + &, Sudiw

N Nc
Jeo =3 (e(k+ jIK) — 8)T Q(e(k+ j|k) — &) + ,Zl (ke jik) — &)’ Q (utkajik) — )

Finally, the control optimization problem of the extended infinite horizon MROMIPC) can be
formulated as:

N Nc
min Je= 5 (ek+jk) —a) Qek+ k) —&)+ 3 (eu(k+j|k)_6K7U)TQ(eu(k+j|k)_6<u)

Dy, &, u =1 i=1

(K- NolK) T (K -+ NefK) + N_°z‘fAu<k+ 1K) TRAU(K+ j[K) + &7 S8+ &7y Subics
=

subject to
Xl(k—l- 1) P O 0 Xl(k) B,
Xo(k+1) [ =] 0 Ipy O ] { X2(K) } +| B2 ] Au(k)
u(k) 0 0 I u(k—1) Inu

o195 ]

x1(K)
X2(K)
ukk—1)
Coxo(K) — 1 +CoBoAuc — =0 (7.27)
U(k—1) — Uges+ BuAuy — Ou=0

—AuM < Au(k+ jlk) < Aum

Au(k+jlk)=0; j>m

_ j .
U™ <u 1+ Y Augy <Uu™ j=0,1,...,m—1
i=0

Using model equatidn 7.24 to represent the output prediction as a fun€tlemfature control actions
and the current state, the control objective represented ih 7.26 canittemas follows:

Auk Auk
Jeo=32[0uf & &, JH| & |+cf| & |+c (7.28)
Ocu Ocu
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where

[ (C1F1u+ CoFau)TQ1(CiF1u 4+ CoFay) + R+FLQoFy  —(CiFiy+CoFoy)TQ1l —BlQuly |
H = —T1Q(C1F1u 4+ CoFay) S+TTQ+T+0Q 0

L _IUQU].BU 0 IUQU].IU

[ (C1F +CoFau) TQ1 (C1Fuxa (K) 4 Calxa(K) — ) + FL,Qa(C1Fexa (K)) + B Qua (Tuu(K) — 1)

Cs —@1 (ClFxxl(k) —i—ézTXz(k) — T) — Q(CzTXz(k) — T)

i 0 Qu(Tuu(k) —Ty)

c= (élFXX]_(k) —i—ézTXz(k) — T)Tél(élFxxl(k) + CzTXz(k) — T) + (ClFXX]_(k))TQZ (61FXX1(|())
+ (Tuu(K) — T4) T Qua (Tuu (k) —Ty)

Inu lnu - lnu
IU: 7BU: 7Qu1:d|ag[QU77QU]7
Inu lhu -+ lnu

Finally the control optimization problem can be formulated as:

Au Au
A min Jee = s[oug o O, JH| & |+cf| & |+c (7.29)
uk76r<-,6K,u 6ku 5ku

subject to B o
Coxo(k) —r +CoBoAug — & =0

u(k — 1) — Uges+ éuAUk —&u=0

_Apmax i max
AU < Au(k+ j[k) < Au (7.30)

Au(k+jlk)=0; j>m
_ j .
UM <u 1+ Y Augy <Uu™ j=0,1,...,m-1
i=0

Infinite Horizon MPC with input target and zone control

The results presented here are based on [18]

The zone control strategy is implemented in applications where the exacs\@&ldle controlled

outputs are not important, as long as they remain inside a range with specific limits.

The control structure considered in this work is represented in Figurel7 fhis structure, at time
stepk, the real time economic optimization (RTO) stage, which is based on a rigotatisnary

model, computes the optimal target,for the manipulated input variables. Herasilsed that the
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control stage corresponding to the MPC is dedicated to guide the manipulpted o the desired
targets defined by the supervisory economic stage, while keeping theouiithin specified zones.
In Figure[7.2 it is assumed that the PID or multivariable regulatory level is dieclun the system
level and that the regulatory level is capable of enforcing the set paétesrdined by the MPC level.
The MPC optimization problem that implements the zone control strategy andtegsfhe economic
target is as follows:

Ne

sy Fo = J; vk 1) = Yopk— 80T Q (Y(K+ ) — Yok — )
Ne
+ Z (U(K+j) — Udesk — dgu)T Q(u(k+ j) — Ugesk — )

=1
Ne—1
+xa(K+No[k) TQxa (k+Nelk) + 5 Au(k+ j|k)TRAU(K+ j[K) + 8] SA+ §fuSude
=1

X1(k+ 1) P O 0 Xl(k) B]_
Xz(k—l- 1) = 0 |ny 0 Xz(k) + | B2 AU(k)
u(k) 0 0 I || uk—1)

[ m ] B [ %1 %2 '(n)u ] { u%g—gn ]

Cox2(K) — Yspk + CoBoAuk — & = 0

subject to

|nu

U(k—1) — Ugesk + BuAuk — ou=0
—AuM < Au(k+ jlk) < Aum
Ymin < Yspk < Ymax

Au(k+jlk)=0; j>m

, i
Umm S kal‘i‘_z AUk+i S umax; J = 07 17"'7m_1

7.4 Conclusion

This work was proposed a strategy to implement a MPC controller for lagje sgstems in which
the system outputs are controlled in specified zones and the manipulated inmitargets associated
to the economic objectives of the controlled system.

Page 60/66




New HD-MPC methods for complex control prodems

HD-MPC [CT-223854

economic
objective
x(k) Economic Op-
»| timization B
(RTO)
Udes,k .
v input and output range:
)’E(k) (ymin’ymax’ umin’ umax)
MPC <
Au, Ysp,k
A
y(k)
Observer System

Tt e e o4 15, +C,

S1+Cy |+ Sy 4 Cy

Figure 7.2: Schematic diagram of the infinite horizon model predictive déertneith input target

and zone control([18])
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