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Executive Summary

We present different approaches for distributed model predictive control developed in the HD-
MPC project. On the one hand we present a completely new approach for distributed nonlinear
MPC, which is driven by a new coordination mechanism. The embedded method, called gradient-
based distributed dynamic optimization (GBDDO), is based on linearized information of the over-
all system to coordinate the overall system.
Then we present a DMPC scheme based on Han’s method. The presenteddistributed version of
Han’s method is an improved version, and it is successfully applied to in the control of a canal
system, described by a linear system. The third method presented is based ona cooperative game.
There, from a game theoretic point of view, at each time the agents are playing a cooperative
game. The description is limited to a decomposition of the problem into two subproblems, and
the method is applied to the well-known four tanks example. The fourth method is an extension
to an existing cooperative DMPC scheme in order to track time-varying plant-wide target output
signals. The method is also applied to the nonlinear four tanks system.
In order to cope with economical objective functions, we present a distributed MPC method based
on Benders’ decomposition. The method is successfully applied to the multi-source temperature
control in buildings. Finally we present an infinite horizon model predictivecontrol with targets
and zone control. Hence, in contrast to the other methods presented, it is ahierarchical control
approach and combines an economic stage (real time optimization) with infinite horizon MPC.
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Chapter 1

Overview

In the beginning of the project, we have reviewed the existing methods for hierarchical and distributed
model predictive control, as reported in [51, 55, 56]. There we have seen the lack of methods for
nonlinear hierarchical and distributed MPC as well as robust methods forHD-MPC, which is the basis
for our ongoing research. First results related to robust MPC are reported in [57]. Thus, in this report
we will not focus on robust methods. In addition, we report the development of new coordination
mechanisms [41], which are used for hierarchical and distributed model predictive control, but which
are not included in this report in order to avoid a duplication.

Chapter 2 presents a new method for distributed MPC, in particular nonlinearDMPC. The gradient-
based distributed dynamic optimization features a new coordination mechanism. The different con-
trollers are coordinated by means of an inclusion of linear information of the overall process and
overall optimality. A strength of this new method is its fast convergence. The method is applied to a
four tanks system and compared to centralized, decentralized and dual-decomposition-based methods.

Chapter 3 an improved version of a distributed version of Han’s method is presented, that can
be used for distributed model predictive control (DMPC) of dynamically coupled linear systems,
under coupling constraints. Some DMPC problems of water networks can becast into this type. The
method is applied to a canal system. The simulation results show that the modifications lead to faster
convergence of the method.

Chapter 4 reviews the distributed MPC based on a cooperative game. There, from a game theoretic
point of view, at each time the agents are playing a cooperative game. Eachof the agent proposes
values for the decision variables. In the last step, the decision variables are chosen by consensus.
Because the controller chooses among a small finite number of different modes of operation, the
resulting input trajectories are not smooth. This control scheme is specially designed for only two
controllers, because the number of possible modes increases in a combinatorial way with the number
of controllers.

In Chapter 5 an existing DMPC method [46] is extended, such that it is capable to track time-
dependent output variables. The way this controller handle the tracking problem is characterized
by considering an artificial steady state and input as decision variables, penalizing the deviation of
the predicted trajectory with the artificial steady conditions, adding a quadratic offset-cost function
to penalize the deviation between the artificial and the target equilibrium point, and considering an
extended terminal constraint.

In contrast, the distributed MPC presented in Chapter 6 does not considera tracking or regulation
problem, but a linear cost function. Hence, economic objectives can be defined. The proposed method
is based on Benders’ decomposition. The method can handle both local andglobal linear constraints
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but it is particular effective when the number of local constraints is significantly greater than the
number of global constraints. The method is successfully applied to the multi-source temperature
control in buildings.

Finally, a hierarchical MPC approach is given in Chapter 7. In that scheme, input targets are
calculated on an upper control layer based on an economic objective function, while on the lower
layer an infinite horizon MPC is implemented. The scheme features a zone control, i.e. the outputs of
the system are kept within a predefined zone.
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Chapter 2

Nonlinear distributed dynamic
optimization based on first order
sensitivities

The results of this chapter have been developed by Holger Scheu, Jan Busch and Wolfgang Marquardt
(AVT - Process Systems Engineering, RWTH Aachen University). It is ashort version of the paper
[54], presented at ACC2010. Furthermore, an extensive analysis ofthe method has been derived and
submitted to Journal of Process Control.

Abstract

A method for the distributed optimization of dynamic nonlinear systems is presented. The method
is based on partial goal-interaction operators [35]. Partial goal-interaction operators provide gradient
information of non-local objective functions. Hence, these operators are used to modify the objective
functions of infimal optimization problems in order to take non-local information into account and to
achieve an optimum for the overall objective, i.e. the objective of the entire process. However, that
optimum is achieved by a decentralized but cooperative optimization, while communication between
the different infimal optimization units is limited. An important part of the method is the decentralized
calculation of sensitivities. The method is applied to a nonlinear differential-algebraic simple-toy sys-
tem and compared to the dual-optimization method [25] as well as to the solutions offully centralized
and fully decentralized optimizations.

2.1 Introduction

Decentralized control and optimization methods are rapidly gaining interest in today’s research. This
development is driven by many reasons:

• Better computational performance is anticipated [1];

• communication in distributed systems may be limited;

• reliability and maintainability could be increased compared to a centralized solution [43];

• and completely new applications are considered.
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These new applications are positioned mainly in the field of autonomous vehicles[7, 29, 33], such
as air crafts or satellites. In process system engineering, optimization based control methods such
as linear and nonlinear model predictive control or dynamic real-time optimization are the methods
of choice. These systems differ to the above-mentioned multi-agent systems mainly in the fact, that
different subsystems usually interact with each other. Though, normally today these subsystems are
controlled independently by decentralized methods, which do not take into account the interaction of
the subsystems. Performance, optimality, reliability and maintainability are key drivers for research
in distributed cooperative and coordinated control methods.

Already in the beginning of the 1970s, Mesarovic et al. [35] presented afundamental monograph
on distributed and hierarchical systems. They formulated some very general principles on how a
coordinated control structure can be implemented, namely the ’Interaction Balance Principle’ and
the ’Interaction Prediction Principle’ [36]. In 1970, Lasdon published another important monograph
[26]: The dual optimization method is presented, which has gained a lot of interest in research of
hierarchical and distributed optimization.

There exist already various survey papers on the topic of hierarchical and distributed control litera-
ture. In 1973, Smith et al. [61] published an introductory overview on the topic of hierarchical systems
theory. In 1975, Singh et al. presented a review on practical hierarchical control methods for intercon-
nected systems. In 1977, Mahmoud presented a very comprehensive overview [32]. While the main
subject of that article covers multilevel optimization techniques, it also coversthe early progress in
multilevel systems identification as well as the application to water resource systems. In 1978, Sandell
et al. presented another survey [50], which covered the topics of model simplifications, stability anal-
ysis of interconnected systems and decentralized control methods. In a recent article Rawlings and
Stewart [47] summarize the present status of research in the field of coordinated optimization-based
control, as well as opportunities and challenges for future research. Alot of different control topolo-
gies can be considered in hierarchical and distributed control, which aresummarized by Scattolini in
a recent review paper [52].

The main research focus in hierarchical and distributed model predictivecontrol is attached to
systems of linear ordinary differential equations (ODEs). Wakasa et al.[64] apply the dual decom-
position method of Lasdon to linear time-invariant systems, where the dual problem is solved using a
subgradient optimization algorithm. Necoara et al. [40] propose a dual decomposition based method,
called the proximal center method, which can be applied for the optimization of linear time-invariant
systems with convex objective functions. Scherer et al. [53] implemented a distributed optimization
method for discrete-time LTI systems for the regulation of a distillation column.
In the following we will focus on distributed dynamic optimization methods for nonlinear systems,
which is a basis for nonlinear DMPC and nonlinear dynamic-real time optimization. On the one hand
the dual optimization method is shortly reviewed and on the other hand a new method is presented,
which is based on partial goal-interaction operators [35]. This gradient-based distributed dynamic
optimization (GBDDO) method belongs to the class of goal-coordination methods.The infimal ob-
jective functions are modified using information of the whole process, in order to achieve optimality
for the overall process. The remainder of this chapter is organized as follows: Section 2.2 states the
nonlinear distributed dynamic optimization problem considered. Section 2.3 presents both optimiza-
tion methods considered. In section 2.4 a case study is performed. The methods are also compared to
a completely decentralized as well as a fully centralized solution. Finally the content is summarized
in Section 2.5.

Page 8/66



HD-MPC ICT-223854 New HD-MPC methods for complex control problems

2.2 Problem Formulation

We considerN subsystems, which are described by the nonlinear differential-algebraicequations

Mi ẋi = fi(t,xi ,zi ,ui ,mi), xi(0) = xi,0 (2.1a)

0= gi(t,xi ,zi ,ui ,mi), (2.1b)

of differential index 1, fori = 1, . . . ,N. t is the time,Mi is the constant mass matrix,xi andxi,0 are
the differential state vector and its initial condition,zi is the algebraic state vector,ui is the local input
vector andmi are the interaction variables of the subsystemi. The interaction variables are those
variables, which depend on other subsystems, i.e.

m=
[
m1 . . . mN

]T
= H [x,z,u]T , (2.2)

with a constant matrixH. The interaction variables depend only on the variables of other subsystems,
i.e. mi is not a function ofxi , yi or ui , i = 1, . . . ,N. There may be some constraints for the state vectors
xi andzi as well the input vectorui , i.e.

lbi ≤





xi

zi

ui



≤ ubi , i = 1, . . . ,N, (2.3)

wherelbi andubi are the lower and upper bounds respectively. Finally the infimal dynamic optimiza-
tion problems can be formulated as

min
ui

Φi(t,xi ,zi ,ui ,mi), i = 1, . . . ,N (2.4)

with respect to equations (2.1) - (2.3). As optimality for the overall processshall be achieved in
cooperative optimization methods, the overall optimization problem

min
u

Φ =
N

∑
i=1

Φi(t,xi ,zi ,ui ,mi), (2.5a)

s.t. Mi ẋi = fi(t,xi ,zi ,ui ,mi), xi(0) = xi,0, (2.5b)

0= gi(t,xi ,zi ,ui ,mi), (2.5c)

lbi ≤





xi

zi

ui



≤ ubi , (2.5d)

mi = Hi [x,z,u]
T , i = 1, . . . ,N, (2.5e)

has to be solved. It is important to note, that the objective function has to be separable, i.e. additive
as formulated in (2.5a). As that dynamic optimization problem is not to be solved by centralized
methods, we are looking for methods to solve this dynamic optimization problem by decomposing it
into infimal subproblems. Thereby solving the infimal optimization problems (2.4) does in general
not lead to the optimum of the overall problem (2.5).

For this purpose, the infimal optimization problems (2.4) can be adapted in different ways: Two
different methods are stated in the following section.
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2.3 Optimization methods for distributed systems

Mesarovic et al. [35] state that coordinated optimization can be achieved in two different ways: On
the one hand the model can be adapted; on the other hand the goal, i.e. the objective junctionsΦi , can
be adapted. Here, we will focus upon the latter methods, which are referred to as goal coordination
[35] methods. Within goal coordination methods the infimal objective functionsΦi of the infimal
optimization problems (2.4) are modified, i.e.

Φ̃i = Φ̃i(Φi ,ξi), (2.6)

whereξi is an additional input variable to the adapted infimal objective functionΦ̃i .
In the following, the main idea of the dual optimization method [25, 26] will be reviewed, which

has gained a lot of attention. Subsequently, a new method is presented, however that method is based
on the rather old notion of ‘partial goal-interaction operators’ [35].

Both methods are iterative methods as described in the following: In a first step, the infimal
optimization problems are solved. Then, part of the local information is spread to other optimization
units: either directly or via a coordinator. Using the new information, the optimization in the previous
step is restarted until some convergence criterion is achieved. Hence, a series of infimal optimization
problems have to be solved in order to get an optimum for the overall problem.

2.3.1 Dual optimization

We briefly review Lasdon’s dual optimization method, for a full description of the method we refer
to [25,26].

We consider the dual problem of problem (2.5), which is

max
λ

ϕ(λ ) (2.7a)

w.r.t. equations (2.1) and (2.3) (2.7b)

where

ϕ(λ ) = min
u,m

Φdual(t,x,z,u,m,λ ), (2.7c)

with

Φdual= Φ(t,x,z,u,m)+λ T ·h(x,z,u,m)

=
N

∑
i=1

Φi(t,xi ,zi ,ui ,mi)+λ T ·
N

∑
i=1

hi(xi ,zi ,ui ,mi).
(2.7d)

Φdual is the Lagrangian function and the vectorλ contains the Lagrange multipliers. Moreover, not
only the local inputsui but also the interaction variablesmi are degrees of freedom. The coupling
constraints (2.2) are reformulated as

0=h(x,z,u,m) = m−H [x,z,u]T (2.8)

with

h(x,z,u,m) =
N

∑
i=1

hi(xi ,zi ,ui ,mi) . (2.9)
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Now it is possible to decompose the overall optimization problem into the N local (infimal) subprob-
lems

min
ui ,mi

Φdual
i = Φi(t,xi ,zi ,ui ,mi)+λ Thi(xi ,zi ,ui ,mi) (2.10a)

s.t. equations (2.1) and (2.3), (2.10b)

which are called primal problems.
The remaining unknowns are the Lagrange multipliersλ . Based on an initial guessλ 0, the dual

problem (2.7) is solved, to obtain these multipliers. For this purpose, at first,the primal optimization
problems (2.10) have to be solved. The Lagrange multipliers can then be easily updated [60], as the
gradient ofϕ can be directly calculated from equation (2.7d), i.e.

∂φ(λ )
∂λ

=
N

∑
i=1

hi(xi ,zi ,ui ,mi) = h . (2.11)

Therebyh is the error in the interaction constraints. The Lagrange multipliersλ can then be improved
using a steepest ascent method [60], i.e.

λ ι+1 = λ ι + γ ι hι , (2.12)

whereι is the iteration index, andγ ι is the step length at iterationl .
The Lagrange multipliers can be interpreted as prices, which are adjusted by the coordinator,

such that all coupling constraints are fulfilled and an optimum of the overall problem is achieved.
Furthermore the dual optimization method can be interpreted as in implementation of the Interaction
Balance Principle [35].

2.3.2 Gradient-based distributed dynamic optimization

Mesarovic et al. [35] have proposed another modification of infimal objective functions, namely the
so called ’interaction operators’. In the following we shortly review the ’partial goal-interaction oper-
ator’, and then we discuss how it can be applied in distributed dynamic optimization.

The i j -th ’partial goal-interaction operator’ describes the effect of thei-th local inputui on the
overall objectiveΦ via the j-th interaction inputmj . The operatorΓi j (ũ) is defined at a given point
ũ as a mappingΓi j (ũ) : Ui →V [35]. TherebyUi is the domain of the control inputui of subsystemi
andV is the domain of the objective functionΦ, i.e.,ui ∈Ui andΦ ∈V.

Furthermore, Mesarovic et al. [35] define the ’linearized partial goal-interaction operator’. These
linearized partial goal-interaction operators can be applied to modify infimal objective functionsΦi ,
in order to consider overall process information in infimal optimizations. The modification leads to
the new infimal objective functions

ΦGBDDO
i = Φi +






N

∑
j=1
j 6=i

dΦ j

dui

∣
∣
∣
∣
ũ




(ui − ũi). (2.13)

Another interpretation of this new objective function is the following: The overall objective function
Φ is assumed to be additive as in equation (2.5a). For the infimal optimizations the overall objective is
considered, though all nonlocal summands are simplified to linear terms. A keystep for the application
of the method, is to calculate the sensitivitiesdΦ j

dui
, which will be explained in the following part of

this section. These sensitivities will in the following be referred to as interaction sensitivities.
First we notice two different facts:
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1. The interaction sensitivitiesdΦ j

dui
contain information of two different subsystems. Hence, one

important issue is how to calculate these sensitivities in a distributed method.

2. The input vectorui is a function of time, e.g. an infinite-dimensional vector. In order to solve
the problem, these functions have to be described by discrete parameters.

We first deal with the second fact: It is a common approach to explicitly discretize the input variables
ui , e.g. by some B-splines representation [12,58], i.e.

ui,k =

nui,k

∑
l=1

ûi,k,l ·φ
(µ)
l (t), (2.14)

wherei is the index of the subsystem,k is the index of the input signal andl is the index of the base
functionφ (µ)

l and the corresponding coefficient ˆui,k,l . µ is the order of the B-splines.
Now we come back to the first fact: In order to calculate the interaction sensitivity, it is written as

a product of local sensitivities as follows:

dΦ j

dûi,k,l
=

dΦ j

dmj
·

dmj

dûi,k,l
. (2.15)

It can again be noticed, that the interaction variablesmj are functions of time. Thus, in order to

calculate the first factordΦ j

dmj
, which we call local input sensitivity, we again apply a discretization by

B-splines:

mj,o =

nmj,o

∑
p=1

m̂j,o,p ·φ
(µ)
p (t) (2.16)

Here, j is the index of the subsystem,o is the index of the signal andp is the index of the base function
φ (µ)

p and the corresponding coefficient ˆmj,o,p. Then, we get

dΦ j

dûi,k,l
=

nmj

∑
o=1

nmj,o

∑
p=1

[
dΦ j

dm̂j,o,p
·
dm̂j,o,p

dûi,k,l

]

. (2.17)

nmj is the dimension of the interaction variablemj while nmj,o is the number of parameters for the

discretization ofmj,o. The termdm̂j,o,p

dûi,k,l
can be written as

dm̂j,o,p

dûi,k,l
=

∂m̂j,o,p

∂yi,⋄,l

T dyi,⋄,l

dûi,k,l
+

∂m̂j,o,p

∂ ûi,k,l
, (2.18)

where∂m̂j,o,p

∂yi
and ∂m̂j,o,p

∂ ûi,k,l
can be derived directly from the coupling constraints (2.2).yi,⋄,l summarizes

the parameters of the state variablesxi andzi for the corresponding base functionφ (µ)
p . The derivatives

dyi
dûi,k,l

will be referred to as local output sensitivities. Finally, the required gradient information can be
written as follows:

dΦ j

dûi,k,l
=

nmj

∑
o=1

nmj,o

∑
p=1

[

dΦ j

dm̂j,o,p

(

∂m̂j,o,p

∂yi,⋄,l

T dyi,⋄,l

dûi,k,l
+

∂m̂j,o,p

∂ ûi,k,l

)]

. (2.19)

These gradients have to be calculated once, after the infimal optimizations arefinished. Then the
infimal objective functions (2.13) are updated using the new gradient information and the optimization
is started again.
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2.4 Optimization example

The methods discussed in the preceeding section have been implemented for asimple nonlinear,
differential-algebraic system, namely a 4-tank system, which is depicted in Fig.2.1.

The mathematical model describes the heightsxq as well as the flow rateszq of the four tanks
(q= 1, . . . ,4) using mass balances and Toricelli’s law. The heightsxq are differential variables while
the flow rateszq are algebraic variables. The system is decomposed into two subsystems: tanks 1 and
2 on the one hand and tank 3 and 4 on the other hand. This decomposition results in the two coupled
nonlinear DAE subsystems

ẋ1 = A−1
1 (u1−z1) , (2.20a)

ẋ2 = A−1
2 (αz1+(1−β )m1−z2) , (2.20b)

x1(0) = x1,0, x2(0) = x2,0, (2.20c)

0= z1−a1

√

2gx1, (2.20d)

0= z2−a2

√

2gx2 (2.20e)

and

ẋ3 = A−1
3 (u2−z3) , (2.21a)

ẋ4 = A−1
4 (βz3+(1−α)m2−z4) , (2.21b)

x3(0) = x3,0, x4(0) = x4,0, (2.21c)

0= z3−a3

√

2gx3, (2.21d)

0= z4−a4

√

2gx4 (2.21e)

with controlled input flow ratesui and coupling constraints

h=

[
m1−z3

m2−z1

]

=

[
m1

−z1

]

+

[
−z3

m2

]

. (2.22)

Additionally there are the following input and path constraints:

0≤ u≤ 0.6·10−3, (2.23a)

0≤ z, (2.23b)

0≤ x≤ 0.3 . (2.23c)

The overall objective functionΦ is defined as

Φ =

t f∫

0

(x2−xdes
2 )2dt

︸ ︷︷ ︸

=Φ1

+

t f∫

0

(x4−xdes
4 )2dt

︸ ︷︷ ︸

=Φ2

. (2.24)

There,xdes
2 andxdes

4 are setpoints for the lower tanks of the system.
For the solution of the dynamic optimization problems we applied a full discretizationand solved

the problems simultaneously using the Matlab nonlinear constrained optimization solver fmincon.
The optimization horizon has been set to 25 seconds with a sampling time of 1 second.
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(1−β )z3

x1

x2

x3

x4

αz1 βz3

z4z2

u1 u2

(1−α)z1

Figure 2.1: Considered 4 tank system

For comparison, on the one hand a centralized optimization of the problem hasbeen implemented,
which serves as the reference for all methods. On the other hand, a completely decentralized optimiza-
tion has been realized, which neglects all interaction between subsystem 1 and subsystem 2, i.e. the
interaction variablesm1 andm2 are assumed to be zero.

Results of the offline optimization studies are exemplarily displayed in Figs. 2.2-2.4, which con-
tain the trajectories of the heightsx2, x4. The coupling between the subsystems has been varied with
[α ,β ] = [1,1] (completely decoupled),[α ,β ] = [0.9,0.8] (weakly coupled), and[α ,β ] = [0.7,0.6]
(strongly coupled). As one might expect, the decentralized optimization method, which neglects all
interaction within the system, does not lead to reasonable results, except for the case of the decoupled
subsystems. The corresponding trajectories differ substantially from those of the optimal ’reference’
solution.

Although the system seems quite simple and nonlinearities appear to be quite weak, the dual-
optimization method did not converge in these studies. Figs. 2.3 and 2.4 contain the optimization
results for 50 iterations and a constant step sizeγ. Similar results have been achieved for different
step sizesγ and for far more iterations. In all cases, the dual-optimization method was notable to
adjust the Lagrange multipliers, such that all coupling constraints (2.22) could be fulfilled.

Finally, the gradient based distributed dynamic optimization (GBDDO) method solves the opti-
mization problem of the 4 tank system very well: The trajectories of the GBDDO fit those of the
’reference’ solution. Thereby convergence is quite fast: The figures contain the trajectories after only
four iterations of the method.

2.5 Conclusions and future works

A distributed optimization method, the GBDDO method, which is based on the notion ofpartial
goal-interaction operators, has been presented. This method uses gradient information of the overall
objective function in order to modify the infimal objective functions for an efficient optimization of
distributed dynamic systems.

A key part of the method is the decentralized computation of the interaction sensitivities, i.e.
those sensitivities, which describe the dependence of an infimal objectivefunction on a nonlocal input
variable. These sensitivities are derived by a product of local sensitivities: in particular the local input
sensitivities and the local output sensitivities. However, there are some drawbacks for GBDDO: If
a continuous-time system is considered, gradient information of the interaction variablesmi has to
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Figure 2.2: Trajectories of the heightsx2 andx4 for the 4 different implemented methods for[α ,β ] =
[1,1]: centralized optimization (reference), decentralized optimization (dec. opt.), dual optimization
(dual opt.), and gradient-based distributed optimization (GBDDO); 1 iteration
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Figure 2.3: Trajectories of the heightsx2 and x4 for the 4 different implemented methods for
[α ,β ] = [0.9,0.8]: centralized optimization (reference), decentralized optimization (dec. opt.), dual
optimization (dual opt.) after 50 iterations, and gradient-based distributed optimization (GBDDO)
after 4 iterations
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Figure 2.4: Trajectories of the heightsx2 and x4 for the 4 different implemented methods for
[α ,β ] = [0.7,0.6]: centralized optimization (reference), decentralized optimization (dec. opt.), dual
optimization (dual opt.) after 50 iterations, and gradient-based distributed optimization (GBDDO)
after 4 iterations

be approximated by discretization. As, for large-scale systems, the calculation of sensitivities is a
demanding task of dynamic optimization, it is to be decided whether to choose a coarse discretization,
which results in an unprecise sensitivity information, or a fine discretization,that leads to an additional
computational burden.

The GBDDO method has been successfully applied to a simple nonlinear differential-algebraic
system, namely a 4-tank system, where convergence has been achieved with only few iterations.

Future work will concentrate on the implementation of the GBDDO method for continuous-time
systems and on improving the computation of the interaction sensitivities. In order to verify the
results presented above, the application to a real application problem with stronger nonlinearities will
be considered.
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Chapter 3

An improved distributed version of Han’s
method for distributed MPC of canal
systems

The work of this chapter has been developed by Minh Dang Doan, Tamás Keviczky and Bart De
Schutter, and it has been published in [14].

Abstract

Recently, we have introduced a distributed version of Han’s method that can be used for distributed
model predictive control (DMPC) of dynamically coupled linear systems, under coupling constraints
[13]. Some DMPC problems of water networks can be cast into this type. In this paper, we propose
an improved version of this method and apply it to a canal system. The simulation results show that
the modifications lead to faster convergence of the method, thus making it more practical in control
of water networks.

3.1 Introduction

Optimization techniques have played a fundamental role in designing automatic control systems for
most part of the past half century. This dependence is even more obviousin today’s wide-spread
use of online optimization-based control methods, such as Model Predictive Control (MPC) [30, 46].
The ability to express important process constraints and characterize comprehensive economic objec-
tive functions has made MPC the industry standard for controlling large-scale systems ranging from
chemical processes to basic infrastructure.

For control of large-scale networked systems,centralizedMPC may be considered impractical,
inflexible, and unsuitable due to information exchange requirements and computational aspects. The
subsystems in the network may belong to different authorities that prevent sending all necessary in-
formation to one processing center. Moreover, the optimization problem yielded by centralized MPC
can be excessively large for real-time computation. In order to deal with these limitations,distributed
model predictive control(DMPC) has been proposed for control of such large-scale systems,by de-
composing the overall system into small subsystems [9,22,47]. The subsystems then employ distinct
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MPC controllers that only solve local optimization problems, use local information from neighboring
subsystems, and collaborate to achieve globally attractive solutions.

Approaches to DMPC design differ from each other in the problem setup.For systems with
decoupled dynamics, [16] proposed a DMPC scheme focusing on multiple vehicles with coupled
cost functions, and utilizing predicted trajectories of the neighbors in eachsubsystem’s optimization.
A DMPC scheme with a sufficient stability test for dynamically decoupled systemswas proposed
by [24], in which each subsystem optimizes also over the behaviors of its neighbors. [48] proposed a
robust DMPC method for decoupled systems with coupled constraints, based on constraint tightening
and a serial solution approach. For systems with coupled dynamics and decoupled constraints [63]
proposed a distributed MPC scheme, based on a Jacobi algorithm that deals with the primal problem,
using a convex combination of new and old solutions. Other research related to the DMPC field is
reported by [3,4,10,15,21,27,34,40]. A recent survey on DMPC can be found in [52].

Recently, we have developed a distributed version of Han’s parallel method for convex optimiza-
tion [13]. The method aims to define local controllers for dynamically coupled subsystems, which
share coupling constraints and minimize a separable objective function. Relying on a decomposition
of the dual optimization problem such that local problems have analytical solutions, the algorithm has
an iterative update procedure which converges asymptotically to the globaloptimizer of the primal
problem. At each iteration, the controllers exchange information with other “neighboring” subsys-
tems, with which they are “connected” in terms of dynamics or constraint coupling.

In this paper, we present an improved distributed version of Han’s parallel algorithm for a class of
convex optimization problems [13,20] and show that it is applicable for DMPCof water networks. The
improvements are illustrated in a simulation of the new DMPC scheme for a 4-reachcanal system.
The paper is organized as follows. The problem setup is described in Section 3.2. In Section 3.3,
we summarize the original Han’s method and the distributed version, followed by the new modified
distributed version to speed up the convergence of the algorithm. The simulation results in Section 3.4
illustrate the properties of the DMPC scheme for the example setup of the 4-reach canal. Section 3.5
concludes the paper and indicates some directions for future research.

3.2 Problem setup

3.2.1 The canal system

In this paper we illustrate the application of the novel DMPC approach to the control of a system of
irrigation canals. Irrigation canals are large systems, consisting of many interacting components, and
spanning vast geographical areas. For the most safe and efficient operation of these canals, maintain-
ing the levels of the water flows close to pre-specified reference values iscrucial, both under normal
operating conditions as well as in extreme situations. Manipulation of the water flows in irrigation
canals is done using devices such as pumps and gates.

The example irrigation canal to be considered is a 4-reach canal system as illustrated in Figure 3.1.
In this system, water flows from an upstream reservoir through the reaches, under the control of 4 gates
and a pump at the end of the canal system that discharges water.

The control design is based on the master-slave control paradigm, in whichthe master controllers
compute the flows through the gates, while each slave controller uses the local control actuators to
guarantee the flow set by master controller [59]. We will use the new DMPC method to design the
master controllers.
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reach 1

reach 2

reach 3

reach 4

gate 1

gate 2

gate 3

gate 4

pump

upstream
reservoir

Figure 3.1: The example canal system

3.2.2 Modeling the canal

Subsystem modeling

The canal system is divided into 4 subsystems, each of which corresponds to a reach and also includes
the local controller at the upstream gate of the reach. The 4th subsystem has one more controller,
corresponding to the pump at its downstream end.

We first use a simplified model for each subsystem as illustrated in Figure 3.2,and then obtain an
overall model by connecting subsystem models. A subsystem is approximately modeled by a reservoir
with upstream in-flow and downstream out-flow.

The discrete-time model of reachi is represented by:

hi
k+1−hi

k =
Ts

Ai
s

[(
Qi

in

)

k−
(
Qi

out

)

k

]
(3.1)

where superscripti represents the subsystem index, subscriptk is for the time index,Ts is the sampling
time,h is the downstream water level of the reach (zero level is set at the autonomous steady state),As

is the water surface (volume of reservoir =h ·As), Qin andQout are in-flow and out-flow of the canal
which are measured at the upstream and downstream ends, respectively. Denote the flow passing
ith gate byqi , and the flow passing the pump byp4. Due to the mass conservation law, we have
Qi

out = Qi+1
in = qi+1, for i = 1,2,3, andQ4

out = p4.
In order to derive local dynamics, we choose input and state vectors ofsubsystemi as

xi
k = hi

k

ui
k =







qi
k , i = 1,2,3

[
qi

k
pi

k

]

, i = 4

The dynamics of each subsystem can be represented by a discrete-time, linear time-invariant
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h

Q in Q out

A s

Figure 3.2: Model of a reach

model of the form:

xi
k+1 = ∑

j=1,··· ,4

Ai j x j
k+Bi j u j

k, (3.2)

with the state-space matrices:

Aii = 1 , i = 1, · · · ,4; Ai j = 0 , i 6= j

Bii = Ts/Ai
s , i = 1,2,3; B44 =

[
Ts/A4

s −Ts/A4
s

]

Bi(i+1) = −Ts/Ai
s , i = 1,2; B34 =

[
−Ts/A4

s 0
]

Bi j = 0, j 6∈ {i, i+1}

Centralized MPC problem

The centralized MPC problem makes use of a quadratic cost function:

J =
4

∑
i=1

N−1

∑
k=0

((
ui

k

)T
Riu

i
k+
(
xi

k+1

)T
Qix

i
k+1

)

(3.3)

in whichN is the prediction horizon, and{Qi ,Ri}i=1,··· ,4 are given positive definite weights. It is easy
to verify that this cost function can be rewritten asJ = xTHx whereH is a block-diagonal, positive
definite matrix.

The constraints of the optimization problem include dynamical constraints (i.e. the model equa-
tions), initial state constraint, terminal constraintxi

N = 0, i = 1, · · · ,4, and local state and input con-
straints:

|ui
k| ≤ ui

max, |xi
k| ≤ xi

max

Following the method of [13], the optimization problem to be solved by the centralized MPC
controller at each sampling interval can be represented in a compact formas

min
x

xTHx (3.4)

s.t. aT
l x = bl , l = 1, . . . ,neq

aT
l x ≤ bl , l = neq+1, . . . ,s

with s= neq+nineq, whereneq andnineq are the number of scalar equality and inequality constraints,
respectively.
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3.3 Distributed Model Predictive Control method

The optimization problem (3.4) will be solved by a distributed algorithm that is based on Han’s parallel
method for convex programs [20]. In the following we will give a summary ofHan’s method for
convex quadratic programs, and then describe the distributed version ofHan’s method for quadratic
programs in the form (3.4). Then we will proceed by describing the modified distributed version,
which is the main contribution in this paper.

3.3.1 Han’s parallel method for convex quadratic programs

The original Han’s method considers general convex optimization problemswhere the constraint is
an intersection of many convex sets. The algorithm is based on Fenchel’s duality to perform a dual
decomposition, and iteratively projects the dual variables onto local constraint sets. The sum of dual
variables can be shown to converge to the minimizer of the dual problem [20]. A simplified version
of Han’s method for the quadratic optimization problem (3.4) is summarized in Algorithm 3.3.1.

Assumption 3.3.1 Han’s method for convex programs
—————————————————————————

Choose parameterα big enough1. For p= 1,2, . . . :

1) For l = 1, . . . ,s, findz(p)l that solves

min
z

1
2
‖z+αy(p−1)

l −x(p−1)‖
2

2

s.t. aT
l z = bl or aT

l z ≤ bl

2) Assigny(p)l = y(p−1)
l +(1/α)

(

z(p)l −x(p−1)
)

3) Sety(p) = y(p)1 + · · ·+ y(p)s

4) Compute:x(p) = H−1y(p)

—————————————————————————
In this representation, each vectoryl is a dual variable corresponding tol th constraint. For problem

(3.4), Han’s method was proved to converge to the global optimum if the costfunction is strongly
convex, or equivalently ifH is positive definite [20]. An interesting property of this method is that
the number of parallel processes is equal to the number of constraints (asopposed to other dual
decomposition methods where the number of parallel processes often equals the number of variables).

3.3.2 Distributed version of Han’s method

Han’s algorithm involves calculation of the global variables, therefore a global coordination method is
required. A distributed version of Han’s method was proposed by [13],and it makes use of the explicit
solutions in Step 1 of Algorithm 1, and exploits the structure of (3.4) to decompose the computations,
hence avoiding global communications.

1 [20] recommendedα = α0 , s/ρ , wheres is the number of constraints andρ is one half of the smallest eigenvalue of
H.
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The main idea behind the distributed version of Han’s method is illustrated in Figures 3.3 and 3.4,
with a simple system consisting of 4 subsystems and the coupling matrix that showshow subsystems
are coupled via their variables (boxes on the same row illustrate the variablesthat are coupled in one
constraint). In Han’s method using global variables, a subsystem has to communicate with all other
subsystems in order to compute the updates of the global variables. For the distributed version of
Han’s method, each subsystem only communicates with the other subsystems ofwhich the variables
are necessary for computing the updates of its local variables.

The distributed version of Han’s method was proved to achieve the same convergence property as
the original method of Han [13].

3.3.3 Modifications of Han’s method to speed up convergence

A disadvantage of Han’s method (and its distributed version) is the slow convergence rate, due to the
fact that it is essentially a projection method to solve the dual problem of (3.4). Therefore, we need to
modify the method to achieve better convergence rate.

In this paper, we present 2 modifications of the distributed version of Han’s method:

• Scaling of the step sizes related to dual variables by using differentαl values for the update of
each dual variablel instead of the sameα for all dual variables.

• Use of nonzero initial guesses, which allows taking the current MPC solution as the start for the
next sample step.

We will use the same notations as in [13, Section VI], which are briefly summarized below:

• Li : the set of indices of constraints that subsystemi is responsible for updating their dual vari-
ables throughout the algorithm.

• Ni : theneighborhoodof subsystemi, consisting ofi itself and other subsystems that have direct
dynamical or constraint couplings with subsystemi.

• LNi : the set of indices of constraints within responsibility of all subsystems inNi .

• x(p)|i : theself imageof the global variable vectorx(p) made by subsystemi; this vector has the
same size asx(p), containing all variables of subsystemi at the right positions, and zeros for the
other entries.

• x(p)|N
i
: theneighborhood imageof x(p) made by subsystemi, using variables of all subsystems

insideNi at the right positions, and zeros for the other entries.

• x(p)|N
i

assumed: theassumed neighborhood image x(p) made by subsystemi. The difference between

x(p)|N
i

assumedandx(p)|N
i
is that only the values of variables belonging to subsystemi are correct, while

for the variables of other neighboring subsystemsj ∈Ni \{i}, the values could be different from
the real ones.

• I
i : index matrix of subsystemi; it is the mask for the global variablex such that only variables

of subsystemi are kept, i.e.x(p)|i = I
ix(p).

We present the improved distributed version of Han’s method in the following algorithm:
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Assumption 3.3.2 Improved distributed algorithm for the MPC optimization problem
—————————————————————————
Pre-computed parameters: Each subsystem i computes and stores thefollowing parameters through-

out the control scheme:

• For each l∈ Li : αl =
(
kα
)

l α0, where kα is the scaling vector.αl acts as local step size regarding
l th dual variable, and therefore kα should be chosen such that the convergence rates of all s dual
variables are improved. The method to choose kα will be discussed in this section.

• For each l∈ Li : c̄l =
−1

aT
l al

H−1al . We can see that̄cl can be computed locally by a local controller

with a prioriknowledge of the parameter al and the weighting blocks on the diagonal of H that
correspond to the non-zero elements of al .

MPC step:
At the beginning of the MPC step, the current states of all subsystems aremeasured. The sequences

of predicted states and inputs generated in the previous MPC step are shiftedforward one step, then
we add zero states and zero inputs to the end of the shifted sequences. Thenew sequences are then
used as the initial guess for solving the optimization problem in the current MPCstep. The initial
guess for each subsystem can be defined locally. For subsystem i, denote the initial guess asx(0)|i . At
the first MPC step, we havex(0)|i = 0,∀i.

The idea of using previously predicted states and inputs for initialization is a popular technique
in MPC [46]. Especially with Han’s method, whose convergence rate is slow, an initial guess that is
close to the optimal solution will be very helpful to reduce the number of iterations.

The current state is plugged into the MPC problem, then we get an optimizationproblem of the
form (3.4). This problem will be solved in a distributed way by the following iterative procedure.

Distributed iterative procedure to solve the optimization problem:
Initialize with p= 0. Each subsystem i communicates with the neighbors j∈Ni to getx(0)| j , then

constructsx(0)|N
i
= ∑ j∈Ni x(0)| j . Subsystem i computes its local dual variabley(0)|N

i
= Hx(0)|N

i
, and

then computes initial intermediate variables:

γ(0)l = max{aT
l (x

(0)|Ni
− y(0)|N

i
)−bl ,0}, l ∈ Li

Next, for p= 1,2, . . . , the following steps are executed:

1) Communications to get the updated main variables

Each controller i communicates with its neighbors j∈ Ni to get updated values of their vari-
ables, contained inx(p−1)| j . Vice versa, i also sends its updated variables inx(p−1)|i to its
neighbors as requested.

After getting information from the neighbors, controller i constructs theneighborhood image
x(p−1)|Ni

as:

x(p)|N
i
= ∑

j∈Ni

x(p)| j

2) Update intermediate variables γl in parallel

In this step, the local controllers updateγl corresponding to each constraint l under their re-
sponsibility. More specifically, each local controller i updatesγl for each l∈ Li in the following
manner:
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• If constraint l is an equality constraint (l∈{1, . . . ,neq}), thenγ(p)l = aT
l x(p−1)|Ni

+γ(p−1)
l −

bl .

• If constraint l is an inequality constraint (l∈{neq+1, . . . ,s}), thenγ(p)l =max{aT
l x(p−1)|Ni

+

γ(p−1)
l −bl ,0}.

3) Communications to get the updated intermediate variables

Each local controller i communicates with its neighbors to get updatedγ(p)l values that the
neighbors just computed in Step 2).

4) Update main variables in parallel

Local controller i uses allγ(p)l values that it has (by communications and those computed by
itself) to compute anassumed neighborhood imageof x:

x(p)|N
i

assumed= ∑
l∈L

Ni

1
αl

γ(p)l c̄l (3.5)

Then controller i selects the values of its variables inx(p)|N
i

assumedto construct the newself image:

x(p)|i = I
ix(p)|N

i

assumed (3.6)

which contains ui,(p)0 , . . . ,ui,(p)
N−1,x

i,(p)
1 , . . . ,xi,(p)

N .

After updating their variables, each local controller checks the local termination criteria. When
all local controllers have converged2, the algorithm stops and the local control actions are
implemented, otherwise the controllers proceed to Step 1) to start a new iteration.

Implement MPC input:
When the iterative procedure finishes, each subsystem applies the first input ui,(p)

0 , then waits for
the next state measurement to start a new MPC step.

—————————————————————————
Method to choose the scaling vector:
In the modified version of distributed Han’s method, a good choice of the scaling vector helps to

dramatically improve the convergence speed. We have observed that the convergence rate of some dual
variables under the responsibility of a subsystemi will affect the convergence rate of dual variables
under the responsibility of its neighbors inNi . Therefore the choice of scaling vector should focus on
improving the convergence rate of “slower convergent” dual variables. In our simulation, we rely on
the Hessian to find the scaling vector. Specifically, for a subsystemi whose variables have the average
weight h̄i (e.g. average of entries related toi’s states and inputs in the diagonal of the Hessian), we
choose the scale factor

(
kα
)

l = 1/h̄i , with all l ∈ Li . We also multiply the scaling vectorkα with a
factorθ < 0 for enlarging the step sizes of all dual variables; thisθ is tuned in the first MPC step.

The choice of the scaling vector depends on the structure of the centralized optimization problem,
thus we only need to choose it once in the first MPC step. Then for the nextMPC steps, we can reuse
the same scaling vector.

2Checking the termination criteria in a distributed fashion requires a dedicatedlogic scheme, the description of which is
omitted for brevity.
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3.4 Simulation results and discussion

DMPC methods are applied to the regulation problem of the simulated canal system of Section 3.2,
which has a perturbed initial state. We use distributed Han’s method with and without the modifica-
tions described in Section 3.3.3 for the same setup, and compare the results. Figure 3.5 shows that the
distributed Han’s method with modifications achieves better convergence rate, allowing the distributed
optimization to converge within an acceptable number of iterations. A simulation of closed-loop MPC
is performed for 20 sample steps. Figure 3.6 shows that the distributed solutions converge to the cen-
tralized solutions in every sample step.

Although the new scheme is verified by this simulation, there are still several theoretical issues
that need to be addressed:

Firstly, there is no convergence proof for the modified distributed versionof Han’s method yet.
We observe that in setups that are more complicated, the method to choose scaling vector proposed in
this simulation does not always work well (sometimes after several sample steps, the algorithm does
not converge in the next sample steps). Note that with this method we aim to solvethe dual problem,
therefore the primal iterate would be infeasible unless the algorithm converges.

Secondly, in the MPC formulation we keep both inputs and states as variables of the centralized
optimization problem. This formulation is advantageous in distributed MPC because the Hessian
will have a diagonal structure, and theneighborhoodof each subsystem will only contain its direct
neighbors (theneighborhoodwould be greatly extended if we eliminate the states in the optimization
problem). However, using states as variables requires considering the dynamical equations as equality
constraints of the optimization problem, and the existence of equality constraintstypically requires
an exact solution in order to guarantee feasibility. In future research, we will also study MPC for-
mulations in which all states are eliminated, so that the centralized optimization only has inequality
constraints. Such formulation would allow stopping the algorithm in a finite numberof steps, and the
final iterate could be feasible (although it may be suboptimal).

Another problem is that the proposed method is forquadratic programsonly. Although many
MPC problems for linear time-invariant systems are formulated as quadratic programs, there are other
variants that use different objective functions, and nonlinear MPC would also yield more complicated
optimization problems than quadratic programs. With such problems, we might notbe able to im-
plement Han’s parallel method in a distributed fashion. This issue motivates theresearch for other
decomposition methods that can handle more general problems, e.g. convexproblems with linear or
decoupled nonlinear constraints.

Last but not least, the MPC formulation in this paper employs the terminal constraint xN = 0,
which is conservative since it reduces the domain of attraction of MPC. An improvement could be
made by replacing this constraint with less restrictive conditions (e.g. terminalconstraint set and
terminal controller). However, there is still no distributed scheme to construct the terminal constraint
set and the terminal controller (and also the terminal penalty matrix that is solutionof the Riccati
equation), other than assuming them to be completely decoupled.

3.5 Conclusions

The modified distributed version of Han’s method has an improved convergence rate, thus it is more
suitable for DMPC of large-scale water networks. Future research will involve finding a way to con-
struct the scaling vector of the modified distributed version of Han’s method together with a theoretical
proof of the convergence. We will also investigate different distributed optimization methods using

Page 25/66



HD-MPC ICT-223854 New HD-MPC methods for complex control problems

dual decomposition techniques to address nonlinear MPC with more generaloptimization problem.
Another direction is to find distributed MPC schemes for suboptimal MPC.
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1 2 3 4

Figure 3.3: Communication links of the 2nd subsystem in thecentralizedcoordination version of
Han’s algorithm for an example 4-subsystem problem. An update for a global variable requires the
2nd subsystem to communicate with all the others.

1 2 3 4

Figure 3.4: Communication link of the 2nd subsystem in thedistributedcoordination version of Han’s
algorithm for an example 4-subsystem problem. The 2nd subsystem only cares about its local variable,
therefore it does not need to communicate with the others that do not couple with it.
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Figure 3.5: Comparison of convergence rates of the former and the new distributed versions of Han’s
method in the first sampling time (k=1)
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Chapter 4

Distributed MPC based on a cooperative
game

In this chapter we present the distributed MPC based on a cooperative game scheme presented in [31].
This control scheme considers the following class of distributed linear systems in which two subsys-
tems coupled with the neighbor subsystem through the inputs are defined

x1(t +1) = A1x1(t)+B11u1(t)+B12u2(t)
x2(t +1) = A2x2(t)+B21u1(t)+B22u2(t)

(4.1)

wherexi ∈R
ni , i = 1,2 are the states of each subsystem andui ∈R

mi , i = 1,2 are the different inputs.
The control objective is to regulate the system to the origin while guaranteeingthat a given set

of state and input constraints are satisfied. The proposed distributed scheme assumes that for each
subsystem, there is an agent that has access to the model and the state of that subsystem. The agents
do not have any knowledge of the dynamics of their neighbor, but can communicate freely among them
in order to reach an agreement. The proposed strategy is based on negotiation between the agents on
behalf of a global performance index. At each sampling time, agents make proposals to improve an
initial feasible solution on behalf of their local cost function, state and model. These proposals are
accepted if the global cost improves the corresponding to the current solution. The trajectories chose
are denoted asUd

1 andUd
2 .

To this end, the MPC controllers to minimize the sum of two local performance indexesJ1 andJ2

that depend on the future evolution of both states and inputs. Each agent solves a sequence of reduced
dimension optimization problems to determine the future input trajectoriesU1 andU2 based on the
model of its subsystem. We summarize next, the DMPC algorithm proposed in [31]:

1. At time stept, each agenti receives its corresponding partial state measurementxi(t).

2. Both agents communicate. Agent 1 sendsK1x1,N and agent 2 sendsK2x2,N, wherex1,N is the N-
steps ahead predicted state obtained from the current state applyingUd

1 (t−1),Ud
2 (t−1) shifted

one time step. This information is used to generate the shifted trajectoriesUs
i (t), which is the

initial solution.

3. Each agenti minimizesJi assuming that the neighbor keeps applying the shifted optimal trajec-
tory evaluated at the previous time stepUs

ni(t). The optimal solution is denotedU∗
i (t).

4. Each agenti minimizesJi optimizing the neighbor input assuming that it applies the shifted in-
put trajectoryUs

ni. Solving this optimization problem, agenti defines an input trajectory denoted
Uw

ni(t) for its neighbor that optimizes its local cost functionJi .
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Table 4.1: Cost function table used for the decision making.

Us
2(t) U∗

2 (t) Uw
2 (t)

Us
1(t)

J1(x1(t),Us
1(t),U

s
2(t))

+J2(x2(t),Us
2(t),U

s
1(t))

J1(x1(t),Us
1(t),U

∗
2 (t))

+J2(x2(t),U∗
2 (t),U

s
1(t))

J1(x1(t),Us
1(t),U

w
2 (t))

+J2(x2(t),Uw
2 (t),U

s
1(t))

U∗
1 (t)

J1(x1(t),U∗
1 (t),U

s
2(t))

+J2(x2(t),Us
2(t),U

∗
1 (t))

J1(x1(t),U∗
1 (t),U

∗
2 (t))

+J2(x2(t),U∗
2 (t),U

∗
1 (t))

J1(x1(t),U∗
1 (t),U

w
2 (t))

+J2(x2(t),Uw
2 (t),U

∗
1 (t))

Uw
1 (t)

J1(x1(t),Uw
1 (t),U

s
2(t))

+J2(x2(t),Us
2(t),U

w
1 (t))

J1(x1(t),Uw
1 (t),U

∗
2 (t))

+J2(x2(t),U∗
2 (t),U

w
1 (t))

J1(x1(t),Uw
1 (t),U

w
2 (t))

+J2(x2(t),Uw
2 (t),U

w
1 (t))

5. Both agents communicate. Agent 1 sendsU∗
1 (t) andUw

2 (t) to agent 2 and receivesU∗
2 (t) and

Uw
1 (t).

6. Each agent evaluates the local cost functionJi for each the nine different possible combination
of input trajectories; that isU1 ∈ {Us

1(t),U
w
1 (t),U

∗
1 (t)} andU2 ∈ {Us

2(t),U
w
2 (t),U

∗
2 (t)}.

7. Both agents communicate and share the information of the value of local cost function for each
possible combination of input trajectories. In this step, both agents receiveenough information
to take a cooperative decision.

8. Each agent applies the input trajectory that minimizesJ = J1+ J2. Because both agents have
access to the same information after the second communication cycle, both agents choose the
same optimal input setsUd

1 (t),U
d
2 (t).

9. The first input of each optimal sequence is applied and the procedureis repeated the next sam-
pling time.

From a game theory point of view, at each time step both agents are playing a cooperative game.
This game can be synthesized in strategic form by a three by three matrix. Each row represents one of
the three possible decisions of agent 1, and each column represents oneof the three possible decisions
of agent 2. The cells contain the sum of the cost functions of both agents for a particular choice of
future inputs. At each time step, the option that yields a lower global cost is chosen. Note that both
agents share this information, so they both choose the same option. The nine possibilities are shown
in table 4.1.

The proposals made are suboptimal because each agent has an incompleteview of the system
and they propose the best solutions from their point of view. The proposed algorithm has low com-
munication and computational burdens and provides a feasible solution to the centralized problem.
In addition, sufficient conditions that guarantee practical stability of the closed-loop system as well
as an optimization based procedure to design the controller so that these conditions are satisfied are
provided, see [31] for more details.

4.1 Design procedure

The proposed benchmark is based on a nonlinear model and consists of several reference steps of the
levels of tanks 1 and 2. In order to test the proposed DMPC scheme a discrete time linear model around
the equilibrium pointh0, q0 (which corresponds to the first reference) has been obtained linearizing
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the nonlinear model of the quadruple tank process with a sampling time of 5s. The state and input
variables of the linearized model are defined as follows

x1 =

[
h1−h10

h3−h30

]

,u1 =
[
qa−qa0

]
,x2 =

[
h2−h20

h4−h40

]

,u2 =
[
qb−qb0

]

The objective of the MPC controllers is to minimize a performance index that depends on the
future evolution of both states and inputs based on the following local cost functions

J1(x1,U1,U2) =
N
∑

k=1
(x1,k−x1r)

TQ1(x1,k−x1r)+
N−1
∑

k=0
(u1,k−u1r)

TR1(u1,k−u1r)

J2(x2,U2,U1) =
N
∑

k=1
(x2,k−x2r)

TQ2(x2,k−x2r)+
N−1
∑

k=0
(u2,k−u2r)

TR2(u2,k−u2r)

whereN = 5, xi,k andui,k are the k-steps ahead predicted states and inputs of agenti respectively. The
variablesxi,r andui,r are the target state and input obtained from the difference between the equilibrium
point and the reference levels and flows. To determine these values, the nonlinear model has been used
to obtain the levels ofh3,h4 and the corresponding equilibrium flowsqa,qb that guarantee that the
references are an equilibrium point of the system. This implies that it has been done in a centralized
manner. The agents receive the appropriate references as inputs. Inthis point we have to remark the
fact that when the reference is switched from one working point to another one it is necessary to reset
the value ofUs to a feasible solution. This is necessary in order to guarantee a decreasing cost and the
stability. Note that for this particular benchmark, no terminal region has beentaken into account.

The weighting matrices were chosen to minimize the benchmark objective function, that is,Q1 =
Q2 = I , R1 = R2 = 0.01. The local controller gains for each agent wereK1 = [0.17 0.21] andK2 =
[−0.16−0.14]. These gains were designed with LMI techniques in order to stabilize both subsystems
independently while assuring the stability of the centralized system. Following theprocedure detailed
previously it is possible to calculate a distributed invariant set corresponding to this gain. The role of
these gains is important because the option in the game that allows to guarantee closed-loop stability
is constructed shifting the last decided control action; that is, the first element is dropped after it is
applied in the system and a term evaluated with these gains is added at the end of the horizon control
vector, see [31] for more details.

The proposed distributed MPC controller only needs three communication steps in order to obtain
a cooperative solution to the centralized optimization problem, has low communication and com-
putational burdens and provides a feasible solution to the centralized problem. The simulation and
experimental results show that the distributed scheme is able to control the system. Note that in this
case, because the control input is decided by consensus, the pairing does not affect the performance
of the distributed control scheme if the states are grouped correctly.
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Chapter 5

Cooperative Distributed MPC for
tracking

The work of this chapter has been developed by Daniel Limon at University of Seville.

5.1 Problem statement

Consider a system described by a linear invariant discrete time model

x+ = Ax+Bu (5.1)

y = Cx+Du

wherex ∈ IRn is the system state,u ∈ IRm is the current control vector,y ∈ IRp is the controlled
output andx+ is the successor state. The solution of this system for a given sequence of control inputs
u and initial statex is denoted asx( j) = φ( j,x,u) wherex= φ(0,x,u). The state of the system and
the control input applied at sampling timek are denoted asx(k) andu(k) respectively. The system is
subject to hard constraints on state and control:

x(k) ∈ X, u(k) ∈U (5.2)

for all k≥ 0. X ⊂ R
n andU ⊂ R

m are compact convex polyhedra containing the origin in its interior.
It is assumed that the following hypothesis hold.

Assumption 1 The pair (A,B) is stabilizable and the state is measured at each sampling time.

In this work, a decentralized control framework is considered. Thus, itis assumed that system
(5.1) can be partitioned inM subsystems of the form [46]:

x+i = Aixi +
M

∑
j=1

B̄i j u j (5.3)

yi = Cixi +
M

∑
j=1

D̄i j u j

wherexi ∈ IRni , u j ∈ IRmj , yi ∈ IRp
i , Ai ∈ IRni×ni andBi j ∈ IRni×mj .
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For the sake of simplicity of the exposition, the results will be presented for thecase of two players
game. In this case, the plant can be represented in the form:

[
x1

x2

]+

=

[
A1

A2

][
x1

x2

]

+

[
B̄11

B̄21

]

u1+

[
B̄12

B̄22

]

u2

[
y1

y2

]

=

[
C1

C2

][
x1

x2

]

+

[
D̄11

D̄21

]

u1+

[
D̄12

D̄22

]

u2

The steady state, input and output of the plant(xs,us,ys) are such that (5.1) is fulfilled, i.e.xs =
Axs+Bus andys =Cxs+Dus. Under assumption 1, the set of steady states and inputs of system (5.1)
is am-dimensional linear subspace of IRn+m [5] given by

(xs,us) = Mθ θ (5.4)

ys = Nθ θ (5.5)

whereMθ is a full column rank such that[A− I , B]Mθ = 0 andNθ = [CD]Mθ . Therefore, every pair
of steady state and input(xs,us) ∈ IRn+m is characterized by a given parameterθ ∈ IRm. For the
partitioned model of the plant this can be rewritten as

(xs,i ,us,i) = Mθ ,i θ

The problem we consider is the design of a distributed MPC controllerui = κi(x,yt) to track a
(possible time-varying) plant-wide target outputyt , such that the subsystems are steered (as close as
possible) to the target while fulfilling the constraints.

5.2 Cooperative MPC

Among the existing solutions for the decentralized predictive control problem, we focus our attention
on the cooperative game [46]. In this case, the two players share a commonobjective, which can be
considered as the overall plant objective.

V(x1,x2,yt ;u1,u2) =
N−1

∑
k=0

‖x(k)−xt‖
2
Q+‖u(k)−ut‖

2
R+‖x(N)−xt‖

2
P

where(xt ,ut ,yt) defines the state, input and output of the target.
In cooperative decentralized MPC, eachi-th agent calculates its corresponding inputui by solving

an iterative decentralized optimization problem. At the sampling timek, the solution of the agenti
at the iterationp will be denoted asvi(k)[p]. The optimization problem to be solved byi-th agent at
iterationp+1 and at the state(x1,x2) is the following:

vo
i = argmin

ui
V(x1,x2,yt ;v1,v2) (5.6)

s.t. (5.3) withx(0) = (x1,x2),u j(i) = v j(i) (5.7)

v j = v[p]j , j ∈ I1,2\{i}, (5.8)

vi ∈ Ui , (5.9)

Sux(N) = 0 (5.10)
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where it is assumed that the agent knows the whole state of the plant and the solution of the decen-
tralized controller at the last iterationp. Denoting the optimal solution of this problem asvo

i , then the
solution at the current iterationp+1 will be given by

v[p+1]
1 = w1vo

1+w2v[p]1 (5.11)

v[p+1]
2 = w1v[p]2 +w2vo

2 (5.12)

After a certain number of iterations, the each controller provides the solutiondenoted asv∗i .
It has been demonstrated that this decentralized approach ensures recursive feasibility, optimality

and asymptotic stability under mild assumptions. See [46, Chapter 6] for a more detailed exposition.
As in the centralized case, when the target changes the decentralized controller may fail to track

the new target due to the loss of feasibility. In [17, 28] a novel formulation of the MPC for tracking
is presented. The way this controller handle the tracking problem is characterized by (i) considering
an artificial steady state and input as decision variables, (ii) penalizing the deviation of the predicted
trajectory with the artificial steady conditions, (iii) adding a quadratic offset-cost function to penalize
the deviation between the artificial and the target equilibrium point and (iv) considering an extended
terminal constraint. In this work, this controller is extended to the case of a cooperative distributed
MPC formulation.

5.3 Cooperative MPC for tracking

As in the centralized case, an artificial equilibrium point(xs,us,ys) (represented by the corresponding
parameterθ ) is added as decision variable and the following modified cost function is considered:

Vt(x1,x2,yt ;u1,u2,θ) =
N−1

∑
k=0

‖x(k)−xs‖
2
Q+‖u(k)−us‖

2
R+‖x(N)−xs‖

2
P+VO(ys−yt)

whereVO(ys− yt) is a convex function which penalizes the deviation of the artificial output to the
target. Typically this is chosen as a norm of this distance [17].

At each sampling timek and iterationp+1, each subsystemi ∈ I[1,2] solves the following opti-
mization problem:

(uo
i ,θ o

i ) = argmin
ui ,θ

V(x1,x2,yt ;u1,u2,θ) (5.13)

s.t. (5.3) withx(0) = (x1,x2), (5.14)

u j = u[p]
j , j ∈ I1,2\{i}, (5.15)

ui ∈ Ui , (5.16)

(x(N),θ) ∈ Ωt,K (5.17)

The solution of thep+1-iteration is given by

u[p+1]
1 = w1uo

1+w2u[p]
1 (5.18)

u[p+1]
2 = w1u[p]

2 +w2uo
2 (5.19)

θ [p+1] = w1θ o
1 +w2θ o

2 (5.20)

The solutions to this problem are given by:

u∗
1(x1(k),x2(k),yt,1,u2(k)) u∗

2(x1(k),x2(k),yt,2,u1(k))
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As in [46], given the current iteration (u1(k),u2(k)) and (θ1(k),θ2(k)), the next iteration is given by:

(u1(k+1),u2(k+1)) = w1(u∗
1(x1(k),x2(k),yt,1,u2(k)),u2(k))

+w2(u1(k),u∗
2(x1(k),x2(k),yt,2,u1(k)))

w1+w2 = 1 w1,w2 > 0 (5.21)

Remark 1 (Target selection) At each iteration, each agent solves the global tracking problem, by
finding a globalθ . This means that each agent has to minimize an offset cost function w.r.t. the
overall system. The other ingredients of the MPC for tracking, the invariant set for tracking, is hence
calculates as the invariant set for tracking of the centralized problem [28].

Remark 2 (Stability) A stability proof has not been obtained yet, and it is one of the works in
progress.

5.4 Example: Application to the 4 tanks system

The presented controller has been tested in simulation on a 4 tanks system model.

5.4.1 Distributed model

The four tanks plant [23] is a multivariable laboratory plant of interconnected tanks with nonlinear
dynamics and subject to state and input constraints. A scheme of this plant is presented in Figure
5.1(a). A real experimental plant developed at the University of Seville [5] is presented in Figure
5.1(b).

A state space continuous time model of the quadruple tank process system ( [23]) can be derived
from first principles as follows

dh1

dt
= −

a1

A1

√

2gh1+
a3

A1

√

2gh3+
γa

A1
qa (5.22)

dh2

dt
= −

a2

A2

√

2gh2+
a4

A2

√

2gh4+
γb

A2
qb

dh3

dt
= −

a3

A3

√

2gh3+
(1− γb)

A3
qb

dh4

dt
= −

a4

A4

√

2gh4+
(1− γa)

A4
qa

The plant parameters, estimated on the real plant are shown in the following table:

Page 36/66



HD-MPC ICT-223854 New HD-MPC methods for complex control problems

(a) Scheme of the 4 tank process. (b) The real plant.

Figure 5.1: The 4 tanks process.

Value Unit Description

H1max 1.36 m Maximum level of the tank 1
H2max 1.36 m Maximum level of the tank 2
H3max 1.30 m Maximum level of the tank 3
H4max 1.30 m Maximum level of the tank 4
Hmin 0.3 m Minimum level in all cases
Q1max 2.8 m3/h Maximal inflow of tank 1
Q2max 2.45 m3/h Maximal inflow of tank 2
Q3max 2.3 m3/h Maximal inflow of tank 3
Q4max 2.4 m3/h Maximal inflow of tank 4
Qmin 0 m3/h Minimal inflow in all cases
Q0

a 1.6429 m3/h Equilibrium flow (Q1+Q4)
Q0

b 2.0000 m3/h Equilibrium flow (Q2+Q3)
a1 1.341e-4 m2 Discharge constant of tank 1
a2 1.533e-4 m2 Discharge constant of tank 2
a3 9.322e-5 m2 Discharge constant of tank 3
a4 9.061e-5 m2 Discharge constant of tank 4
A 0.06 m2 Cross-section of all tanks
γa 0.3 Parameter of the 3-ways valve
γb 0.4 Parameter of the 3-ways valve
h0

1 0.627 m Equilibrium level of tank 1
h0

2 0.636 m Equilibrium level of tank 2
h0

3 0.652 m Equilibrium level of tank 3
h0

4 0.633 m Equilibrium level of tank 4
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The minimum level of the tanks has been taken greater than zero to prevent eddy effects in the
discharge of the tank. One important property of this plant is that the dynamics present multivariable
transmission zeros which can be located in the right hand side of thes plane for some operating
conditions. Hence, the values ofγa andγb have been chosen in order to obtain a system with non-
minimum phase multivariable zeros.

Linearizing the model at an operating point given byh0
i and defining the deviation variablesxi =

hi −ho
i andu j = q j −qo

j where j = a,b andi = 1, · · · ,4 we have that:

dx
dt

=








−1
τ1

0 A3
A1τ3

0
0 −1

τ2
0 A4

A2τ4

0 0 −1
τ3

0
0 0 0 −1

τ4








x+








γa
A1

0
0 γb

A2

0 (1−γb)
A3

(1−γa)
A4

0








u.

y = x

whereτi =
Ai
ai

√
2h0

i
g ≥ 0, i = 1, · · · ,4, are the time constants of each tank. This model has been

discretized using the zero-order hold method with a sampling time of 5 seconds.
In order to test de cooperative distributed MPC for tracking presented inthe paper, the linear model

has been partitioned in two subsystems in such a way that the two subsystems are interconnected
through the inputs. The two subsystems model are the following:

dx1

dt
=

[
−1
τ1

A3
A1τ3

0 −1
τ3

]

x1+

[ γa
A1

0

]

u1+

[

0
(1−γb)

A3

]

u2.

dx2

dt
=

[
−1
τ2

A4
A2τ4

0 −1
τ4

]

x2+

[

0
(1−γa)

A4

]

u1+

[ γb
A2

0

]

u2.

wherex1 = (h1,h3), x2 = (h2,h4), u1 = qa andu2 = qb.
The overall control objective is to control the level of tanks 1 and 2 while fulfilling the constraints

on the levels and on the inputs.

5.4.2 Simulations

The controller has been tested in a simulation with four changes of reference. The starting points for
agent 1 and 2 arey1 = 0.65 andy2 = 0.65 respectively. The references used for agent 1 areRe f1 =
(0.65,0.5,0.8,1.25,0.3,0.65). The references used for agent 2 areRe f2=(0.65,0.8,0.5,1.25,0.3,0.65).
The controllers’ setups are the followings:

Agent 1 Q1 = 100I2, R1 = I1, N=3,ρ1 = 0.5, w1 = 0.5.

Agent 2 Q2 = 100I2, R2 = I1, N=3,ρ2 = 0.5, w2 = 0.5.

The results of the simulation are plotted in Figures 5.2 and 5.3. In figure 5.2 the levels of tank 1
and tank 2 are plotted. The evolutions of the systems are plotted in solid lines, while the reference
and the artificial references are plotted respectively in dotted and dashed lines. The optimal setpoints
for the centralized system are plotted in dashed-dotted lines. See how the controller always steers the
system to the optimal setpoint of the centralized control. In Figure 5.3 the control actions, which are
the flows from the pumps, are plotted.
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Figure 5.2: Time evolution of the levels.
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Chapter 6

Distributed MPC based on Benders’
decomposition

The research in this chapter has been developed by P.-D. Moroşan, R. Bourdais, D. Dumur and J.
Buisson (SUPELEC).

Abstract

Even if most of the MPC formulations are based on a quadratic cost function, many economical
objectives of the controlled processes are expressed in a linear form. For large scale systems, even the
linear programming problem can become prohibitive from the computational point of view. In this
work we propose a distributed MPC algorithm based on Benders’ decomposition, in order to reduce
the computational demand of the online optimization by using a network of parallelcomputing agents.
The method can handle both local and global linear constraints but it is particular effective when the
number of local constraints is significantly greater than the number of globalconstraints.

6.1 Introduction

During the last two decades a growing interest has been granted to model predictive control (MPC)
due to its ability to handle constraints in an optimal control environment. In MPC, the control input
is calculated by solving an optimal control problem (minimization of a cost function) over a given
horizon. Only the first element of the open-loop command sequence is applied to the system. At the
next instant, a new optimization is performed based on current measurements. The predictive control
has been successfully used in many and varied applications [8,37,44].

Traditionally, the model predictive cost function has been formulated as a quadratic criterion. A
part of the popularity of this type of criterion is due to their mathematical properties: convexity, dif-
ferentiability, ..., without forgetting about the equivalent linear control law obtained using an uncon-
strained quadratic cost function and a linear prediction model, which has become a strong opponent
of PID controller.

The operation cost of the processes has become important, and nowadays the optimization of the
energy consumption has become an important control objective. Usually, the cost is linear dependent
on the energy flow. Many control problems can be formulated as minimizing the energy cost while
maintaining some parameters (inputs, states or outputs) within some predefined bounds, which leads
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to a linear programming (LP) problem. Using the linear cost function in MPC is not a novel idea [45].
Even if a linear criterion should be more attractive than a quadratic one, the lack of the analytic
solution and the non-smoothness of the objective function makes linear MPC formulations very rarely
in the literature. This work presents a distributed method for a class of linear MPC problems for large
scale systems.

A practical drawback of the predictive control technique is the computational cost. As a conse-
quence, the action area of MPC has been limited to linear are relatively slow systems. The necessity to
solve the optimization problem in real time is especially troublesome for large scaleprocesses. This
is why many works has been focused on distributed model predictive control (DMPC) algorithms,
where the objective is to decrease the computational demand by a parallelization of the online op-
timization using multiple local agents. Many DMPC strategies have been proposed in the last ten
years [52]. In this research field we can see two axes. The first one focuses on achieving the cen-
tralized optimum through the distributed control structure, also called coordination-based approach.
Convergence and stability conditions were formulated in a constrained [62]and unconstrained [65]
quadratic criterion environment. Usually, the necessary number of iterations needed to achieve the
optimum with a certain error cannot be reached within a sample time. For these situations, but not
only, different communication-based DMPC strategies have been proposed. Minimizing the local
cost function by each agent and iterating the optimization and communication procedure, the control
system reaches a Nash equilibrium [27]. In [2], the authors propose amethod for the interconnec-
tion model type between subsystem in order to optimize a performance index. ADMPC approach
based on a cooperative game with three communication cycles per sample time wasproposed in [31].
A communication-based distributed strategy for regulating the temperature in a multi-zone building
was proposed and compared with the centralized and the decentralized approach in [38]. In order to
provide a better rejection of high frequency perturbations, a dynamic prediction horizon DMPC law
was presented in [39]. In this paper we propose a distributed predictivecontrol architecture, based on
Benders’ decomposition technique [6].

6.2 Problem formulation

6.2.1 Benders’ decomposition

Benders’ decomposition, also known as the dual of Dantzig-Wolfe decomposition [11], uses the block-
angular structure of the constraint matrix (see Fig.6.1) in order to parallelizethe computation of a
linear optimization problem. This decomposition method splits a single large-scale linear program-
ming problem into several independent problems which are coordinated bya single master problem
(MP). The optimal solution of the original large-scale problem can be shown to be identical to the
solution obtained after a finite number of iterations, solving sequentially the master problem and the
subproblems [6], as we will detail in Section 3.

6.2.2 Linear criterion MPC

With either l1 or l∞ criterion, we may transform the optimal control problem to a linear program by
introducing slack variables. Usually, for large scale systems, the global cost function can be written
as the sum of the local objectives:

J =
s

∑
i=1

Ji =
s

∑
i=1

ccc′Ti uuu′i ,
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Figure 6.1: Primal block-angular matrix structure (left, favors the Dantzig-Wolfe decomposition
method) and dual block-angular matrix structure (right, favors the Benders’ decomposition method)

wheres is the number of subsystems,uuu′i represents the future sequence of the control inputs of subsys-
tem i and eventually the necessary slack variables due to the transformation of the original criterion.

The two block-angular structured matrices presented in Fig.6.1 can be oftenobtained in the case
of large scale systems. The primal block-angular structure corresponds to local independent con-
straints on each system (the block-diagonal elements) and a global (coupled) constraint, represented
by the first block-row of the constraint matrix. The dual block-angular structure can correspond to
a case where all the subsystems share a common input, and they have local constraints on states or
outputs. Note that if the first block-row, in the case of the primal block-angular constraint matrix (the
first block-column, in the case of the primal block-angular constraint matrix) has only the first block
element non-zero, then the constraint matrix will have a block-diagonal structure, and the solution of
the global problem can be easily computed as the solutions of each local subproblem.

6.3 Decomposition method synthesis

Even if any linear programming problem can be solved applying this decomposition technique, the
method is recommended for structured linear programs. For the sake of simplicity, in this section we
present the Benders’ decomposition for a linear programming problem having a dual block-angular
structured constraint matrix, as:

min
uuu′c,uuu

′
i ,∀i∈S ccc′Tc uuu′c + ccc′T1 uuu′1 · · · + ccc′Ts uuu′s

subject to DDDuuu′c = ggg
EEE1uuu′c + FFF1uuu′1 = hhh1

...
. . .

...
EEEsuuu′c + FFFsuuu′s = hhhs

uuu′c , uuu′1 · · · , uuu′s ≥ 000,

(6.1)

In (6.1), the optimization variableuuu′c, also called complicating variable, prevents obtaining the opti-
mal solution by solving each subproblem independently. But, for a fixed value of this complicating
variable, we know that solving independently the subproblems leads to the global optimum. This is
the main idea of this iterative decomposition technique, where at each iterationl the master problem
optimal solutionuuu′lc tends to the optimal valueuuu′∗c . In order to write explicitly the master problem and
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the subproblems, we will firstly rewrite the linear programming problem (6.1) as:

VAL= min
uuu′c

ccc′Tc uuu′c+
s

∑
i=1

zi(uuu
′
c)

︸ ︷︷ ︸

z

,

subject to
DDDuuu′c = ggg, uuu′c ≥ 000,

where
zi(uuu

′
c) = min

uuu′i
ccc′Ti uuu′i ,∀i ∈ S, (6.2a)

subject to
FFF iiuuu

′
i = hhhi −EEEiuuu

′
c, (6.2b)

uuu′i ≥ 000. (6.2c)

We call (6.2) the subproblemi, once the complicating variableuuu′c has been chosen. Applying the
duality,zi(uuu′c) can also be computed through the dual of (6.2), defined as:

zi(uuu
′
c) = max

pppi
pppT

i (hhhi −EEEiuuu
′
c), (6.3a)

subject to
FFFT

ii pppi ≤ ccc′i . (6.3b)

The reason of using the dual subproblem is that the polyhedronDi =
{

pppi |FFFT
ii pppi ≤ ccc′i

}
that defines

the feasible region of (6.3) is independent ofuuu′c. The solution of (6.3) is an extreme point ofDi due
to the fact that (6.3) is always feasible and bounded, which is a consequence of the feasibility and
boundedness of the primal problem, by its definition. Using an algorithm to solve exactly the dual
subproblems (6.3), it will return one of the extreme pointspppk

i , k= 1...Ii of the feasible regionDi and
the subproblem objective function can be expressed as:

zi(uuu
′
c) = pppT

i (hhhi −EEEiuuu
′
c) = max

k=1,...,Ii
(pppk

i )
T(hhhi −EEEiuuu

′
c).

Now we are able to write the MP at iterationl , knowing the solutions of all dual subproblems at
every previous iterationlp < l :

min
uuu′c,z

ccc′Tc uuu′c+z, (6.4a)

subject to
DDDuuu′c = ggg, uuu′c ≥ 000, z≥ 0, (6.4b)

s

∑
i=1

(ppp
lp
i )

TEEEiuuu
′
c+z≥

s

∑
i=1

(ppp
lp
i )

Thhhi , ∀lp = 1...l −1, (6.4c)

whereppp
lp
i denotes the solution of the dual subproblemi computed at iterationlp.

The algorithm that solves (6.1) using the Benders’ decomposition is iterative. Each iteration will
have two main steps, consisting of solving the master problem and then solving (in parallel) the
subproblems using the current value of the complicating variable. We add thenew constraint (6.4c)
to the master problem (also called Benders’ cut) and a new iteration can begin. Note that over the
iterations, the constraint matrix dimensions of subproblems remains constant while the constraint
matrix of MP increases (by one line) after each iteration. The algorithm reaches the optimal solution
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whenzl = ∑s
i=1zl

i . In practice at each iterationl an upper and a lower bound of the optimum are
computed as:

VALl
up = ccc′Tc uuu′lc +

s

∑
i=1

ccc′Ti uuu′li
︸ ︷︷ ︸

zl
i

, VALl
low = ccc′Tc uuu′lc +zl (6.5)

and the stop condition will beVALl
up−VALl

low ≤ ε. Algorithm 1 summarizes the decomposition
method.

Algorithm 1 DMPC procedure for multi-source multi-zone heating system based on Benders’ de-
composition
Require: Problem formulation (6.1),ε, xxxi , ∀i ∈ S
Ensure: Optimal control input sequencesuuu′∗c anduuu′∗i , i ∈ S

1: Initialization: l = 1
2: MPCc solves the MP (6.4), obtaininguuu′lc andzl

3: MPCc broadcastsuuu′lc to local controllers MPCi , ∀i ∈ S
4: All MPC i solve (in parallel) the subproblems (in both primal (6.2) and dual (6.3) forms) and send

the results,uuu′li andpppl
i , to MPCc

5: Compute the current criterion bounds (6.5)
6: if VALl

up−VALl
low ≤ ε (andl ≤ lmax) then

7: uuu′∗c = uuu′lc anduuu′∗i = uuu′li , ∀i ∈ S, Stop
8: else
9: Update the constraints of the MP (by adding the new Benders’ cut),l = l +1 and Goto step 2

10: end if

The procedure presented in Algorithm 1 is executed at each sample time by thecontrol structure.
The central controller, MPCc, acts like a coordinator for the local controllers, MPCi . It also tests
the stop condition of the algorithm after every iteration. The local predictivecontrollers solve their
subproblems once they have received from the master the current valueof the complicating variable.

6.4 Simulation

6.4.1 Multi-source temperature control in buildings

To show the performances of the proposed distributed MPC scheme we consider now the temperature
control problem in multi-zone buildings. In order to reduce the energy costs, many buildings are
equipped with several heating sources with different dynamics, gains and energy prices, an example is
the use of a hot water based central heating and local electric convectors as a complementary heating
source. This is the case that we will consider in the followings. Using a linearstate space model
describing the thermal behavior, we can write the local model of zonei as:







xxxi(k+1) =AAAixxxi(k)+
[
BBBi1 BBBi2

]
·

[
ui(k)
uc(k)

]

yi(k) =CCCixxxi(k),

(6.6)

where the vectorxxxi ∈ R
ni is the local state,ui ,uc,yi ∈ R are the local and the shared input (electrical

heating power and power input of the boiler) and the output (measured room temperature), respec-
tively.
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The control objective is to minimize the energy bill due to the indoor heating, which is usually
a linear function of the consumed energy (our control inputs). The thermal comfort (defined here
by an upperwi(k+ j) and a lowerwi(k+ j) temperature bound) and the physical limitations of the
process are the constraints of our optimization problem. The thermal comfortis defined only during
the occupation periods (see Fig. 6.2). So denoteδδδ i(k) =

[
δi(k+1) · · · δi(k+N2)

]T
as the future

occupation profile over the prediction horizon for the roomi at time stepk. Intuitively, each element
of this vector is defined as:

δi(k+ j) =

{

1, k+ j ∈ Occupationi
0, k+ j ∈ Inoccupationi .

(6.7)
O

cc
up

at
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n
(δ i

)
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Figure 6.2: Occupation profile illustration

If, at a certain time step, one of the thermal comfort constraints cannot be satisfied, the global
optimization problem becomes infeasible. In practice, to avoid this issue the comfort constraints are
softened, we add a penalty,fi , to the cost criterion if they are not satisfied. Then, the minimization
problem becomes:

min
uuuc(k),uuui(k),∀i∈S

J(k) =∑
i∈S

(

cccT
i (k)uuui(k)+

N2

∑
j=1

fi(k+ j)

)

+

cccT
c (k)uuuc(k),

(6.8a)

subject to
0≤ ui(k+ j)≤ ui , ∀ j = 0...Nu−1, ∀i ∈ S, (6.8b)

0≤ uc(k+ j)≤ uc, ∀ j = 0...Nu−1, (6.8c)

where the comfort penalty function,fi , is defined as:

fi(k+ j) =







0, µup
i (k+ j)≤ 0 andµ low

i (k+ j)≤ 0

λiµup
i (k+ j), µup

i (k+ j)> 0

λiµ low
i (k+ j), µ low

i (k+ j)> 0,

with
µ low

i (k+ j) = δi(k+ j)(wi(k+ j)− ŷi(k+ j|k)),

µup
i (k+ j) = δi(k+ j)(ŷi(k+ j|k)−wi(k+ j)),

∀i ∈ S, ∀ j = 1...N2,
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ccci(k) =
[

ci(k) · · · ci(k+Nu−2) ∑N2−1
j=Nu−1ci(k+ j)

]T
,

cccc(k) =
[

cc(k) · · · cc(k+Nu−2) ∑N2−1
j=Nu−1cc(k+ j)

]T
.

whereci(k+ j) andcc(k+ j) are the energy prices for local and shared inputs, respectively, at time
stepk+ j. The sum, defining the last element of the cost sequences, is due to the fact that the control
input is considered constant out of the control horizon and equal to thevalue corresponding to the time
stepk+Nu−1. λi is the weighting factor that penalizes the criterion when the comfort constraints are
not accomplished.

The linear programming problem (6.8) can be written in a standard form, with a dual block-
diagonal constraint matrix, as in (6.1), with the following notations:

ccc′Ti =
[
cccT

i 0001,Nu 0001,N2 0001,N2 λi1111,N2 λi1111,N2

]
,

ccc′Tc =
[
cccT

c 0001,Nu

]
, DDD =

[
IIINu,Nu IIINu,Nu

]
, ggg=

[
uuuc
]
,

ΦΦΦi j =








φ0
i j 0 · · · 0

φ1
i j φ0

i j 0 · · ·
... · · ·

.. .
...

φN2−1
i j · · · φN2−Nu+1

i j ∑N2−Nu
k=0 φ k

i j







,

φ k
i j = CiAk

i Bi j , ΨΨΨi =
[

(CiA1
i )

T · · · (CiA
N2
i )T

]T
,

EEEi =





000Nu,Nu 000Nu,Nu

−∆∆∆iΦΦΦi2 000Ni
o,Nu

∆∆∆iΦΦΦi2 000Ni
o,Nu



 , hhhi =





uuui

−∆∆∆i (wwwi −ΨΨΨixxxi)
∆∆∆i (wwwi −ΨΨΨixxxi)



 ,

FFF i =





IIINu,Nu IIINu,Nu 000Nu,Ni
o

000Nu,Ni
o

000Nu,Ni
o

000Nu,Ni
o

−∆∆∆iΦΦΦi1 000Ni
o,Nu

IIINi
o,Ni

o
000Ni

o,Ni
o

−IIINi
o,Ni

o
000Ni

o,Ni
o

∆∆∆iΦΦΦi1 000Ni
o,Nu

000Ni
o,Ni

o
IIINi

o,Ni
o

000Ni
o,Ni

o
−IIINi

o,Ni
o



 .

The optimization variablesuuu′c anduuu′i are obtained by adding the required number of slack variables to
theuuuc anduuui , respectively.

6.4.2 Empirical study of efficiency

Since the distributed algorithm was implemented on a sequential machine, the computational time
required by the decomposition algorithm to solve a linear programming problem is:

tseq=
l

∑
l=1

(

tMPCc(l)+ ∑
j∈S

tMPCj (l)

)

,

wherel is the number of Benders iterations needed to solve the problem,tMPCc(l) is the time required
by the central MPC to solve the master problem at iterationl , while tMPCj (l) is the computational
time to solve the subproblemj. The computational time using a distributed computing environment,
ignoring the communication time required at each iteration, can be expressed as:

tdistr =
l

∑
l=1

(

tMPCc(l)+max
j∈S

tMPCj (l)

)

.
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In order to study the complexity of the distributed algorithm compared to the centralized solver,
we will use a very simple thermal model of a room and supposing (without lossof generality) that all
the subsystems have the same model. The values of the model (6.6) matrices are:

AAAi =

[
0.9921 0

0 0.9931

]

, BBBi =

[
0.2595 0

0 0.1376

]

, CCCT
i =

[
1
1

]

.

The efficiency of the distributed algorithm will be measured regarding the equivalent distributed
computational time and the number of iterationsl . The main parameters of the algorithm are: the
number of subproblems (subsystems)s, the dimension of the subproblemsdi = (Nu+2Ni

o)× (2Nu+
4Ni

o), whereNi
o ∈ {0,1, ...,N2} is the number of occupation time steps within the prediction period

(i.e. the number of lines of∆∆∆i) and the toleranceε. The dimension of the prediction horizonN2

should be chosen sufficiently large in order to offer enough time to the heating system to increase the
indoor temperature up to the desired setpoint in the worst situation (low initial temperatures). In the
following simulation results, we usedN2 = 30. For the three scenarios presented below we considered
five different cases (in each case we changed the initial state values of the subsystems) for each value
of the variable parameter, in order to have more consistent statistical results.

Scenario 1

s∈ {21,22, ...,27}, Nu = 5, Ni
o = 15, ε = 10−3. Fig. 6.3 shows a very good scaling behavior of the

algorithm in a distributed computing environment, regarding the number of subproblems. In the mean
time, for a small number of subsystems the centralized (Simplex) method offers better performances.
Concerning the number of iterations, we observe a logarithmic dependenceof l on s. This fact shows
a good convergence speed of the algorithm and its slight dependence onthe number of subproblems.

10
0

10
1

10
2

10
−2

10
0

10
2

10
4

s

T
im

e 
[s

]

 

 

t
centr

t
distr

10
0

10
1

10
2

0

5

10

15

20

s

N
um

be
r 

of
 it

er
at

io
ns

Figure 6.3: The influence of the number of subsystems,s
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Scenario 2

s= 50, Nu ∈ {1,5,10, ...,30}, Ni
o ∈ {1,5,10, ...,30}, ε = 10−3. Here we study the algorithm per-

formances with respect to the subproblem sizes,di . The control horizon dimension,Nu, is a tuning
parameter, whileNi

o depends on the occupation profiles. As Fig. 6.4 shows,Ni
o has a more important

influence over the computational time thanNu, which is normal asNi
o has a greater weight on the

dimension of the subproblem.
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Figure 6.4: The influence of the control horizon,Nu, and of the occupation time steps,Ni
o

Scenario 3

s= 50, Nu = 10, Ni
o = 15, ε ∈ {10−6,10−5, ...,10−1}. Fig. 6.5 shows that the toleranceε influences

very slightly the computational demand of the distributed algorithm. The number ofBenders itera-
tions has a logarithmic dependence on the tolerance which shows the exponential convergence of the
method.

6.5 Conclusion

A distributed model predictive control strategy has been proposed for solving a class of LP large
scale problems. The distributed control strategy is based on Benders’ decomposition, which allows
the decrease of the computational demand by using a network of local controllers, coordinated by
a master controller. This decomposition method is very effective when the constraint matrix has a
specific block structure (dual block-angular). The effective of the distributed algorithm, regarding the
computational time, has been shown using a simple multi-source temperature control in buildings.
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Figure 6.5: The influence of the stop condition tolerance,ε
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Chapter 7

Infinite Horizon Model Predictive
Control with targets and zone control

Abstract

This work deals with an Infinite Horizon MPC (IHMPC) developed for the zone control and input
target. The IHMPC with zone control and input targets includes on the addition of an economic stage
in order to compute the desired values of the manipulated variables based on an economic objective.
The computed values of the manipulated variables on the economic stage are sent to the controller
(IHMPC controllers are assumed in this work), and the objective of the controller is to drive the
manipulated variables, to their desired values, keeping the outputs of the system within a predefined
zone (range of values).

7.1 Infinite Horizon Model Predictive Control

Consider the nonlinear system given by

ẋ(t) = f (x(t),u(t))

y(t) = g(x(t),u(t))
(7.1)

where f (·), g(·) are smoothC1 functions,x∈ ℜnx, u∈ ℜnu, andy∈ ℜny denote the states, the inputs,
and the outputs of the dynamical system (7.1).
In order to design a model predictive controller for the system (7.1),a linear time invariant model (7.2)
is considered. The construction of the linear time invariant model in the state-space representation can
be conducted by linearizing the system at[x∗,u∗]:

x(k+1) = E+A(x(k)−x∗)+B(u(k)−u∗)

y(k) = F +C(x(k)−x∗)+D(u(k)−u∗)
(7.2)
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where

E = f (x∗,u∗)

F = g(x∗,u∗)

A=
∂ f (x,u)

∂x

∣
∣
∣
∣
∣
x∗,u∗

B=
∂ f (x,u)

∂u

∣
∣
∣
∣
∣
x∗,u∗

C=
∂g(x,u)

∂x

∣
∣
∣
∣
∣
x∗,u∗

D =
∂g(x,u)

∂u

∣
∣
∣
∣
∣
x∗,u∗

Often, the output of the systemy(k) is independent of the inputsu(k) (i.e., D = 0). In this work we
also assume the same. However, the approach presented here can be easily extended to systems in
whichD 6= 0.

A modeling approach frequently adopted in model predictive controller (MPC) considers a discrete-
time state -space model in incremental form [49],

x̃(k+1) = Ãx̃(k)+ B̃∆u(k)

y(k) = C̃x̃(k)
(7.3)

whereÃ, B̃, C̃, are matrices of the system in the so called “incremental form”, and∆uk = uk−uk−1 is
the input increment.
The model (7.3) can be represented in Jordan canonical form as:

[
x1(k+1)
x2(k+1)

]

=

[
P 0
0 Iny

][
x1(k)
x2(k)

]

+

[
B1

B2

]

∆u(k)

y(k) =
[

C1 C2
]
[

x1(k)
x2(k)

]
(7.4)

wherex1(k) =V1x̃(k), x2(k) =V2x̃(k−1), V1,V2 are transformation matrices,P is a block diagonal
matrix with components corresponding to the poles of the system, andIny is a identity matrix of size
ny. In the state equation defined in (7.4), the state componentx2(k) corresponds to the integrating
poles produced by the incremental form of the model, andx1(k) corresponds to the system modes.
For stable systems, it is easy to show that if the system approaches to the steady state,x1 tends to zero.
Based on (7.3), the cost function of the output-tracking problem for the infinite horizon MPC (IHMPC)
can be defined as follows [49]:

Jk,∞ =
∞
∑
j=1

e(k+ j|k)TQe(k+ j|k)+
Nc−1
∑
j=1

∆u(k+ j|k)TR∆u(k+ j|k) (7.5)

wheree(k+ j|k) = y(k+ j|k)− r( j); y(k+ j|k) is the output prediction at time instantk+ j made at
timek; r( j) is the desired output value at timej, Nc is the control horizon,Q∈ ℜny×ny andR∈ ℜnu×nu
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are positive definite weighting matrices. The controller based on the minimization of the above cost
function corresponds to the IHMPC for the output-tracking case. Often,the infinite horizon controllers
reduce to finite horizon controllers by defining a terminal state penaltyQ. For the cost defined in (7.5)
such a terminal penalty is computed by the following Lyapunov equation :

Q−PTQP= PTC1
TQC1P (7.6)

Since an infinite horizon is used and the model defined in (7.4) has integratingmodes, terminal con-
straints must be added. According to [49], these constraints can be writtenas follows:

C2x2(k)− r +C2B̃2∆uk = 0 (7.7)

where
B̃2 =

[
B2, · · · ,B2

]
∈ ℜnu×Nc·nx

C2 = diag[C2, · · · ,C2] ∈ ℜNc·ny×Nc·nx

With the terminal penaltyQ, the cost defined in (7.5) can be written as

Jk,∞ =
Nc−1
∑
j=1

e(k+ j|k)TQe(k+ j|k)+x1(k+Nc|k)TQx1(k+Nc|k)+
Nc−1
∑
j=1

∆u(k+ j|k)TR∆u(k+ j|k)

(7.8)
Finally, the control optimization problem of the IHMPC can be formulated as:

min
∆uk

Jk,∞ =
Nc

∑
j=1

e(k+ j|k)TQe(k+ j|k)+x1(k+Nc|k)TQx1(k+Nc|k)+
Nc−1
∑
j=1

∆u(k+ j|k)TR∆u(k+ j|k)

(7.9)
subject to

[
x1(k+1)
x2(k+1)

]

=

[
P 0
0 Iny

][
x1(k)
x2(k)

]

+

[
B1

B2

]

∆u(k)

y(k) =
[

C1 C2
]
[

x1(k)
x2(k)

]

C2x2(k)− r +C2B̃2∆uk = 0

−∆umax≤ ∆u(k+ j|k)≤ ∆umax

∆u(k+ j|k) = 0 ; j ≥ m

umin ≤ uk−1+
j

∑
i=0

∆uk+i ≤ umax; j = 0,1, ...,m−1

(7.10)

Using model equation (7.4) to represent the output prediction as a functionof the future control actions
and the current state, the control objective represented in (7.9) can bewritten as follows:

Jk,∞ = 1
2∆uT

k H∆uk+cT
f ∆uk+c (7.11)
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where

H = (C1F1u+C2F2u)
TQ1(C1F1u+C2F2u)+R+FT

1uQ2F1u

cf = (C1F1u+C2F2u)
TQ1(C1Fxx1(k)+C2Ix2(k)− r)+FT

1uQ2(C1Fxx1(k))

c= (C1Fxx1(k)+C2Ix2(k)− r)TQ1(C1Fxx1(k)+C2Ix2(k)− r)+(C1Fxx1(k))
TQ2(C1Fxx1(k))

I =






Iny
...

Iny




 ,Fx =






P
...

PNc




 ,F1u =









B1 0 · · · 0

PB1 B1
. . .

...
...

...
. . .

...
PNc−1B1 PNc−2B1 . . . B1









F2u =









B2 0 · · · 0

B2 B2
. . .

...
...

...
. . .

...
B2 B2 . . . B2









,∆uk =






∆u(k|k)
...

∆u(k+Nc−1|k)




 , r =






r
...
r






C1 = diag[C1, · · · ,C1] ,C2 = diag[C2, · · · ,C2] ,Q1 = diag[Q, · · · ,Q] ,Q2 = diag[0, · · · ,Q2]

Finally the control optimization problem can be formulated as:

min
∆uk

Jk,∞ = 1
2∆uT

k H∆uk+cT
f ∆uk+c (7.12)

subject to
C2x2(k)− r +C2B̃2∆uk = 0

−∆umax≤ ∆u(k+ j|k)≤ ∆umax

∆u(k+ j|k) = 0 ; j ≥ m

umin ≤ uk−1+
j

∑
i=0

∆uk+i ≤ umax; j = 0,1, ...,m−1

Note that for large changes onx2(k), or for large changes onr = [rT(1), . . . , rT(Nc − 1)]T , or if r
corresponds to an unreachable steady state, the optimization problem defined through 7.9-7.10 may
become infeasible because of a conflict between constraints. Consequently, the IHMPC as defined
above cannot be implemented in practice.

7.2 Extended Infinite Horizon Model Predictive Control

The results presented in this section are based on [42].
In order to design an IHMPC which is implementable in practice, the objective function of infinite
horizon MPC is re-defined as follows:

Jk,∞ =
∞
∑
j=1

(e(k+ j|k)−δk)
T Q(e(k+ j|k)−δk)+

Nc−1
∑
j=1

∆u(k+ j|k)TR∆u(k+ j|k)+δ T
k Sδk (7.13)
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whereδk ∈ ℜny is a vector of slack variables andS∈ ℜny×ny is a assumed positive definite. Observe
that each slack variable refers to a given controlled output. Weight matrixSshould be selected such
that controller pulls to zero the slacks or at least minimize them depending on thenumber of inputs,
which are not constrained.
Analogously to the IHMPC, the extended infinite horizon controllers reduceto finite horizon con-
trollers by defining a terminal state penaltyQ that is obtained by solving (7.6). Hence, the control
objective defined in (7.13) can be written as

Jk,∞ =
Nc

∑
j=1

(e(k+ j|k)−δk)
T Q(e(k+ j|k)−δk)+x1(k+Nc|k)

TQx1(k+Nc|k)

+
Nc−1

∑
j=1

∆u(k+ j|k)TR∆u(k+ j|k)+δ T
k Sδk

Since the prediction model has integrating states, terminal constraints must be added. Such constraint
can be written as follows:

C2x2(k)− r +C2B̃2∆uk−δk = 0 (7.14)

Finally, the control optimization problem for the extended IHMPC can be formulated as:

min
∆uk,δk

Jk,∞ =
Nc

∑
j=1

(e(k+ j|k)−δk)
T Q(e(k+ j|k)−δk)+x1(k+Nc|k)

TQx1(k+Nc|k)

+
Nc−1

∑
j=1

∆u(k+ j|k)TR∆u(k+ j|k)+δ T
k Sδk

(7.15)

subject to
[

x1(k+1)
x2(k+1)

]

=

[
P 0
0 Iny

][
x1(k)
x2(k)

]

+

[
B1

B2

]

∆u(k)

y(k) =
[

C1 C2
]
[

x1(k)
x2(k)

]

C2x2(k)− r +C2B̃2∆uk−δk = 0

−∆umax≤ ∆u(k+ j|k)≤ ∆umax

∆u(k+ j|k) = 0 ; j ≥ m

umin ≤ uk−1+
j

∑
i=0

∆uk+i ≤ umax; j = 0,1, ...,m−1

Using model equation 7.4 to represent the output prediction as a function ofthe future control actions
and as a function of the current state, the control objective represented in 7.9 can be written as

Jk,∞ = 1
2

[
∆uT

k δ T
k

]
H

[
∆uk

δk

]

+cT
f

[
∆uk

δk

]

+c (7.16)

Page 54/66



HD-MPC ICT-223854 New HD-MPC methods for complex control problems

where

H =





(C1F1u+C2F2u)
TQ1(C1F1u+C2F2u)+R+FT

1uQ2F1u −(C1F1u+C2F2u)
TQ1I

−IQ1(C1F1u+C2F2u) S+ I
T
Q1+ I +Q





cf =





(C1F1u+C2F2u)
TQ1(C1Fxx1(k)+C2Ix2(k)− r)+FT

1uQ2(C1Fxx1(k))

−IQ1(C1Fxx1(k)+C2Ix2(k)− r)−Q(C2Ix2(k)− r)





c= (C1Fxx1(k)+C2Ix2(k)− r)TQ1(C1Fxx1(k)+C2Ix2(k)− r)+(C1Fxx1(k))
TQ2(C1Fxx1(k))

Finally the control optimization problem becomes:

min
∆uk,δk

Jk,∞ = 1
2

[
∆uT

k δ T
k

]
H

[
∆uk

δk

]

+cT
f

[
∆uk

δk

]

+c (7.17)

subject to
C2x2(k)− r +C2B̃2∆uk−δk = 0

−∆umax≤ ∆u(k+ j|k)≤ ∆umax

∆u(k+ j|k) = 0 ; j ≥ m

umin ≤ uk−1+
j

∑
i=0

∆uk+i ≤ umax; j = 0,1, ...,m−1

7.3 Infinite Horizon Model Predictive Control with input targets and
zone control

The IHMPC with input targets and zone control is a variation of the IHMPC scheme presented in
section (7.1), consisting in the addition of an economic stage in order to computethe desired values,
udes, of the manipulated variables,u, at each time stepk, based on an economic objective.
The computed values ofudeson the economic stage are sent to the controller (IHMPC are assumed in
this work), and the objective of the controller is to drive the manipulated variables,u, to their desired
values,udes, keeping the outputs of the system,y, inside a predefined zone (range of values). Figure
7.1 show the IHMPC scheme with input targets and zone control.
Below, the economic optimization stage and the controller stage of the control structure presented in
Figure 7.1 are described.

7.3.1 The economic stage

The economic stage has the aim of maximizing some economic objective (generallythe utility asso-
ciated with the production of some good), subject to the constraints determinedby a full steady-state
model of the system, and by the feasible set of control actionsΩ.
Let us define the profit functionP as

P(x(t),u(t)) = ky(t)−c(x(t),u(t))− l (7.18)
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Economic Op-

timization

(RTO)

MPC

Observer

economic

objective

input and output range:

( miny , maxy , minu , maxu )

System
( )y k

( )x̂ k

( )x̂ k

Figure 7.1: Schematic diagram of the infinite horizon model predictive controller with input target(
[18])

wherek is the price per unit ofy(t), c(x(t),u(t)) denotes the total cost of produce one unit ofy, and
l denotes the taxes per unit ofy. By definition, fixed and variable costs are respectively independent
and dependent on product quantity. It should be noted that the fixed costs and taxes are not under the
influence of operation. So, in an optimization problem these terms are constants and maximization of
equation (7.18) simplifies to the maximization of operational profit

O(x(t),u(t)) = ky(t)−V(x(t),u(t)) (7.19)

whereV(x(t),u(t)) denotes the variable costs. Based on the model of the plant (7.1), equation(7.19)
becomes

O(x(t),u(t)) = kg(x(t),u(t))−V(x(t),u(t)) (7.20)

Therefore, the optimization problem of the economical stage can be formulated as

max
udes

∫ t f

0
O(x(t),udes)dt

subject to:f (x(t),udes) = 0

udes∈ Ω

(7.21)

wheret f denotes the time at which the functionO(t) is expected to be maximal. Additional to the
behavior constraints (f (x(t),u(t)) = 0), and operational constraints (u ∈ Ω), scheduling constraints
also can be included (at timet f 1 the requirements arey(t f 1) and so on). If the required product
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quantity is not allowed to vary, then problem (7.21) can be reduced to

min
udes

∫ t f

0
V(x(t),udes)dt

subject to:f (x(t),udes) = 0

udes∈ Ω

(7.22)

Here, the economic optimization is complete. Below, the control stage is presented.

7.3.2 Control stage

Infinite Horizon MPC with input target [19]

The IHMPC with targets and control zones, is an optimal control problem similar to the IHMPC
problem presented in section 7.1, but in the case in which the targets and zone control are added, the
cost functionJ defined in (7.5) must be modified in order to minimize also the offset between the
current inputs and their desired values. So, the cost function becomes

Jk,∞ =
∞

∑
j=1

(e(k+ j|k)−δk)
T Q(e(k+ j|k)−δk)+

∞

∑
j=1

(
eu(k+ j|k)−δk,u

)T
Qu
(
eu(k+ j|k)−δk,u

)

+
Nc−1

∑
j=1

∆u(k+ j|k)TR∆u(k+ j|k)+δ T
k Sδk+δ T

k,uSuδk,u

(7.23)

whereeu(k+ j|k) = u(k+ j)−udes , udes is the vector of desired values for the system inputs,δk,u is a
vector of slack variables related to the inputs, which have the economic target, Qu andSu are positive
weighting matrices of appropriate dimensions.
To deal with the new control objective function of the IHMPC, it is necessary to redefine the state
space model as follows:





x1(k+1)
x2(k+1)

u(k)



=





P 0 0
0 Iny 0
0 0 Inu









x1(k)
x2(k)

u(k−1)



+





B1

B2

Inu



∆u(k)

[
y(k)
yu(k)

]

=

[
C1 C2 0
0 0 Inu

]




x1(k)
x2(k)

u(k−1)





(7.24)

In order to force the extended objective function defined in (7.24) to be bounded, the constraint rep-
resented in (7.14) must be satisfied, and a new constraint related to statexu have to be imposed also.
This new constraint is similar to the constraint represented in equation (7.14)and has the following
form:

u(k−1)−udes+ B̃u∆uk−δk,u = 0 (7.25)

where,
B̃u =

[
Inu, .., Inu

]
∈ ℜnu×Nc·nu

With this extended state space model defined en equation (7.24), the controlcost defined en equation
(7.23) can be written as follows:
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Jk,∞ =
Nc

∑
j=1

(e(k+ j|k)−δk)
T Q(e(k+ j|k)−δk)+

Nc

∑
j=1

(
eu(k+ j|k)−δk,u

)T
Q
(
eu(k+ j|k)−δku

)

+x1(k+Nc|k)TQx1(k+Nc|k)+
Nc−1
∑
j=1

∆u(k+ j|k)TR∆u(k+ j|k)+δ T
k Sδk+δ T

k,uSuδk,u

(7.26)

Finally, the control optimization problem of the extended infinite horizon MPC (IHMPC) can be
formulated as:

min
∆uk,δk,δk,u

Jk,∞ =
Nc

∑
j=1

(e(k+ j|k)−δk)
T Q(e(k+ j|k)−δk)+

Nc

∑
j=1

(
eu(k+ j|k)−δk,u

)T
Q
(
eu(k+ j|k)−δku

)

+x1(k+Nc|k)TQx1(k+Nc|k)+
Nc−1
∑
j=1

∆u(k+ j|k)TR∆u(k+ j|k)+δ T
k Sδk+δ T

k,uSuδk,u

subject to




x1(k+1)
x2(k+1)

u(k)



=





P 0 0
0 Iny 0
0 0 Inu









x1(k)
x2(k)

u(k−1)



+





B1

B2

Inu



∆u(k)

[
y(k)
yu(k)

]

=

[
C1 C2 0
0 0 Inu

]




x1(k)
x2(k)

u(k−1)





C2x2(k)− r +C2B̃2∆uk−δk = 0

u(k−1)−udes+ B̃u∆uk−δk,u = 0

−∆umax≤ ∆u(k+ j|k)≤ ∆umax

∆u(k+ j|k) = 0 ; j ≥ m

umin ≤ uk−1+
j

∑
i=0

∆uk+i ≤ umax; j = 0,1, ...,m−1

(7.27)

Using model equation 7.24 to represent the output prediction as a function of the future control actions
and the current state, the control objective represented in 7.26 can be written as follows:

Jk,∞ = 1
2

[
∆uT

k δ T
k δ T

k,u

]
H





∆uk

δk

δk,u



+cT
f





∆uk

δk

δk,u



+c (7.28)
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where

H =










(C1F1u+C2F2u)
TQ1(C1F1u+C2F2u)+R+FT

1uQ2F1u −(C1F1u+C2F2u)
TQ1I −BT

u Qu1Iu

−IQ1(C1F1u+C2F2u) S+ I
T
Q1+ I +Q 0

−I
T
u Qu1Bu 0 I

T
u Qu1Iu










cf =









(C1F1u+C2F2u)
TQ1(C1Fxx1(k)+C2Ix2(k)− r)+FT

1uQ2(C1Fxx1(k))+BT
u Qu1(Iuu(k)− ru)

−IQ1(C1Fxx1(k)+C2Ix2(k)− r)−Q(C2Ix2(k)− r)

−I
T
u Qu1(Iuu(k)− ru)









c= (C1Fxx1(k)+C2Ix2(k)− r)TQ1(C1Fxx1(k)+C2Ix2(k)− r)+(C1Fxx1(k))
TQ2(C1Fxx1(k))

+(Iuu(k)− ru)
TQu1(Iuu(k)− ru)

Iu =






Inu
...

Inu




 ,Bu =






Inu · · · Inu
...

. . .
...

Inu · · · Inu




 ,Qu1 = diag[Qu, · · · ,Qu] ,

Finally the control optimization problem can be formulated as:

min
∆uk,δk,δk,u

Jk,∞ = 1
2

[
∆uT

k δ T
k δ T

k,u

]
H





∆uk

δk

δk,u



+cT
f





∆uk

δk

δk,u



+c (7.29)

subject to
C2x2(k)− r +C2B̃2∆uk−δk = 0

u(k−1)−udes+ B̃u∆uk−δk,u = 0

−∆umax≤ ∆u(k+ j|k)≤ ∆umax

∆u(k+ j|k) = 0 ; j ≥ m

umin ≤ uk−1+
j

∑
i=0

∆uk+i ≤ umax; j = 0,1, ...,m−1

(7.30)

Infinite Horizon MPC with input target and zone control

The results presented here are based on [18]
The zone control strategy is implemented in applications where the exact values of the controlled
outputs are not important, as long as they remain inside a range with specific limits.
The control structure considered in this work is represented in Figure 7.2. In this structure, at time
stepk, the real time economic optimization (RTO) stage, which is based on a rigorous stationary
model, computes the optimal target,for the manipulated input variables. Here, it isassumed that the
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control stage corresponding to the MPC is dedicated to guide the manipulated inputs to the desired
targets defined by the supervisory economic stage, while keeping the outputs within specified zones.
In Figure 7.2 it is assumed that the PID or multivariable regulatory level is included in the system
level and that the regulatory level is capable of enforcing the set points determined by the MPC level.
The MPC optimization problem that implements the zone control strategy and enforces the economic
target is as follows:

min
∆uk,ysp,k,δk,δk,u

Jk,∞ =
Nc

∑
j=1

(
y(k+ j)−ysp,k−δk

)T
Q
(
y(k+ j)−ysp,k−δk

)

+
Nc

∑
j=1

(u(k+ j)−udes,k−δk,u)
T Q(u(k+ j)−udes,k−δku)

+x1(k+Nc|k)
TQx1(k+Nc|k)+

Nc−1

∑
j=1

∆u(k+ j|k)TR∆u(k+ j|k)+δ T
k Sδk+δ T

k,uSuδk,u

subject to




x1(k+1)
x2(k+1)

u(k)



=





P 0 0
0 Iny 0
0 0 Inu









x1(k)
x2(k)

u(k−1)



+





B1

B2

Inu



∆u(k)

[
y(k)
yu(k)

]

=

[
C1 C2 0
0 0 Inu

]




x1(k)
x2(k)

u(k−1)





C2x2(k)−ysp,k+C2B̃2∆uk−δk = 0

u(k−1)−udes,k+ B̃u∆uk−δk,u = 0

−∆umax≤ ∆u(k+ j|k)≤ ∆umax

ymin ≤ ysp,k ≤ ymax

∆u(k+ j|k) = 0 ; j ≥ m

umin ≤ uk−1+
j

∑
i=0

∆uk+i ≤ umax; j = 0,1, ...,m−1

7.4 Conclusion

This work was proposed a strategy to implement a MPC controller for large scale systems in which
the system outputs are controlled in specified zones and the manipulated inputs have targets associated
to the economic objectives of the controlled system.
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Economic Op-

timization

(RTO)

MPC

Observer

economic

objective

input and output range:

( miny , maxy , minu , maxu )

System
( )y k

( )x̂ k

( )x̂ k

Figure 7.2: Schematic diagram of the infinite horizon model predictive controller with input target
and zone control( [18])
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