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Executive Summary

This report presents further advances in the development of hierarchical and distributed model
predictive control (MPC) methods. In particular, we present a hierarchical approach for a Dy-
namic Pickup and Delivery Problem. The hierarchical multilayer structure ofthe system is used to
decompose the optimization problem, which is big and NP-hard, into smaller but more tractable
subproblems. Each proposed layer represents the viewpoint of different decision-makers. In one
of those layers, the dispatcher routes the vehicles when a new request appears, and minimizes user
and operator costs. As those two components are usually aimed at opposite goals, the problem in
this layer is formulated and solved through multiobjective model predictive control.
Then a game-theoretic approach is presented for distributed model predictive control (DMPC).
The DMPC problem is reformulated and analyzed as ann-person bargaining game based on the
concepts presented by John Nash. Then-person bargaining game involvesn individuals that can
collaborate for mutual benefit. The individuals communicate with each other in order to (jointly)
decide which strategy is the best for each individual, based on the profitreceived under cooperative
behavior.
The third and last method presented in this report is a hierarchical and distributed approach. The
proposed scheme facilitates the implementation of MPC without building a powerful centralized
controller, which is often impractical for large-scale systems. The proposed method is applicable
to a large class of interconnected systems where there can be couplings in both dynamics and
constraints between the subsystems. The hierarchical MPC controller is able to generate a primal
feasible solution within a finite number of iterations, using primal averaging anda constraint
tightening approach.
All these approaches are first briefly presented in the synopsis chapter, while a full presentation can
be found in the subsequent chapters. Additionally, the synopsis chapterpresents the economical
potential and suggestions for real-life applications.
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Chapter 1

Synopsis

This synopsis chapter first summarizes further results developed for hierarchical and distributed model
predictive control, namely:

• Hierarchical Multiobjective Model Predictive Control Applied to a Dynamic Pickup and Deliv-
ery Problem.

• Game Theory Based Formulation of Distributed Model Predictive Control.

• A distributed optimization-based approach for hierarchical MPC of large-scale systems with
coupled dynamics and constraints.

Then, the synopsis is concluded with a section summarizing the economical potential of hierarchical
and distributed MPC methods and suggestions for real-life applications.

1.1 Hierarchical multiobjective model predictive control applied to a
dynamic pickup and delivery problem

The advances in Hierarchical and Distributed Model Predictive Control(HD-MPC) during the last
decade have made this framework very attractive for dealing with problems associated with the man-
agement of real-time operations involved in complex operational processes. In this sense, the prob-
lems that arise in the operation of transport systems have become of real interest for applying not only
the methodology, principles and modeling techniques behind HD-MPC, but also several of the new
solution algorithms that have proved to be efficient in the context of HD-MPCapplications.

The decisions about operational policies, were mostly conducted relying on static optimization
methods to make decisions. These static methods were used even though the dynamism in the opera-
tion of most transport systems is nowadays widely recognized as part of their natural interaction with
the demand and infrastructure. The reasons for using static scenarios and models for such long time
were mainly due to computational constraints, lack of efficient algorithms and proper technology, etc.

On the contrary, in the last fifteen years, researchers have intensively worked to deal with dynamic
transport modeling and control problems, which has changed completely theway to conceive the
algorithms and policies used for planning the operation of the transport systems involved. Issues such
as data management, computational performance, future conditions prediction and real-time decisions
became relevant in the conception of operational schemes for several types of transport systems.

By looking into most of the specialized literature regarding such dynamic methods and algorithms,
the real-scale transport problems are commonly treated through heuristic methods, which does not
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seem to be a bad option even the most important operational decisions that are conditioned by the
algorithms’ solutions normally must be made in real-time. In these cases, it is worthregularly re-
evaluating the last policy applied in order to reach a better performance in themedium to long-term
time-scale, like in a rolling horizon fashion. In fact, the use of static approaches adapted to solve dy-
namic problems can considerably underestimate the potential benefits of certain dynamically derived
operational policies for both private operators and for societal end-users (users of transport systems).

Some of the dynamic transport problems that naturally fit to HD-MPC, with the dynamic features
of the most common transport schemes are i) dynamic vehicle routing problems (of passengers, loads),
ii) real-time operations of traditional (fixed route) public transport systems (buses, train), iii) real time
traffic control (urban and in highways), etc.

Indeed, in these applications the description of the future behavior associated with the opera-
tional processes generate highly non-linear model-based predictive control formulations containing a
combination of integer and continuous variables, soft and hard constraints, etc. Therefore, given the
complexity of those systems, it will be important to end up with concise and efficient model descrip-
tions along with a proper predictive objective, to make sure that the HD-MPCmethods are applicable
to the real-time settings of the transport systems analyzed.

In Chapter 2 [1], a hierarchical multiobjective model based predictive control approach is pre-
sented for solving a dynamic pickup and delivery problem. The hierarchical multilayer structure of
the system is used to decompose the optimization problem, which is big and NP-hard, into smaller
but more tractable subproblems. Each proposed layer represents the viewpoint of different decision-
makers. In one of those layers, the dispatcher routes the vehicles when anew request appears, and
minimizes user and operator costs. As those two components are usually aimed at opposite goals, the
problem in this layer is formulated and solved through multiobjective model predictive control. The
dispatcher participates in the dynamic routing decisions by expressing his/her preferences in a pro-
gressively interactive way, seeking the best trade-off solution at each instant among the Pareto optimal
set. An illustrative experiment of the new approach through simulation of the process is presented to
show the potential benefits in the operator cost and in the quality of service perceived by the users.

1.2 Game theory based formulation of distributed model predictive con-
trol

Game theory is a branch of applied mathematics used in social sciences, economics, biology (par-
ticularly evolutionary biology and ecology), engineering, political science, international relations,
computer science, and philosophy. Game theory attempts to capture behaviors in strategic situations,
or games where the outcome of a player is function not only of his choices but also depends on the
choices of others [2]. While initially developed to analyze competitions in which one individual does
better at another’s expense, it has been expanded to treat a wide classof interactions, which are classi-
fied according to several criteria. Today, “game theory is a sort of ’unified field’ theory for the rational
side of social science, where ’social’ is interpreted broadly, to include human as well as non-human
players (computers, animals, plants)”[3]. Thus, game theory arises as an alternative to formulate and
characterize the distributed model predictive control (DMPC) problem.

In Chapter 3, the DMPC problem is reformulated and analyzed as an-person bargaining game
based on the concepts presented by John Nash in [4, 5, 6] about suchgames. Then-person bargaining
game involvesn individuals that can collaborate for mutual benefit. The individuals communicate
with each other in order to (jointly) decide which strategy is the best for eachindividual, based on
the profit received under cooperative behavior [4]. So, in the proposed formulation, each subsystem is
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able to decide whether to cooperate or not with the other subsystems depending on the benefit received
by the subsystem from the cooperative behavior. The selection of the bargaining approach was made
because its main insight is focusing on others, i.e., to assess your added value, you have to ask not
what other players can bring to you but what you can bring to other players [7].

For analyzing the DMPC problem as an-person bargaining game the axiomatic bargaining theory
is used. Since this theory is formulated for static games, some axioms and concepts have been rede-
fined. Moreover, the concept of discrete-time dynamic bargaining game is introduced. Based on the
new concepts, two cases of distributed model predictive control are analyzed: the symmetric and the
nonsymmetric cases (conditions for the symmetry and nonsymmetry of the game associated with the
DMPC problem are established). For both cases the outcome of the game is characterized, i.e., the
properties of the DMPC formulated as a bargaining game are discussed.

In addition, a negotiation model for implementing a distributed solution of both symmetric and
nonsymmetric DMPC games is presented. This algorithm is based on the transformation of the bar-
gaining game in an equivalent noncooperative game, and solve the equivalent noncooperative game.
The transformation allowed to reduce the computational burden associated with the solution of the
DMPC problem because it is not required an iterative procedure for jointly compute the optimal con-
trol action applied to each subsystem. Also, the difference between the proposed algorithm and the
other algorithms for DMPC (specifically the DMPC algorithms based on Lagrange multipliers) are
discussed, and the conditions for the convergence and the stability of the proposed DMPC scheme are
established.

Finally, the quadruple tank process is used to illustrate a symmetric case, and ahydro-power valley
is used to present a nonsymmetric case.

1.3 A distributed optimization-based approach for hierarchical MPC
of large-scale systems with coupled dynamics and constraints

Chapter 4 [8] presents a new approach in designing model predictive controllers, based on hierarchical
and distributed MPC architecture. The proposed scheme facilitates the implementation of MPC with-
out building a powerful centralized controller, which is often impractical for large-scale systems. The
proposed method is applicable to a large class of interconnected systems where there can be couplings
in both dynamics and constraints between the subsystems. The hierarchicalMPC controller is able
to generate a primal feasible solution within a finite number of iterations, using primal averaging and
a constraint tightening approach. The primal update is performed in a distributed way and does not
require exact solutions, while the dual problem uses an approximate subgradient method. Stability of
the scheme is established using bounded suboptimality.

We considerM interconnected subsystems with coupled dynamics, the centralized discrete-time
state-space model is given by:

xk+1 = Axk+Buk

Let N be the receding horizon. In the MPC problem at time stept, the subsystems need to respect
the operational constraints:

xk ∈ X ,k= t +1, . . . , t +N−1

xt+N ∈ Xf ⊂ X

uk ∈ U ,k= t, . . . , t +N−1

ui
k ∈ Ωi , i = 1, . . . ,M, k= t, . . . , t +N−1
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where the coupled constraint setsU , X andXf are polytopes and have nonempty interiors, and each
local constraint setΩi is a hyperbox.

The MPC problem at time stept is formed using a convex quadratic cost function. After eliminat-
ing the state variables, we need to solve the following optimization problem at time step t:

f ∗t = min
u

f (u,xt) (1.1)

s.t. g(u,xt)≤ 0

u ∈ΩΩΩ

where f andg = [g1, . . . ,gm]
T are convex functions, andΩΩΩ = ∏M

i=1ΩΩΩi with eachΩΩΩi = ∏N−1
k=0 Ωi is a

hyperbox.
Suppose that at each time stept, we have a Slater vector̄ut which satisfies the strict inequality

g(u,xt) < 0, and we can quantify the difference between the costs associated with theprevious step
and the Slater vector as:

f (ut−1,xt−1)− f (ūt ,xt)> ∆t

Our objective is to generate a feasible solution for problem (1.1) using a method that is favorable
for distributed computation. The main idea is to use dual decomposition for the tightened problem of
(1.1), such that after a finite number of iterations the constraint violations in the tightened problem
will be less than the difference between the tightened and the original constraints. Thus, even after a
finite number of iterations, we will obtain a primal feasible solution for the original MPC optimization
problem. Moreover, the suboptimality would be less than∆t , so that the cost function decreases, acting
as the candidate function for proving Lyapunov stability.

The novel control technique is based on a two-level hierarchical and distributed optimization al-
gorithm, which is a nested procedure in which the outer loop is the approximate subgradient method
for the dual problem and the inner loop is the Jacobi distributed optimization method for the primal
problem. Most of the computations are carried out by the local controllers ina distributed fashion,
while the coordinator is in charge of computing the common parameters: the tightening offsetct , the
suboptimalityεt , the step sizeαt of the subgradient iteration, the number of outer-loop iterationsk̄t

and the number of inner-loop iterations ¯pk.
We show that the average of the primal update series is a feasible solution and lead to closed-loop

MPC stability with the following parameters to be defineda priori:

0< ct < min
j=1,...,m

{−g j(ūt ,xt)}

αt =
∆t

L′
t
2

εt =
∆t

2

k̄t =

⌈
1

αtct

(
3
γt

f (ūt ,xt)+
αtL′

t
2

2γt
+αtL

′
t

)⌉

p̄k =

⌈
logφ

εt

ΛM maxi Di

⌉

where⌈·⌉ is the ceiling operator which gives the closest integer equal to or above a real value,M is
the number of subsystems,L′

t ,γt ,φ ,Λ, andDi are the constants that are associated with the properties
of the functionsf andg.
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1.4 Economical potential and suggestions for real-life applications

Estimation of the economical potential of the new hierarchical and distributed methods is difficult
task. However, there are some results in literature, which can deal as a basis for this estimation. It is
obvious that a good centralized solution of an optimal control problem provides an upper bound for
the best control performance, which can be achieved by hierarchicaland distributed model predictive
control methods. A large scale study for the load change of a chemical plant has been provided
by Hartwich and Marquardt [9]. They report a profit gain of up to 8.6 %using an optimal controller
during transit. However, the process considered involves more than 12.000 variables, so the solution of
the optimal control problem can only be accomplished in several days. Hence, a real-time application
is not possible.

In another case study, which is still large-scale Würth et al. [10] demonstrate the capabilities of
modern optimal control methods. In particular, they compare single-layer optimal control and hier-
archical multi-layer control for a continuous polymerization process, which involves approximately
2000 nonlinear equations. In total, 4 different control scenarios are presented. The first controller
is a single-layer NMPC, where computational delay is neglected. The resultsfor this controller are
considered as the optimum achievable. However, neglecting the computational delay is an unrealistic
assumption, since the nonlinear optimal control problem cannot be solved inreal-time. If compu-
tational delay is considered, the controller performance dramatically reduced: The economic cost
function to be minimized doubles, while the number of constraint violations rises by a factor of 10.
But, using a hierarchical nonlinear model predictive control scheme, thecontroller performance of the
reference controller can be almost retained. This clearly demonstrates theadvantages of hierarchical
MPC, at least in a large-scale simulation case study. Though, this case study also shows, that there are
limitations in the size of a system, which can be dealt with by a monolithic or hierarchical controller,
as the computational delay can not be neglected. For systems with faster time-constants, the situation
gets even worse.

Here, the use of distributed model predictive control methods can be the solution to broaden
the class of systems, for which optimal control can be realized. This is especially important, when
nonlinear systems are considered. However, many of the methods in distributed model predictive
control are still not mature, normally they only exist for linear systems, as those presented in [11]: This
article presents a comparative analysis of different model predictive controllers. While centralized
controllers serve as a reference, different distributed and fully decentralized controllers are studied
in terms of various performance criteria. An important message is that distributed MPC solutions
can achieve the same controller performance as a centralized controller, while the same cannot be
achieved using decentralized MPC. The evaluations are conducted for areal plant, namely the well-
known quadruple-tank process suggested by Johansson [12]. Although this is a rather small-scale
example, the evaluation is one of the first studies of distributed MPC on a realplant, while the majority
of contributions are based on simulations.

Generally, a main benefit from using distributed methods compared to decentralized methods can
be seen in case a decentralized controller leads to unstable system behavior of a MIMO plant. On
the one hand, if the use of decentralized controller is to be used, a way to tackle the problem might
be to change the controller tuning such that the system performance is reduced. As a result, refer-
ence tracking and disturbance rejection gets worse. Then, the plant cannot be operated as close to
the system bounds, as one might want to do this, hence, one the plant is notoperated at the eco-
nomical optimum. On the other hand, the use of a centralized controller leads to more challenging
computational burdens, resulting in bigger sampling times and longer computational delays, which
again reduces the controller performance and forces the operator to operate the plant apart from its
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economical optimum.
Hence, if a distributed controller guarantees stability and optimality and reduces computing time

compared to a centralized controller, there is a continuous profit for the distributed over the central-
ized solution. Compared to a decentralized controller the profit gain depends on the coupling of the
subsystems. For uncoupled subsystems, a completely decentralized controller still provides optimal
performance, optimal disturbance rejection and optimal reference tracking. This might still be a good
solution for very weakly coupled subsystems. But as the couplings get stronger, a distributed con-
troller will definitely perform better than the decentralized controller. The stronger the couplings are,
the stronger should be the benefit of using a distributed MPC over a decentralized MPC. However,
for very strong coupling, e.g. consider a single CSTR with multiple inputs and outputs, the use of a
distributed solution will most likely be worse than a centralized MPC. As a result,we want to stress
that before deciding on the control method to be implemented, one should analyze the MIMO sys-
tem using existing tools such as the relative gain array, in order to decide onwhether to implement
distributed MPC or not.

Finally, we want to give a coarse guess on a real plant, in particular a 1 GWpower plant. However,
as real numbers are hardly available, the following numbers are really coarse guesses in order to get
a feeling on the real benefits of new MPC technology. We assume the plant isoperating 8000 hours
per year and a cost of 10 cent per kWh. Hence, the plant is producinga total of 8 TWh per year,
which is equivalent to 8×1012Wh 0.10Euro

1×103Wh = 800.000.000. Even if we assume only an improvement
in efficiency of the plant of 0.01 % due to implementation of a distributed or hierarchical MPC, costs
can be reduces by about 80.000 Euro per year, for an assumed reduction of 0.1 %, it is already a saving
of 800.000 Euro per year.

From, these numbers, it gets clear, that the effort of implementing an improvedcontrol concept,
e.g. distributed or hierarchical MPC, for a large scale plant, will easily payback the effort in a
reasonable time. For smaller plants, the benefit will be seen, as soon as the same solution will be
applicable on multiple systems. However, a necessary requirement for adaption in industrial plants is
still the bring hierarchical and distributed MPC methods to a more mature status.
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Chapter 2

Hierarchical Multiobjective Model
Predictive Control Applied to a Dynamic
Pickup and Delivery Problem

The research of this chapter has been developed by Alfredo Núñez, Bart De Schutter, Doris Sáez, and
Cristián E. Cortés. A. Núñez and B. De Schutter are with the Delft Center for Systems and Control,
Delft University of Technology, Mekelweg 2, 2628 CD Delft, The Netherlands D. Sáez is with the
Department of Electrical Engineering, Universidad de Chile, Av. Tupper 2007, Santiago, Chile. C.E.
Cortés is with the Department of Civil Engineering, Universidad de Chile, Blanco Encalada 2002,
Santiago, Chile.

2.1 Introduction

The dynamic pickup and delivery problem (DPDP) considers a set of online requests of service for
passengers traveling from an origin (pickup) to a destination (delivery)served by a fleet of vehicles
initially located at several depots [1], [2], [3]. The final output of such a problem is a set of routes
for the fleet, which dynamically change over time and are required in real-time.The DPDP designed
to operate dial-a-ride systems (DARS) has been intensely studied in the last decades [4], [5], [6], [7],
among which the ADART system in Corpus Christi Texas, which is a distributedsystem for dynamic
routing already implemented in real-life [8].

A well-defined DPDP should be based on an objective function that includes prediction of future
demands and traffic conditions in current routing decisions, [9], [10],[11], [12]. In previous works
we have proposed an analytical formulation for the DPDP as a model basedpredictive control (MPC)
problem. The proposed global optimization problem was big and NP-hard, so, the use of evolutionary
algorithms was considered. However, the global optimum solution in real-time instances was not
reached due to the trade-off between computation time and accuracy in thosealgorithms. In this
paper, we propose a new control structure for DPDP that does not only incorporate predictions, but
also the inherent hierarchical multilayer and multiobjective structure of the DPDP.

Regarding hierarchical model based predictive control (HMPC), a very nice and comprehensive
review can be found in [13]. The references within [13] represent the main contributions in the field.
In a HMPC structure the local actions of the controllers are coordinated byan algorithm operating at
a higher level. The higher layers determine general characteristics of thesystem and generate control
variables which have a long-term effect on the plant. Those variables usually are obtained by a static
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optimization procedure and remain constant during a relative longer periodof time. In the lower
layers, control variables are determined by means of a higher rate optimization procedure (MPC)
and their effects are local and short-term (see more details in [13], [14]and [15]). In this paper, we
propose a hierarchical scheme with three layers for solving the DPDP, where each layer represents
the viewpoint of different decision-makers. The communication and coordination issues in each layer
are very important, not only because the information is received at different rates, but also because of
some conflicts that could happen especially when their objectives are opposite. This is the case for
DPDP, when we consider quality of service for users while minimizing operational costs.

In real implementations of DPDP the quality of service is very important. The authors in [16]
conclude that most dial-a-ride studies are focused on the minimization of operational costs, and that
it is necessary to develop more studies on user-policies. Then, it is reasonable that the objective
function properly quantifies both the impact on the users’ level of serviceaffected by real-time routing
decisions, as well as the effect on the associated extra operational costs. We must notice that these two
dimensions represent opposite objectives and we will need to solve conflicts between them. The users
want to obtain good service, implying more direct trips, resulting in lower vehicle occupancy rates and
consequently, higher operational costs. More efficient routing policiesfrom the operators’ standpoint
will reflect higher occupation rates, longer routes, and consequently,longer waiting and travel time
for users. Thus, the question is how to properly balance both componentsin the objective function
to make proper dispatching decisions. To guide the decision-maker in this line,in this paper we
propose the use of multiobjective model based predictive control. The dispatcher must express his/her
preferences (criterion) in a progressive way (interactively), seeking the best-compromise solution from
the dynamic Pareto set. The performance of the system will be related with the criterion used.

Multiobjective optimization (MO) has been applied to a large number of static problems and also
to vehicle routing problems [17], [18]. For a comprehensive review, theinterested reader is referred to
[19]. As far as we know, all the multiobjective applications in vehicle routing problems are evaluated
in static scenarios, one of the aims of this paper being to contribute in the analysis of using MO in
dynamic and stochastic environments. Among works and applications related toMO in MPC we
can highlight [20], [21], and [22]. Almost all the works reported in this line prioritize, or use scalars
methods by weighting the objective functions (a priori) turning the MO probleminto a single-objective
optimization. Those methods are too rigid in the sense that changes in the preference of the decision-
maker cannot easily be considered. Then, we propose a suitable tool for dispatchers that allows to
make decisions in a more transparent way.

The outline of the paper is as follows. In Section 2, the Hierarchical Multiobjective Model Pre-
dictive Control approach is presented. In Section 3 the DPDP, including the model and the objective
functions are discussed. In Section 4, the scheme based on MPC for solving the DPDP by [12] is re-
formulated under the new approach. In Section 5 simulation results are shown and analyzed. Finally
conclusions and future work are highlighted.

2.2 Hierarchical multiobjective model predictive control

2.2.1 Hierarchical model predictive control

In hierarchical multilayer systems, the system is divided into different functional layers, and the con-
trol structure consists of algorithms dealing with different components of thesystem, working at
different temporal and spatial scales. This structure is useful to control plants characterized by sig-
nificantly different dynamics and where the action of local controllers is coordinated by an algorithm
operating at a higher level [13]. In process industry it is very common to design the overall control
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system according to hierarchical structures [24]. In some applications,and also in the one we propose
in this paper, at a higher level a simpler and more abstract model is considered to predict the long-term
behavior of the system and to compute the optimal plant operating conditions based on an economic
criterion. At the lower level, a more accurate model is used to compute the current control actions by
looking at a shorter time horizon.

Consider for example a hierarchical model based predictive controller with a given number of
layers. The variables of the higher layer are denoted with superscript 1, in the next lower level the
superscript is 2 and so on. The process modeled in layers is given by the following non-linear
discrete-time system:

xs(ks+1) = fs(x
s(ks),u

s(ks),X
s(ks)), (2.1)

wherexs(ks) ∈ R
ns is the state vector,us(ks) ∈ R

ms is the input vector,Xs(ks) are states and inputs
from higher layers that affect the dynamics of layers, andks ∈ N denotes the time step in layers. In
the layers, the following MPC problem is solved:

min
Us

λs ·Js(U
s,xs

ks
)

subject to
xs(ks+ ℓ+1) = fs(xs(ks+ ℓ),us(ks+ ℓ),Xs(ks+ ℓ)),

ℓ= 0,1, ...,Ns−1,
Xs(ks+ ℓ) = [x1(ks+ ℓ), ...,xs−1(ks+ ℓ),

u1(ks+ ℓ), ...,us−1(ks+ ℓ)], ℓ= 0,1, ...,Ns−1,
xs(ks) = xs

ks
,

xs(ks+ ℓ) ∈ Xs, ℓ= 1,2, ...,Ns,
us(ks+ ℓ) ∈ Us, ℓ= 0,1, ...,Ns−1,

(2.2)

whereUs= [us(ks)
′, ...,us(ks+Ns−1)′]′ is the sequence of future control actions in layers, Js(Us,xs

ks
)=

[Js
1(U

s,xs
ks
), ...,Js

ls
(Us,xs

ks
)]′ are thels objective functions to minimize,λs = [λ 1

s , ...,λ ls
s ] is the weight-

ing factor vector,Ns is the prediction horizon,xs(ks+ ℓ) is theℓ-step-ahead predicted state from the
initial statexs

ks
, Xs(ks+ℓ) is a vector with the predicted states and the outputs of higher layers that will

affect the dynamics of layers at stepks+ ℓ. We supposeXs(ks+ ℓ) is known from the higher level
MPC and is fixed for the optimization problem to solve in layers. The state as well as the inputs are
constrained toXs andUs.

As can be noted, the optimizer at a higher level computes its desired control actions, which can
be interpreted as reference signals for the immediately lower layers. The design of the higher level
module plays a fundamental role. In fact, even if it is based on static optimization, the adopted model
has to be periodically updated, while keeping coherence, by means of someadequate procedure to
deal with changing operating conditions. To guarantee that these inputs are feasible, and to consider
the presence of disturbances in the lower layers, the layers should communicate.

2.2.2 Hierarchical multiobjective model predictive control

Usually the objective functions in MPC are conflicting, i.e., a solution that optimizes one objective
may not optimize others [22]. Multiobjective (MO) in MPC is a generalization of MPC, where instead
of minimizing a single objective function, we consider more performance indices. In Hierarchical
Multiobjective Model Predictive Control (HMO-MPC), if the layers modeled by (2.1) has conflicts,
the following multiobjective problem is solved:
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min
Us

{
Js

1(U
s,xs

ks
),Js

2(U
s,xs

ks
), ...,Js

ls(U
s,xs

ks
)
}

(2.3)

subject to the same constraints as in (2.2). The variablesUs and Js
l (U

s,xs
ks
), l = 1, ..., ls, are the

sequence of future control actions and the objective functions to minimize in layers respectively. The
solution of HMO-MPC problem is a set of control action sequences called Pareto optimal set. Next
we define Pareto optimality. Consider a feasible control sequenceUs

P = [us
P(ks)

′, ...,us
P(ks+Ns−1)′]′.

The sequenceUs
P is said to be Pareto optimal if and only if there does not exist another feasiblecontrol

action sequenceU such that:

1) Js
i (U,xk)≤ Js

i (U
s
P,xk), for i = 1, ..., ls.

2) Js
j (U,xk)< Js

j (U
s
P,xk), for at least onej ∈ {1, ..., ls}.

The Pareto optimal set contains all Pareto optimal solutions. The set of all objective function
values corresponding to the solutions is known as the Pareto optimal front. The relation between
MPC and MO in MPC will be explained with a simple example. Let us consider a MPCproblem
that involves minimizing the single objective functionλJ1(U,xk)+ (1−λ )J2(U,xk), λ ∈ (0,1), and
a MO-MPC problem that involves minimizing{J1(U,xk),J2(U,xk)}. As seen in Fig. 2.1, the MPC
optimal solutionU∗

MPC belongs to the Pareto solution set of the MO-MPC problem (more details of
the conditions for this can be found in [22] and references within). If wesolve the MPC problem
for a wide range of weighting factor valuesλ , we would obtain an approximation of the same Pareto
set for MO-MPC. The procedure should be repeated at every instant,which could become extremely
inefficient in terms of computer resources. In this paper, we use explicit enumeration for the simula-
tion results to measure the benefits of the approach. We claim that for bigger problems evolutionary
multiobjective optimization algorithms could be used; however, it will be important toevaluate the
effects of using a metaheuristic in the performance of the system, because the Pareto set is not always
obtained.
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Figure 2.1: Relation between MPC and MO-MPC solutions

From the set of the optimal control solutions, just the first componentus(ks) of one of those
solutions has to be applied to the system, so at every instant, the controller (dispatcher in the context
of a DPDP) has to use a criterion in order to find the control sequence thatbetter suits the current
objectives. In this paper, that decision is obtained after the Pareto set is determined. Then, it is not
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possible to choose a priori some weighting factor and to solve a single-objective optimization problem.
The idea is to provide to the dispatcher a more transparent tool for the decisions.

2.3 Dynamic pickup and delivery problem

2.3.1 Process description

Dial-a-ride systems (DARS) are transit services which provide a shared-ride door-to-door service
with flexible routes and schedules. The quality of service of a DARS is supposed to be in between of
public transit buses and taxis. The typical specifications are the users pickup and delivery destinations
and desired pickup or delivery times. We will assume that all the requests are known only after the
dispatcher receives the associated call and that all the users want to beserved as soon as possible.
Thus, even we will not include explicitly hard windows, to provide a good service we propose a user-
oriented objective function that deals with the problem of undesired assignments to clients, and keeps
the service provided as regular (stable) as possible.

The service demandηk comprises the information of the request and is characterized by two po-
sitions, pickuppk and deliverydk, the instant of the calltk, a labelrk that identifies the passenger who
is calling and the number of passengers waiting thereΩk. Also we consider the expected minimum
arrival timetrk which is the best possible time to serve the passenger, considering a straight journey
from origin to destination (like a taxi service) and a waiting time obtained with the closest available
vehicle (in terms of capacity) to pick up that passenger.

We assume a fixed and known fleet sizeF over an urban areaA. The dispatcher receives calls
asking for service every instantk. Once a new request enters the system, the assignment of the vehicle
and the insertion position of the new request into the previous sequence ofthat vehicle, are control
actions decided by the dispatcher (controller), based on a dynamic objective function. Then, at any
instantk, each vehiclej is assigned to complete a sequence of tasks which includes several points of
pickup and delivery. Only one of those vehicles will serve the last new request. The set of sequences
u(k) = S(k) = {S1(k), ...,SF(k)} correspond to the control variable. The sequence of stops assigned

to vehicle j at instantk is given bySj(k) =
[
S0

j (k),S
1
j (k), ...,S

w j(k)
j (k)

]
, whereSi

j(k) is the information

about thei-th stop andw j(k) is the number of planned stops of vehiclej at instantk. The i-th stop
information comprises the label of the userr i

j(k), the spatial coordinatePi
j(k), whether the stop is a

pickup or deliveryzi
j(k) and the number of users waiting at thei-th stopΩi

j(k).
Two sources of stochasticity are considered: the first regarding the unknown future demand enter-

ing the system in real-time, and the second coming from the network traffic conditions, in its spatial
and temporal dimension represented by a speed distributionv(t, p) at instantt in a positionp. We
will assume in this work a conceptual network, where the trajectories are defined as the straight line
that joins two consecutive stops. Besides, a speed distribution for the urban zone during a typical
period represented by a speed model ˆv(t, p) is supposed to be known, which could be obtained from
historical data.

2.3.2 Process model

The predictive model for vehiclej at instantk proposed in [12] is given by:
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χ̂ j(k+1) =





Pi∗
j (k)+

tk+τ∫

tk

v̂(t, p(t))(Pi∗+1
j (k)−Pi∗

j (k))

‖Pi∗+1
j (k)−Pi∗

j (k)‖
dt

if i∗ < w j(k)
Pi∗

j (k) if i∗ = w j(k)

T̂ i
j (k+1) =





T0
j (k) if i = 0

tk+
i

∑
s=1

κs
j (k) if i = 1, ...,w j(k)

L̂i
j(k+1) =





L0
j (k) if i = 0

L0
j (k)+

i

∑
s=1

(2zs
j(k)−1)Ωs

j(k), i = 1, .,w j(k)

(2.4)

whereχ̂ j(k) is the expected position of vehiclej, T̂ i
j (k) the expected departure time of vehiclej from

stop i, andL̂i
j(k) the expected load of vehiclej when leaving stopi. Moreover,tk is the continuous

instant time when requestk happens,τ is the instant betweentk and the occurrence of the future
probable call,i∗ is the expected last stop visited by the vehicle before instanttk+ τ, andκ i

j(k) is an
estimation of the time interval between stopi−1 and stopi. Fig. 2.2 shows an example of a sequence
assigned to vehiclej at instantk.
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Figure 2.2: Representation of sequence of vehiclej and its stops

2.3.3 Objective functions

The motivation of this work is to provide to the dispatcher an efficient tool thatcaptures the hierarchi-
cal structure of the DPDP problem and the trade-off between users andoperator costs. Besides, we
design an objective function able to reflect the fact that some users can become particularly annoyed
if their service is postponed (either pickup or delivery), by means of an incremental weight in the
objective function that penalizes differently very-long waiting or travel times.

The optimization variables are the current sequenceS(k) that incorporate the new requestηk, and
the future sequencesSh = {Sh(k+ 1), ...,Sh(k+N)}, h = 1, ...,hmax, that incorporate the prediction
of future requests. The scenarioh consists of the sequential occurrence ofN− 1 estimated future
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requestη̂h
k+1, η̂

h
k+2, ..., η̂

h
k+N−1, with a probabilityph. ThusSk+N

k = {S(k),S1, ...,Shmax} comprises all
the control actions to be calculated. The user costJ1(k) and the operator costJ2(k) are given by:

J1(k) =
F

∑
j=1

hmax

∑
h=1

N

∑
ℓ=1

ph · (J
U
j,h(k+ ℓ)−JU

j,h(k+ ℓ−1))

JU
j,h(k+ ℓ) =

θv

w j (k+ℓ)

∑
i=1

f v
r i

j (k+ℓ)
(1−zi

j(k+ ℓ))(T̂ i
j (k+ ℓ)− trr i

j (k+ℓ))

+θe

w j (k+ℓ)

∑
i=1

f e
r i

j (k+ℓ)
zi

j(k+ ℓ)(T̂ i
j (k+ ℓ)− tr i

j (k+ℓ)),

(2.5)

J2(k) =
F

∑
j=1

hmax

∑
h=1

N

∑
ℓ=1

ph · (J
O
j,h(k+ ℓ)−JO

j,h(k+ ℓ−1))

JO
j,h(k+ ℓ) = cT(T̂

w j (k+ℓ)
j (k+ ℓ)−T0

j (k+ ℓ))

+cL

w j (k+ℓ)

∑
i=1

Di
j(k+ ℓ),

(2.6)

whereN is the prediction horizon,hmax is the number of predicted scenarios,k+ ℓ is the instant at
which theℓ-th request enters the system, measured from instantk, ph is the probability of occurrence
of theh-th scenario,JU

j,h(·) is the cost of the users in vehiclej, andJO
j,h(·) is the operator cost of vehicle

j when the scenarioh occurs. The first component ofJU
j,h(·) is related to the re-routing time and the

second component to the effective waiting time experienced by userr i
j(·). Moreover, f v

r i
j (·)

and f e
r i

j (·)

are special weighting functions designed for the userr i
j(·); both will start to grow linearly if the user is

not experiencing a good total travel or a good waiting time respectively. RegardingJO
j,h(·), it includes

a first term that depends on the total operational time and another which depends on the total traveled
distance. Thus,Di

j(·) represents the distance between stopsi −1 andi in the sequence of vehiclej.
Finally, θv, θe, cT andcL are weights defined by the dispatcher.

As this optimization problem is big and NP-hard, we propose to exploit its inherent hierarchical
structure, splitting the problem in smaller ones that work coordinated in different time scales. In the
third layer of the proposed structure the conflicts between users and operator will be solved by the use
of multiobjective model predictive control.

2.4 HMO-MPC for the DPDP

The DPDP is divided in three layers. In the first layer, variables like prices, economical factors, fleet
size, etc., are determined based on economical criteria. The second layercharacterizes each vehicle
according to its coverage area and occupancy by providing parametersof membership functions of a
fuzzy inference system [23]. In the third layer, whenever a requestappears, the vehicles are routed
by minimizing user and operator costs using MO-MPC. In Fig. 2.3 the proposed scheme for DPDP is
shown and next each layer is explained. The structure of this diagram is like the proposed in [24].

First layer, Management

This layer represent a plant-wide optimization process. Outputs which are assumed constant in a
period of about two or more hours are determined in this layer. Those outputs are some parameters
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Figure 2.3: HMO-MPC for the DARS

of the objective functions (2.5) and (2.6) like the value of waitingθe and travelθv times for users,
the value of each minute traveled by vehiclescT , cost for kilometer traveledcD, reasonable prediction
horizonN, fleet sizeF , call-rateτ, etc. The demand patternsh and their probabilities are determined
here by using fuzzy clustering as in [11], and the membership functions ofthe clusters are determined.
Those parameters clearly change on time, each one with a different but slow rate. For example the cost
per kilometer traveledcD could change because of daily variations of the price of fuel, the demand
patternsh if there is a special event in a stadium, etc. Thus an MPC problem like (2.2) withs= 1
could be solved, where the objective function should incorporate economical indexes. In this paper we
are focusing on the operational process, so we will assume that the information provided by this layer
is given and fixed. However, whether or not a static or dynamic optimization isgood, the way each
parameter is determined and the analysis of more complex situations are topics for further research.

Second layer, Vehicles characterization

This layer generates the information used to determine the group of vehicles with better chances to
serve new requests. The information is updated every 20 minutes and will permit to reduce the com-
putational effort when discarding vehicles too far away from new requestsηk or when their number of
tasks is too high. The output of this layer are the parameters of three membership functions (MFs) for
each vehiclej, which represent the coverage in axisx µ j

x(·), in axisy µ j
y(·) and the number of tasks

µ j
N(·). The following MFs are used:

µ j
x(ηx

k) = e
−

0.5(ηx
k−P̄x

j )
2

(σx
j )

2
, µ j

y(ηy
k) = e

−
0.5(ηy

k−P̄y
j )

2

(σy
j )

2

µ j
N(w j(k)) =

1

1+e−(w j (k)−c j (t))

(2.7)

whereηx
k and ηy

k are thex and y coordinates of the pickup or delivery of the new requestηk, P̄x
j

andP̄y
j are the mean values andσx

j andσy
j are the standard deviations of coordinatesx andy of the

task assigned to vehiclej including the current position of the vehicle and the last stop visited. The
variablec j(t) is the point of inflection of the sigmoidal membership function. The gaussian MFfor
the coordinates captures the fact that some vehicles will serve requests inspecific zones with a small
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coverage area, and others with a wider coverage. Due to the fact that the parameters are uploaded, it
is possible to change the kind of trip a vehicle is doing according to the new requirements. Regarding
the sigmoidal (logit) shape of the MF for the number of tasks, the idea is to include the fact that when
a vehicle is too saturated with future tasks, not only a bad service would be provided to the user,
but also more computation time for solving the optimization problem would be required because it is
NP-hard with the number of stops. We usec j(t) = 10 for the simulation results, so vehicles with up
to 10 tasks are still reasonable. The value ofc j(t) could start to be reduced when the driver of vehicle
j is going to get lunch, or by the end of his journey. Other characteristics likeoccupancy, number of
annoyed passengers, worst served passenger total time, could be also used to rank the vehicles with
more chances to serve new requests.

Third layer, Multiobjective optimization

The last layer consists of two components. The first one is a pre-processing algorithm where the
optimization problem is reduced and conflicts between users and operator costs are detected. If there
is a conflict, in the second component, we solve it by using MO-MPC.

The pre-processing algorithm is divided in three steps. In the first and second steps, by means of
fuzzy inference systems, the most ad-hoc trip patternsh̄ and fleetF̄ are determined. In the third step
we detect conflicts between users and operator by solving two MPC problems, to optimize just user
cost and to optimize just operator cost. The algorithm is the following:

Step 1.1. Using a fuzzy inference system, the new requestηk is evaluated in the membership
functions (MFs) of each trip pattern. This fuzzy inference uses the parameters of MFs provided by the
first layer. The predicted future scenarios with a high activation degreeare chosen. These are denoted
by h̄.

Step 1.2. With another fuzzy inference system, the candidate vehiclesF̄ to serve the new and the
probable requests̄h are determined. To show how this fuzzy inference works, consider forexample
the vehicle 10 at instantk as shown in Fig. 4. This fuzzy inference uses the parameters of the MFs
provided by the second layer. A new callηk arrives, whose pickup coordinate is(7,5) and whose
delivery coordinate is(7,6), as shown in Fig. 4(a). We check first whetherηk is in the coverage area
of vehicle j, by evaluating the MFsµ10

x (·) andµ10
y (·) shown in Fig. 4(b) and Fig. 4(c) respectively.

For the pickup we getµ10
x (7)·µ10

y (5) = 0.45 and for the deliveryµ10
x (7)·µ10

y (6) = 0.53. Then we
check whether the number of stops is big by using the MFµ10

N (·) shown in Fig. 4(d). At instantk,
w j(k) = 10, soµ10

N (10) = 0.5, which means that the vehicle is still having a reasonable number of
tasks. Finally the activation degree of the rule for vehicle 10 equals 0.12. Whether vehicle 10 is a
good candidate or not, will depend on the conditions of the other vehicles. The first vehicle candidate
is obtained by choosing the vehicle with the maximum activation degree, the second candidate with
the second maximum, and so on (defuzzification).

Step 1.3. Two MPC optimization problems are solved. To optimize just user cost and to optimize
just operator cost:

min
Sk+N

k

J1(k) = ∑
j∈F̄

∑
h∈h̄

N

∑
ℓ=1

ph ·∆JU
j,h(k+ ℓ)

s.t. Model and constraints

(2.8)

min
Sk+N

k

J2(k) = ∑
j∈F̄

∑
h∈h̄

N

∑
ℓ=1

ph ·∆JO
j,h(k+ ℓ)

s.t. Model and constraints

(2.9)
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Figure 2.4: Fuzzy characterization of vehicle 10. (a) Vehicle 10 sequence, Membership Functions for
(b) x-axis, (c) y-axis and (d) number of stops

The objective functions minimized in (2.8) and (2.9), are like in (2.5) and (2.6)respectively, but
considering just the set of vehicles̄F and the probable scenariosh̄, which reduces the computational
effort significantly. If the solution for both MPC problems (2.8) and (2.9) isthe same or the trade-off
between them is small, then the optimal solution which is closer to a pre-defined dispatcher criterion
is used. If the trade-off is big, then MO-MPC is required to find the optimal Pareto front, as the set of
vehicles has conflicts and a better picture of the trade-off is necessary.

The MO-MPC algorithm is divided in four steps. In the first step, for eachvehicle j ∈ F̄ , the
Pareto optimal sets for different conditions are determined. In the next step, the Pareto set for each
scenarioh∈ h̄ is obtained by coordinating different vehicles to serve all the requests. In the third step,
the Pareto set for the MO-MPC problem is obtained. Finally in the last step a dispatcher selects a
solution based on his/her criterion. Below each step is explained.

Step 2.1. The scenariohconsists of the sequential occurrence ofN requestsηk, η̂h
k+1, η̂

h
k+2, ..., η̂

h
k+N−1.

For each vehiclej ∈ F̄ , for each scenarioh∈ h̄, we will solve 2N MO problems considering the cases
where vehiclej is the one that serves none, one, or a combination of more of those requests. For
example, ifN = 2, for each vehicle we solve four MO problems considering the cases to serve none,
to serveηk, to serveη̂h

k+1, and to serveηk andη̂h
k+1. The MO problem in this step is the following:

min
{Sj (k),Sh

j (k+1),...,Sh
j (k+N)}

{
N

∑
ℓ=1

∆JU
j,h(k+ ℓ),

N

∑
ℓ=1

∆JO
j,h(k+ ℓ)

}
(2.10)

Capacity constraints and consistency are considered, so the Pareto setcontains just feasible se-
quences. Note that some of those MO problems are easy to solve, but the more requests the vehicle
serves, the more possible solutions we will have. In fact, considering the no-swapping constraint, the
number of possible solutions when theN requests are served by vehiclej only is 0.5 ·∏N−1

i=0 (w j(k)+
i)(w j(k)+ i −1), wherew j(k) is the number of stops of vehiclej and instantk. The MO problems in
this step are the most time consuming, but they can be solved simultaneously and inparallel because
they are not related with each other.

Step 2.2. Then for a given scenarioh∈ h̄, considering the constraint that just one vehicle can serve
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each request, we obtain the Pareto set of the following MO problem:

min
{S(k),S1,...,Shmax}

{

∑
j∈F̄

N

∑
ℓ=1

∆JU
j,h(k+ ℓ), ∑

j∈F̄

N

∑
ℓ=1

∆JO
j,h(k+ ℓ)

}
(2.11)

The solution of this MO problem is obtained with the Pareto sets from Step 2.1 by combining the
|F̄|N possible cases in a way that the current request and each future request are served by just one
vehicle. For example, if we have three vehiclesF̄ = {3,4,11}, for N = 2, the cases are 3−3, 3−4,
3− 11, 4− 3, 4− 4, 4− 11, 11− 3, 11− 4 and 11− 11, wherev1− v2 means thatηk is served by
vehiclev1 andη̂h

k+1 is served by vehiclev2.
Step 2.3. Then, using the Pareto set of all the scenariosh∈ h̄, we solve the following MO problem:

min
Sk+N

k

{

∑
j∈F̄

∑
h∈h̄

N

∑
ℓ=1

ph ·∆JU
j,h(k+ ℓ), ∑

j∈F̄
∑
h∈h̄

N

∑
ℓ=1

ph ·∆JO
j,h(k+ ℓ)

}
(2.12)

The solution of this MO problem is obtained using the Pareto sets from Step 2.2, by multiplying
each Pareto front by the probability of occurrence of the associated scenarioph and then combining
the different cases considering all the scenarios.

Step 2.4. The Pareto front from Step 2.3 is presented to the operator, who will select a sequence
S(k) that is Pareto optimal, based on a criterion. For example, the operator can choose the solution
that provides the minimum user effective cost, or other characteristics thatcould be estimated. For
estimating for example the effective user waiting time, we weight the expected waiting time of each of
scenario with its probability of occurrenceph. In this step the performance of the DPDP will depend
on how good the criterion applied is.

In this kind of problems, HMO-MPC suits very well, as its main objective is to be implemented
as a reference to support the decisions of the dispatcher, who has the flexibility of deciding which
criterion is more adequate.

2.5 Simulation results

A period of four hours representative of a labor day (14:00-17:59) issimulated, over an urban area
of approximately 81(km2). A fixed fleet of twenty vehicles is considered, with a capacity of four
passengers each. We assume that the vehicles travel in a straight line between stops and that the trans-
port network behaves according to a speed distribution with mean equal to 20(km/h). We suppose
that the future calls are unknown for the dispatcher. However, he(she) has historical data from where
the typical trip patterns can be extracted. A speed distribution model and the trip patterns are known,
from the historical data and the fuzzy zoning method. This fuzzy zoning permits to generate the trip
patterns and their probabilities as shown in Fig. 5(a) and Table I.

Three hundred calls were generated over the simulation period of four hours following the spa-
tial and temporal distribution observed from the historical data. Regardingthe temporal dimension,
a negative exponential distribution for time intervals between calls with rate 0.8(call/min) was as-
sumed. Regarding the spatial distribution, the pickup and delivery coordinates were generated ran-
domly within each zone. The first 30 calls at the beginning and the last 30 callsat the end of the ex-
periments were deleted from the statistics to avoid limit distortion (warm up period). One experiment
was carried out to obtain the statistics, to show how the approach works. The experiment (emulating
four hours and 300 on-line decisions) took 7.66(min), on average 1.69 seconds per request, on a Intel
Core2 CPU, 3.00GHz processor. The computing time at each iteration is shown in Fig. 5(b). This

Page 22/75



HD-MPC ICT-223854 Evaluation results including economic and application potentials

Table 2.1: Pickup and delivery coordinates and probabilities: 1st layer Fuzzy Zoning

Xpickup(km) Ypickup(km) Xdelivery(km) Ydelivery(km) Probability
3.0870 3.0244 6.5063 4.0556 0.1510
6.9598 5.8895 3.4377 4.9476 0.1510
3.4383 5.0403 3.0684 2.9579 0.3473
6.5473 3.9574 7.0399 5.9597 0.3506

computing time represents an upper bound of what is possible to do if a more efficient algorithm like
the metaheuristics from the multiobjective evolutionary computation were applied (specially for the
peaks, like the one of 8 seconds for request 248).
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Figure 2.5: HMO-MPC for the DPDP. (a) Origin-destination patterns, (b) Computation time

The objective function is formulated at two steps ahead, considering parametersθv= 16,7($/min),
θe = 50($/min), cT = 25($/min), cL = 350($/Km). The users will start to get annoyed if their per-
ceived total travel time is bigger than 1.7 times their minimal travel time, or if their waiting time is
longer than 10(min). In the 3rd layer, the six best vehicles to serve a new request are chosen, ranked
according the fuzzy inference system. The most likely demand pattern was used for the predictions.

The criteria for selecting a Pareto solution was the value nearest to a givenuser cost. We consid-
ered four cases: 500, 600, 700 and 800(Ch.$) for cases a), b), c) and d) respectively.

Simulations for two steps ahead were conducted to analyze and evaluate the performance of the
HMO-MPC strategies. In Table 2.2 the effective user waiting and travel time,user and operator costs
are reported. In Table 2.3 we also show the number of passengers (pax) badly served, i.e., having a
waiting time higher than a threshold of 10(min), as well as a very bad level of service considering the
total time spent in the trip (in-vehicle and waiting time) and the worst served usercost. Tables 2.2 and
2.3 clearly show the trade off between opposite components. The resulting mean user cost over the
whole simulation fitted quite well the thresholds defined at each case.

2.6 Conclusions and future work

A new approach to solve DPDP was presented. The proposed HMO-MPCscheme considers three
layers. In the first one, variables with a long-term effect in the system are determined. In the second
layer, the vehicles are characterized by fuzzy membership functions, which are used in the next layer
to optimize in a better way the fleet. The last layer consists of a MO-MPC problem.Under the
implemented on-line system it is easier and transparent for the operator to follow service policies as
weighting parameters are not tuned.
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Table 2.2: Simulation results, user and operator cost

Case Effective Effective User Operator
travel time waiting time cost cost

(min) (min) (Ch.$) (Ch.$)
a) 11.18 5.82 477.49 18124.56
b) 12.88 6.51 539.91 17499.78
c) 12.68 8.57 639.62 16910.75
d) 12.70 11.39 781.07 16670.66

Table 2.3: User indexes

Case Waiting time Unfavorable Worst
higher than total time served

10 min (pax) (pax) user cost (Ch.$)
a) 31 20 1679.82
b) 50 32 2000.56
c) 73 51 2574.48
d) 120 72 3256.77

In the other hand, the method we use in this paper has three main drawbacks [25]. First, to obtain
the solution set from MO problem requires a big computational effort. Second, if the number of MO
problems to solve is big, a lot of analysis and coordination will be required. Third, the adequacy and
the knowledge of the decision-maker have a huge impact on the performance. For the first point, we
claim that new toolboxes for Evolutionary Computation and other efficient algorithms like the pro-
posed in [26] have been developed in recent years, so it is possible to determine a good representative
pseudo-optimal Pareto set in a dynamic context. The second point is not even a problem in this paper,
as we just have two opposite objectives, but in general, for more objectives further exploration and re-
search are required. The last point is the same problem that also appears when properly tuning weights
in a single objective function, i.e. having a good knowledge about the process is always important for
obtaining a good control performance.

Future work will focus on efficient optimization algorithms. The coordination with buses, train,
or other transport modes could also be a interesting topic.
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Chapter 3

Game Theory Based Formulation of
Distributed Model Predictive Control

The results in this chapter have been achieved by Felipe Valencia and JairoEspinosa, Universidad
Nacional de Colombia, Medellín, Colombia.

DMPC is a control scheme in which the system is divided into a number of subsystems. Each subsys-
tem is able to share information with the other subsystems in order to determine its local control action
[1, 2, 3, 4]. The main goal of the DMPC approach is to achieve some degree of coordination among
agents that are solving local MPC problems with locally relevant variables, costs, and constraints,
without solving the centralized MPC problem [5, 6, 7]. Compared with totally decentralized MPC
schemes (noncentralized MPC controllers without information exchange),the global performance of
the system is improved [5], [1], [2], but computational cost is increaseddue to communications, co-
operation and maybe negotiation among subsystems [1].

Several approaches to the DMPC problem have been presented in the literature. In Table 3.1,
advantages and disadvantages of the reviewed DMPC methods are summarized. In addition to the
issues presented in Table 3.1, the approaches proposed in [5, 9, 17, 6, 10, 7, 12, 13] require the system
to be stable and controllable. These requirements restrict the applicability of the proposed methods.
In [14, 15, 16] the stability and controllability requirements are not considered, but the system should
be stabilizable in order to apply the method proposed in these references.

Considering all these issues, game theory arises as an alternative to formulate and characterize the
DMPC problem. Game theory is a branch of applied mathematics used in social sciences, economics,
biology (particularly evolutionary biology and ecology), engineering, political science, international
relations, computer science, and philosophy. Game theory attempts to capturebehaviors in strategic
situations, or games where the outcome of a player is function not only of his choices but also depends
on the choices of others [18]. While initially developed to analyze competitions inwhich one individ-
ual does better at another’s expense, it has been expanded to treat awide class of interactions, which
are classified according to several criteria. Today, “game theory is a sort of ’unified field’ theory for
the rational side of social science, where ’social’ is interpreted broadly, to include human as well as
non-human players (computers, animals, plants)”[19].

The first ideas of applying game theory to the DMPC problem are in [20, 21]. In these references
the authors proposed a DMPC scheme based on Nash-optimality. In such approaches the DMPC prob-
lem was formulated as a non-cooperative game and it was demonstrated thatthe solution converged
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References Advantages Disadvantages
[5, 8, 6] Exchange of the predicted The method is for independent

state trajectories to avoid subsystems linked only by
communication problems. the cost function.

[9, 7] Reduction of the The method requires that
computational complexity each local MPC problem can be
of a DMPC problem. solved only with local information.

[10, 11, 12, 13] Reduction of Increment of the computational
the communication burden due to the solution of
among subsystems. minimax local problems.

[14, 15, 16] Each local cost function Subsystems are forced to
considers the effect of the cooperate, and the cooperation
local control inputs might steer the subsystems to
in the entire system behavior.operating points where they do

not perceive any benefit

Table 3.1: Advantages and disadvantages of the reviewed DMPC methods

to the Nash equilibrium point of the game. However, in [14, 15, 16] the authors shown examples in
which this approach produced an unstable closed-loop behavior.

After the works of Du and Li (see [20, 21]), Rantzer in [11, 12, 13] related the DMPC problem
with the game theory by using the cooperative game approach presented byJohn von Neumann and
Oskar Morgenstern in [22]. In the approaches presented by Rantzer, the Lagrange multipliers used
in the dual decomposition methods (see [7] for details) were conceived asprices in a market mech-
anisms serving to achieve mutual agreements among subsystems. Based on previous conception of
Lagrange multipliers, dynamic price mechanisms was used for decomposing and distributing the op-
timization associated with the original MPC problem. However, the approachespresented by Rantzer
also converges to a Nash equilibrium point, with the same disadvantages presented in [14, 15, 16].

Other approaches related with the formulation of the DMPC problem as a game have been pre-
sented in [23, 24, 25]. In [23] a DMPC control scheme based on Nash optimality is also presented. In
[24] an algorithm based on cooperative games for solving the DMPC problem was proposed. How-
ever, in this approach a real application of the concepts of game theory is not clear. Finally, in [25]
the authors analyze the DMPC problem as a non-cooperative game. Here, properties like convergence
and feasibility were derived based on the concept of Nash equilibrium point.

From the literature review, most approaches related with the application of game theory are based
on non-cooperative games and on the application of the Nash optimality or Nash equilibrium point,
with this related disadvantages in the control framework. In order to tackle this drawback (and the
mentioned about the classic DMPC strategies), in this work we will assume that subsystems “bar-
gain”among each other in order to (jointly) decide which strategy is the best with respect to their
mutual benefit (as in [24]). The DMPC problem will be then reformulated asa n-person bargaining
game based on the concepts presented by John Nash in [26, 27, 28] about such games. Then-person
bargaining game involvesn individuals that can collaborate for mutual benefit. The individuals com-
municate with each other in order to (jointly) decide which strategy is the best for each individual,
based on the profit received under cooperative behavior [26]. So, in the proposed formulation, each
subsystem is able to decide whether to cooperate or not with the other subsystems depending on the
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benefit received by the subsystem from the cooperative behavior. The selection of the bargaining ap-
proach was made because its main insight is focusing on others, i.e., to assess your added value, you
have to ask not what other players can bring to you but what you can bring to other players [29].

This text is organized as follows: In Section 3.1 a mathematical background of symmetric bar-
gaining games (based on the work of Nash [26, 27, 28]) is presented. Since the original bargaining
game theory was formulated for static games an extension should be proposed. Such a extension and
its application to the DMPC problem is also included in this section. Moreover, theproperties of
the DMPC formulated as a bargaining game are discussed. Based on [30],in Section 3.2 a mathe-
matical background of nonsymmetric bargaining games is presented. An extension of such a theory
to dynamic games also is proposed, and the properties of the DMPC formulatedas a nonsymmetric
bargaining game are discussed. In Section 3.3 the algorithm (or negotiation model) for implementing
a distributed solution of both symmetric and nonsymmetric DMPC games is presented. The differ-
ence between the proposed algorithm and the other algorithms for DMPC (specifically the DMPC
algorithms based on Lagrange multipliers) also are discussed. In Section 3.4the conditions for the
convergence and the stability of the proposed DMPC scheme are established. In Section 3.5 sim-
ulation results for both symmetric and nonsymmetric DMPC games are discussed.The symmetric
case is illustrated using the quadruple tank system. The nonsymmetric case is illustrated using the
hydro-power valley proposed in [31]. Finally, in Section 3.6 the concluding remarks are presented.

3.1 Distributed model predictive control as a symmetric bargaining game

Let us first introduce some notation used through the remainder of this paper. Let N be the set of
players,N = {1,2, . . . ,M}, M ≥ 2. Forα ,β ∈R

M, let αβ denote the vector[α1β1, . . . ,αMβM], β ≥ α
denote the inequalityβi ≥ αi for every i ∈ N (similarly for β > α), andβ 6 α denoteβi 6 αi for
every i ∈ N (similarly for β < α). For T ⊂ R

M, let αT := {γ ∈ R
M : γ = αβ for someβ ∈ T} and

α +T = T +α := {ν ∈R
M : ν = α +β for someβ ∈ T}. Also, fora∈R, aα := [aα1, . . . ,aαM] and

aT := {aα : α ∈ T}.
A game is defined as the tupleG= (N,{Ωi}i∈N,{φi}i∈N), whereN = {1, . . . ,M} is the set of play-

ers,Ωi is a finite set of possible actions of playeri, andφi : Ω1× . . .×ΩM −→R is the payoff function
of the ith player [32]. So, a DMPC problem can be defined as a tupleG = (N,{Ωi}i∈N,{φi}i∈N),
whereN = {1, . . . ,M} is the set of subsystems,Ωi is the non-empty set of feasible control actions for
subsystemi, andφi : Ω1× . . .×ΩM −→ R, whereφi is the cost function of theith subsystem. Hence,
a DMPC problem is a game in which the players are the subsystems, the actions are the control inputs,
and the payoff of each subsystem is given by the value of its cost function.

Since it is assumed that the players are able to “bargain” in order to achievea common goal, the
gameG can be analyzed as a bargaining game following the Nash theories about such games. A
bargaining game is a situation involving a set of players who have the opportunity to collaborate for
mutual benefit by an agreement on a joint plan of action [26, 28]. If an agreement is not possible,
the players carry out an alternative plan which is determined by the information locally available.
The benefit perceived by the player when an agreement is not possibleis called disagreement point.
Mathematically, a bargaining game is defined as follows [30]:

Definition 1 Bargaining Game:
A bargaining game for N is a pair(S,d) where:

1. S is a nonempty closed subset ofR
M (Closedness of the feasible set S is required for mathemat-

ical convenience.).
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2. d∈ int(S), d being the disagreement point.

3. ζi(S) := max{φi : (φi)i∈N ∈ S} exists for every i∈ N.

Hereφi : RM −→ R denotes the profit function of player i for i= 1, . . . ,M, S denotes the feasible set
of profit functions, andζi(S) denotes the utopia point of subsystem i for i= 1, . . . ,M. Moreover, if the
feasible set S is convex then the bargaining game(S,d) is called a convex bargaining game.

Remark 1 A bargaining game(S,d) is called symmetric if d1 = d2 = . . . = dM, and for everyφ ∈ S
any pointφ̃ ∈ R

M arising fromφ by performing some permutation of its coordinates is also in S. If a
bargaining game(S,d) does not satisfy these conditions, then it is called a nonsymmetric bargaining
game [30].

The outcome of a game(S,d) is a tupleϕ(S,d) = (φ1, . . . ,φM) of profits received by the players.
If any player does not cooperate then the corresponding position inϕ(S,d) is replaced by its dis-
agreement point. Hence, if all subsystems decide not to cooperateϕ(S,d) = (d1, . . . ,dM). Thus, the
problem is how do you get an outcome of the game(S,d) given that every player wants to maximize
its own profit? With the purpose of solving this issue, Nash in [26, 28] stated that the solutionϕ(S,d)
should satisfy the following four axioms:

Axiom 1 Symmetry:
If (S,d) is a symmetric bargaining game, thenϕ1(S,d) = . . .= ϕM(S,d).

Axiom 2 Weak Pareto optimality:
For T ∈ R

M let
W(T) := {α ∈ T : there is noβ ∈ T with β > α}

denote the weakly Pareto optimal subset of T . Then, for the game(S,d), ϕ(S,d) ∈W(S).

Axiom 3 Scale transformation covariance:
For the game(S,d), and all a,b∈R

M with a≥ 0 and(aS+b,ad+b), ϕ(aS+b,ad+b) = aϕ(S,d)+
b.

Axiom 4 Independence of irrelevant alternatives:
For all pair of games(S,d), (T,e), if d = e, T ⊂ S, andϕ(S,d) ∈ T, thenϕ(S,d) = ϕ(T,e).

Therefore, a function assigning to each player of the game(S,d) the maximum benefit, where the
resulting tupleϕ(S,d) satisfies Axioms 1-4 is called Nash function of the game(S,d), and the tuple
ϕ(S,d) is called symmetric Nash bargaining solution of the game(S,d). From [33], the symmetric
Nash bargaining solution of any game(S,d) is defined as follows:

Definition 2 Symmetric Nash Bargaining Solution
For every(S,d) with convex feasible set, letϕ(S,d) be the outcome of(S,d), where the function

φ 7−→ Πi∈N(φi −di)

is maximized over the set{φ ∈ S: φ ≥ d}, with φ = (φ1, . . . ,φM). The solutionϕ(S,d) is called the
symmetric Nash bargaining solution of(S,d), and the productΠi∈N(φi −di) is called the symmetric
Nash product of the game(S,d).
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Remark 2 Axioms 1-4 were proposed by Nash in order to characterize the outcomeof two-person
bargaining games. However, they have also been used to characterizethe outcome of n-person bar-
gaining games (see [32, 33, 30] and the references therein). Moreover, the solution presented in
Definition 2 corresponds to an extension to n-person bargaining games of the solution proposed by
Nash for two-person bargaining games.

As a consequence of Axioms 1-4 and based on Definition 2, Proposition 1 and Lemma 1 arise.

Proposition 1 The symmetric Nash bargaining solutionϕ(S,d) of the bargaining game(S,d) is well
defined, i.e.,ϕ(S,d) is unique, and it is possible to derive a geometrical characterization forϕ(S,d)
from the symmetric Nash productΠi∈N(φi −di).

Proof 1 See [30]

Lemma 1 Consider the bargaining game(S,d). Let γ ∈ W(S) with γ > d. Thenγ = ϕ(S,d) if and
only if

∑
i∈N

φi

φi −di
= ∑

i∈N

γi

φi −di
(3.1)

supportsΘ at γ.

Proof 2 See [30]

Until here, the main elements of the axiomatic bargaining game theory proposed by Nash have
been introduced. It is worth noting that the mathematical background presented in this section was
developed for static games, i.e., the effect of the time is not considered in the decision of the players.
Then, the concepts presented in this section should be redefined in a discrete-time dynamic context
in order to analyze the DMPC problem as a bargaining game. In the following section the discrete-
time dynamic bargaining game is defined, and the conditions of symmetry of such game are also
introduced.

3.1.1 Symmetric discrete-time dynamic bargaining game

Since the axiomatic bargaining game theory has been developed in the static environment, few dy-
namic approaches of the original theory have been proposed in order toanalyze dynamic bargaining
games (see [34, 35, 36] and the references therein). However, these approaches focus mainly on de-
veloping procedures to find the coalition-formation-based solution of the game. Assuming that all
controllers jointly decide which control action use at the same time, the coalition formation is only a
consequence of the decision process and not an objective of the negotiation model of the controllers
as in [32, 34, 35, 36]. In such a case (the DMPC problem), the axiomatic bargaining game theory
brings an alternative to characterize the outcome of the game.

Let a discrete-time dynamic bargaining game refers to a situation where at each time step a static
bargaining game(S,d) is solved depending on the dynamic evolution of the decision environment,
where the dynamic evolution of the decision environment determined by a state vectorx(k) ∈ R

n and
by an input vectoru(k) ∈ R

m, with x(k) ∈ X andu(k) ∈ U, X andU being the feasible sets forx(k)
andu(k) respectively. In this game, we assume that the feasible set and/or the disagreement point can
change with time. Mathematically, a discrete-time dynamic bargaining game is definedas follows:

Page 31/75



HD-MPC ICT-223854 Evaluation results including economic and application potentials

Definition 3 Discrete-time dynamic bargaining game:
A discrete-time dynamic bargaining game for N is a sequence of pairs{(Θ(0),η(0)),(Θ(1),η(1)), . . .},
denoted by{(Θ(k),η(k))}∞

k=0 (η(k) being the disagreement point at time step k), where:

1. Θ(k) is a nonempty closed subset ofR
M, for k= 1,2,3, . . ..

2. η(k) ∈ int(Θ(k)) for k= 1,2,3, . . ., η(k) being the disagreement point.

3. ζi(Θ(k)) := max{φi(k) : (φi(k))i∈N ∈ Θ(k)} exists for every i∈ N at each time step k, i.e., for
k= 1,2,3, . . ..

4. There exists functions fi ∈ R
ni ,gi ∈ R,hi ∈ R, i = 1, . . . ,M, determining the dynamic evolution

of the decision environment, the feasible set, and the disagreement point of player i such that

xi(k+1) = fi(x(k),u(k))

Θi(k+1) = gi(x(k),u(k),Θ(k))

ηi(k+1) = hi(x(k),u(k),η(k))

with xi(k) ∈ Xi , Xi ⊂ X.

5. There exists a profit functionφ(x(k),u(k)) ∈ R
M such thatφ(x(k),u(k)) ∈ Θ(k).

If gi is a convex function for i= 1. . . ,M, thenΘ(k) is convex and the game{(Θ(k),η(k))}∞
k=0 is a

convex discrete-time bargaining game.

Remark 3 From Definitions 1 and 3, and from Remark 1 a bargaining game{(Θ(k),η(k))}∞
k=0 is

called symmetric ifη1(k) = . . . = ηM(k) for k = 0,1,2, . . . ,∞, and for everyφ(k) ∈ Θ(k) any point
φ̃(k) ∈ R

M arising fromφ(k) by performing some permutation of its coordinates is also insideΘ(k)
for k= 0,1,2, . . .

Since a game{(Θ(k),η(k))}∞
k=0 is a sequence of static bargaining games the outcome of such

games is given by the sequence of solutions{ϕ(Θ(0),η(0)),ϕ(Θ(1),η(1)), . . .}. Assume the game
{(Θ(k),η(k))}∞

k=0 symmetric and convex. Let{ϕ(Θ(k),η(k))}∞
k=0 denote the sequence of solutions

of a game{(Θ(k),η(k))}∞
k=0, i.e.,{ϕ(Θ(k),η(k))}∞

k=0 := {ϕ(Θ(0),η(0)),ϕ(Θ(1),η(1)), . . .} Let l
denote a fixed time instance, i.e.,l = k for a fixedk. Then, based on Definition 2{ϕ(Θ(k),η(k))}∞

k=0
is a sequence of elements of the set{(φ1(l), . . . ,φM(l)) ∈ Θ(l) : φ(l)≥ η(l))}, l = 1,2, . . ., where the
function

φ(l) 7−→ Πi∈N(φi(l)−ηi(l)) (3.2)

is maximized atl . Note that the outcome of the game{(Θ(k),η(k))}∞
k=0 at fixed time stepl given

by (3.2) has the same properties than the solution of the symmetric bargaining game (S,d), i.e., sat-
isfies Axioms 1-4, Proposition 1, and Lemma 1. Moreover, under the assumption of symmetry of
{(Θ(k),η(k))}∞

k=0 these properties holds forl = 0,1,2, . . . Below, the DMPC problem is formulated
as a symmetric discrete-time dynamic bargaining game. Also, the properties satisfied by the DMPC
formulated as a symmetric discrete-time dynamic bargaining game are discussed.
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3.1.2 DMPC as a symmetric discrete-time dynamic bargaining game

Let us first introduce some notation used in this section. LetΩi denote the feasible set of control
actions for subsystemi, i = 1, . . . ,M, defined as the Cartesian productΩi = ΠNu

j=0Λi , whereΛi is
the feasible set for the control actionsui(k+ j), for j = 0, . . . ,Nu determined by the physical and
operational limits of subsystemi, with Nu being the control horizon. Let̃u(k) = [ũT

1 (k), . . . , ũ
T
M(k)]T ,

whereũi(k) = [uT
i (k), . . . ,u

T
i (k+Nu)]

T for i = 1, . . . ,M. Assume that 0∈ Λi for i = 1, . . . ,M. Assume
that Λi is closed, convex, and independent ofk for i = 1, . . . ,M (closedness ofΛi is required for
mathematical convenience). Note thatΩ = ΠM

i=1Ωi is the feasible set for the whole system determined
by the physical and operational constraints. Moreover,Ω is closed, convex, and independent ofk.

Similar definition of the feasible setsΩi , Ω have been made in [9, 17, 7, 16, 14, 15]. Also, note
that there have been formulated constraints over the inputs only. This was made under the assumption
that the state constraints are time independent and can be expressed as input constraints using the
prediction model. Systems like the quadruple tank system presented in [37], the two reactors chain
followed by a flash separator presented in [38, 14] and the hydro-power valley presented in [31] are
examples of systems satisfying the assumptions made to determine the setsΛi , Ωi , Ω. For more
examples of systems satisfying the assumptions aboutΛi , Ωi , Ω see [16, 14, 15, 39].

Let φi(ũ(k);x(k)) denote the cost function for subsystemi, i = 1, . . . ,M, where the notation
(ũ(k);x(k)) indicates that the functionφi depends oñu(k) andx(k) is a parameter whose time evolution
is given by the linear state update equation

x(k+1) = Ax(k)+Bu(k)

whereA andB are obtained by linearizing the model describing the behavior of the whole system
[14]. For the sake of simplicity of notation we will not indicate the dependenceof φi onx(k) explicitly
in the remainder of this text and thus writeφi(ũ(k)) insteadφi(ũ(k);x(k)). Assume thatφi(ũ(k)) is a
quadratic positive convex function of̃u(k) for i = 1, . . . ,M as in [37, 38]. Assume that the subsystems
are able to “bargain” in order to achieve a common goal: to maintain both the localand the whole
system performance by driving the states of the system to their referencevalues.

Let ϒ(k) := {φi(ũ(k)) : ũ(k) ∈ Ω, ∀i ∈ N}. SinceΩ is time-invariant fori = 1, . . . ,M the feasible
setϒ(k) is also time invariant, i.e.,ϒ(1) = ϒ(2) = . . . = ϒ. Moreover, sinceΩ is closed and convex
and by the continuity and convexity ofφi(ũ(k)) with respect tõu(k), the setϒ is closed and convex.
Note thatϒ defines a set of possible values of the cost function of every subsystem given the setΩ.
So, it is only needed to define a disagreement point inϒ in order to complete the formulation of the
DMPC problem as a symmetric discrete-time dynamic bargaining game.

From [28], the disagreement point should give to the players a strong incentive to increase their
demands as much as possible without losing compatibility. Therefore, followingthis statement let us
define the disagreement pointη(k) := (η1(k), . . . ,ηM((k)) as

ηi(k+1) =

{
ηi(k)−α |ηi(k)−φi(ũ(k))| if ηi(k)> φi(ũ(k))
ηi(k)+α |φi(ũ(k))−ηi(k)| if ηi(k)< φi(ũ(k))

∀i ∈ N, with 0< α < 1. With this definition of the disagreement point, if subsystemi decides to
cooperate then it can improve its expected performance by reducing the disagreement point in a factor
α [ηi(k)−φi(ũ(k))]. But, if subsystemi decides not to cooperate its expected performance is increased
by a factor[φi(ũ(k))−ηi(k)] in order to make possible that subsystemi begins to cooperate after a
few time steps.

Let the utopia pointζi(ϒ) := min{φi(ũ(k)) : φi(ũ(k)) ∈ ϒ} exist for everyi ∈ N. Then, the DMPC
problem can be analyzed as a discrete-time dynamic bargaining game (denoted by {(ϒ,η(k))}∞

k=0),
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with feasible setϒ, disagreement pointη(k), and utopia pointζ (ϒ). Note that in{(ϒ,η(k))}∞
k=0 only

the disagreement point depends on the time stepk, and thatζi(ϒ) is redefined because the objective
of the DMPC is to minimize the cost functionφi(ũ(k)), ∀i ∈ N. Moreover, based on Remark 3 a
symmetric DMPC game{(ϒ,η(k))}∞

k=0 can be defined as follows:

Definition 4 Symmetric DMPC game:
A DMPC game{(ϒ,η(k))}∞

k=0 is symmetric ifη1(l) = η2(l) = . . .= ηM(l) for l = 0,1,2, . . ., and for
everyφ(ũ(l)) ∈ ϒ any pointφ̃(ũ(l)) ∈ R

M arising fromφ(ũ(l)) by performing some permutation of
its coordinates is also inϒ.

Recall thatφi(ũ(k)) is a quadratic function of̃u(k), then it can be written as [37, 38]

φi(ũ(k)) = ũT(k)Quuiũ(k)+xT(k)Qxuiũ(k)+xT(k)Qxxix(k)

Hence, ifη1(k) = . . . = ηM(k) for k = 0,1,2, . . ., then a condition for which{(ϒ,η(k))}∞
k=0 is sym-

metric is thatQuui = Quu j, Qxui = Qxu j, andQxxi = Qxx j for all i, j ∈ N. This condition comes from
the following equality:

ũT(k)Quuiũ(k)+xT(k)Qxuiũ(k)+xT(k)Qxxix(k) = ũT(k)Quu jũ(k)+xT(k)Qxu jũ(k)+xT(k)Qxx jx(k)

for all i, j ∈ N.
Now, assume the game{(ϒ,η(k))}∞

k=0 symmetric. Sinceϒ is closed and convex, the objective of
the DMPC is to minimize the cost functionφi(ũ(k)) for all i ∈ N, and based on (3.2) the outcome of
the game{(ϒ,η(k))}∞

k=0 is a sequence of elements of the set{(φ1(ũ(l)), . . . ,φM(ũ(l))) ∈ ϒ : η(l) ≥
φ(ũ(l)), ũ(l) ∈ Ω, l = 1,2, . . .} where the function

φ(ũ(l)) 7−→ Πi∈N(ηi(l)−φi(ũ(l))) (3.3)

is maximized atl .
Until here, the symmetric DMPC game and its outcome were defined. Now, we have to demon-

strate that the solution of{(ϒ,η(k))}∞
k=0 given by (3.3) is the symmetric Nash bargaining solution of

such a game. With this purpose, it is required to demonstrate that (3.3) satisfies Axioms 1-4 at a fixed
time l , l = 0,1,2, . . . Let us begin with Proposition 2. This proposition is required for proving that
the outcome of the game{(ϒ,η(k))}∞

k=0 given by (3.3) is the symmetric Nash bargaining solution of
such a game, and for establishing that the corresponding optimization problem is well-posed.

Proposition 2 The solutionϕ(ϒ,η(l)) of the game(ϒ,η(l)) is unique at l ifϒ andφ(ũ(l)) are both
convex.

Proof 3 In order to prove Proposition 2, we have to demonstrate that the set

L = {φi(ũ(k)) ∈ ϒ : η(l)≥ φ(ũ(l)), ũ(l) ∈ Ω, i ∈ N}

is convex, and that (3.3) is strictly quasiconcave on L. This guarantees that ϕ(ϒ,η(l)) is unique at l.
Note that L= ϒ∩O, with O= {φi(ũ(l)) ∈ R : η(l) > φ(ũ(l))}. Sinceϒ and O are both convex

sets L is also a convex set. Then, the first part of the proof is completed.
For the second part of the proof, recall that a functionϑ : Ξ −→ R, with Ξ a convex subset of

R
m for some m∈ N, is strictly quasiconcave ifϑ(λα + (1− λ )α ′) > min{ϑ(α),ϑ(α ′)} for any

α 6= α ′ ∈ Ξ, λ ∈ (0,1).
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Letũ(l), ũ′(l)∈Ω such that̃u(l) 6= ũ′(l), φ(ũ(l))∈ L, andφ(ũ′(l))∈ L. Letϑ(ũ(l)) :=Πi∈N(ηi(l)−
φi(ũ(l))). Then

ϑ(λ ũ(l)+(1−λ )ũ′(l)) = Πi∈N(ηi(l)−φi(λ ũ(l)+(1−λ )ũ′(l)))

Sinceφi(ũ(l)) is a convex function of̃u(l)

φi(λ ũ(l)+(1−λ )ũ′(l))< λφi(ũ(l))+(1−λ )φi(ũ
′(l))

for λ ∈ (0,1), i = 1, . . . ,M. Moreover,

max{φi(ũ(l)),φi(ũ
′(l))}> λφi(ũ(l))+(1−λ )φi(ũ

′(l))> min{φi(ũ(l)),φi(ũ
′(l))}

Hence,
ϑ(λ ũ(l)+(1−λ )ũ′(l))> Πi∈N(ηi(l)−max{φi(ũ(l)),φi(ũ

′(l))}),

which implies
ϑ(λ ũ(l)+(1−λ )ũ′(l))> min{ϑ(ũ(l)),ϑ(ũ′(l))}

Hence, the functionϑ(ũ(l)) is a strictly quasiconcave function ofũ(l) on L. Therefore,ϕ(ϒ,η(l)) is
unique at l.�

Recall that the DMPC problem is originally a minimization problem. Then, let us redefine the
weakly Pareto optimal subset ofT as

W′(T) := {α ∈ T : there is noβ ∈ T with β < α}

As a consequence of Proposition 2, Propositions 3 and 4 arise.

Proposition 3 The bargaining solutionϕ(ϒ,η(l)) of the game(ϒ,η(l)) belongs to W′(L) at l.

Proof 4 From Proposition 2ϕ(ϒ,η(l)) is unique. Hence, does not existũ′(l)∈Ω satisfyingΠi∈N(ηi(l)−
φi(ũ′(l))) > Πi∈N(ηi(l)−ϕi(ϒ,η(l))) on L. Furthermore, sinceηi(l)− φi(ũ(l)) > 0 on L does not
existũ′(l) ∈ Ω satisfyingφ(ũ′(l))< ϕ(ϒ,η(l)). So,ϕ(ϒ,η(l)) ∈W′(L) at l. �

Proposition 4 Let {(ϒ,η(k))}∞
k=0 and{(ϒ′,η ′(k))}∞

k=0 be a pair of DMPC games such thatϒ′ ⊂ ϒ.
Let η ′(l) = η(l), andϕ(ϒ,η(l)) ∈ ϒ′ at l. Thenϕ(ϒ,η(l)) = ϕ(ϒ′,η ′(l)).

Proof 5 By Proposition 2ϕ(ϒ,η(l)) is unique. Sinceϒ′ ⊂ ϒ, η ′(l) = η(l), andϕ(ϒ,η(l)) ∈ ϒ′, the
solution of the DMPC game(ϒ′,η ′(l)) at l is ϕ(ϒ,η(l)). Hence,ϕ(ϒ,η(l)) = ϕ(ϒ′,η ′(l)). �

From Proposition 4 we can conclude that ifη(l) = η(l + 1) and x(l) = x(l + 1), the solution
ϕ(ϒ,η(l)) of {(ϒ,η(k))}∞

k=0 remains constant atl + 1, i.e., ϕ(ϒ,η(l)) = ϕ(ϒ,η(l + 1)). More-
over, following the procedure proposed in [30], and based on the Minkowski separation theorem
[40, 41, 42], it is possible to derive a geometrical characterization forϕ(ϒ,η(l)). Thus, by the qua-
siconcavity of (3.3) and by the geometrical characterization ofϕ(ϒ,η(l)) it is possible to establish
that the outcome of the game{(ϒ,η(k))}∞

k=0 is well-posed. Moreover, the geometrical characteriza-
tion of ϕ(ϒ,η(l)) and Proposition 3 allow us to rewrite Lemma 1 as it is shown in Lemma 2 whose
consequence is Proposition 5.

Page 35/75



HD-MPC ICT-223854 Evaluation results including economic and application potentials

Lemma 2 Consider a DMPC game{(ϒ,η(k))}∞
k=0. Letγ(l) ∈W′(L). Thenγ(l) = ϕ(ϒ,η(l)) if and

only if

∑
i∈N

φi(ũ(l))
ηi(l)−φi(ũ(l))

= ∑
i∈N

γi(l)
ηi(l)−φi(ũ(l))

supportsϒ at γ(l) at l.

Proof 6 See [30]

Proposition 5 Consider the DMPC game{(ϒ,η(k))}∞
k=0. For all a, b∈R

M with a≥ 0, the bargain-
ing solution of the game(aϒ+b,aη(l)+b) at l is equal to aϕ(ϒ,η(l))+b, i.e.,ϕ(aϒ+b,aη(l)+b)=
aϕ(ϒ,η(l))+b.

Proof 7 By definition aϒ+b= {φ̃(ũ(l)) ∈R
M : φ̃(ũ(l)) = aφ(ũ(l))+b, φ(ũ(l)) ∈ ϒ}. From Lemma

2, γ(l) is the bargaining solution of the DMPC game(ϒ,η(l)) at l if and only if

∑
i∈N

φi(ũ(l))
ηi(l)−φi(ũ(l))

= ∑
i∈N

γi(l)
ηi(l)−φi(ũ(l))

supportsϒ at γ(l). For the game(aϒ+b,aη(l)+b) we have

∑
i∈N

φ̃i(ũ(l))

aiηi(l)+bi − φ̃i(ũ(l))
= ∑

i∈N

φi(ũ(l))
ηi(l)−φi(ũ(l))

+ ∑
i∈N

bi

ai(ηi(l)−φi(ũ(l)))
,

which can be written equivalently as

∑
i∈N

φ̃i(ũ(l))

aiηi(l)+bi − φ̃i(ũ(l))
= ∑

i∈N

γi(l)
ηi(l)−φi(ũ(l))

+ ∑
i∈N

bi

ai(ηi(l)−φi(ũ(l))
,

and consequently

∑
i∈N

φ̃i(ũ(l))

aiηi(l)+bi − φ̃i(ũ(l))
= ∑

i∈N

aiγi(l)+bi

aiηi(l)+bi − φ̃i(ũ(l))

Then (by Lemma 2), the bargaining solution of the DMPC game(aϒ+b,aη(l)+b) at l is equal to
aϕ(ϒ,η(l))+b, i.e.,ϕ(aϒ+b,aη(l)+b) = aϕ(ϒ,η(l))+b. �

Finally, by the symmetry of{(ϒ,η(k))}∞
k=0 we have:

Proposition 6 A symmetric DMPC game(ϒ,η(l)) satisfiesϕ1(ϒ,η(l))=ϕ2(ϒ,η(l))= . . .=ϕM(ϒ,η(l))
at l.

Proof 8 Following the procedure proposed in [30] for this demonstration we have:By the symmetry
of the DMPC game(ϒ,η(l)) we haveη1(l) = . . .= ηM(l). Let ϕ̃(ϒ,η(l)) denote the solution of the
game(ϒ,η(l)) arising by the permutation of the elements ofϕ(ϒ,η(l)). By the definition of W′(ϒ),
ϕ(ϒ,η(l)) = ϕ̃(ϒ,η(l)). Then,ϕ1(ϒ,η(l)) = ϕ2(ϒ,η(l)) = . . .= ϕM(ϒ,η(l)). �

Propositions 3-6 imply the following theorem:

Theorem 1 At l, the bargaining solutionϕ(ϒ,η(l)) of the DMPC game{(ϒ,η(k))}∞
k=0 is the Nash

bargaining solution of such a game.
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Proof 9 From Propositions 3-6 the bargaining solutionϕ(ϒ,η(l)) of the DMPC game{(ϒ,η(k))}∞
k=0

satisfies Axioms 1-4 at l. Thenϕ(ϒ,η(l)) is the Nash bargaining solution of the DMPC game
{(ϒ,η(k))}∞

k=0 for such time step.�

Theorem 1, Proposition 2, Lemma 2, and the geometrical characterization ofϕ(ϒ,η(l)) summa-
rize the properties of the outcome of the game{(ϒ,η(k))}∞

k=0. Note that this solution can be computed
as a solution of the maximization problem

max
ũ(l)

Πi∈N(ηi(l)−φi(ũ(l)))

subject to:η(l)> φ(ũ(l))
ũ(l) ∈ Ω

(3.4)

which can be written equivalently as (3.5).

max
ũ(l)

M

∑
i=1

log(ηi(l)−φi(ũ(l)))

subject to:η(l)> φ(ũ(l))
ũ(l) ∈ Ω

(3.5)

Let σi(ũi(k), ũ−i(k))= φi(ũ(k)) for i = 1, . . . ,M, whereũ−i(k)= [ũT
1 (k), . . . , ũ

T
i−1(k), ũ

T
i+1(k), . . . , ũ

T
M(k)].

Then, maximization problem (3.5) can be solved in a distributed way by locally solving the sys-
temwide control problem (3.6).

max
ũi(k)

M

∑
r=1

log(ηr(k)−σr(ũi(k), ũ−i(k)))

Subject to:

ηr(k)> σr(ũi(k), ũ−i(k))

ũi(k) ∈ Ωi

(3.6)

Maximization problem (3.6) is equivalent to maximization problem (3.5), considering fixed ũ−i(k)
and optimizing only in the direction of̃ui(k). This formulation allows to each subsystem take into
account the effect of its decisions in the behavior of the whole system andto promote the cooperation
among subsystems. The convexity and feasibility of optimization problem (3.6) are analyzed in [38].
In Section 3.3 the algorithm for implementing (3.6) is presented. In the next Section the DMPC
problem is analyzed as a nonsymmetric bargaining game. This is a more general case of DMPC
problems than the symmetric case presented in this section (the symmetry conditionsin Remark 3 are
not considered).

3.2 Distributed model predictive control as a nonsymmetric bargaining
game

As it is shown in Section 3.1, in order to derive a solution for a bargaining game an axiomatic approach
was proposed in [28]. Such a characterization is based on the symmetry ofthe bargaining game. Recall
that a bargaining game(S,d) is called symmetric ifd1 = d2 = . . .= dM, and for everyφ ∈ Sany point
φ̃ ∈R

M arising fromφ by performing some permutation of its coordinates is also inS. If a bargaining
game(S,d) does not satisfy these conditions, then it is called a nonsymmetric bargaining game.
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Consequently with the definition of nonsymmetric bargaining game, Axiom 1 is notsatisfied
for such games. Then, additional axioms should be included in order to characterize the outcome of
nonsymmetric games. In such a way, Axioms 5 and 6 have been proposed in [30] and [33] respectively
(Axiom 6 is an example of the general principle of the game theory [43, 30]).

Axiom 5 Individual Rationality:
For every bargaining game(S,d) the outcome of the gameϕ(S,d) satisfiesϕ(S,d)> d.

Axiom 6 Consistency:
For α ∈ R

M and∅ 6= L ⊂ N, αL denotes the vector inRL obtained by deleting the coordinates ofα
belonging to N\L. For T ∈ R

M, TL := {βL : β ∈ T}, (T,α)L := {βL : β ∈ T, βN\L = αN\L}. For a
game(T,d) and a solutionϕ , (T,d,ϕ)L := (T,ϕ(T,d))L, denote the utility|L|-tuple available for the
collective L, if the subsystem i outside L receiveϕi(T,d). Then, for all games(S,d),(T,d), and every
∅ 6= L ⊂ N if (S,d,ϕ)L = (T,d,ϕ)L, ϕL(S,d) = ϕL(T,d).

Let RM
++ := {α ∈ R

M : αi > 0, for all i ∈ N}. Let H denote a wighted hierarchy ofN, i.e.,H is
an ordered(m+1)-tuple H =

〈
N1, . . . ,Nm,w

〉
, where(N1, . . . ,Nm) is a partition ofN (i.e., the sets

N j , j = 1, . . . ,m are pairwise disjoint nonempty sets whose union equals toN), andw ∈ R
M
++ with

∑i∈N j wi = 1 for every j = 1, . . . ,m [30]. LetP(T) := {α ∈ T : there is noβ ∈ T with β ≥ α , β 6= α}
denotes the Pareto optimal subset ofT. Let L+(T,γ) := {i ∈ L : there existsα ∈ T with αi > γi}. Let
argmax{ f (α) : α ∈ T} := {α ∈ T : f (α)≥ f (β ) for all β ∈ T}.

Then, taking in mind Axioms 2-6 and the definition of weighted hierarchy a bargaining solu-
tion for a nonsymmetric game(S,d) is associated by lexicographically maximizing “Nash products”
according to the partitions and the weights inH [30].

Definition 5 Nonsymmetric bargaining solution [30, Definition 2.14]:
Let H= 〈N1, . . . ,Nm,w〉 be a weighted hierarchy of N. Let Sj , j = 0, . . . ,m denote the feasible set for
the partition Nj . Then, the sets Sj are defined as follows:

S0 := {φ ∈ R
M : φ ∈ P(S),φ ≥ d}

S1 := argmax{Π(φi −di)
wi : i ∈ N1, φ ∈ S0}

S2 :=

{
argmax{Π(φi −di)

wi : i ∈ N2
+(S

1,d), φ ∈ S1} if N2
+(S

1,d) 6=∅

S1 otherwise

...

Sj :=

{
argmax{Π(φi −di)

wi : i ∈ N j
+(S

j−1,d), φ ∈ Sj−1} if N j
+(S

j−1,d) 6=∅

Sj−1 otherwise

...

Sm :=

{
argmax{Π(φi −di)

wi : i ∈ Nm
+(S

m−1,d), φ ∈ Sm−1} if Nm
+(S

m−1,d) 6=∅

Sm−1 otherwise

Remark 4 The solutionϕH(S,d) of the lexicographic maximization problem of Definition 5 over
the set{(φi ∈ S: d 6 φ , i ∈ N} is the solution of the game(S,d) corresponding to the weighted
hierarchy H and the productΠ(φi −di)

wi is called the nonsymmetric Nash product of the game(S,d)
corresponding to the weighted hierarchy H.
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From Definition 5 Lemma 3 arises. This Lemma implies that the solution of a nonsymmetricgame
(S,d) assigning the unique element ofSm is well-defined.

Lemma 3 Let H be a weighted hierarchy associated with a nonsymmetric game(S,d). Let Sm be the
set defined in Definition 5. Then|Sm|= 1, i.e., Sm only has one element.

Proof 10 See [30]

In addition to Lemma 3 it is possible to demonstrate thatϕH(S,d) satisfies Axioms 2-6, hence is
the Nash bargaining solution of a nonsymmetric bargaining game(S,d) [30]. Also, ϕH(S,d) satisfies
Proposition 1 and Lemma 1.

Similar than in the symmetric case, the axiomatic game theory developed for nonsymmetric games
have been developed for static games. Then, in order to analyze a DMPC problem as a nonsymmet-
ric bargaining game the concept of nonsymmetric discrete-time dynamic bargaining game should be
introduced. Furthermore, some concepts presented until here in this section should be redefined be-
cause the DMPC problem is focused on the minimization of the cost function associated with each
subsystem.

3.2.1 DMPC as a nonsymmetric discrete-time dynamic bargaining game

In Remark 3 conditions for the symmetry of discrete-time dynamic bargaining games were presented.
These conditions establish that for discrete-time dynamic bargaining games, ifη1(k)= . . .=ηM(k) for
k= 0,1,2, . . ., and for everyφ(k)∈ Θ(k), any pointφ̃(k)∈R

M arising fromφ(k) by performing some
permutation of its coordinates is also insideΘ(k) for k = 0,1,2, . . ., the game{(Θ(k),η(k))}∞

k=0 is
called symmetric. Such conditions are satisfied whenfi(x(k),u(k)) = f j(x(k),u(k)), gi(x(k),u(k)) =
g j(x(k),u(k)), hi(x(k),u(k)) = h j(x(k),u(k)), andXi = X j for all i, j ∈ N. However, for real DMPC
applications the symmetry conditions discrete-time dynamic bargaining games are heavily restrictive,
mainly because real large-scale systems are composed by several different subsystems with different
time evolution equations. Then, in general a DMPC game{(ϒ,η(k))}∞

k=0 is nonsymmetric.
Let us redefine the Pareto optimal subset ofT asP(T) := {α ∈ T : there is noβ ∈ T with β 6

α , β 6= α}. Also let us redefine the setL+(T,γ) asL+(T,γ) := {i ∈ L : there existsα ∈ T with αi <
γi}. Moreover, Axiom 5 should be rewritten as follows:

Axiom 7 DMPC Individual Rationality:
For every bargaining game{(ϒ,η(k))}∞

k=0 the outcome of the game{ϕ(ϒ,η(k))}∞
k=0 satisfies the

inequalityϕ(ϒ,η(k))< η(k) for k= 1,2, . . ..

Based on these modifications to the original theory, the outcome of a game{(ϒ,η(k))}∞
k=0 with

weighted hierarchyH is a sequence{ϕH(ϒ,η(0)),ϕH(ϒ,η(1)), . . .} denoted by{ϕH(ϒ,η(k))}∞
k=0,

where for a fixedl , ϕH(ϒ,η(l)) is given by the solution of the lexicographic optimization problem

ϒ0 := {φ(ũ(l)) ∈ R
M : φ(ũ(l)) ∈ P(ϒ),φ(ũ(l))6 η(l)}

ϒ1 := argmax{Π(ηi(l)−φi(ũ(l)))
wi : i ∈ N1, φ(ũ(l)) ∈ ϒ0}

ϒ2 :=

{
argmax{Π(ηi(l)−φi(ũ(l)))wi : i ∈ N2

+(ϒ1,η(l)), φ(ũ(l)) ∈ ϒ1} if N2
+(ϒ1,η(l)) 6=∅

Θ1 otherwise
...

ϒm :=

{
argmax{Π(ηi(l)−φi(ũ(l)))wi : i ∈ Nm

+(ϒm−1,η(l)), φ(ũ(l)) ∈ ϒm−1} if Nm
+(ϒm−1,η(l)) 6=∅

ϒm−1 otherwise

(3.7)
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Remark 5 Although the definition of weighted hierarchy requires the selection of the weights for
each subsystem, there are not guidelines for choosing their values. In the control theory field, the
values of the weights can be arbitrarily selected as wi =

1
M , i = 1, . . . ,M (such a selection is made

in [9, 44, 16, 15]). However, performing controllability and/or sensitivity analysis can help to derive
guidelines for the selection of the weights wi .

Let H = 〈N,w〉. Then, in view of the lexicographic solution (3.7) the nonsymmetric bargaining
solution of a DMPC game{(ϒ,η(k))}∞

k=0 at time stepk can be computed in a centralized way as
a solution of the maximization problem (3.8). This solution has the same propertiesas the solution
given by (3.4), except for Axiom 1.

max
ũ(k)

ΠM
i=1(ηi(k)−φi(ũ(k)))

wi

Subject to:

ηi(k)> φi(ũ(k))

ũ(k) ∈ Ω

(3.8)

Maximization problem (3.8) can be written equivalently as (3.9).

max
ũ(k)

M

∑
i=1

wi log(ηi(k)−φi(ũ(k)))

Subject to:

ηi(k)> φi(ũ(k))

ũ(k) ∈ Ω

(3.9)

Then, maximization problem (3.8) can be solved in a distributed way by locally solving the sys-
temwide control problem (3.10).

max
ũi(k)

M

∑
r=1

wr log(ηr(k)−σr(ũi(k), ũ−i(k)))

Subject to:

ηr(k)> σr(ũi(k), ũ−i(k))

ũi(k) ∈ Ωi

(3.10)

Note that maximization problem (3.10) is equivalent to maximization problem (3.9),considering fixed
ũ−i(k) and optimizing only in the direction of̃ui(k). This formulation allows each subsystem to
take into account the effect of its decisions in the behavior of the whole system and to promote the
cooperation among subsystems. The convexity and feasibility of (3.10) is presented in [38]. In the
next Section, the algorithm for implementing a distributed solution of DMPC games presented in
Section 3.1 and Section 3.2 is presented.

3.3 Negotiation model

A negotiation model is a sequence of steps for computing the outcome of a game.In the literature
several negotiation models have been proposed for solvingn-person games, almost all of them based
on the coalition formation (see [32] and the references therein for more complete information). The
negotiation model presented in this work is based on the negotiation model proposed by Nash in [28].
It consists of the following steps:
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1. At time stepk, each subsystem sends to the remaining subsystems the values ofxi(k), ηi(k).

2. With the information received, each subsystem solves the local optimizationproblem

max
ũi(k)

M

∑
r=1

wr log(ηr(k)−σr(ũi(k), ũ−i(k)))

Subject to:

ηr(k)> σr(ũi(k), ũ−i(k)), r = 1, . . . ,M

ũi(k) ∈ Ωi

(3.11)

3. Let ũ∗i (k) denote optimal control actions for subsystemi, i = 1, . . . ,M. If (3.11) is feasible,
subsystemi selects the first control action of̃u∗i (k) as a control action. Otherwise, subsystemi
selects the first control action of̃ui(k), whereũi(k) is the initial condition of subsystemi at time
stepk for solving (3.11).

4. Each subsystem updates its disagreement point. If (3.11) is feasible theupdate of the disagree-
ment point of subsystemi is given byη(k+1) = ηi(k)−α [ηi(k)−φi(ũ(k))]. Otherwise, the up-
date of the disagreement point of subsystemi is given byη(k+1) = ηi(k)+ [φi(ũ(k))−ηi(k)].

5. Each subsystem sends its updated control action and its updated disagreement point.

6. Go to step 1.

The initial condition for solving (3.11) at time stepk+1 are given by the shifted control inputũoi(k+
1) = [u∗T

i (k+1), . . . ,u∗T
i (k+Np),0], where the superscript∗ denotes the optimal value of the control

input. Negotiation model presented only considers the nonsymmetric case, but replacing (3.11) by

max
ũi(k)

M

∑
r=1

log(ηr(k)−σr(ũi(k), ũ−i(k)))

Subject to:

ηr(k)> σr(ũi(k), ũ−i(k)), r = 1, . . . ,M

ũi(k) ∈ Ωi

a distributed solution for symmetric DMPC games can be implemented. Note that although there is
not an explicit negotiation process in proposed algorithm the cost function

J(ũ(k)) =
M

∑
r=1

wr log(ηr(k)−σr(ũi(k), ũ−i(k)))

allows to every subsystem to have certain degree of coordination with the remaining subsystems.
Thus, subsystemi is able to compute its optimal control inputs in a separated way from the information
provided by the remaining subsystems. Furthermore, in comparison with the Lagrange multipliers
based DMPC schemes, the proposed algorithm does not require an iterative process for computing
the local control actions. This also allows to decrease the computational burden of the solution of
the DMPC problem. In addition, using the definition of weighted hierarchy it is possible to analyze
hierarchical MPC schemes as bargaining game, providing a general framework for applying MPC
schemes to the large-scale systems control (this is not included in this work because is beyond of the
scope of this work).
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Furthermore, the bargaining process is formulated on the basis of how mucheach subsystem pro-
vide to the entire system performance and not in the concept of how each subsystem have to react
against the decisions of the other subsystems. With this basis, the bargaining process allows to each
subsystem to perceive a benefit from the cooperative behavior. Finally, although the formulation pre-
sented in this work comes from a special case in which the centralized cost function can be expressed
as the sum of all local cost functions, this is not a requirement for the bargaining process. Only local
functions that depend from decisions of the other subsystems is required. This makes more flexible
the approach presented in this work than almost all the DMPC schemes presented in the literature.

In the next Section the convergence and the stability of the proposed DMPCscheme are analyzed.

3.4 Convergence and stability

Convergence and stability are the main properties of MPC schemes, speciallyfor distributed and
hierarchical MPC approaches. In this section the conditions for convergence and stability of the
proposed method are established. Since the negotiation model presented in Section 3.3 is applicable to
both symmetric and nonsymmetric DMPC games the conditions established for the convergence and
the stability also are valid for both games. However, only the nonsymmetric casewill be considered
in this section.

3.4.1 Convergence

From the algorithm presented in Section 3.3, the convergence of the proposed DMPC method de-
pends on the decision of each subsystem about to cooperate or to not. Assume that at time stepk= 0
all subsystems decide to cooperate. Thenηi(0) > σi(ũi(0), ũ−i(0)), i = 1, . . . ,M and∑M

i=1 ηi(0) >
∑M

i=1 σi(ũi(0), ũ−i(0)). Moreover, (3.11) is feasible for all subsystems and the new value for the dis-
agreement point is given byηi(1) = ηi(0)−α [ηi(0)−σi(ũi(0), ũ−i(0))], i = 1, . . . ,M.

Let C(k) ⊂ N denote the partition ofN determined by the subsystems that decide to cooperate at
time stepk. Then, if at time stepk = 1, C(1) = N, ηi(1) < ηi(0) and thereforeσi(ũi(0), ũi(0)) >
σi(ũi(1), ũi(1)) for i = 1, . . . ,M. If the cooperative behavior remains fork = 2,3, . . ., i.e., C(k) =
N, k = 1,2, . . ., then ηi(0) > ηi(2) > .. . Hence, σi(ũi(0), ũi(0)) > σi(ũi(1), ũi(1)) > .. . and
∑M

i=1 σi(ũi(0), ũ−i(0)) > ∑M
i=1 σi(ũi(1), ũ−i(1)), . . . Since the global cost function is equal to the sum

of the local cost functions, i.e.,Jg(x̃(k), ũ(k)) = ∑M
i=1 φi(ũ(k)) and φi(ũ(k)) = σi(ũi(k), ũ−i(k)) the

global cost function is a decreasing function ofk. Therefore the proposed algorithm converges if all
subsystems decide to cooperate every time stepk.

However, if at any time stepk some subsystems decide not to cooperate the disagreement point of
the noncooperating subsystems is increased in a factorσ j(ũ j(k), ũ− j(k)) andũ j(k) = ũ j(k−1). With
the increment of the value of the disagreement point the probability that the subsystems cooperate in
the following time stepk+1 increases (but is not guaranteed). Letηimax denote the maximum value
of the disagreement point of subsystemi. Then, if the subsystems does not cooperate atk = 2,3, . . .
the value ofηi(k) tends toηimax ask tends to∞. Moreover,ũi(k) remains constant. Assume that
the system is stabilizable. Assume thatΩ belongs to the set of control inputs of the stabilizable set.
Then, although the subsystems does not cooperate the system statesx(k) converge to some stable
trajectory. Therefore, the value ofJg(x̃(k), ũ(k)) converges to a value and thus the proposed algorithm
converge. Note that, if a subsystem does not cooperate does not imply that the control actions are
unfeasible. The control actions of the noncooperating subsystems belongs toΩi but not to the set
{ui(k) ∈ Ωi : ηi(k)> φi(k)}.
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In the case that all subsystems do not cooperate at the beginning, the two cases analyzed before
arise. Then the convergence of the algorithm is assured.

3.4.2 Stability

In order to demonstrate the stability of the closed-loop system two cases are considered:

1. All subsystems always cooperate.

2. Some subsystems do not cooperate but few time steps ahead start to cooperate

In the first case, letV(x̃(k), ũ(k)) = Jg(x̃(k), ũ(k)) be the Lyapunov function of the system. Then
we have to prove thatV(x̃(k), ũ(k)) is positive for(x̃(k), ũ(k)) 6= 0 and equals to 0 if(x̃(k), ũ(k)) =
(0,0), and thatV(x̃(k), ũ(k))−V(x̃(k−1), ũ(k−1))< 0. Sinceφi(ũ(k)) is a quadratic positive convex
function, and sinceJg(x̃(k), ũ(k)) = ∑M

i=1 φi(ũ(k)) the Lyapunov candidate functionV(x̃(k), ũ(k)) is
positive for(x̃(k), ũ(k)) 6= 0 and equals to 0 if(x̃(k), ũ(k)) = (0,0).

Assume that all subsystem always cooperate. Then,ηi(k−1) > ηi(k), σi(ũi(k−1), ũi(k−1)) >
σi(ũi(k), ũi(k)), and∑M

i=1 σi(ũi(k−1), ũ−i(k−1)) > ∑M
i=1 σi(ũi(k), ũ−i(k)) for all time stepk. Since

ηi(k) = ηi(k−1)−α [ηi(k−1)−σi(ũi(k−1), ũ−i(k−1))], i = 1, . . . ,M andηi(k)> σi(ũi(k), ũ−i(k))
for all cooperating subsystems∑M

i=1 σi(ũi(k), ũ−i(k))−∑M
i=1 σi(ũi(k−1), ũ−i(k−1))<−∑M

i=1 α(ηi(k−
1)−σi(ũi(k), ũ−i(k))). Recall thatJg(x̃(k), ũ(k)) = ∑M

i=1 φi(ũ(k)) andφi(ũ(k)) = σi(ũi(k), ũ−i(k)). So,
V(x̃(k), ũ(k)) = ∑M

i=1 σi(ũi(k), ũ−i(k)) andV(x̃(k− 1), ũ(k− 1))−V(x̃(k), ũ(k)) < −∑M
i=1 α(ηi(k−

1)− σi(ũi(k), ũ−i(k))). Thus,V(x̃(k), ũ(k)) is a positive function bounded below by 0 which de-
creases as∑M

i=1 α(ηi(k−1)−σi(ũi(k), ũ−i(k))). Therefore,V(x̃(k), ũ(k)) tends to 0 ask tends to∞.
Hence the closed-loop system is stable if all subsystems always decide to cooperate.

If some subsystems decide not to cooperate at any time stepk (NC(k) 6=∅), thenV(x̃(k), ũ(k)) =
JgC(x̃(k), ũ(k)) + JgNC(x̃(k), ũ(k)), where the indexC is related with the subsystems that decide to
cooperate, and the indexNC is related with the subsystems that decide not to cooperate. In this case
JgC(x̃(k), ũ(k)) is a decreasing function tending to 0 ask tends to∞, butJgNC(x̃(k), ũ(k)) is a function
tending to some value ask tends to∞ (this value is given by the behavior of the states). Therefore
it is not possible to assure thatV(x̃(k), ũ(k)) is a decreasing function, but it is possible to guarantee
thatV(x̃(k), ũ(k)) converges to certain finite value. However, when the subsystems that decide not
to cooperate begin to cooperate again,V(x̃(k), ũ(k)) behaves as mentioned in the case in which all
subsystems decide to cooperate. Then the stability of the closed-loop systemis also assured.

The case where all/some subsystems always decide not to cooperate is notincluded because the
global cost functionJg(x̃(k), ũ(k)) tends to some value (under the assumptions that the system is
stabilizable), but it does not tends to 0. In this case, only, it is possible to conclude that the states of
the system converges to a neighborhood at the origin.

3.5 Simulation results

In this section simulation results are presented for both symmetric and nonsymmetric DMPC games.
For illustrating a case in which the proposed DMPC satisfies the symmetry conditions, the quadruple
tank process presented in [45] is used. In the nonsymmetric case, the hydro-power valley (HPV)
described in [31] is considered.
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3.5.1 Symmetric distributed model predictive control game

The four-tank plant is a laboratory plant that has been designed to test control techniques using in-
dustrial instrumentation and control systems. The plant consists of a hydraulic process of four inter-
connected tanks inspired by the educational quadruple-tank process proposed by [45]. The process
constitutes a simple multivariable system with highly coupled nonlinear dynamics that can exhibit
transmission zero dynamics. Figure 3.1 shows a schematic diagram of the quadruple tank process.

Figure 3.1: Johansson’s quadruple-tank process diagram.

A continuous-time state-space model of the quadruple-tank process system can be derived from
first principles [45] to result in:

dh1(t)
dt

= −
a1

A1

√
2gh1(t)+

a3

A1

√
2gh3(t)+

γa

A1
qa(t) (3.12)

dh2(t)
dt

= −
a2

A2

√
2gh2(t)+

a4

A2

√
2gh4(t)+

γb

A2
qb(t) (3.13)

dh3(t)
dt

= −
a3

A3

√
2gh3(t)+

(1− γb)

A3
qb(t) (3.14)

dh4(t)
dt

= −
a4

A4

√
2gh4(t)+

(1− γa)

A4
qa(t) (3.15)

wherehi(t), Ai andai with i ∈ {1,2,3,4} refer to the level, cross section and the discharge constant of
tank i, respectively;q j(t) andγ j with j ∈ {a,b} denote the flow and the ratio of the three-way valve
of pump j, respectively andg is the gravitational acceleration.

The plant parameters are shown in Table 3.2.
Linearizing the model at an operating point given by the equilibrium levels and flows shown in

Table 3.2 and defining the deviation variablesxi(t) = hi(t)−h0
i (t), u j(t) = q j(t)−q0

j we obtain the
continuous-time linear model

dx
dt

= Acx(t)+Bcu(t). (3.16)

y(t) = Cx(t)
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value unit description

hmax 1.36 m Maximum level in all cases
hmin 0.2 m Minimum level in all cases
qmax 3.26 m3/h Maximum flow ofqa andqb

qmin 0 m3/h Minimum flow of qa andqb

a1,a2 1.31e-4 m2 Discharge constant of the tanks
a3,a4

A1,A2 0.06 m2 Cross-section of the tanks
A3,A4

γa,γb 0.3 Parameter of the 3-way valve
of qa andqb

h0
1 0.6042 m Linearization level of tank 1

h0
2 0.6042 m Linearization level of tank 2

h0
3 0.296 m Linearization level of tank 3

h0
4 0.296 m Linearization level of tank 4

q0
a,q

0
b 1.63 m3/h Linearization flow ofqa andqb

Ts 5 s Sample time

Table 3.2: Parameters of the plant

wherex(t) = [x1(t),x2(t),x3(t),x4(t)]T , u(t) = [u1(t),u2(t)]T , y(t) = [x1(t),x2(t)]T , and

Ac =




−1
τ1

0 1
τ3

0
0 −1

τ2
0 1

τ4

0 0 −1
τ3

0
0 0 0 −1

τ4


 , Bc =




γa
A1

0
0 γb

A2

0 (1−γb)
A3

(1−γa)
A4

0


 , Cc =

[
1 0 0 0
0 1 0 0

]

with τi =
Ai
ai

√
2h0

i
g ≥ 0 the time constant of tanki.

Similar than in [37], in this work the whole system is divided into two coupled subsystems as
follows: The subsystem 1 consists of tanks 1 and 3 while subsystem 2 consists of tanks 2 and 4, that
is, the subsystem 1 is characterized by the statex(t)1 = [x1(t),x3(t)]T and its outputy1(t) is x1(t) while
the state of the subsystem 2 isx2(t) = [x2(t),x4(t)]T and its outputy2(t) = x2(t). The continuous-time
models of subsystems 1 and 2 are given by

dx1(t)
dt

= Ac1x1(t)+Bc1u(t) (3.17)

y1(t) = Cc1x1(t)

and by

dx2(t)
dt

= Ac2x2(t)+Bc2u(t) (3.18)

y2(t) = Cc2x2(t)

respectively, whereAc1, Bc1 , Cc1, Ac2, Bc2 andCc2 comes fromAc, Bc, Cc. Note that the subsystems
considered are coupled only through the inputs. The corresponding discrete-time model of each sub-
system is derived from the previous ones by means of the Tustin method. These will be denoted as
follows:
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x1(k+1) = Ad1x1(k)+Bd1u(k) (3.19)

y1(k) = Cd1x1(k)

x2(k+1) = Ad2x2(k)+Bd2u(k) (3.20)

y2(k) = Cd2x2(k)

In order to test the proposed DMPC scheme, we define a simulation experiment in which the
control objective is to follow the changes in the reference values of tanks1 and 2 by manipulating the
flowsqa andqb. The changes made in the reference values were:

1. The reference values of thanks 1 and 2 were set ath0
1 andh0

2 respectively.

2. At 3000s a change of−0.1h0
1 in the reference value of the tank 1 and a change of 0.1h0

2 in the
reference value of tank 2 were made.

3. At 6000s the reference values was returned toh0
1 andh0

2 respectively.

4. At 9000s a 30% increase in reference values of thanks 1 and 2 corresponding to the 30% ofh0
1

andh0
2 respectively were made.

For the design of the DMPC scheme, a local quadratic cost function

Li(x̃i(k), ũi(k)) =
Np−1

∑
t=0

[
xT

i (k+ t|k)Qixi(k+ t|k)
]
+

Nu

∑
t=0

[
uT

i (k+ t)Riui(k+ t)
]

+xT
i (k+Np|k)Pixi(k+Np|k)

(3.21)

i = 1,2 is used to measure the performance of each subsystem. In (3.21),xi(k+ t|k) denotes the
predicted value ofxi at time stepk+ t given the conditions at time stepk, ui(k+ t) denotes the
control inputui at time stepk+ t, x̃i(k) = [xT

i (k|k), . . . ,x
T
i (k+Np|k)]T , ũi(k) = [uT

i (k), . . . ,u
T
i (k+

Nu), . . . ,uT
i (k+Np)]

T , wherexi(k|k) = xi(k), andui(k+ t) = ui(k+Nu), for t = Nu+1, . . . ,Np−1,
Qi , Ri are diagonal matrices with positive diagonal elements, andPi being the solution of the Lyapunov
equation

AT
diPiAdi −Pi =−Qi

Substituting the expression forxi(k+ t|k) into (3.21), and by using the control horizon constraint
ui(k+ t) = ui(k+Nu), for t = Nu+1, . . . ,Np−1, the functionLi(x̃i(k), ũi(k)) can be expressed as a
quadratic functionφi(ũ(k)), xi(k) being the value of the state vector at time stepk of subsystemi.
Thus, the cost function of each subsystem becomes

φi(ũ(k)) = ũT(k)Quuiũ(k)+2xT
i (k)Qxuiũ(k)+xT

i (k)Qxxixi(k) (3.22)

whereQuui ≥ 0, for i = 1, . . . ,M. Then, we have a gameGtank = {N,{φi(ũ(k)}i∈N,{Ωi}i∈N}, with
N = {1,2}, where all subsystems have the same goal: to compute the optimal control inputssuch that
the global performance of the system is maximized, i.e., the reference tracking is achieved by each
subsystems. In the gameGtank, Ωi is given by the constraints in Table 3.2.
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Figure 3.2: Evolution of the levels of the tanks.

Figure 3.2 shows the behavior of the levels of the liquid inside of the tanks when the control
actions are computed as the solution of a DMPC game. From this figure it is possible to conclude that
the output levels are regulated to the desired values despite of the changesof the set points.

Figure 3.3 shows the evolution of the control inputs, the disagreement point,and the value of the
cost function of each subsystem. From this figure we have:

1. The disagreement points satisfiesη1(k) = η2(k) for all time stepk.

2. The solution of the DMPC game associated with the four-tank system satisfies ϕ1(ϒ,η(k)) =
ϕ2(ϒ,η(k)), for all k.

3. u1(k) ∈ (Ω1∩Ω2) andu2(k) ∈ (Ω1∩Ω2) for all k. Thenφ̃(ũ(k)) ∈ ϒ.

So, we can conclude that under the conditions presented in this paper the DMPC problem is a sym-
metric DMPC game. Moreover, in this figure it is also shown that the values of the states are not
required to be the same to maintain the symmetry of the game. The symmetry of the game isgiven by
the symmetry of the system.

3.5.2 Nonsymmetric distributed model predictive control game

Consider the HPV shown in Figure 3.4. This HPV is composed by three lakes (Lm, m= 1,2,3),
two of them (L1, L2) connected by a duct (U1), and six dams (D j , j = 1, . . . ,6), each one of them
equipped with a turbine for electric power production. The dams are locatedinto a river, dividing it
in six reaches (Rj ). ReachesR1, R2 are connected with lakeL1 through a turbine-pump (C1) and a
turbine (T1) respectively. Moreover, reachesR4, R5 are connected with lakeL3 by a turbine-pump
(C2) and a turbine (T2) respectively. TurbinesT1,T2 also are used for electric power generation, and
turbine-pump devicesC1, C2 are used to produce electric power (in turbine mode) and to pump water
from reachesR1, R4 in order to regulate the level of the lakesL2, L3 respectively. Note that in pump
modeC1, C2 consume electric power. Furthermore, reachesR1, R3 are fed by the river flowqin and
the tributary flowqtributary respectively.

A model suitable for control purposes for the HPV of Figure 3.4 is derived in [31]. This model is
based on the following assumptions:

† The ducts are connected at the bottom of the lakes (or to the bottom of the river bed).
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Figure 3.3: Evolution of the control actions, disagreement points, and value of the cost function of
each subsystem

Figure 3.4: HPV

† The cross section of the reaches and of the lakes is rectangular.

† The width of the reaches varies linearly along the reaches.

† The river bed slope is constant along every reach

Based on these assumptions, the nonlinear, first-order Saint-Venant partial differential equations
represent the state of the art for modeling one-dimensional river hydraulics with constant fluid density
[46]. In this equation the hydraulic state of the river is described by two variables: the water depth
h(t,z) and the dischargeq(t,z), both varying as a function of spacez and timet. Thus, the dynamics
of each reach are given by [31, 46, 47, 48]

∂q
∂z

+
∂s
∂ t

= 0 (3.23)

1
g

∂
∂ t

(q
s

)
+

1
2g

∂
∂z

(
q2

s2

)
+

∂h
∂z

+ I f − Io = 0
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In (3.23), q = q(t,z), s= s(t,z), h = h(t,z), I f = I f (t,z), Io = Io(t,z), wheres(t,z) is the wetted
surface,I f (t,z) is the friction slope,Io(t,z) is the river bed slope, andg is the gravitational acceleration.
Since the cross section of the reaches and of the lakes is assumed rectangular the wetted surface and
the friction slope are given by (3.24) and (3.25) respectively [31].

s(t,z) = w(z)h(t,z) (3.24)

I f (t,z) =
q2(t,z)(w(z)+2h(t,z))

4
3

k2
str(w(z)h(t,z))

10
3

(3.25)

wherew(z) is the river width, andkstr is the Gauckler-Manning-Strickler coefficient. For modeling
the lakes, the duct, the turbines, and the turbine-pumps elements (3.26)-(3.29) are used [31].

∂h(t)
∂ t

=
qin(t)−qout(t)

S
(3.26)

qU1(t) = SU1sign(H(t))
√

2g|H(t)| (3.27)

pt(t) = ktqt(t)∆ht(t) (3.28)

pC(t) = kC(qC(t))qC(t)∆hC(t) (3.29)

whereS is the surface area of the lake,SU1 is the section of the duct,kt is the turbine coefficient,
qin(t), qout(t), are the input and output flows of the lakes respectively,qt(t) is the turbine discharge,
∆ht(t), ∆hC(t) are the heads of the turbine and the turbine-pump respectively,

kC(qC(t)) =

{
ktc if qC(t)≥ 0
kpC if qC(t)< 0

}

is the turbine-pump coefficient, andH(t) = hL2(t)−hL1(t)+hU1, with hL1(t), hL2(t) the levels of the
lakes 1 and 2 respectively, andhU1 the height difference of the duct.

Although (3.23)-(3.29) describe the dynamic behavior of the HPV. This model is unsuitable for
control purposes. Then in order to obtain a model suitable for control purposes, a spatial discretization
of (3.23) is required. The expressions of the resulting model are givenin [31]. Let x(t), u(t) denote
the states and the inputs of the system. Then

u(t) = [qT1(t),qC1(t),qT2(t),qC2(t),qR1(t),qR2(t),qR3(t),qR4(t),qR5(t),qR6(t)]
T

x(t) = [hT
Lm(t),q

T
R1(t),h

T
R1(t),q

T
R2(t),h

T
R2(t),q

T
R3(t),h

T
R3(t),q

T
R4(t),h

T
R4(t),q

T
R5(t),h

T
R5(t),q

T
R6(t),h

T
R6(t)]

T

with qRl = [q1(t), . . . ,qNx(t)], andhRl = [h1(t), . . . ,hNx+1(t)] the flows and the levels at each spatial
partition of reachRl , l = 1, . . . ,6, qT p, qCp, qRl, p = 1,2 the flows of the turbines, the turbine-
pumps, and the turbines at the reaches, andNx being the number of partitions. This model is used for
implementing in simulation a DMPC scheme for the control of the HPV.

The DMPC scheme proposed is designed considering the power tracking scenario proposed in
[31]. In this scenario, power output of the system should follow a givenreference while keeping
the water levels in the lakes and at the dams as constant as possible. So, the global cost function
considered for the DMPC is composed by two terms: the first term penalizes the 1-norm of the power
tracking error, and the second term penalizes the 2-norm of the deviations of the levels in the lakes and
in the dams of their steady state values. Thus, the centralized MPC problem is formulated as follows
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[31]

min
u(t)

∫ T

0
λ |pr(t)− p(x(t),u(t))|dt+

∫ T

0
(h(t)−hss)

TQ(h(t)−hss)

Subject to:

ẋ(t) = f (x(t),u(t))

u(t) ∈C

(3.30)

whereẋ(t) = dx(t)
dt , T is the prediction horizon,λ > 0, Q > 0 are diagonal matrices,pr(t), p(t) are

the power reference and the power produced by the HPV respectively, hss is the vector of the steady
state levels,f (.) is a function representing the HPV dynamics, andC is the feasible set composed by
the constraints onu(t) andx(t). The power reference to be followed by the entire system is known 24
hours in advance and the inputs of the system can be changed every 30 minutes.

Let Ts denote the sample time. Then the HPV model (3.23)-(3.29) can be expressedas a linear
system as

x(k+1) = Adx(k)+Bduk

y(k) =Cdx(k)+Ddu(k)
(3.31)

whereAd,Bd,Cd,Dd are the matrices resulting of the linearization of (3.23)-(3.29), andy(k) is the
output of the system, i.e.,y(k) = [p(k),hT

D(k)]
T , with hD(k) = [hD1Nx ,hD2Nx ,hD3Nx ,hD4Nx ,hD5Nx ,hD6Nx ]

the levels at the dams. Note that the power produced by the HPV is piecewise defined respect tou(k)
due to the turbine-pump elements. In order to overcome this issue in the linearization, constants
kdes1,kdes2 was introduced, virtual inputs ¯u1(k) ∈ [−qpC1,qtC1], ū2(k) ∈ [−qpC2,qtC2] was considered,
and a gain compensation

up(k) =

{ kdesp

ktCp
ūp(k) if ūp(k)≥ 0

kdesp

kpCp
ūp(k) if ūp(k)< 0

}

was proposed, whereqpC1,qpC2,qtC1,qtC2 are the maximum pumped flows and maximum turbined
flows for the turbine-pump elementsC1,C2 respectively,p = 1,2 (the values ofqpC1,qpC2,qtC1,qtC2

are given in [31]).
Note that optimization problem (3.30) can be written as

min
ũ(k)

γ |p̃r(k)− ỹp(ũ(k))|+ ũT(k)Hũ(k)+2Fũ(k)

Subject to:

ũ(k) ∈ Ω
u(k+ν) = u(k+Nu), ∀Nu < ν < Np−1

(3.32)

where p̃r(k) = [pr(k), . . . , pr(k+ Np)], ỹp(ũ(k)) = [p(x(k),u(k)), . . . , p(x(k),u(k+ Np − 1))], H =
B̄T

d Q̄B̄d, F = xT(k)ĀT
d Q̄B̄d, andΩ is the feasible set composed by the input constraints and the map-

ping using (3.31) of the state constraints to input constraints, withĀd, B̄d the resulting matrices by
the prediction ofhD(k) alongNp. From [31], it is possible to divide the HPV of Figure 3.4 into 8
subsystems:

† Subsystem 1: lakes 1 and 2, turbineT1, and turbine-pumpC1.

Page 50/75



HD-MPC ICT-223854 Evaluation results including economic and application potentials

† Subsystem 2: lake 3, turbineT2, and turbine-pumpC2.

† Subsystems 3-8: reachesR1 to R6 respectively.

Let

σi(ũi(k), ũ−i(k)) = γ |p̃r(k)− ỹp(ũi(k), ũ−i(k))|+[ũi(k), ũ−i(k)]
TH̄i [ũi(k), ũ−i(k)]+2F̄i [ũi(k), ũ−i(k)]

whereH̄i , F̄i are the resulting matrices of the permutation of the rows and columns ofH,F respectively.
(the state dependence ofσi(.) was omitted for notational convenience). From [31], the state and input
constraints are time independent an only establishes lower and upper boundaries to the states and
inputs. So, they are independent for each subsystems, i.e., there is not coupled constraints. Then,
for the control of the HPV we have a gameGHPV = {N,{σi(ũi(k), ũ−i(k))}i∈N,{Ωi}i∈N}, with N =
{1, . . . ,8}, in which all subsystems have the same goal: to minimize the power tracking errorkeeping
the levels in the lakes and at the dams as close as possible to their steady state values. Hence, the
gameGHPV can be analyzed and solved as a discrete-time dynamic bargaining game{(ϒ,η(k))}∞

k=0.
Note that the power produced by the HPV at time stepk is equals to the sum of the powers

generated by all subsystems, and assuming that each subsystem communicates the value of the states
and inputs to the remaining subsystems, each subsystem is able to compute the power produced by
the other subsystems. Hence, the termγ |p̃r(k)− ỹp(ũi(k), ũ−i(k))| is reduced to compute the power
contribution of subsystemi given the power produced by the remaining subsystems.

Based on the formulation presented in this section, a closed-loop simulation of the HPV described
of Figure 3.4 was performed along 24 hours (simulation time). In this simulation,kdes1 =

3
4(ktC1+

kpC1), kdes2 =
3
4(ktC2+ kpC2), Ts = 1800s (30 minutes),Np = 48 (corresponding to a day),Nu = 32,

w1,2 =
0.4
2 , w3−8 =

0.6
6 (the weights of subsystems 1 to 8),d(0) = 1∗105, γ = 50,Q= I (I being the

identity matrix), and the lower and upper values of the inputs and the states, and the parameters of the
model (3.23)-(3.29) were taken as the proposed in [31].

Figure 3.5 shows the comparison between the power produced by the HPV and the power ref-
erence when the proposed DMPC scheme computes the inputs of each subsystem. In this Figure
it is shown that the power produced by the HPV follows the power reference, satisfying one of the
objectives proposed for the control scheme.
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Figure 3.5: Comparison between the power produced by the HPV with the power reference, when the
proposed game-theory-based DMPC is used for computing the inputs of thesubsystems
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In order to maintain the power demand, the levels of the reaches and the lakesshould be modified.
In Figure 3.3 the behavior of the levels is presented. Although the levels of the lakes have larger
variations (see first panel of Figure 3.3) than the dams levels (see second panel of Figure 3.6), the
second objective proposed for the control scheme is partially satisfied, because the levels at the dams
are maintained as constant as possible. If it is considered that the reaches also can be used for maritime
traffic, then maintaining the levels of the reaches such a traffic can be assured.
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Figure 3.6: Behavior of the levels in the lakes (first panel) and the levels atthe dams (second panel)
of the HPV.

Moreover, despite of the lost of performance associated with the large excursions of the levels of
the lakes, all the control inputs applied to the subsystems are inside of the defined level for them (see
Figure 3.7).
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Figure 3.7: Behavior of the applied control actions to each subsystem

Finally, in Figure 3.8 the evolution of the disagreement points is presented. Inthis Figure, the
disagreement starts at the same point but as they are evolving each subsystem has their own value
indicating the nonsymmetry of the gameGHPV (see Figure 3.9 for a zoom in showing the different
values of the disagreement points).
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Figure 3.8: Evolution of the disagreement points
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Figure 3.9: Zoom in of the evolution of the disagreement points

3.6 Concluding remarks

In this work the DMPC problem was characterized as a bargaining game by the axiomatic bargain-
ing game theory proposed by Nash for such games. From the axiomatic theory, conditions for the
symmetry and nonsymmetry of the game associated with the DMPC problem were established. In
order to derive these conditions several concepts of the original theory should be redefined in order to
include the time evolution of the games. The conditions established allowed to conclude that in real
large-scale systems the symmetry conditions are heavily restrictive, because real large-scale systems
have several elements with different state equations making difficult the achievement of the symme-
try. On the other hand, the characterization of the DMPC problem as a nonsymmetric game allowed
to conclude that the mathematical framework defined for nonsymmetric DMPC games can be also
applied for hierarchical MPC schemes, providing a mathematical frameworkfor MPC applied to the
large-scale systems control.

Moreover, a negotiation model including both symmetric and nonsymmetric DMPC games was
proposed. This algorithm is based on the transformation of the bargaining game in an equivalent
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noncooperative game, and solve the equivalent noncooperative game. The transformation allowed
to reduce the computational burden associated with the solution of the DMPC problem because it
is not required an iterative procedure for jointly compute the optimal controlaction applied to each
subsystem, which is the main characteristic of the widely used Lagrange multipliers based DMPC
methods. The convergence and stability of the proposed control scheme were also discussed.

Finally, two application cases were presented: the quadruple tank process for illustrating a possible
situation in which the DMPC problem can be solved as a symmetric game, and the hydro-power
valley proposed in [31] for illustrating a situation in which the DMPC problem can be solved as a
nonsymmetric game. Both results shows the capabilities of the solution of a DMPC problem as a
bargaining game.
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Chapter 4

A Distributed Optimization-Based
Approach for Hierarchical MPC of
Large-Scale Systems with Coupled
Dynamics and Constraints

The research of this chapter has been developed by Minh Dang Doan, Tamás Keviczky, and Bart De
Schutter. The authors are with Delft Center for Systems and Control, DelftUniversity of Technology,
Delft, The Netherlands

4.1 Introduction

Coordination and control of interacting subsystems is an essential requirement for optimal operation
and enforcement of critical operational constraints in large-scale industrial processes and infrastruc-
ture systems [1]. Model Predictive Control (MPC) has become the method of choice when designing
control systems for such applications [2, 3, 4], due to its ability to handle important process constraints
explicitly. MPC relies on solving finite-time optimal control problems repeatedly online, which may
become prohibitive for large-scale systems due to the problem size or communication constraints. Re-
cent efforts have been focusing on how to decompose the underlying optimization problem in order
to arrive at a distributed or hierarchical control system that can be implemented under the prescribed
computational and communication limitations [5, 6]. One common way to decompose anMPC prob-
lem with coupled dynamics or constraints is to use dual decomposition methods [7, 8, 9], which
typically lead to iterative algorithms (in either a distributed or hierarchical framework) that converge
to feasible solutions only asymptotically. Implementing such approaches within each MPC update
period can be problematic for some applications.

Recently, we have presented a dual decomposition scheme for solving large-scale MPC problems
with coupling in both dynamics and constraints, where primal feasible solutionscan be obtained
even after a finite number of iterations [10]. In the current paper we present a novel method that
is motivated by the use of constraint tightening in robust MPC [11], along witha primal averaging
scheme and distributed Jacobi optimization. Since an exact optimum of the Lagrangian is not assumed
to be computable in finitely many iterations, an approximate scheme is needed for solving the MPC
optimization problem in each time step. We present a solution approach that requires a nested two-
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layer iteration structure and the sharing of a few crucial parameters in a hierarchical fashion. The
proposed framework guarantees primal feasible solutions and MPC stabilityusing a finite number of
iterations with bounded suboptimality.

The paper is organized as follows. In Section 4.2, we describe the MPC optimization problem and
its tightened version, which will be used to guarantee feasibility of the originalproblem even with a
suboptimal primal solution. Section 4.3 describes the main elements of the algorithmused to solve
the dual version of the tightened optimization problem: the approximate subgradient method and the
distributed Jacobi updates. In Section 4.4, we show that the primal average solution generated by the
approximate subgradient algorithm is a feasible solution of the original optimization problem, and
that the cost function decreases through the MPC updates. This allows it tobe used as a Lyapunov
function for showing closed-loop MPC stability. Section 4.6 concludes the paper and outlines future
research.

4.2 Problem description

4.2.1 MPC problem

We considerM interconnected subsystems with coupled discrete-time linear time-invariant dynamics:

xi
k+1 =

M

∑
j=1

Ai j x j
k+Bi j u j

k, i = 1, . . . ,M (4.1)

and the corresponding centralized state-space model:

xk+1 = Axk+Buk (4.2)

with xk = [(x1
k)

T(x2
k)

T . . .(xM
k )T ]T ,uk = [(u1

k)
T(u2

k)
T . . .(uM

k )T ]T , A= [Ai j ]i, j∈{1,...,M} andB= [Bi j ]i, j∈{1,...,M}.
The MPC problem at time stept is formed using a convex cost function and convex constraints:

min
u,x

t+N−1

∑
k=t

(
xT

k Qxk+uT
k Ruk

)
+xT

t+NPxt+N (4.3)

s.t. xi
k+1 = ∑

j∈N i

Ai j x j
k+Bi j u j

k,

i = 1, . . . ,M, k= t, . . . , t +N−1 (4.4)

xk ∈ X ,k= t +1, . . . , t +N−1 (4.5)

xt+N ∈ Xf ⊂ X (4.6)

uk ∈ U ,k= t, . . . , t +N−1 (4.7)

ui
k ∈ Ωi , i = 1, . . . ,M, k= t, . . . , t +N−1 (4.8)

xt = x(t) ∈ X (4.9)

whereu = [uT
t , . . . ,u

T
t+N−1]

T , x = [xT
t+1, . . . ,x

T
t+N]

T , the matricesQ, P, andR are block-diagonal and
positive definite, the constraint setsU , X andXf are polytopes and have nonempty interiors, and
each local constraint setΩi is a hyperbox. Each subsystemi is assigned a neighborhood, denotedN i ,
containing subsystems that have direct dynamical interactions with subsystem i, including itself. The
initial statext is the current state at time stept.
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As U , X andXf are polytopes, the constraints (4.5) and (4.6) are represented by linearinequal-
ities. Moreover, the state vectorx is affinely dependent onu. Hence, we can eliminate state variables
xt+1, . . . ,xt+N and transform the constraints (4.4), (4.5), and (4.6) into linear inequalitiesof the in-
put variableu. Eliminating the state variables in (4.3)–(4.9) leads to an optimization problem in the
following form:

f ∗t = min
u

f (u,xt) (4.10)

s.t. g(u,xt)≤ 0 (4.11)

u ∈ΩΩΩ (4.12)

where f andg = [g1, . . . ,gm]
T are convex functions, andΩΩΩ = ∏M

i=1ΩΩΩi with eachΩΩΩi = ∏N−1
k=0 Ωi is a

hyperbox. Note thatf (u,xt)> 0,∀u 6= 0,xt 6= 0, due to the positive definiteness ofQ, P, andR.
We will use(ut ,xt) to denote a feasible solution generated by the controller for problem (4.3)–

(4.9) at time stept. This solution is required to be feasible but not necessarily optimal.We will make
use of the following assumptions:

Assumption 4.2.1 There exists a block-diagonal feedback gain K such that the matrix A+BK is
Schur (i.e., a decentralized stabilizing control law for the unconstrained aggregate system).

Assumption 4.2.2 The terminal constraint setXf is positively invariant for the closed-loop xk+1 =
(A+BK)xk (x∈ int(Xf)⇒ (A+BK)x∈ int(Xf)).

Assumption 4.2.3 The Slater condition holds for problem(4.10)–(4.12), i.e., there exists a vector that
satisfies strict inequality constraints [12]. It is also assumed that prior to each time step t, a Slater
vectorūt is available, such that

g j(ūt ,xt)< 0, j = 1, . . . ,m (4.13)

Remark 4.2.4 Since g(u,xt) ≤ 0 has a nonempty interior, so do its components gj(u,xt) ≤ 0, j =
1, . . . ,m. Hence, there will always be a vector that satisfies the Slater condition(4.13). In fact, we
will only need to find the Slater vector̄u0 for the first time step, which can be computed off-line.
In Section 4.5.1 we will show that a new Slater vector can then be obtained for each t≥ 1, using
Assumption 4.2.2.

Assumption 4.2.5 At each time step t, the following holds

f (ut−1,xt−1)− f (ūt ,xt)> xT
t−1Qxt−1+uT

t−1Rut−1 (4.14)

For later reference, we define∆t > 0 which can be computed before time step t as follows:

∆t = xT
t−1Qxt−1+uT

t−1Rut−1 (4.15)

Remark 4.2.6 Assumption 4.2.5 is often satisfied with an appropriate terminal penalty matrix P.A
method to construct a block-diagonal P with a given decentralized stabilizingcontrol law is provided
in [13].

Assumption 4.2.7 For each xt ∈ X , the Euclidean norm of g(u,xt) is bounded:

Lt ≥ ‖g(u,xt)‖2,∀u ∈ΩΩΩ (4.16)

Remark 4.2.8 In the first time step, with given x0, we can find L0 by evaluating‖g(u,x0)‖2 at the
vertices ofΩΩΩ, the maximum will then satisfy(4.16)for t = 0, due to the convexity of g andΩΩΩ. For the
subsequent time steps, we will present a simple method to update Lt in Section 4.5.2.
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4.2.2 The tightened problem

We will not solve problem (4.10)–(4.12) directly. Instead, we will make useof an iterative algorithm
based on a tightened version of (4.10)–(4.12). Consider the tightened constraint:

g′(u,xt), g(u,xt)+1mct ≤ 0 (4.17)

with g′(u,xt) = [g′1, . . . ,g
′
m]

T , 0< ct < min j=1,...,m{−g j(ūt ,xt)}, and1m the column vector with every
entry equal to 1. Due to (4.13), we have

min
j=1,...,m

{g′j(ūt ,xt)}= min
j=1,...,m

{g j(ūt ,xt)}+ct < 0 (4.18)

Henceg′j(ūt ,xt) < 0, j = 1, . . . ,m. Moreover, using (4.16) and the triangle inequality of the 2-norm,
we will getL′

t = Lt +ct as the norm bound forg′, i.e. L′
t ≥ ‖g′(u,xt)‖2,∀u ∈ΩΩΩ. Note thatL′

t implicitly
depends onxt , asūt andct are updated based on the current statext .

Using the tightened constraint (4.17), we formulate the tightened problem:

f ′t
∗
= min

u
f (u,xt) (4.19)

s.t. g′(u,xt)≤ 0 (4.20)

u ∈ΩΩΩ (4.21)

Remark 4.2.9 Only the coupled constraints(4.11) are tightened, while the local input constraints
(4.12)are unchanged. The Slater condition also holds for the tightened problem(4.19)–(4.21), with
ūt being the Slater vector.

4.3 The proposed optimization algorithm

Our objective is to calculate a feasible solution for problem (4.3)–(4.9) using a method that is favorable
for distributed computation. The main idea is to use dual decomposition for the tightened problem
(4.19)–(4.21) instead of the original one, such that after a finite number of iterations the constraint
violations in the tightened problem will be less than the difference between the tightened and the
original constraints. Thus, even after a finite number of iterations, we will obtain a primal feasible
solution for the original MPC optimization problem.

4.3.1 The dual problem

We will tackle the dual problem of (4.19)–(4.21), in order to deal with coupled constraintg′(u,xt)≤ 0
in a distributed way. In this section, we define the dual problem and its subgradient. For simplicity, in
this section the dependence of functions on the initial conditionxt is not indicated explicitly.

The Lagrangian of problem (4.19)–(4.21) is defined as:

L
′(u,µ) = f (u)+µTg′(u) (4.22)

in whichu ∈ΩΩΩ,µ ∈ R
m
+.

The dual function for (4.19)–(4.21):

q′(µ) = min
u∈ΩΩΩ

L
′(u,µ) (4.23)
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is a concave function onRm
+, and it is non-smooth whenf andg′ are not strictly convex functions

[12].
Given the assumption that Slater condition holds for (4.19)–(4.21), duality theory [12] shows that:

q′t
∗
= f ′t

∗ (4.24)

with q′t
∗ = maxµ∈Rm

+
q′(µ) and f ′t

∗ the minimum of (4.19)–(4.21).
Thanks to this result, instead of minimizing the primal problem, we may maximize the dualprob-

lem, which is often more amenable to decomposition due to simpler constraints. Sincewe may not
have the gradient ofq′ in all points ofRm

+, we will use a method based on the subgradient.

Definition 4.3.1 A vector d is called a subgradient of a convex function f overX at the point x∈X

if:

f (y)≥ f (x)+(y−x)Td, ∀y∈ X (4.25)

The set of all subgradients of f at the point x is called the subdifferential of f at x, denoted∂ f (x).

For each Lagrange multiplier̄µ ∈ R
m
+, first assume we haveu(µ̄) = argminu∈ΩΩΩ L ′(u, µ̄). Then a

subgradient of the dual function is directly available, since [12]:

q′(µ)≤ q′(µ̄)+(µ − µ̄)Tg′(u(µ̄)),∀µ ∈ R
m
+ (4.26)

In case an optimum of the Lagrangian is not attained due to termination of the optimization algo-
rithm after a finite number of steps, a valueũ(µ̄) that satisfies

L
′(ũ(µ̄), µ̄)≤ min

u∈ΩΩΩ
L

′(u, µ̄)+δ (4.27)

will lead to the following inequality:

q′(µ)≤ q′(µ̄)+δ +(µ − µ̄)Tg′(ũ(µ̄)),∀µ ∈ R
m
+ (4.28)

whereg′(ũ(µ̄)) is called aδ -subgradient of the dual functionq at the pointµ̄. The set of allδ -
subgradients ofq at µ̄ is calledδ -subdifferential ofq at µ̄ .

This means we do not have to look for the subgradient (orδ -subgradient) of the dual function, it
is available by just evaluating the constraint function at the primal valueu(µ̄) (or ũ(µ̄)).

4.3.2 The main algorithm

We organize our algorithm for solving (4.10)–(4.12) at time stept in a nested iteration of an outer and
inner loop. The main procedure is described as follows:

Algorithm 4.3.2 Approximate subgradient method with nested Jacobi iterations

1. Given a Slater vector̄ut of (4.10)–(4.12), determine ct and construct the tightened problem
(4.19)–(4.21).

2. Determine step sizeαt and suboptimalityεt , see later in Section 4.3.3.

3. Determinēkt (the sufficient number of outer iterations), see later in Section 4.3.3.
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4. Outer loop: Setµ(0) = 0·1m. For k= 0, . . . , k̄, findu(k),µ(k+1) such that:

L
′(u(k),µ(k))≤ min

u∈ΩΩΩ
L

′(u,µ(k))+ εt (4.29)

µ(k+1) = PR
m
+

{
µ(k)+αtd

(k)
}

(4.30)

wherePR
m
+

denotes the projection onto the nonnegative orthant, d(k) = g′
(
u(k),xt

)
.

Inner loop:

• Determinep̄k (the sufficient number of inner iterations), see later in Section 4.3.4.

• Solve problem(4.29) in a distributed way with a Jacobi algorithm. For p= 0, . . . , p̄k,
every subsystem i computes:

ui(p+1) = arg min
ui∈ΩΩΩi

L
′(u1(p), . . . ,ui−1(p),ui ,

ui+1(p), . . . ,uM(p),µ(k)) (4.31)

whereΩΩΩi is the local constraint set for control variables of subsystem i.

• Defineu(k) , [u1(p̄k)
T , . . . ,uM(p̄k)

T ]T , which is guaranteed to satisfy(4.29).

5. Computêu(k̄t) = 1
k̄t

∑k̄t
l=0 u(l), takeut = û(k̄t) as the solution of(4.10)–(4.12).

Remark 4.3.3 Algorithm 4.3.2 is suitable for implementation in a hierarchical fashion where the
main computations occur in the Jacobi iterations and are executed by localcontrollers in parallel,
while the updates of dual variables and common parameters are carriedout by a higher-level coor-
dinating controller. This algorithm is also amenable to implementation in distributedsettings, where
there are communication links available to help determine and propagate the common parameters
αt ,εt , k̄t , and p̄k.

In the following sections, we will describe in detail how the computations are derived, and what
the resulting properties are.

4.3.3 Outer loop: Approximate subgradient method

The outer loop at iterationk uses an approximate subgradient method. The primal average sequence
û(k) = 1

k ∑k
l=0u(l) has the following properties:

For k≥ 1 :
∥∥∥∥
[
g′
(

û(k),xt

)]+∥∥∥∥
2
≤

1
kαt

(
3
γt
[ f (ūt ,xt)−q′t

∗
]

+
αtL′

t
2

2γt
+αtL

′
t

)
(4.32)

f
(

û(k),xt

)
≤ f ′t

∗
+

∥∥µ(0)
∥∥2

2

2kαt
+

αtL′
t
2

2
+ εt (4.33)

whereg′+ denotes the constraint violation, i.e.g′+ = max{g′,0 · 1m}. The proof of (4.32) can be
found in [14], and the proof of (4.33) is given in Appendix 4.7.1.
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Determining αt and εt

Using the lower bound of the cost reduction (4.14) and the upper bound of the suboptimality (4.33)
for the tightened problem (4.19)–(4.21), we will chooseαt andεt such thatf (ut ,xt)< f (ut−1,xt−1).

The step sizeαt and suboptimalityεt should satisfy:

αtL′
t
2

2
+ εt ≤ ∆t (4.34)

where∆t is defined in (4.15), andL′
t is the norm bound forg′. This condition allows us to show the

decreasing property of the cost function in problem (4.3)–(4.9), whichcan then be used as a Lyapunov
function.

Note that a largerαt will lead to a smaller number of outer iterations, while a largerεt will lead to
a smaller number of inner iterations. For the remainder of the paper we choose their values according
to

αt =
∆t

L′
t
2 (4.35)

εt =
∆t

2
(4.36)

Determining k̄t

Using the constraint violation bound (4.32), we will choosek̄t such that at the end of the algorithm, we
will get a feasible solution for problem (4.10)–(4.12), which is the average of primal iterates generated
by (4.29):

û(k̄t) =
1

k̄t

k̄t

∑
l=0

u(l) (4.37)

The subgradient iteration (4.29)–(4.30) is performed fork= 1, . . . , k̄t , with the integer

k̄t =

⌈
1

αtct

(
3
γt

f (ūt ,xt)+
αtL′

t
2

2γt
+αtL

′
t

)⌉
(4.38)

defineda priori, where⌈·⌉ is the ceiling operator which gives the closest integer equal to or above a
real value,γt = min j=1,...,m{−g′j(ūt ,xt)}= min j=1,...,m{−g j(ūt ,xt)}−ct , andūt is the Slater vector of
(4.19)–(4.21).

4.3.4 Inner loop: Jacobi method

The inner iteration (4.31) performs parallel local optimizations based on a standard Jacobi distributed
optimization method for a convex functionL ′(u,µ(k)) over a Cartesian product, as described in [15,
Section 3.3]. In order to find the sufficient stopping condition of this Jacobi iteration, we need to
characterize the convergence rate of this algorithm. In the following, we summarize the condition for
convergence of the Jacobi iteration, noting thatL ′(u,µ(k)) is a convex quadratic function with respect
to u.
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Proposition 4.3.4 Suppose the following condition holds:

λmin(Hii )> ∑
j 6=i

σ̄(Hi j ),∀i (4.39)

where Hi j with i, j ∈ {1, . . . ,M} denotes a submatrix of the Hessian H ofL ′ w.r.t.u, containing entries
of H in rows belonging to subsystem i and columns belonging to subsystem j, λmin means the smallest
eigenvalue, and̄σ denotes the maximum singular value.

Then∃φ ∈ (0,1) such that the aggregate solution of the Jacobi iteration(4.31)satisfies:

‖u(p)−u∗‖2 ≤ Mφ pmax
i

‖ui(0)−ui∗‖2, ∀p≥ 1 (4.40)

whereu∗ = argminu∈ΩΩΩ L ′(u,µ(k)), andui∗ is the component of subsystem i inu∗.

We provide a proof for Proposition 4.3.4 in Appendix 4.7.2.

Remark 4.3.5 This proposition provides a linear convergence rate of the Jacobi iteration, under the
condition of weak dynamical couplingsbetween subsystems. For the sake of illustrating condition
(4.39), let all subsystems have the same number of inputs. Consequently, Hi j is a square and sym-
metric matrix for each pair(i, j), hence the maximum singular valuēσ(Hi j ) equals to the maximum
eigenvalue. Inequality(4.39)thus reads:

λmin(Hii )> ∑
j 6=i

λmax(Hi j ),∀i

which implies that the couplings represented by H are small in comparison with each local cost.

Remark 4.3.6 Note that condition(4.39)is required only for the convergence rate result of the Jacobi
iteration. Extensions to other types of systems, where the Lagrangian canbe solved with bounded
suboptimality, are immediate. In such cases we simply need to replace the Jacobi iteration with the
new algorithm in the inner loop, while the outer loop will remain intact.

Determining p̄k

As L ′(u, ·) is continuously differentiable in a closed bounded setΩΩΩ, it is Lipschitz continuous.
Suppose we know the Lipschitz constantΛ of L ′(u, ·) overΩΩΩ, i.e. for anyu1,u2 ∈ΩΩΩ the following

inequality holds:

‖L ′(u1,µ(k))−L
′(u2,µ(k))‖2 ≤ Λ‖u1−u2‖2 (4.41)

Takingu1 = u(p̄k) andu2 = u∗ in (4.41), and combining it with (4.40), we obtain:

‖L ′(u(p̄k),µ(k))−min
u∈ΩΩΩ

L
′(u,µ(k))‖2 ≤ Λ‖u(p̄k)−u∗‖2

≤ ΛMφ p̄k max
i

‖ui(0)−ui∗‖2 (4.42)

For eachi ∈ {1, . . . ,M}, let Di denote the diameter of the setΩΩΩi w.r.t. the Euclidean norm, so we
have‖ui(0)−ui∗‖2 ≤ Di . Hence the relation (4.42) can be further simplified as

L
′(u(p̄k),µ(k))≤ min

u∈ΩΩΩ
L

′(u,µ(k))+ΛMφ p̄k max
i

Di (4.43)

Based on (4.43), in order to useu(p̄k) as the solutionu(k) that satisfies (4.29), we choose the
smallest integer ¯pk such thatΛMφ p̄k maxi Di ≤ εt :

p̄k =

⌈
logφ

εt

ΛM maxi Di

⌉
(4.44)
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4.4 Properties of the algorithm

4.4.1 Distributed Jacobi algorithm with guaranteed convergence

The computations in the inner loop can be executed by subsystems in parallel. Let us define anr-step
extended neighborhood of a subsystemi, denoted byN i

r , as the set containing all subsystems that
can influence subsystemi within r successive time steps.N i

r is the union of subsystem indices in the
neighborhoods of all subsystems inN i

r−1:

N
i

r =
⋃

j∈N i
r−1

N
j (4.45)

whereN i
1 = N i . We can see that in order to get update information in the Jacobi iterations, each

subsystemi needs to communicate only with subsystems inN i
N−1, whereN is the prediction horizon.

This set includes all other subsystems that couple withi in the problem (4.10)–(4.12) after eliminating
the state variables. This communication requirement indicates that we will benefit from communica-
tion reduction when the number of subsystemsM is much larger than the horizonN, and the coupling
structure is sparse.

Assume that the weak coupling condition (4.39) holds, then after ¯pk iterations as computed by
(4.44), the Jacobi algorithm generates a solutionu(k) , u(p̄k) that satisfies (4.29) in the outer loop.

4.4.2 Feasible primal solution

Proposition 4.4.1 Suppose Assumptions 4.2.1 and 4.2.3 hold. Construct g′ as in (4.17), αt as in
(4.35). Let the outer loop(4.29)–(4.30)with µ(0) = 0 ·1m be iterated for k= 0, . . . , k̄t . Thenû(k̄t) is a
feasible solution of(4.10)–(4.12), whereû(k̄t) is the primal average, computed by(4.37).

Proof: With a finite number of̄kt iterations (4.32) reads as
∥∥∥∥
[
g′
(

û(k̄t),xt

)]+∥∥∥∥
2
≤

1

k̄tαt

(
3
γt

[
f (ūt ,xt)−q′t

∗]

+
αtL′

t
2

2γt
+αtL

′
t

)
(4.46)

Moreover, the dual functionq′t is a concave function, thereforeq′t
∗≥ q′(0,xt). Recall thatf (u,xt)>

0,∀u 6= 0,xt 6= 0, thusq′(0,xt) = minu∈ΩΩΩ f (u,xt)+0·1T
mg′(u,xt) = minu∈ΩΩΩ f (u,xt)> 0, thus

∥∥∥∥
[
g′
(

û(k̄t),xt

)]+∥∥∥∥
2
<

1

k̄tαt

(
3
γt

f (ūt ,xt)

+
αtL′

t
2

2γt
+αtL

′
t

)
(4.47)

Combining (4.47) with (4.38), and noticing thatk̄t andct are all positive lead to
∥∥∥∥
[
g′
(

û(k̄t),xt

)]+∥∥∥∥
2
< ct (4.48)

⇒ g′j
(

û(k̄t),xt

)
< ct , j = 1, . . . ,m (4.49)

⇒ g j

(
û(k̄t),xt

)
< 0, j = 1, . . . ,m (4.50)

where the last inequality implies thatû(k̄t) is a feasible solution of problem (4.10)–(4.12), due to
ct < min j=1,...,m{−g j(ūt ,xt)}. �
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4.4.3 Closed-loop stability

Proposition 4.4.2 Suppose Assumptions 4.2.3, 4.2.5, and 4.2.7 hold. Then the solutionû(k̄t) gener-
ated by Algorithm 4.3.2 satisfies the following inequality:

f (ut ,xt)< f (ut−1,xt−1), ∀t ∈ Z+ (4.51)

Proof: Using (4.33) and (4.34), and noting thatµ(0) = 0, we obtain:

f
(

û(k̄t),xt

)
≤ f ′t

∗
+

‖µ(0)‖

2k̄tαt
+

αtL′
t
2

2
+ εt ≤ f ′t

∗
+∆t (4.52)

Notice thatūt is also a feasible solution of (4.19)–(4.21) (due to the way we construct thetightened
problem: ūt still belongs to the interior of the tightened constraint set), whilef ′t

∗ is the optimal cost
value of this problem. As a consequence,

f ′t
∗
≤ f (ūt ,xt) (4.53)

Combining (4.52), (4.53), and (4.14), and noting thatut = û(k̄t) leads to:

f (ut ,xt)< f (ut−1,xt−1), ∀t ∈ Z+ (4.54)

�
Note that besides the decreasing property off (ut ,xt), all the other conditions for Lyapunov stabil-

ity of MPC [16] are satisfied. Therefore, Proposition 4.4.2 leads to closed-loop MPC stability, where
the cost functionf (ut ,xt) is a Lyapunov candidate function.

4.5 Realization of the assumptions

In this section, we discuss the way to update the Slater vector and the constraint norm bound for each
time step, implying that Assumptions 4.2.3 and 4.2.7 are only necessary in the firsttime step (t = 0).

4.5.1 Updating the Slater vector

Lemma 4.5.1 Suppose Assumption 4.2.2 holds. Letut be the solution of the MPC problem(4.3)–(4.9)
at time step t, computed by Algorithm 4.3.2. Thenũt+1 constructed by shiftingut one step ahead and
addingũt+N = Kxt+N, is a Slater vector for constraint(4.11)at time step t+1.

Proof: Note that based on Proposition 4.4.1,û(k̄t) is a feasible solution of problem (4.10)–(4.12).
Moreover, the strict inequality (4.50) means thatû(k̄t) is in the interior of the constraint set of (4.3)–
(4.9). This also yields:

xt+N ∈ int(Xf) (4.55)

Moreover, due to Assumption 4.2.2, we have(A+BK)xt+N ∈ int(Xf). This means that if we use
ũt+N = Kxt+N, then the next state is also in the interior of the terminal constraint setXf . Note thatU
andX do not change when problem (4.3)–(4.9) is shifted fromt to t +1, hence all the inputs of̃ut+1

and their subsequent states are in the interior of the corresponding constraint sets. Therefore,̃ut+1 as
constructed at step 5 of Algorithm 4.3.2 is a Slater vector for the constraint (4.11) at time stept +1.�

This means we can usēut+1 = ũt+1 as the qualifying Slater vector for Assumption 4.2.3 at time
stept +1.
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4.5.2 Updating the constraint norm bound

In our general problem setup,g(u,x) is composed of affine functions overu andx, and thus can be
written compactly as

g(u,x) = Ξx+Θu+ τ (4.56)

with constant matricesΞ,Θ and vectorτ. Then for eachxt−1, xt , andu ∈ΩΩΩ, the following holds:

g(u,xt) = g(u,xt−1)+Ξ(xt −xt−1)

⇒‖g(u,xt)‖2 ≤ ‖g(u,xt−1)‖2+‖Ξ(xt −xt−1)‖2 (4.57)

In order to find a boundLt for g(u,xt) in eacht ≥ 1 step, we assume to have the constraint norm
bound available from the previous step:

Lt−1 ≥ ‖g(u,xt−1)‖2,∀u ∈ΩΩΩ (4.58)

Hence, combining the above inequalities a norm bound update forg(u,xt) can be obtained as:

Lt = Lt−1+‖Ξ(xt −xt−1)‖2 (4.59)

4.6 Conclusions

We have presented a constraint tightening approach for solving an MPC optimization problem with
guaranteed feasibility and stability after a finite number of iterations. The new method is applicable
to large-scale systems with coupling in dynamics and constraints, and the solution is based on ap-
proximate subgradient and Jacobi iterative methods, which facilitate implementation in a hierarchical
or distributed way. Future extensions of this scheme includea posteriorichoice of the solution by
comparing the cost functions associated with the Slater vectorūt and the primal averagêu(k̄t) in a
distributed way.

4.7 Appendix

4.7.1 Proof of the upper bound on the cost function(4.33)

This proof is an extension of the proof of Proposition 3(b) in [14], the maindifference being the
incorporation of the suboptimalityεt in the update of the primal variable (4.29).

Using the convexity of the cost function, we have:

f (û(k)) = f

(
1
k

k−1

∑
l=0

u(l)

)
≤

1
k

k−1

∑
l=0

f (u(l))

=
1
k

k−1

∑
l=0

(
f (u(l))+(µ(l))Tg′(u(l))

)
−

1
k

k−1

∑
l=0

(µ(l))Tg′(u(l)) (4.60)

Note thatL ′
(
u(l),µ(l)

)
=

(
f (u(l))+g′(u(l))T µ(l)

)
and

L
′
(
u(l),µ(l))≤ min

u∈ΩΩΩ
L

′
(
u(l),µ(l))+ εt = q′

(
µ(l))+ εt ,
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∀l < k (4.61)

Combining the two inequalities above, we then have:

f (û(k))≤
1
k

k−1

∑
l=0

q′
(
µ(l))+ εt −

1
k

k−1

∑
l=0

(µ(l))Tg′(u(l))

≤ q′t
∗
+ εt −

1
k

k−1

∑
l=0

(µ(l))Td(l) (4.62)

whered(l) = g′(u(l)), and the last inequality is due toq′t
∗ ≥ q′

(
µ(l)
)
,∀l .

Using the expression of squared sum:

‖µ(l+1)‖2
2 ≤ ‖µ(l)+αtd

(l)‖2
2

= ‖µ(l)‖2
2+2αt(µ(l))Td(l)+‖αtd

(l)‖2
2 (4.63)

we have:

−(µ(l))Td(l) ≤
1

2αt

(
‖µ(l)‖2

2−‖µ(l+1)‖2
2+α2

t ‖d(l)‖2
2

)
(4.64)

for l = 0, . . . ,k−1.
Summing side by side forl = 0, . . . ,k−1, we get:

−
k−1

∑
l=0

(µ(l))Td(l) ≤
1

2αt

(
‖µ(0)‖2

2−‖µ(k)‖2
2

)

+
αt

2

k−1

∑
l=0

‖d(l)‖2
2 (4.65)

Linking (4.62) and (4.65), we then have:

f (û(k))≤ q′t
∗
+ εt +

1
2kαt

(
‖µ(0)‖2−‖µ(k)‖2

)

+
αt

2k

k−1

∑
l=0

‖d(l)‖2

≤ q′t
∗
+

‖µ(0)‖2

2kαt
+

αtL′
t
2

2
+ εt (4.66)

in which we get the last inequality by usingL′
t as the norm bound for allg′(u(l)), l = 0, . . . ,k−1.

Finally, with the Slater condition, there is no primal-dual gap, i.e.q′t
∗ = f ∗t (cf. (4.24)), hence:

f (û(k))≤ f ′t
∗
+

‖µ(0)‖2

2kαt
+

αtL′
t
2

2
+ εt

�
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4.7.2 Proof of the convergence result of the Jacobi iteration (Proposition 4.3.4)

According to Proposition 3.10 in [15, Chapter 3], the Jacobi algorithm hasa linear convergence w.r.t.
the block-maximum norm, as defined below:

Definition 4.7.1 For each vector x= [xT
1 , . . . ,x

T
M] with xi ∈ R

ni , given a norm‖ · ‖i for each i, the
block-maximum norm based on‖ · ‖i is defined as:

‖x‖b-m= max
i

‖xi‖i (4.67)

Definition 4.7.2 With any matrix A∈ R
ni×n j , we associate the induced matrix norm of the block-

maximum norm:

‖A‖i j = max
x6=0

‖Ax‖i

‖x‖ j
= max

‖x‖ j=1
‖Ax‖i (4.68)

In this paper, we use the Euclidean norm as the default basis for block-maximum norm, i.e.‖·‖i =
‖ · ‖2,∀i.

Proposition 3.10 in [15, Chapter 3] states thatu(p) generated by (4.31) will converge to the opti-
mizer ofL ′(u,xt) with linear convergence rate w.r.t. block-maximum norm (i.e.‖u(p)−u∗‖b-m ≤
φ p‖u(0)−u∗‖b-m, with u∗ = argminu L ′(u,xt) andφ ∈ [0,1)) if there exists a positive scalarγ such
that the mappingR : ΩΩΩ 7→ R

nu , defined byR(u) = u− γ∇uL
′(u,xt), is a contraction w.r.t. the block-

maximum norm.
Our focus now is to derive the condition such thatR(u) is a contraction mapping.
Note that sincef (u,xt) is a quadratic function, andg′(u,xt) contains only linear functions, the

functionL ′(u,xt) is also a quadratic function w.r.t.u, hence it can be written as:

L
′(u,xt) = uTHu+bTu+c (4.69)

whereH is a symmetric, positive definite matrix,b is a constant vector andc is a constant scalar.
In order to derive the condition forR(u) to be a contraction mapping, we will make use of Propo-

sition 1.10 in [15, Chapter 3], stating that:
If f : Rnu 7→ R

nu is continuously differentiable and there exists a scalarφ ∈ [0,1) such that

‖I − γG−1
i

(
∇iFi(u)

)T
‖ii +∑

j 6=i

‖γG−1
i

(
∇ jFi(u)

)T
‖i j ≤ φ ,

∀u ∈ΩΩΩ,∀i (4.70)

then the mappingT : ΩΩΩ 7→R
nu defined with each componenti ∈ {1, . . . ,M} by Ti(u) = ui −γG−1

i F(u)
is a contraction with respect to the block-maximum norm.

The mappingT(u)will become the mappingR(u) if we takeGi = Inui ,∀i andF(u)=∇uL
′(u,xt)=

2Hu+b. With such choice, and evaluating the induced matrix norm (4.68) in (4.70), the condition
for contraction mapping ofR(u) is to findφ ∈ [0,1) such that:

‖Inui −2γHii‖2+∑
j 6=i

‖2γHi j‖2 ≤ φ ,∀i (4.71)
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whereHi j with i, j ∈ {1, . . . ,M} denotes the submatrix ofH, containing entries at rows belonging to
subsystemi and columns belonging to subsystemj. Note that the matrix inside the first induced matrix
norm is a square, symmetric matrix, while the matricesHi j are generally not symmetric, depending on
the number of variables of each subsystem. The scalarφ ∈ [0,1) is also the modulus of the contraction.

Using the properties of eigenvalue and singular value of matrices, we transform (4.71) into the
following inequality:

max
λ

|2γλ (Hii )−1|+2γ ∑
j 6=i

σ̄(Hi j )≤ φ ,∀i (4.72)

whereλ means eigenvalue, and̄σ denotes the maximum singular value.
In order to findγ > 0 andφ ∈ [0,1) satisfying (4.72), we need:

max
λ

|2γλ (Hii )−1|+2γ ∑
j 6=i

σ̄(Hi j )< 1,∀i (4.73)

⇔

{
2γλmax(Hii )−1+2γ ∑ j 6=i σ̄(Hi j )< 1
1−2γλmin(Hii )+2γ ∑ j 6=i σ̄(Hi j )< 1

,∀i (4.74)

⇔

{
γ < 1/

(
λmax(Hii )+∑ j 6=i σ̄(Hi j )

)

λmin(Hii )> ∑ j 6=i σ̄(Hi j )
,∀i (4.75)

The first inequality of (4.75) shows how to chooseγ, while the second inequality of (4.75) needs
to be satisfied by the problem structure, which implies there areweak dynamical couplingsbetween
subsystems.

In summary, the mappingR(u) satisfies (4.70) and thus is a contraction mapping if the following
conditions hold:

1. For alli:

λmin(Hii )> ∑
j 6=i

σ̄(Hi j ) (4.76)

2. The coefficientγ is chosen such that:

γ <
1

λmax(Hii )+∑ j 6=i σ̄(Hi j )
,∀i (4.77)

So, when condition (4.76) is satisfied and withγ chosen by (4.77), we can defineφ ∈ (0,1) as:

φ = max
i

{
max

{
2γ
(
λmax(Hii )+∑

j 6=i

σ̄(Hi j )
)
−1,

1−2γ
(
λmin(Hii )−∑

j 6=i

σ̄(Hi j )
)}
}

(4.78)

Thisφ is the modulus of the contractionR(u), and also acts as the coefficient of the linear conver-
gence rate of the Jacobi iteration (4.31), which means:

Page 72/75



HD-MPC ICT-223854 Evaluation results including economic and application potentials

‖u(p)−u∗‖b-m ≤ φ p‖u(0)−u∗‖b-m, ∀p≥ 1 (4.79)

whereu∗ = argminu∈ΩΩΩ L ′(u,xt).
Note that the closer ofφ to 0, the faster the aggregate updateu(p) converges to the optimizer of

the Lagrange function.
In order to get the convergence rate w.r.t. the Euclidean norm, we will needto link from the

Euclidean norm to the block-maximum norm:

‖x‖2 ≤
M

∑
i=1

‖xi‖2 ≤ M max
i

‖xi‖2 = M‖x‖b-m (4.80)

Hence, the convergence rate of Jacobi iteration (4.31) w.r.t. the Euclidean norm is:

‖u(p)−u∗‖2 ≤ Mφ pmax
i

‖ui(0)−ui∗‖2, ∀p≥ 1 (4.81)

�
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