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Executive Summary

This report presents further advances in the development of higarend distributed modeﬂ
predictive control (MPC) methods. In particular, we present a hikieat approach for a Dy
namic Pickup and Delivery Problem. The hierarchical multilayer structutiesodystem is used t
decompose the optimization problem, which is big and NP-hard, into smaller bettrastable
subproblems. Each proposed layer represents the viewpoint ofetiiffdecision-makers. In orje
of those layers, the dispatcher routes the vehicles when a new regpeats, and minimizes us
and operator costs. As those two components are usually aimed at oppad#ietige problem ir
this layer is formulated and solved through multiobjective model predictivee@on

Then a game-theoretic approach is presented for distributed modeltpediontrol (DMPC).
The DMPC problem is reformulated and analyzed as-@erson bargaining game based on fjhe
concepts presented by John Nash. Tfmerson bargaining game involvasndividuals that ca
collaborate for mutual benefit. The individuals communicate with each otheder to (jointly)
decide which strategy is the best for each individual, based on theqgedit’ed under cooperati
behavior.

The third and last method presented in this report is a hierarchical anidbukistt approach. Th
proposed scheme facilitates the implementation of MPC without building a pdveeritralized
controller, which is often impractical for large-scale systems. The pesmpo®ethod is applicabl
to a large class of interconnected systems where there can be couplingth idyimamics ang
constraints between the subsystems. The hierarchical MPC controllde iajenerate a primg|
feasible solution within a finite number of iterations, using primal averagingaandnstrain
tightening approach.

All these approaches are first briefly presented in the synopsis chapiie a full presentation ca
be found in the subsequent chapters. Additionally, the synopsis chapsants the economicgl
potential and suggestions for real-life applications.
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Chapter 1

Synopsis

This synopsis chapter first summarizes further results developed fardtiecal and distributed model
predictive control, namely:

e Hierarchical Multiobjective Model Predictive Control Applied to a Dynamickap and Deliv-
ery Problem.

e Game Theory Based Formulation of Distributed Model Predictive Control.

e A distributed optimization-based approach for hierarchical MPC of lamge systems with
coupled dynamics and constraints.

Then, the synopsis is concluded with a section summarizing the economicatiglodé hierarchical
and distributed MPC methods and suggestions for real-life applications.

1.1 Hierarchical multiobjective model predictive control applied to a
dynamic pickup and delivery problem

The advances in Hierarchical and Distributed Model Predictive CoittbFMPC) during the last
decade have made this framework very attractive for dealing with problesegiated with the man-
agement of real-time operations involved in complex operational proceks#dss sense, the prob-
lems that arise in the operation of transport systems have become of reagitiive applying not only
the methodology, principles and modeling techniques behind HD-MPC, luseals®ral of the new
solution algorithms that have proved to be efficient in the context of HD-Mp@lications.

The decisions about operational policies, were mostly conducted relyirggatic optimization
methods to make decisions. These static methods were used even thougheattmésdy in the opera-
tion of most transport systems is nowadays widely recognized as padioh#tural interaction with
the demand and infrastructure. The reasons for using static scenadiosaalels for such long time
were mainly due to computational constraints, lack of efficient algorithms amkptechnology, etc.

On the contrary, in the last fifteen years, researchers have intgnsivdked to deal with dynamic
transport modeling and control problems, which has changed completelyaheo conceive the
algorithms and policies used for planning the operation of the transpdeinsysnvolved. Issues such
as data management, computational performance, future conditions predintioeal-time decisions
became relevant in the conception of operational schemes for seyegaldf/transport systems.

By looking into most of the specialized literature regarding such dynamic metratlalgorithms,
the real-scale transport problems are commonly treated through heuristiodsethich does not
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seem to be a bad option even the most important operational decisionsetwnaitioned by the
algorithms’ solutions normally must be made in real-time. In these cases, it is veguharly re-
evaluating the last policy applied in order to reach a better performance matdeim to long-term
time-scale, like in a rolling horizon fashion. In fact, the use of static appesmadapted to solve dy-
namic problems can considerably underestimate the potential benefits ai dgriamically derived
operational policies for both private operators and for societal sedsyusers of transport systems).

Some of the dynamic transport problems that naturally fit to HD-MPC, with thamhyc features
of the most common transport schemes are i) dynamic vehicle routing proldépaséengers, loads),
ii) real-time operations of traditional (fixed route) public transport systdmsds, train), iii) real time
traffic control (urban and in highways), etc.

Indeed, in these applications the description of the future behaviorias=baevith the opera-
tional processes generate highly non-linear model-based predictit®lcimrmulations containing a
combination of integer and continuous variables, soft and hard corisirain. Therefore, given the
complexity of those systems, it will be important to end up with concise and effisiedel descrip-
tions along with a proper predictive objective, to make sure that the HD-MBtBods are applicable
to the real-time settings of the transport systems analyzed.

In ChapteCR2[[1], a hierarchical multiobjective model based predictiverobapproach is pre-
sented for solving a dynamic pickup and delivery problem. The hieraacmaltilayer structure of
the system is used to decompose the optimization problem, which is big and dFHtarsmaller
but more tractable subproblems. Each proposed layer representswipeivieof different decision-
makers. In one of those layers, the dispatcher routes the vehicles wien equest appears, and
minimizes user and operator costs. As those two components are usually adioppdsite goals, the
problem in this layer is formulated and solved through multiobjective model gieslicontrol. The
dispatcher participates in the dynamic routing decisions by expressingrhps#iierences in a pro-
gressively interactive way, seeking the best trade-off solution &tieatant among the Pareto optimal
set. An illustrative experiment of the new approach through simulation ofrtheeps is presented to
show the potential benefits in the operator cost and in the quality of semiceiped by the users.

1.2 Game theory based formulation of distributed model predictive con-
trol

Game theory is a branch of applied mathematics used in social sciencesmecsnbiology (par-
ticularly evolutionary biology and ecology), engineering, political scieneternational relations,
computer science, and philosophy. Game theory attempts to capture bsliagtrategic situations,
or games where the outcome of a player is function not only of his choidesldmidepends on the
choices of others [2]. While initially developed to analyze competitions in whighindividual does
better at another’s expense, it has been expanded to treat a widefétgesactions, which are classi-
fied according to several criteria. Today, “game theory is a sort dfiéahfield’ theory for the rational
side of social science, where ’'social’ is interpreted broadly, to inclugeam as well as non-human
players (computers, animals, plants)”[3]. Thus, game theory arisesateanative to formulate and
characterize the distributed model predictive control (DMPC) problem.

In Chaptei B, the DMPC problem is reformulated and analyzedrapexson bargaining game
based on the concepts presented by John Nashlin([4, 5, 6] abowgamels. The-person bargaining
game involvesh individuals that can collaborate for mutual benefit. The individuals comnatmic
with each other in order to (jointly) decide which strategy is the best for eatitidual, based on
the profit received under cooperative behavior [4]. So, in thegseg formulation, each subsystem is
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able to decide whether to cooperate or not with the other subsystems dependthe benefit received
by the subsystem from the cooperative behavior. The selection of thaibag approach was made
because its main insight is focusing on others, i.e., to assess your addedyeu have to ask not
what other players can bring to you but what you can bring to other 4y

For analyzing the DMPC problem asgerson bargaining game the axiomatic bargaining theory
is used. Since this theory is formulated for static games, some axioms angtohaee been rede-
fined. Moreover, the concept of discrete-time dynamic bargaining gameasluted. Based on the
new concepts, two cases of distributed model predictive control afgzaaa the symmetric and the
nonsymmetric cases (conditions for the symmetry and nonsymmetry of the gaoutassd with the
DMPC problem are established). For both cases the outcome of the ganaastehized, i.e., the
properties of the DMPC formulated as a bargaining game are discussed.

In addition, a negotiation model for implementing a distributed solution of both syrmzetd
nonsymmetric DMPC games is presented. This algorithm is based on the traatém of the bar-
gaining game in an equivalent noncooperative game, and solve thellemiiioncooperative game.
The transformation allowed to reduce the computational burden associateth& solution of the
DMPC problem because it is not required an iterative procedure fahjaompute the optimal con-
trol action applied to each subsystem. Also, the difference between thegad algorithm and the
other algorithms for DMPC (specifically the DMPC algorithms based on Lagramultipliers) are
discussed, and the conditions for the convergence and the stability abihesed DMPC scheme are
established.

Finally, the quadruple tank process is used to illustrate a symmetric casehpdidgpower valley
is used to present a nonsymmetric case.

1.3 A distributed optimization-based approach for hierarchical MPC
of large-scale systems with coupled dynamics and constraints

Chapte[#[[8] presents a new approach in designing model predictiobers, based on hierarchical
and distributed MPC architecture. The proposed scheme facilitates the impégioenf MPC with-
out building a powerful centralized controller, which is often impracticaldoge-scale systems. The
proposed method is applicable to a large class of interconnected systereshdre can be couplings
in both dynamics and constraints between the subsystems. The hieraMRiCatontroller is able
to generate a primal feasible solution within a finite number of iterations, usimgpaveraging and
a constraint tightening approach. The primal update is performed in a dietlilvay and does not
require exact solutions, while the dual problem uses an approximatesslidagt method. Stability of
the scheme is established using bounded suboptimality.

We consideiM interconnected subsystems with coupled dynamics, the centralized discrete-
state-space model is given by:

Xir1 = AXc+ Bl

Let N be the receding horizon. In the MPC problem at time stéipe subsystems need to respect
the operational constraints:

xe X k=t+1,...,t+N-1
XN E 2t C X

U e, k=t,....t+N—-1
ueQi=1....M, k=t,... t+N—-1
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where the coupled constraint sgks 2" and Z; are polytopes and have nonempty interiors, and each
local constraint se®; is a hyperbox.

The MPC problem at time steps formed using a convex quadratic cost function. After eliminat-
ing the state variables, we need to solve the following optimization problem at tipe ste

fi = muin f(u,%) (1.1)
st g(u,x) <0
ueQ

wheref andg = [g1,...,9m]T are convex functions, ar@ = 1, Q; with eachQ; = [IN-1 Qi is a
hyperbox.

Suppose that at each time stepve have a Slater vectak which satisfies the strict inequality
o(u,X%) < 0, and we can quantify the difference between the costs associated wjiretheus step
and the Slater vector as:

fui—1,%-1) — f(Ut,%) > L

Our objective is to generate a feasible solution for problen (1.1) using aochétht is favorable
for distributed computation. The main idea is to use dual decomposition for therigghproblem of
(@), such that after a finite number of iterations the constraint violationsitightened problem
will be less than the difference between the tightened and the original amtstrThus, even after a
finite number of iterations, we will obtain a primal feasible solution for the origifaC optimization
problem. Moreover, the suboptimality would be less tharso that the cost function decreases, acting
as the candidate function for proving Lyapunov stability.

The novel control technique is based on a two-level hierarchical etidbdited optimization al-
gorithm, which is a nested procedure in which the outer loop is the approximageaslient method
for the dual problem and the inner loop is the Jacobi distributed optimizationochédn the primal
problem. Most of the computations are carried out by the local controlleasdistributed fashion,
while the coordinator is in charge of computing the common parameters: the tightefsetc, the
suboptimalitye;, the step sizer; of the subgradient iteration, the number of outer-loop iteratlons
and the number of inner-loop iteratiopg.

We show that the average of the primal update series is a feasible solutitesarto closed-loop
MPC stability with the following parameters to be defiraegriori:

0<c < j:17!f.17m{—gj(ut,><t)}
“=ip
TAY
& = —
tT 2

- 1 /3, oL ﬂ
— | = (2 (Ox) + Tl

“ an(% (U)ol

— lo &

P= 1199 AMmax D;

where|-] is the ceiling operator which gives the closest integer equal to or abe@ aalue M is
the number of subsystenis, , @,A\, andD; are the constants that are associated with the properties
of the functionsf andg.
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1.4 Economical potential and suggestions for real-life applications

Estimation of the economical potential of the new hierarchical and distributédoe is difficult
task. However, there are some results in literature, which can deal assddrathis estimation. It is
obvious that a good centralized solution of an optimal control problemiggevan upper bound for
the best control performance, which can be achieved by hierar@mdadlistributed model predictive
control methods. A large scale study for the load change of a chemical dagnbeen provided
by Hartwich and Marquardt [9]. They report a profit gain of up to 8.618ing an optimal controller
during transit. However, the process considered involves more tha@Ql\Zadiables, so the solution of
the optimal control problem can only be accomplished in several dayxe;ameal-time application
is not possible.

In another case study, which is still large-scale Wiirth etlall [10] denaiedine capabilities of
modern optimal control methods. In particular, they compare single-laytanalpcontrol and hier-
archical multi-layer control for a continuous polymerization process, lwimgolves approximately
2000 nonlinear equations. In total, 4 different control scenarios @septed. The first controller
is a single-layer NMPC, where computational delay is neglected. The réauttds controller are
considered as the optimum achievable. However, neglecting the compuitdtitaais an unrealistic
assumption, since the nonlinear optimal control problem cannot be solvedlitime. If compu-
tational delay is considered, the controller performance dramatically edduthe economic cost
function to be minimized doubles, while the number of constraint violations rigesfactor of 10.
But, using a hierarchical nonlinear model predictive control schemegthieoller performance of the
reference controller can be almost retained. This clearly demonstrataduaetages of hierarchical
MPC, at least in a large-scale simulation case study. Though, this cagetadhows, that there are
limitations in the size of a system, which can be dealt with by a monolithic or hierataoatroller,
as the computational delay can not be neglected. For systems with fasteotistasts, the situation
gets even worse.

Here, the use of distributed model predictive control methods can be thosoto broaden
the class of systems, for which optimal control can be realized. This isi@iggmportant, when
nonlinear systems are considered. However, many of the methods in dedrimodel predictive
control are still not mature, normally they only exist for linear systems, aethesented in[11]: This
article presents a comparative analysis of different model predictineaters. While centralized
controllers serve as a reference, different distributed and fullyrdesdized controllers are studied
in terms of various performance criteria. An important message is that disalithdPC solutions
can achieve the same controller performance as a centralized contrdilkr,tie same cannot be
achieved using decentralized MPC. The evaluations are conducteddal plant, namely the well-
known quadruple-tank process suggested by Johanssbn [12]. uglihthis is a rather small-scale
example, the evaluation is one of the first studies of distributed MPC on plaga) while the majority
of contributions are based on simulations.

Generally, a main benefit from using distributed methods compared to delcadrmethods can
be seen in case a decentralized controller leads to unstable system belfia/dIMO plant. On
the one hand, if the use of decentralized controller is to be used, a waykte the problem might
be to change the controller tuning such that the system performance tededas a result, refer-
ence tracking and disturbance rejection gets worse. Then, the plamitdas operated as close to
the system bounds, as one might want to do this, hence, one the plantdparated at the eco-
nomical optimum. On the other hand, the use of a centralized controller leadsr¢ochmllenging
computational burdens, resulting in bigger sampling times and longer compatadiglays, which
again reduces the controller performance and forces the operatoetatephe plant apart from its

Page 976




HD-MPC ICT-223854 Evaluation results including economic ad application potentials

economical optimum.

Hence, if a distributed controller guarantees stability and optimality and recweeputing time
compared to a centralized controller, there is a continuous profit for thédied over the central-
ized solution. Compared to a decentralized controller the profit gain degemthe coupling of the
subsystems. For uncoupled subsystems, a completely decentralizedleostilbprovides optimal
performance, optimal disturbance rejection and optimal reference tgackis might still be a good
solution for very weakly coupled subsystems. But as the couplings geigelr, a distributed con-
troller will definitely perform better than the decentralized controller. Thangfer the couplings are,
the stronger should be the benefit of using a distributed MPC over atdalcead MPC. However,
for very strong coupling, e.g. consider a single CSTR with multiple inputs atplts, the use of a
distributed solution will most likely be worse than a centralized MPC. As a resaltyant to stress
that before deciding on the control method to be implemented, one shouldartag MIMO sys-
tem using existing tools such as the relative gain array, in order to decidénetimer to implement
distributed MPC or not.

Finally, we want to give a coarse guess on a real plant, in particular a p&Wr plant. However,
as real numbers are hardly available, the following numbers are reallgecgaesses in order to get
a feeling on the real benefits of new MPC technology. We assume the plgmetiating 8000 hours
per year and a cost of 10 cent per kWh. Hence, the plant is prodaciotal of 8 TWh per year,
which is equivalent to & 10*2Wh 2195 — 800,000.000. Even if we assume only an improvement
in efficiency of the plant of 0.01 % due to implementation of a distributed or lukieal MPC, costs
can be reduces by about 80.000 Euro per year, for an assumetioadaf 0.1 %, it is already a saving
of 800.000 Euro per year.

From, these numbers, it gets clear, that the effort of implementing an impowrerbl concept,
e.g. distributed or hierarchical MPC, for a large scale plant, will easily lgsgk the effort in a
reasonable time. For smaller plants, the benefit will be seen, as soon asrthesslution will be
applicable on multiple systems. However, a necessary requirement faticadin industrial plants is
still the bring hierarchical and distributed MPC methods to a more mature status.
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Chapter 2

Hierarchical Multiobjective Model
Predictive Control Applied to a Dynamic
Pickup and Delivery Problem

The research of this chapter has been developed by Alfredo Nuae)B Schutter, Doris Saez, and
Cristian E. Cortés. A. Nufiez and B. De Schutter are with the Delft Centeyfstems and Control,

Delft University of Technology, Mekelweg 2, 2628 CD Delft, The Nethrds D. Saez is with the

Department of Electrical Engineering, Universidad de Chile, Av. Tug@@7, Santiago, Chile. C.E.

Cortés is with the Department of Civil Engineering, Universidad de Chilan& Encalada 2002,

Santiago, Chile.

2.1 Introduction

The dynamic pickup and delivery problem (DPDP) considers a setlofeorequests of service for
passengers traveling from an origin (pickup) to a destination (deliwamed by a fleet of vehicles
initially located at several depots! [1[,/[2].][3]. The final output of lsicproblem is a set of routes
for the fleet, which dynamically change over time and are required in real-TimeDPDP designed
to operate dial-a-ride systems (DARS) has been intensely studied in thedastes [4],[15],[16],[17],
among which the ADART system in Corpus Christi Texas, which is a distriteytetem for dynamic
routing already implemented in real-lifel [8].

A well-defined DPDP should be based on an objective function that inglpigagiction of future
demands and traffic conditions in current routing decisians, [9], [[Id], [12]. In previous works
we have proposed an analytical formulation for the DPDP as a model pessgidtive control (MPC)
problem. The proposed global optimization problem was big and NP-harthesuse of evolutionary
algorithms was considered. However, the global optimum solution in real-tint@nces was not
reached due to the trade-off between computation time and accuracy indlgosghms. In this
paper, we propose a new control structure for DPDP that does hotrmorporate predictions, but
also the inherent hierarchical multilayer and multiobjective structure of tHeFDP

Regarding hierarchical model based predictive control (HMPC),raniee and comprehensive
review can be found in[13]. The references within![13] represemtiihin contributions in the field.
In a HMPC structure the local actions of the controllers are coordinateaoh laygorithm operating at
a higher level. The higher layers determine general characteristics ystesm and generate control
variables which have a long-term effect on the plant. Those variabledlyisre obtained by a static
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optimization procedure and remain constant during a relative longer pefibdhe. In the lower
layers, control variables are determined by means of a higher rate optimizatoedure (MPC)
and their effects are local and short-term (see more details in [13] aiid[15]). In this paper, we
propose a hierarchical scheme with three layers for solving the DPDd&evdach layer represents
the viewpoint of different decision-makers. The communication and ao&tidn issues in each layer
are very important, not only because the information is received ateliffeates, but also because of
some conflicts that could happen especially when their objectives areitgp0kis is the case for
DPDP, when we consider quality of service for users while minimizing opew@ticosts.

In real implementations of DPDP the quality of service is very important. Theoeath [16]
conclude that most dial-a-ride studies are focused on the minimization ddtapel costs, and that
it is necessary to develop more studies on user-policies. Then, it isnadaecthat the objective
function properly quantifies both the impact on the users’ level of seaffeeted by real-time routing
decisions, as well as the effect on the associated extra operatiotgal\dsmust notice that these two
dimensions represent opposite objectives and we will need to solve teblitveen them. The users
want to obtain good service, implying more direct trips, resulting in lower Welbiccupancy rates and
consequently, higher operational costs. More efficient routing policies the operators’ standpoint
will reflect higher occupation rates, longer routes, and consequéonilyer waiting and travel time
for users. Thus, the question is how to properly balance both companethis objective function
to make proper dispatching decisions. To guide the decision-maker in thigritieis paper we
propose the use of multiobjective model based predictive control. Thatdisgr must express his/her
preferences (criterion) in a progressive way (interactively),isggke best-compromise solution from
the dynamic Pareto set. The performance of the system will be related witht#r@a used.

Multiobjective optimization (MO) has been applied to a large number of statidgaraband also
to vehicle routing problem$§ [17], [18]. For a comprehensive reviewirttegested reader is referred to
[19]. As far as we know, all the multiobjective applications in vehicle routirapfems are evaluated
in static scenarios, one of the aims of this paper being to contribute in the ianaflyssing MO in
dynamic and stochastic environments. Among works and applications relaid® tom MPC we
can highlight[[20], [21], and [22]. Almost all the works reported in thieljrioritize, or use scalars
methods by weighting the objective functions (a priori) turning the MO prolatéona single-objective
optimization. Those methods are too rigid in the sense that changes in theepeefef the decision-
maker cannot easily be considered. Then, we propose a suitable tatispatchers that allows to
make decisions in a more transparent way.

The outline of the paper is as follows. In Section 2, the Hierarchical Multaive Model Pre-
dictive Control approach is presented. In Section 3 the DPDP, includenmhtidel and the objective
functions are discussed. In Section 4, the scheme based on MPC fioigsthle DPDP by([12] is re-
formulated under the new approach. In Section 5 simulation results are strmhanalyzed. Finally
conclusions and future work are highlighted.

2.2 Hierarchical multiobjective model predictive control

2.2.1 Hierarchical model predictive control

In hierarchical multilayer systems, the system is divided into differenttional layers, and the con-
trol structure consists of algorithms dealing with different components obyiseem, working at
different temporal and spatial scales. This structure is useful to dguiénats characterized by sig-
nificantly different dynamics and where the action of local controllers esdinated by an algorithm
operating at a higher level [1.3]. In process industry it is very commoresigt the overall control
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system according to hierarchical structufes [24]. In some applicatonsalso in the one we propose
in this paper, at a higher level a simpler and more abstract model is caesidgrredict the long-term
behavior of the system and to compute the optimal plant operating conditisad ba an economic
criterion. At the lower level, a more accurate model is used to compute thentgontrol actions by
looking at a shorter time horizon.

Consider for example a hierarchical model based predictive controitarargiven number of
layers. The variables of the higher layer are denoted with supersgcriptttie next lower level the
superscript is 2 and so on. The process modeled in layergiven by the following non-linear
discrete-time system:

(ks +1) = fs(x3(ks), u3(ks), X3(ks)), (2.1)

wherexS(ks) € R™ is the state vecton®(ks) € R™ is the input vectorX3(ks) are states and inputs
from higher layers that affect the dynamics of lageandks € N denotes the time step in laygrin
the layers, the following MPC problem is solved:

I'UISFIAS ° Js(U S, )@S)

subject to
X(ks+ 0+ 1) = fs(0xC(ks+ £),us(ks+ ), X3(ks+£)),
¢=0,1,...,Ns— 1,
XS(ks+£) = [x (ks +£), ..., x5 L(ks+ 1), (2.2)
Ul(ks+0),...,us (ks+£)], £=0,1,...,Ns—1,
X3(Ks) = Xg_,

(
(ks 0) € XS, £=1,2,...,Ns,
Us(ks—{—E)GUS, fzo,l,...,Ns—l,

whereUs = [uS(ks)’, ..., uS(ks+ Ns — 1)]' is the sequence of future control actions in lag/eg(U*, Xe,) =
[J2(USXR), -, 2 (US,%¢ )] are thels objective functions to minimizeys = (AL, ..., Al is the weight-

ing factor vectorNs is the prediction horizomn®(ks+ ¢) is the ¢-step-ahead predicted state from the
initial statexﬁs, X3(ks+¢) is a vector with the predicted states and the outputs of higher layers that will
affect the dynamics of layeyat stepks+ ¢. We suppos&Xs(ks+ ¢) is known from the higher level
MPC and is fixed for the optimization problem to solve in lagelhe state as well as the inputs are
constrained to<® andUs.

As can be noted, the optimizer at a higher level computes its desired coctitoisa which can
be interpreted as reference signals for the immediately lower layers. Bignd# the higher level
module plays a fundamental role. In fact, even if it is based on static optimizét®adopted model
has to be periodically updated, while keeping coherence, by means ofateqgaate procedure to
deal with changing operating conditions. To guarantee that these inpuiisaasible, and to consider
the presence of disturbances in the lower layers, the layers should caocateun

2.2.2 Hierarchical multiobjective model predictive control

Usually the objective functions in MPC are conflicting, i.e., a solution that optsnire objective
may not optimize others [22]. Multiobjective (MO) in MPC is a generalization 8@/where instead
of minimizing a single objective function, we consider more performance iadite Hierarchical
Multiobjective Model Predictive Control (HMO-MPC), if the layemodeled by[(Z]1) has conflicts,
the following multiobjective problem is solved:
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min {32(U° ), BU%E). - K U%) } (2.3)

subject to the same constraints as[inl(2.2). The varidbfeand J>(U®xg), | = 1,...,1s, are the
sequence of future control actions and the objective functions to minimizgandaespectively. The
solution of HMO-MPC problem is a set of control action sequences caleet® optimal set. Next
we define Pareto optimality. Consider a feasible control sequgpee[us (ks)’, ..., uS (ks +Ns— 1)]".
The sequencé; is said to be Pareto optimal if and only if there does not exist another feasifieol
action sequendd such that:

1) U, x) <FUg,x), fori=1,....1s.
2) J(U,x) < J(US,x), for atleastong € {1,...,1s}.

The Pareto optimal set contains all Pareto optimal solutions. The set ofjaditiob function
values corresponding to the solutions is known as the Pareto optimal frdwet.relation between
MPC and MO in MPC will be explained with a simple example. Let us consider a li@Glem
that involves minimizing the single objective functidd; (U, x) + (1 —A)J2(U, %), A € (0,1), and
a MO-MPC problem that involves minimizingly (U, x),J2(U,x)}. As seen in Fig—2]l1, the MPC
optimal solutionUy;p belongs to the Pareto solution set of the MO-MPC problem (more details of
the conditions for this can be found in_|22] and references within). Ifselee the MPC problem
for a wide range of weighting factor valugs we would obtain an approximation of the same Pareto
set for MO-MPC. The procedure should be repeated at every insthitt) could become extremely
inefficient in terms of computer resources. In this paper, we use expligineration for the simula-
tion results to measure the benefits of the approach. We claim that for bighsems evolutionary
multiobjective optimization algorithms could be used; however, it will be importaev#tuate the
effects of using a metaheuristic in the performance of the system, becauRartio set is not always
obtained.

X
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Figure 2.1: Relation between MPC and MO-MPC solutions

From the set of the optimal control solutions, just the first compon&ft) of one of those
solutions has to be applied to the system, so at every instant, the controlfetétiisr in the context
of a DPDP) has to use a criterion in order to find the control sequencédéttatr suits the current
objectives. In this paper, that decision is obtained after the Pareto seteisrined. Then, it is not
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possible to choose a priori some weighting factor and to solve a singletigbjeptimization problem.
The idea is to provide to the dispatcher a more transparent tool for theahecis

2.3 Dynamic pickup and delivery problem

2.3.1 Process description

Dial-a-ride systems (DARS) are transit services which provide a shiateddoor-to-door service
with flexible routes and schedules. The quality of service of a DARS isaagupto be in between of
public transit buses and taxis. The typical specifications are the uskup@od delivery destinations
and desired pickup or delivery times. We will assume that all the requesteaawn only after the
dispatcher receives the associated call and that all the users wanséoveel as soon as possible.
Thus, even we will not include explicitly hard windows, to provide a goaglise we propose a user-
oriented objective function that deals with the problem of undesired amsigps to clients, and keeps
the service provided as regular (stable) as possible.

The service demangl, comprises the information of the request and is characterized by two po-
sitions, pickuppk and deliverydy, the instant of the catl, a labelry that identifies the passenger who
is calling and the number of passengers waiting tligre Also we consider the expected minimum
arrival timetr, which is the best possible time to serve the passenger, considering atgoargey
from origin to destination (like a taxi service) and a waiting time obtained with theestoavailable
vehicle (in terms of capacity) to pick up that passenger.

We assume a fixed and known fleet sizever an urban areA. The dispatcher receives calls
asking for service every instakit Once a new request enters the system, the assignment of the vehicle
and the insertion position of the new request into the previous sequeticat afehicle, are control
actions decided by the dispatcher (controller), based on a dynamic gbjéatiction. Then, at any
instantk, each vehiclg is assigned to complete a sequence of tasks which includes several foints o
pickup and delivery. Only one of those vehicles will serve the last neweast. The set of sequences
u(k) = S(k) = {S1(k),...,S=(k)} correspond to the control variable. The sequence of stops assigned
to vehiclej at instank is given byS; (k) = [S‘J-J(k), St(k), ...,S\;Vj(k)(k)} , whereS (k) is the information
about thei-th stop andw;(k) is the number of planned stops of vehiglat instantk. Thei-th stop
information comprises the label of the U$§a(k), the spatial coordinatB}(k), whether the stop is a
pickup or deIiveryz‘j (k) and the number of users waiting at it stopQ‘j (k).

Two sources of stochasticity are considered: the first regarding #treowm future demand enter-
ing the system in real-time, and the second coming from the network traffditaors, in its spatial
and temporal dimension represented by a speed distributtop) at instantt in a positionp. We
will assume in this work a conceptual network, where the trajectories firedes the straight line
that joins two consecutive stops. Besides, a speed distribution for tl@ adne during a typical
period represented by a speed mode]p) is supposed to be known, which could be obtained from
historical data.

2.3.2 Process model

The predictive model for vehiclgat instantk proposed in[12] is given by:
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o T PO)(PR) P (K)

. I*:le(fk)l < wj(k)
B To(k) if i=0 (2.4)
Ti(k+1) = tk+2st(k) it i=1,...,wj(K)

L?(ks): if i=0

Li(k+1) = LO(k) + 2(22?(1() —1)Q5(k),i =1,.,wj(k)

where; (k) is the expected position of vehicje'fj‘(k) the expected departure time of vehiglrom
stopi, andI:ij(k) the expected load of vehiclewhen leaving stop. Moreover,ty is the continuous
instant time when reque&t happens is the instant betweety and the occurrence of the future
probable callj* is the expected last stop visited by the vehicle before instant, andK}(k) is an
estimation of the time interval between siop1 and stop. Fig.[2.2 shows an example of a sequence
assigned to vehiclg at instantk.

Vehicle j
T

%00, 110, P10 |

2 - w (k)
: °

* #409, 100, Foo /

0. 209, P

4ra A
TH09, [0, P

E 3 T e
\iﬂ o
2t —
700,100, B0
e
T, LK), Pk
0 ‘ ‘ ‘ ‘
0 1 2 3 4 5 6

Figure 2.2: Representation of sequence of vehjiaad its stops

2.3.3 Objective functions

The motivation of this work is to provide to the dispatcher an efficient tooldaptures the hierarchi-
cal structure of the DPDP problem and the trade-off between userspandtor costs. Besides, we
design an objective function able to reflect the fact that some usersecamie particularly annoyed
if their service is postponed (either pickup or delivery), by means of areinental weight in the
objective function that penalizes differently very-long waiting or travel ime
The optimization variables are the current sequeikgthat incorporate the new requert and

the future sequence® = {S'(k+1),...,S'(k+N)}, h= 1, ..., hnax that incorporate the prediction
of future requests. The scenaticconsists of the sequential occurrenceNof 1 estimated future
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requestif, 1, Al 5. ... Al 1, With a probabilitypn. ThusS™ = {S(k), S, ..., S} comprises all
the control actions to be calculated. The user dpdt) and the operator codt(k) are given by:

F hmax N
K= 55 pn-Gfh(k+0) = Ihk+e-1))
j=ih=1/=1
Wj(k-‘r() . N (25)
B Z ey (1= Z (K O) (T} (K 0) =t 1))
= w; (k+0)

e i; fr(?j(k+£)zij (k+0) (T} (k+0) =t o).

F hmax N
(k) = lehzllz Pn- (IPn(k+€) = IPh(k+£— 1))
39, (k+6) = or (T4 (k- 0) - Tk +0)) (2.6)
WJ (k+2)

Zl DI (k+12),

whereN is the prediction horizonhnax is the number of predicted scenariést ¢ is the instant at
which the/-th request enters the system, measured from inktgmtis the probability of occurrence
of theh-th scenario,]}{h(-) is the cost of the users in vehicjeand.]fh(-) is the operator cost of vehicle
j when the scenarib occurs. The first component dfh(-) is related to the re-routing time and the

second component to the effective waiting time experienced byri-rl@(}r.r Moreover, fr‘i’_(_) and fr?_(_)
] J

are special weighting functions designed for the lu';(ey' both will start to grow linearly if the user is
not experiencing a good total travel or a good waiting time respectlveganangO (+), itincludes
a first term that depends on the total operational time and another whlehdhepn the total traveled
distance. ThusD'J( ) represents the distance between siop4 andi in the sequence of vehicle
Finally, 8,, 6., cr andc, are weights defined by the dispatcher.

As this optimization problem is big and NP-hard, we propose to exploit its inhé&rerarchical
structure, splitting the problem in smaller ones that work coordinated in elifféime scales. In the
third layer of the proposed structure the conflicts between users aratopeill be solved by the use
of multiobjective model predictive control.

2.4 HMO-MPC for the DPDP

The DPDP is divided in three layers. In the first layer, variables like prieeonomical factors, fleet
size, etc., are determined based on economical criteria. The secondayacterizes each vehicle
according to its coverage area and occupancy by providing paramétaembership functions of a
fuzzy inference system [23]. In the third layer, whenever a recagseéars, the vehicles are routed
by minimizing user and operator costs using MO-MPC. In Eig. 2.3 the propsdeeme for DPDP is
shown and next each layer is explained. The structure of this diagrane ihékproposed in [24].

First layer, Management

This layer represent a plant-wide optimization process. Outputs whichsatenad constant in a
period of about two or more hours are determined in this layer. Thosetsudpelsome parameters
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Figure 2.3: HMO-MPC for the DARS

of the objective functiond(2.5) and (2.6) like the value of waitfhgand travelb, times for users,
the value of each minute traveled by vehiatgscost for kilometer traveledy, reasonable prediction
horizonN, fleet sizeF, call-ratet, etc. The demand patterhsand their probabilities are determined
here by using fuzzy clustering as in[11], and the membership functiahe cfusters are determined.
Those parameters clearly change on time, each one with a differentysutsén For example the cost
per kilometer traveledp could change because of daily variations of the price of fuel, the demand
patternsh if there is a special event in a stadium, etc. Thus an MPC problem[Iike (2.2)switt
could be solved, where the objective function should incorporate esigabindexes. In this paper we
are focusing on the operational process, so we will assume that thenatfon provided by this layer
is given and fixed. However, whether or not a static or dynamic optimizatignasl, the way each
parameter is determined and the analysis of more complex situations are toficther research.

Second layer, Vehicles characterization

This layer generates the information used to determine the group of vehiitkebetter chances to
serve new requests. The information is updated every 20 minutes and rilit p@ reduce the com-
putational effort when discarding vehicles too far away from newestgyy or when their number of
tasks is too high. The output of this layer are the parameters of three mémpfersctions (MFs) for

each vehiclgj, which represent the coverage in axigy(-), in axisy /() and the number of tasks

1, (). The following MFs are used:

05(n-PX)?2 05(ny-PY)2
j T of j T 0?7
wmy=e 7 woh=e 2.7)
X\ (w; (k)
M (W

T 1re Wkl—gm)

whereny and nﬁ' are thex andy coordinates of the pickup or delivery of the new requxifq(stISjX
andP_jy are the mean values amgf and ajy are the standard deviations of coordinatemdy of the
task assigned to vehiclgincluding the current position of the vehicle and the last stop visited. The
variablec;(t) is the point of inflection of the sigmoidal membership function. The gaussiarfiokF
the coordinates captures the fact that some vehicles will serve requepexific zones with a small
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coverage area, and others with a wider coverage. Due to the fact ¢hadithmeters are uploaded, it
is possible to change the kind of trip a vehicle is doing according to the navireetents. Regarding
the sigmoidal (logit) shape of the MF for the number of tasks, the idea is to mthadfact that when

a vehicle is too saturated with future tasks, not only a bad service wouldovéed to the user,
but also more computation time for solving the optimization problem would be rebjogeause it is
NP-hard with the number of stops. We ugét) = 10 for the simulation results, so vehicles with up
to 10 tasks are still reasonable. The value;gf) could start to be reduced when the driver of vehicle
j is going to get lunch, or by the end of his journey. Other characteristicotikepancy, number of
annoyed passengers, worst served passenger total time, could hsedisto rank the vehicles with
more chances to serve new requests.

Third layer, Multiobjective optimization

The last layer consists of two components. The first one is a pre-iogealgorithm where the
optimization problem is reduced and conflicts between users and opevatsiace detected. If there
is a conflict, in the second component, we solve it by using MO-MPC.

The pre-processing algorithm is divided in three steps. In the firstecwhsl steps, by means of
fuzzy inference systems, the most ad-hoc trip patthrasd fleet= are determined. In the third step
we detect conflicts between users and operator by solving two MPC prspte optimize just user
cost and to optimize just operator cost. The algorithm is the following:

Step 1.1. Using a fuzzy inference system, the new requgsis evaluated in the membership
functions (MFs) of each trip pattern. This fuzzy inference uses thepeters of MFs provided by the
first layer. The predicted future scenarios with a high activation dexpeeehosen. These are denoted
by h.

Step 1.2. With another fuzzy inference system, the candidate vehielesserve the new and the
probable requests are determined. To show how this fuzzy inference works, considexxample
the vehicle 10 at instarkk as shown in Fig. 4. This fuzzy inference uses the parameters of the MFs
provided by the second layer. A new cgll arrives, whose pickup coordinate (i,5) and whose
delivery coordinate i$7,6), as shown in Fig. 4(a). We check first whethgris in the coverage area
of vehicle j, by evaluating the MFgi°(-) and uy%(-) shown in Fig. 4(b) and Fig. 4(c) respectively.
For the pickup we gefit®(7)- uy°(5) = 0.45 and for the deliveryi;(7)- uy°(6) = 0.53. Then we
check whether the number of stops is big by using the sd&-) shown in Fig. 4(d). At instark,
wj(k) = 10, sop°(10) = 0.5, which means that the vehicle is still having a reasonable number of
tasks. Finally the activation degree of the rule for vehicle 10 equaa. OWVhether vehicle 10 is a
good candidate or not, will depend on the conditions of the other vehidhesfifBt vehicle candidate
is obtained by choosing the vehicle with the maximum activation degree, thedseaadidate with
the second maximum, and so on (defuzzification).

Step 1.3. Two MPC optimization problems are solved. To optimize just user cost anditoine
just operator cost:

N
minJy (k) = ph - AP, (k+£)
g szhzhgl . (2.8)
st. Model and constraints
N
minJy(k) = ph- A0, (K+£)
g ,-GZF%/; : (2.9)

st. Model and constraints

Page 2075 |




HD-MPC ICT-223854 Evaluation results including economic ad application potentials

y (km)
w2
W,y

AAAAAAAAAAAAAAAAAAAAAA
X (km) W Coordinate x of the new cal , (k) n Coordinate y of the’ newcnn (km)

@) (b) ()

1w, (10)

T PR
w (k) Number of stops vehice 10 *

(d)

Figure 2.4: Fuzzy characterization of vehicle (a) Vehicle 10 sempudembership Functions for
x-axis[(c) y-axis and (f) number of stops

The objective functions minimized i (2.8) arid (2.9), are like[inl(2.5) (2f)ectively, but
considering just the set of vehiclésand the probable scenaribswhich reduces the computational
effort significantly. If the solution for both MPC problenis (2.8) ahd](2.3hissame or the trade-off
between them is small, then the optimal solution which is closer to a pre-defirgdtdisr criterion
is used. If the trade-off is big, then MO-MPC is required to find the optimegt®dront, as the set of
vehicles has conflicts and a better picture of the trade-off is necessary. _

The MO-MPC algorithm is divided in four steps. In the first step, for eaghicle j € F, the
Pareto optimal sets for different conditions are determined. In the nexttsie Pareto set for each
scenarich € his obtained by coordinating different vehicles to serve all the requestsethird step,
the Pareto set for the MO-MPC problem is obtained. Finally in the last stepatdier selects a
solution based on his/her criterion. Below each step is explained.

Step 2.1. The scenarit consists of the sequential occurrencélatquests), A, 1, AL, 5, - A n_1-
For each vehiclg € F, for each scenarib € h, we will solve 2 MO problems considering the cases
where vehiclej is the one that serves none, one, or a combination of more of those reqbests
example, ifN = 2, for each vehicle we solve four MO problems considering the casesv®e ene,
to server), to servef), ;, and to servey andfl ;. The MO problem in this step is the following:

min AJ (k+2), AJ (k+¢) 210
{508 (k+1),.... S (k+N) {/Z /Z } (2.10)

Capacity constraints and consistency are considered, so the Paretmtseéns just feasible se-
guences. Note that some of those MO problems are easy to solve, but theagoests the vehicle
serves, the more possible solutions we will have. In fact, consideringotsgvapping constraint, the
number of possible solutions when tNerequests are served by vehiglenly is 0.5- |‘|I ' L(wj (k) +

i) (w;(k) +i—1), wherew;(k) is the number of stops of vehicjeand instank. The MO problems in
this step are the most time consuming, but they can be solved simultaneouslypamdlial because
they are not related with each other.

Step 2.2. Then for a given scenartoe h, considering the constraint that just one vehicle can serve
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each request, we obtain the Pareto set of the following MO problem:

min AJP (k+0), AJY k+£)} (2.11)
{S(k)/sl 7777 g1max} { ; jGF ;

_ The solution of this MO problem is obtained with the Pareto sets from Sfelpy2combining the
IF|N possible cases in a way that the current request and each futuestege served by just one
vehicle. For example, if we have three vehickes- {3,4,11}, for N = 2, the cases are-33, 3—4,
3—-11,4-3,4—4,4-11,11-3, 11- 4 and 11- 11, wherev; — v» means that is served by
vehiclev; andfj}!, ; is served by vehicles.

Step 2.3. Then, using the Pareto set of all the scendried, we solve the following MO problem:

min p AJ (k+2), p AJ (k+¢ (2.12)
S?N {JeF heh; " ZZ; " )}

j€F henh

The solution of this MO problem is obtained using the Pareto sets from QXepy2multiplying
each Pareto front by the probability of occurrence of the associatgsopy, and then combining
the different cases considering all the scenarios.

Step 2.4. The Pareto front from Step2is presented to the operator, who will select a sequence
S(k) that is Pareto optimal, based on a criterion. For example, the operator casecthe solution
that provides the minimum user effective cost, or other characteristicedbét be estimated. For
estimating for example the effective user waiting time, we weight the expecigdgwame of each of
scenario with its probability of occurreng®. In this step the performance of the DPDP will depend
on how good the criterion applied is.

In this kind of problems, HMO-MPC suits very well, as its main objective is to be implged
as a reference to support the decisions of the dispatcher, who hasxidify of deciding which
criterion is more adequate.

2.5 Simulation results

A period of four hours representative of a labor day (14:00-17:58)nmilated, over an urban area
of approximately 81(kn?). A fixed fleet of twenty vehicles is considered, with a capacity of four
passengers each. We assume that the vehicles travel in a straight lieebstaps and that the trans-
port network behaves according to a speed distribution with mean equé(koyh). We suppose
that the future calls are unknown for the dispatcher. However, helisisehistorical data from where
the typical trip patterns can be extracted. A speed distribution model andgipatterns are known,
from the historical data and the fuzzy zoning method. This fuzzy zoningipeto generate the trip
patterns and their probabilities as shown in Fig. 5(a) and Table I.

Three hundred calls were generated over the simulation period of faus fimlowing the spa-
tial and temporal distribution observed from the historical data. Regatdatemporal dimension,
a negative exponential distribution for time intervals between calls with ratéc@l8min) was as-
sumed. Regarding the spatial distribution, the pickup and delivery caiedirwere generated ran-
domly within each zone. The first 30 calls at the beginning and the last 3Catalie end of the ex-
periments were deleted from the statistics to avoid limit distortion (warm up pef@t experiment
was carried out to obtain the statistics, to show how the approach worksexgeriment (emulating
four hours and 300 on-line decisions) took 7:®), on average 1.69 seconds per request, on a Intel
Core2 CPU, 3.00GHz processor. The computing time at each iteration isishdwig. 5(b). This
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Table 2.1: Pickup and delivery coordinates and probabilities: 1st layesryFZoning

Xpickup(KM)  Ypickup(KM)  Xgelivery(KM)  Ygelivery(kKm) ~ Probability

3.0870 3.0244 6.5063 4.0556 0.1510
6.9598 5.8895 3.4377 4.9476 0.1510
3.4383 5.0403 3.0684 2.9579 0.3473
6.5473 3.9574 7.0399 5.9597 0.3506

computing time represents an upper bound of what is possible to do if a maierdfalgorithm like
the metaheuristics from the multiobjective evolutionary computation were apgletially for the
peaks, like the one of 8 seconds for request 248).

y (km)

Computing time [s]

o 1 2z 3 4 5 & 7 8 o o E) 0 50 20
X (km) Request k

@) (b)
Figure 2.5: HMO-MPC for the DPDP. {a) Origin-destination pattgrn$, @mh@utation time

The objective function is formulated at two steps ahead, consideringypégest, = 16, 7($/min),
8. = 50($/min), ct = 25($/min), c. = 350($/Km). The users will start to get annoyed if their per-
ceived total travel time is bigger than7itimes their minimal travel time, or if their waiting time is
longer than 10min). In the 3rd layer, the six best vehicles to serve a new request arerghrasked
according the fuzzy inference system. The most likely demand patternseddar the predictions.

The criteria for selecting a Pareto solution was the value nearest to augeecost. We consid-
ered four cases: 500, 600, 700 and @JX@$) for cases a), b), ¢) and d) respectively.

Simulations for two steps ahead were conducted to analyze and evaluatftirenance of the
HMO-MPC strategies. In Table 2.2 the effective user waiting and travel tiser,and operator costs
are reported. In Table2.3 we also show the number of passengejsgtlx served, i.e., having a
waiting time higher than a threshold of (tin), as well as a very bad level of service considering the
total time spent in the trip (in-vehicle and waiting time) and the worst servectoserTableg 212 and
[2.3 clearly show the trade off between opposite components. The resultanguser cost over the
whole simulation fitted quite well the thresholds defined at each case.

2.6 Conclusions and future work

A new approach to solve DPDP was presented. The proposed HMO-<9dR&ne considers three
layers. In the first one, variables with a long-term effect in the systendetermined. In the second
layer, the vehicles are characterized by fuzzy membership functionshate used in the next layer
to optimize in a better way the fleet. The last layer consists of a MO-MPC problénder the
implemented on-line system it is easier and transparent for the operatdiote $ervice policies as
weighting parameters are not tuned.
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Table 2.2: Simulation results, user and operator cost

Case Effective Effective User  Operator
travel time waiting time  cost cost
(min) (min) (Ch.$) (Ch.$)
a) 11.18 5.82 477.49 18124.56
b) 12.88 6.51 539.91 17499.78
C) 12.68 8.57 639.62 16910.75
d) 12.70 11.39 781.07 16670.66

Table 2.3: User indexes

Case Waitingtime Unfavorable Worst
higher than total time served

10 min (pax) (pax) user cost (Ch.$)
a) 31 20 1679.82
b) 50 32 2000.56
c) 73 51 2574.48
d) 120 72 3256.77

In the other hand, the method we use in this paper has three main drawB8ksifst, to obtain
the solution set from MO problem requires a big computational effort. iI8edbthe number of MO
problems to solve is big, a lot of analysis and coordination will be requiredd;Tthe adequacy and
the knowledge of the decision-maker have a huge impact on the perfornfamcthe first point, we
claim that new toolboxes for Evolutionary Computation and other efficiertriiigns like the pro-
posed in[[26] have been developed in recent years, so it is possitBésionine a good representative
pseudo-optimal Pareto set in a dynamic context. The second point iseroagroblem in this paper,
as we just have two opposite objectives, but in general, for more olgedtivther exploration and re-
search are required. The last point is the same problem that also sypghear properly tuning weights
in a single objective function, i.e. having a good knowledge about theepsds always important for
obtaining a good control performance.

Future work will focus on efficient optimization algorithms. The coordinatiatih\wuses, train,
or other transport modes could also be a interesting topic.
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Chapter 3

Game Theory Based Formulation of
Distributed Model Predictive Control

The results in this chapter have been achieved by Felipe Valencia and=3airmsa, Universidad
Nacional de Colombia, Medellin, Colombia.

DMPC is a control scheme in which the system is divided into a number of stdmsg. Each subsys-
tem is able to share information with the other subsystems in order to determinaltsdatrol action
[1,2,[3,[4]. The main goal of the DMPC approach is to achieve some elefm@oordination among
agents that are solving local MPC problems with locally relevant variabtests,cand constraints,
without solving the centralized MPC problef [5,[6, 7]. Compared with totalbed&alized MPC
schemes (noncentralized MPC controllers without information exchatigeglobal performance of
the system is improved 5], [1].[2], but computational cost is increakegdto communications, co-
operation and maybe negotiation among subsystems [1].

Several approaches to the DMPC problem have been presented in thritgerin Tablé¢_3]1,
advantages and disadvantages of the reviewed DMPC methods are susdmémizaddition to the
issues presented in Talble13.1, the approaches proposedin [5, D107 7612/ 18] require the system
to be stable and controllable. These requirements restrict the applicabilitg pfeposed methods.
In [14,15/16] the stability and controllability requirements are not consitiébut the system should
be stabilizable in order to apply the method proposed in these references.

Considering all these issues, game theory arises as an alternative t¢efleremd characterize the
DMPC problem. Game theory is a branch of applied mathematics used in séerales; economics,
biology (particularly evolutionary biology and ecology), engineerinditipal science, international
relations, computer science, and philosophy. Game theory attempts to dagiangors in strategic
situations, or games where the outcome of a player is function not only dfdiisas but also depends
on the choices of others [18]. While initially developed to analyze competitiowkich one individ-
ual does better at another’s expense, it has been expanded towieatcass of interactions, which
are classified according to several criteria. Today, “game theory ig afSanified field’ theory for
the rational side of social science, where 'social’ is interpreted brptainclude human as well as
non-human players (computers, animals, plants)"[19].

The first ideas of applying game theory to the DMPC problem arle in [20,1@1hese references
the authors proposed a DMPC scheme based on Nash-optimality. In surolaelpes the DMPC prob-
lem was formulated as a non-cooperative game and it was demonstratétetsatution converged
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References Advantages Disadvantages
[5,18,[€] Exchange of the predicted | The method is for independent
state trajectories to avoid subsystems linked only by
communication problems. | the cost function.

[9] [7] Reduction of the The method requires that
computational complexity | each local MPC problem can be
of a DMPC problem. solved only with local information

[10,[11[12[1B]| Reduction of Increment of the computational
the communication burden due to the solution of
among subsystems. minimax local problems.

[14,[15[16] Each local cost function Subsystems are forced to
considers the effect of the | cooperate, and the cooperation
local control inputs might steer the subsystems to
in the entire system behavior.operating points where they do
not perceive any benefit

Table 3.1: Advantages and disadvantages of the reviewed DMPC methods

to the Nash equilibrium point of the game. However,[inl [14,[15, 16] the asitsitown examples in
which this approach produced an unstable closed-loop behavior.

After the works of Du and Li (seé [20, 21]), Rantzerin[[L1] 12, 18hted the DMPC problem
with the game theory by using the cooperative game approach presenletirbyon Neumann and
Oskar Morgenstern in_[22]. In the approaches presented by Rattizeragrange multipliers used
in the dual decomposition methods (see [7] for details) were conceivpdcas in a market mech-
anisms serving to achieve mutual agreements among subsystems. Basediaumspronception of
Lagrange multipliers, dynamic price mechanisms was used for decomposimtisaiibuting the op-
timization associated with the original MPC problem. However, the approgekssnted by Rantzer
also converges to a Nash equilibrium point, with the same disadvantagesteda [14] 15, 16].

Other approaches related with the formulation of the DMPC problem as a gamebken pre-
sented in[[23, 24, 25]. In[23] a DMPC control scheme based on Natimality is also presented. In
[24] an algorithm based on cooperative games for solving the DMPOesroWas proposed. How-
ever, in this approach a real application of the concepts of game theooy @$ear. Finally, in[[25]
the authors analyze the DMPC problem as a non-cooperative game pitgyerties like convergence
and feasibility were derived based on the concept of Nash equilibriumt. po

From the literature review, most approaches related with the applicatiomef tieeory are based
on non-cooperative games and on the application of the Nash optimality brédadibrium point,
with this related disadvantages in the control framework. In order to tacidalthwback (and the
mentioned about the classic DMPC strategies), in this work we will assumeubsystems “bar-
gain”among each other in order to (jointly) decide which strategy is the béistraspect to their
mutual benefit (as in_[24]). The DMPC problem will be then reformulated agerson bargaining
game based on the concepts presented by John NdsH in [26] 27, 28kablo games. The-person
bargaining game involvesindividuals that can collaborate for mutual benefit. The individuals com-
municate with each other in order to (jointly) decide which strategy is the besiafth individual,
based on the profit received under cooperative behdvior [26]inSbe proposed formulation, each
subsystem is able to decide whether to cooperate or not with the othesgerasydepending on the
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benefit received by the subsystem from the cooperative behaviersdlection of the bargaining ap-
proach was made because its main insight is focusing on others, i.e., te yegeadded value, you
have to ask not what other players can bring to you but what you ¢ag tor other players [29].

This text is organized as follows: In Sectibn]3.1 a mathematical backgrdusyghometric bar-
gaining games (based on the work of Ndsh [26,/27, 28]) is presentede e original bargaining
game theory was formulated for static games an extension should be pfofaosd a extension and
its application to the DMPC problem is also included in this section. Moreovemprbgerties of
the DMPC formulated as a bargaining game are discussed. Bastd| om[S@ction 3.2 a mathe-
matical background of nonsymmetric bargaining games is presented. Arsiextef such a theory
to dynamic games also is proposed, and the properties of the DMPC formatatedonsymmetric
bargaining game are discussed. In Sedfioh 3.3 the algorithm (or negotiatd®)rfay implementing
a distributed solution of both symmetric and nonsymmetric DMPC games is presdiitedliffer-
ence between the proposed algorithm and the other algorithms for DMRCif(splly the DMPC
algorithms based on Lagrange multipliers) also are discussed. In Seclitme3dnditions for the
convergence and the stability of the proposed DMPC scheme are estdblish8ectio 3.6 sim-
ulation results for both symmetric and nonsymmetric DMPC games are discuBsedsymmetric
case is illustrated using the quadruple tank system. The nonsymmetric casetriatdilisising the
hydro-power valley proposed in [31]. Finally, in Section]3.6 the conclyidiamarks are presented.

3.1 Distributed model predictive control as a symmetric bargaining game

Let us first introduce some notation used through the remainder of this. papeN be the set of
playersN={1,2,...,M}, M > 2. Fora,3 € RM, letaB denote the vectda131,...,amBul, B > a
denote the inequalityg, > a; for everyi € N (similarly for 8 > a), and3 < a denotef3; < a; for
everyi € N (similarly for 8 < a). ForT c RM, letaT := {yc RM: y=a for somepB € T} and
a+T=T+a:={veRM: v=a+pforsomeB cT}. Also, forac R, aa := [aqy,...,ady] and
aT:={aa: aeT}.

A game is defined as the tupBe= (N, {Q; }ien, {@ }ien), WwhereN = {1,... M} is the set of play-
ers,Q; is a finite set of possible actions of playeandq : Q1 x ... x Qu — R is the payoff function
of theith player [32]. So, a DMPC problem can be defined as a t@te (N, {Q;}ien, {@}ien),
whereN = {1,...,M} is the set of subsystem@; is the non-empty set of feasible control actions for
subsysten, and@ : Q; x ... x Qu — R, whereq is the cost function of thgh subsystem. Hence,
a DMPC problem is a game in which the players are the subsystems, the aotitims eontrol inputs,
and the payoff of each subsystem is given by the value of its cost functio

Since it is assumed that the players are able to “bargain” in order to achiss@mon goal, the
gameG can be analyzed as a bargaining game following the Nash theories albbugames. A
bargaining game is a situation involving a set of players who have the opjigroicollaborate for
mutual benefit by an agreement on a joint plan of action[[26, 28]. If aeemgent is not possible,
the players carry out an alternative plan which is determined by the informiatoally available.
The benefit perceived by the player when an agreement is not poissdalled disagreement point.
Mathematically, a bargaining game is defined as follaws [30]:

Definition 1 Bargaining Game:
A bargaining game for N is a paifS,d) where:

1. Sis a nonempty closed subseR#f (Closedness of the feasible set S is required for mathemat-
ical convenience.).
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2. deint(S), d being the disagreement point.
3. &i(S) :=max{@: (@)ien € S} exists for every € N.

Here ¢: RM — R denotes the profit function of player i fori 1,...,M, S denotes the feasible set
of profit functions, andj; (S) denotes the utopia point of subsystem i ferl,...,M. Moreover, if the
feasible set S is convex then the bargaining gé8)d) is called a convex bargaining game.

Remark 1 A bargaining gam¢S d) is called symmetric if §=d; = ... = dw, and for everyp € S
any pointg € RM arising fromg by performing some permutation of its coordinates is also in S. If a
bargaining gameS,d) does not satisfy these conditions, then it is called a nonsymmetric bargaining

game [30].

The outcome of a gamS d) is a tupleg (S,d) = (@, ..., @u) of profits received by the players.
If any player does not cooperate then the corresponding positigi{$d) is replaced by its dis-
agreement point. Hence, if all subsystems decide not to coopgf8td) = (di,...,dw). Thus, the
problem is how do you get an outcome of the gai@el) given that every player wants to maximize
its own profit? With the purpose of solving this issue, Nash in[[26, 28] statedtb solutionp (S,d)
should satisfy the following four axioms:

Axiom 1 Symmetry:
If (S,d) is a symmetric bargaining game, thén(S,d) = ... = ¢m (S d).

Axiom 2 Weak Pareto optimality:
For T € RM let
W(T):={aeT: thereisnoB € T with3 > o}

denote the weakly Pareto optimal subset of T. Then, for the ¢&rdg ¢ (S d) € W(S).

Axiom 3 Scale transformation covariance:
For the gameg S d), and all a b € RM with a> 0 and (aS+b,ad+b), ¢ (aS+b,ad+b) = ap (S d) +
b.

Axiom 4 Independence of irrelevant alternatives:
For all pair of gameg S d), (T,e),ifd=e, T C S, andp(Sd) € T, thenp(Sd) = ¢(T,e).

Therefore, a function assigning to each player of the gé&e) the maximum benefit, where the
resulting tupleg (S d) satisfies Axiom§1{34 is called Nash function of the gai8el), and the tuple
¢ (S,d) is called symmetric Nash bargaining solution of the ga®e). From [33], the symmetric
Nash bargaining solution of any gar(®d) is defined as follows:

Definition 2 Symmetric Nash Bargaining Solution
For every(S d) with convex feasible set, I¢t(S,d) be the outcome dfS,d), where the function

@+— Mien(@ —d)

is maximized over the s¢tp € S: @ > d}, with @ = (@1,...,@v). The solutionp(S,d) is called the
symmetric Nash bargaining solution @,d), and the producflien (@ — d;) is called the symmetric
Nash product of the gam&, d).
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Remark 2 Axiomd[-# were proposed by Nash in order to characterize the outobimen-person
bargaining games. However, they have also been used to charadtegzipeitcome of n-person bar-
gaining games (see [32, B3,130] and the references therein). Merethe solution presented in
Definition 2 corresponds to an extension to n-person bargaining garfnime golution proposed by
Nash for two-person bargaining games.

As a consequence of AxiorhH{1-4 and based on Defirifion 2, Propdsitind leanmd_ 1l arise.

Proposition 1 The symmetric Nash bargaining soluti¢S d) of the bargaining gaméS d) is well
defined, i.e.¢ (S d) is unique, and it is possible to derive a geometrical characterizatiop{& d)
from the symmetric Nash produdten (@ — di).

Proof 1 See[[30]

Lemma 1 Consider the bargaining gam&,d). Lety € W(S) with y > d. Theny = ¢(S,d) if and
only if

@ Y
= 3.1
ae—d  Ga-—d 3.1)

supportsO at y.
Proof 2 See([30]

Until here, the main elements of the axiomatic bargaining game theory propgdédsh have
been introduced. It is worth noting that the mathematical backgroundntegsi this section was
developed for static games, i.e., the effect of the time is not considered ied¢isah of the players.
Then, the concepts presented in this section should be redefined in etaligere dynamic context
in order to analyze the DMPC problem as a bargaining game. In the followictipa the discrete-
time dynamic bargaining game is defined, and the conditions of symmetry of sucé gre also
introduced.

3.1.1 Symmetric discrete-time dynamic bargaining game

Since the axiomatic bargaining game theory has been developed in the statoe@nt, few dy-
namic approaches of the original theory have been proposed in ordealyre dynamic bargaining
games (see [34, 85, 136] and the references therein). Howeves, dppsoaches focus mainly on de-
veloping procedures to find the coalition-formation-based solution of theegaAssuming that all
controllers jointly decide which control action use at the same time, the coalitioratfmn is only a
consequence of the decision process and not an objective of theatiegomodel of the controllers
as in [32]34[ 35, 36]. In such a case (the DMPC problem), the axiomatjaining game theory
brings an alternative to characterize the outcome of the game.

Let a discrete-time dynamic bargaining game refers to a situation wherehatimacstep a static
bargaining gaméS,d) is solved depending on the dynamic evolution of the decision environment,
where the dynamic evolution of the decision environment determined by a stat@xk) € R" and
by an input vectou(k) € R™, with x(k) € X andu(k) € U, X andU being the feasible sets fack)
andu(k) respectively. In this game, we assume that the feasible set and/or theedis@gt point can
change with time. Mathematically, a discrete-time dynamic bargaining game is dafirieliows:
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Definition 3 Discrete-time dynamic bargaining game:
A discrete-time dynamic bargaining game for N is a sequence of p@®),n(0)),(0(1),n(1)),...},
denoted by{(©(k),n(k)) }x_o (n(k) being the disagreement point at time step k), where:

1. ©(k) is a nonempty closed subsetR®)¥, fork=1,2,3,....

2. n(k) €int(©(k)) fork=1,2,3,..., n(k) being the disagreement point.
3. Gi(0k) :=maXx@a(k): (a(k))ien € ©(k)} exists for every € N at each time step k, i.e., for
k=123,

4. There exists functions ¢ R", g € R,hj € R, i =1,...,M, determining the dynamic evolution
of the decision environment, the feasible set, and the disagreement pplayer i such that

xi(k+1) = fi(x(k),u(k))
Oi(k+1) = gi(x(k), u(k),©(k))
Ni(k+1) = hi(x(k), u(k),n (k)

with x (k) € Xj, Xj c X.
5. There exists a profit functiop(x(k), u(k)) € RM such thatp(x(k), u(k)) € O(K).

If gi is a convex function for+1...,M, then©(k) is convex and the gamgO(k),n(k))}y , is a
convex discrete-time bargaining game.

Remark 3 From Definitiond L and3, and from Remark 1 a bargaining gdit@(k),n (k))}x_o is
called symmetric ifjy(k) = ... = nm(k) for k=0,1,2,... 0, and for everyp(k) € ©(k) any point
o(k) € RM arising from@(k) by performing some permutation of its coordinates is also in€ige
fork=0,1,2,...

Since a gamg (©(k),n(k))}x_o is a sequence of static bargaining games the outcome of such
games is given by the sequence of solutiéf$®(0),n(0)),¢(0(1),n(1)),...}. Assume the game
{(0(k),n(k)) }r_o symmetric and convex. Letp(O(k),n(k))}g_, denote the sequence of solutions
of a game{(9(K),n (k) }i=_y, i.e., {(O(K). n(K))}i_o = {$(©(0).n(0)).$(0(1),n(1)),...} Let|
denote a fixed time instance, i.b= k for a fixedk. Then, based on Definitidd &p (©(k), n (k) }¢_o
is a sequence of elements of the St (1),...,@au(1)) € ©(1): @(1) > n(l))}, | =1,2,..., where the
function

@(1) — Nien(@a(l) —ni(1)) 3.2)

is maximized al. Note that the outcome of the ganjed(k),n (k))}y_, at fixed time step given
by (3.2) has the same properties than the solution of the symmetric bargaimiey §al), i.e., sat-
isfies Axioms[ =4, Proposition 1, and Lemipa 1. Moreover, under the assimyd symmetry of
{(0(k),n(k)) }r_, these properties holds for=0,1,2,... Below, the DMPC problem is formulated
as a symmetric discrete-time dynamic bargaining game. Also, the propertieeddiisthe DMPC
formulated as a symmetric discrete-time dynamic bargaining game are discussed.
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3.1.2 DMPC as a symmetric discrete-time dynamic bargaining@me

Let us first introduce some notation used in this section. (djetlenote the feasible set of control
actions for subsystery i = 1,...,M, defined as the Cartesian produzt= I'I'j\'io/\i, whereA; is
the feasible set for the control actiongk+ j), for j =0,...,N, determined by the physical and
operational limits of subsystemwith N, being the control horizon. Lef(k) = [0 (k),..., TG (K)]T,
wheret (k) = [uT (K),...,ul (k+Ny)]T fori=1,...,M. Assume that @ A; fori =1,...,M. Assume
that A\ is closed, convex, and independentl@for i=1,...,M (closedness of\; is required for
mathematical convenience). Note tlat I'I 7 ,Q;jisthe feaS|bIe set for the whole system determined
by the physical and operational constralnts Mored®es closed, convex, and independenkof

Similar definition of the feasible se€g;, Q have been made inl[8, 17,(7.]16] 4] 15]. Also, note
that there have been formulated constraints over the inputs only. This vaesunder the assumption
that the state constraints are time independent and can be expressedtamngiraints using the
prediction model. Systems like the quadruple tank system presented in [@Tjyalreactors chain
followed by a flash separator presented.in [38, 14] and the hydr@ipealley presented in [31] are
examples of systems satisfying the assumptions made to determine thg,s&@s Q. For more
examples of systems satisfying the assumptions abou®;, Q seel[16] 14, 15, 39].

Let @(u(k);x(k)) denote the cost function for subsystemi = 1,...,M, where the notation
(u(k); x(k)) indicates that the functiop depends omi(k) andx(k) is a parameter whose time evolution
is given by the linear state update equation

x(k+ 1) = Ax(K) + Bu(k)

whereA andB are obtained by linearizing the model describing the behavior of the wheteray
[14]. For the sake of simplicity of notation we will not indicate the dependefigeon x(k) explicitly

in the remainder of this text and thus wriggu(k)) insteadg@ (u(k); x(k)). Assume thatg(u(k)) is a
quadratic positive convex function @fk) fori =1,...,M as in [37/38]. Assume that the subsystems
are able to “bargain” in order to achieve a common goal: to maintain both thedadaihe whole
system performance by driving the states of the system to their refevahumes.

Let Y(k) := {@(u(k)): u(k) € Q, Vi € N}. SinceQ is time-invariant fori = 1,...,M the feasible
setY(k) is also time invariant, i.eY(1) = Y(2) = ... =Y. Moreover, since& is closed and convex
and by the continuity and convexity gf(u(k)) with respect tai(k), the setY'is closed and convex.
Note thatY defines a set of possible values of the cost function of every subsygten the sef.
So, itis only needed to define a disagreement poi in order to complete the formulation of the
DMPC problem as a symmetric discrete-time dynamic bargaining game.

From [28], the disagreement point should give to the players a stroegtite to increase their
demands as much as possible without losing compatibility. Therefore, folldhingtatement let us
define the disagreement poimtk) := (n1(k),...,nu((k)) as

e = | w0 —aln(d - a@w)|if mk) > a(@k)
”'“””‘{ (k) + al @ (@) — m(K) i 1K) < @(0(k))

Vi € N, with 0 < a < 1. With this definition of the disagreement point, if subsysiedecides to
cooperate then it can improve its expected performance by reducing #ggasnent point in a factor
a[ni(k) — @(u(k))]. But, if subsystenndecides not to cooperate its expected performance is increased
by a factor[@(U(k)) — ni(k)] in order to make possible that subsystebegins to cooperate after a
few time steps.

Let the utopia poing;(Y) := min{@(u(k)): @(u(k)) € Y} exist for everyi € N. Then, the DMPC
problem can be analyzed as a discrete-time dynamic bargaining game (tbpdier, n(k))}x o).
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with feasible seY’, disagreement poinf(k), and utopia poinf (Y). Note that in{(Y, n(k))}_o only
the disagreement point depends on the time ktegmd thatd(Y) is redefined because the objective
of the DMPC is to minimize the cost functiop(t(k)), Vi € N. Moreover, based on Remdrk 3 a
symmetric DMPC gam¢(Y,n(k))}2_, can be defined as follows:

Definition 4 Symmetric DMPC game:

A DMPC game{(Y,n(k)) }x_q is symmetric if)y (1) = n2(l) = ... = nu(l) for 1 =0,1,2,..., and for
everyo(ti(l)) € Y any pointg(t(1)) € RM arising from(ti(1)) by performing some permutation of
its coordinates is also Y.

Recall thaty (U(k)) is a quadratic function di(k), then it can be written a5 [3[7, 138]
@(T(k)) = 0" (k) Quuiti(K) +x" (K)Quuiti(k) + X" (K)Quxx(K)

Hence, ifni(k) = ... = nu(k) for k=0,1,2,..., then a condition for whicq (Y, n(k))}¢_, is sym-
metric is thatQuui = Quuj, Qxui = Qxuj» aNdQxi = Qxxj for all i, j € N. This condition comes from
the following equality:

0" (K) Quuili(k) + X" (k) Qeuili(K) + X (K) Quxix(K) = T (K) Quuli(K) + X (K) Quui(K) + X" (K) Quei(K)

foralli, j € N.

Now, assume the gan{¢Y, n(K)) }x_, Symmetric. Sinceis closed and convex, the objective of
the DMPC is to minimize the cost functiam(t(k)) for all i € N, and based ol (3.2) the outcome of
the game{(Y,n(k))}c_o is a sequence of elements of the §@pi(U(l)),...,@u(u(l))) € Y: n(l) >
eU)),ul) e Q, 1 =1,2,...} where the function

@(u(l)) — Mien(mi(1) — @(t(l))) (3.3)

is maximized at.

Until here, the symmetric DMPC game and its outcome were defined. Now, veetb@emon-
strate that the solution df(Y, n(k)) }x_, given by [3.8) is the symmetric Nash bargaining solution of
such a game. With this purpose, it is required to demonstrate thht (3.3) satisiens1E4 at a fixed
timel, | =0,1,2,... Let us begin with Propositioldl 2. This proposition is required for proving tha
the outcome of the gamigY, n(k)) }_, given by [3.8) is the symmetric Nash bargaining solution of
such a game, and for establishing that the corresponding optimization mpribec!l-posed.

Proposition 2 The solutionp (Y, n(l)) of the gamgY,n(l)) is unique at | ify'and ¢(u(l)) are both
convex.

Proof 3 In order to prove Propositionl2, we have to demonstrate that the set

L={@(@K) € Y: n(1) > o(A()),dl) € Q,i € N}

is convex, and thaf(3.3) is strictly quasiconcave on L. This guaranteegtlY,n(l)) is unique at |.
Note that L= YN O, with O= {@(u(l)) e R: n(l) > @(u(l))}. SinceY and O are both convex
sets L is also a convex set. Then, the first part of the proof is completed.
For the second part of the proof, recall that a functi@n = — R, with = a convex subset of
R™ for some me N, is strictly quasiconcave i (Aa + (1—A)a’) > min{3(a),3(a’)} for any
a#a' €= A€ (0,1).
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Letu(l), (1) e Qsuchthati(l) #U (1), g(U(l)) € L, ande(U (1)) € L. Letd (U(l)) := Nien(ni(l) —
@(u(l))). Then

F(AU() + (1=A)T (1) = Mien(mi(1) — @(ATU() + (1= A)d (1))

Sinceq(U(l)) is a convex function ai(l)

for A € (0,1), i =1,...,M. Moreover,

max{@(a(l), a(@ (1)} > Aa@())+ @ -A)a@@ (1)) > min{a @), a@())}

Hence,
AU+ (1-1)u(1)) > Mien(ni(1) —max{a(T(l)), a@(1))}),
which implies
FAU() + (L—A)U(1)) > min{3(T(l)),3 (T (1))}

Hence, the functiod (U(l)) is a strictly quasiconcave function @fl) on L. Thereforeg (Y, n(l)) is
unique at 1.01

Recall that the DMPC problem is originally a minimization problem. Then, let usfireg the
weakly Pareto optimal subset dfas

W/ (T):={a e€T: thereisngB € T with B < a}
As a consequence of Propositidn 2, Propositidns 3and 4 arise.
Proposition 3 The bargaining solutiog (Y, n (1)) of the gameY, n(l)) belongs to W(L) at I.

Proof 4 From Propositiod (Y, n(l)) is unique. Hence, does not exiétl ) € Q satisfyingTien(ni(l) —
@t (1)) > Mien(ni(1) — ¢i(Y,n(1))) on L. Furthermore, since;(l) — @(U(l)) > 0 on L does not
existt/'(I) € Q satisfyingp(U' (1)) < ¢(Y,n(l)). So,¢(Y,n(l)) e W (L) atl. O

Proposition 4 Let{(Y,n(k)) }x_o and{(Y',n’(k)) }_o be a pair of DMPC games such th#t C Y.
Letn’(l) =n(l), and¢(Y,n (1)) € Y atl. Theng (Y, n(1)) = ¢ (Y, n'(1)).

Proof 5 By Propositiod 2 (Y, n(l)) is unique. Sinc&” C Y, n’(l) =n(l), and¢(Y,n(l)) € Y, the
solution of the DMPC gameY’,n’(1)) atlis ¢(Y,n(l)). Henced(Y,n(1)) = ¢(Y,n'(1)). O

From Propositioi 4 we can conclude thamifl) = n(l + 1) andx(l) = x(I + 1), the solution
o(Y,n(l)) of {(Y,n(k))}g_o remains constant dt+ 1, i.e., ¢(Y,n(l)) = ¢(Y,n(l +1)). More-
over, following the procedure proposed [n]30], and based on the dviski separation theorem
[40,[41,42], it is possible to derive a geometrical characterizatiog {8t n(1)). Thus, by the qua-
siconcavity of [[3.B) and by the geometrical characterizatiog @f,n (1)) it is possible to establish
that the outcome of the gand¢Y,n (k)) }i_, is well-posed. Moreover, the geometrical characteriza-
tion of ¢(Y,n(1)) and Propositiofi]3 allow us to rewrite Lemidia 1 as it is shown in Lefdma 2 whose
consequence is Propositioh 5.
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Lemma 2 Consider a DMPC gamg(Y, n(K))}_o- Lety(l) e W/(L). Theny(l) = ¢(Y,n(l)) ifand

only if
Q@) y(l)
i) —a@()  Gni()—a@())

supportsY at y(I) at .
Proof 6 See[30]

Proposition 5 Consider the DMPC gamf(Y,n(K)) }i_,. For all a, b € RM with a> 0, the bargain-
ing solution of the gam@Y+b,an (l)+b) atlisequaltoa(Y,n(l))+b, i.e.,¢(a¥Y+b,an(l)+b) =
ap(Y,n(l))+b.

Proof 7 By definition & +b = {@(Ti(1)) € RM: @(Ti(l)) = ap(t(1)) +b, (U()) € Y}. From Lemma
[2, y(1) is the bargaining solution of the DMPC gam¥,n(1)) at | if and only if
Q@) (1)
iGumi() —a) &) —aul)
supportsY at y(I). For the gamgaY+ b, an(l) +b) we have
@) @) by

Ziam)+b—a@l)  Zmi)—a@D) & amb)—a@n)’

which can be written equivalently as

@) _ yi(l) N bi
Ganih+b—a@l) &nil)—a@l) SFamd)—-a@d))’

and consequently
a@n) ayi(l)+b
Gmani()+bi—a@() Eani(l)+bi—a@())
Then (by Lemm@l 2), the bargaining solution of the DMPC géaYe+ b,an(l) + b) at | is equal to
ap(Y,n())+b,ie,p(ay+b,an(l)+b)=a¢(Y,n())+b.O

Finally, by the symmetry of (Y, n(k)) }x_, we have:

Proposition 6 A symmetric DMPC gameY, n (1)) satisfiesp1(Y,n(1)) =¢2(Y,n(1)) =...=dm(Y,n(l))
atl.

Proof 8 Following the procedure proposed in [30] for this demonstration we h&8xethe symmetry
of the DMPC gaméY, n(l)) we haveni(l) =... = nu(l). Letd(Y,n(l)) denote the solution of the
game(Y,n(l)) arising by the permutation of the elementspgi,n(l)). By the definition of WY),

¢(Y.n(1) =¢(Y.n(1)). Thend1(Y,n (1)) = d2(Y.n(1)) = ... = ¢m(Y,n(1)). O
Proposition§1836 imply the following theorem:

Theorem 1 At |, the bargaining solutio (Y, n(l)) of the DMPC gam¢ (Y, n(Kk))}¢_o is the Nash
bargaining solution of such a game.
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Proof 9 From Proposition§1§36 the bargaining solutigr{Y; (1)) of the DMPC gamé(Y; n (k) }&_,
satisfies AxiomBl[l}4 at I. Thep(Y,n(l)) is the Nash bargaining solution of the DMPC game
{(Y.n(k))}r_, for such time step]

Theorent]L, Propositidd 2, Lemrih 2, and the geometrical characterizatjiofyof (1)) summa-
rize the properties of the outcome of the gaf(€, 1 (k)) }_,. Note that this solution can be computed
as a solution of the maximization problem

maxtien(ni(l) —a(u(l))

subject ton (1) > @(T(l)) (3.4)
ull)yeQ
which can be written equivalently ds(B.5).
M
max log(ni(l) — a(u(l)))
L (3.5)

subject ton(l) > ¢(u(l))
ull)yeQ
Let i (Ti(k),U_i(k)) = @(U(k)) fori=1,...,M, whereli_j (k) = [0] (K),...,T"_1(K), T, 1 (K), ..., T} (K)].

Then, maximization probleni (3.5) can be solved in a distributed way by localyngothe sys-
temwide control probleni(3.6).

M
rﬁ?(?;(zllog(nr(k) —or (Ui (k),u-i(k)))

Subject to: (3.6)
Nr (K) > o (Ui (K), Ui (K))
Ui (k) € Qi

Maximization problem[(3]6) is equivalent to maximization probl€ml(3.5), conisigdixed U_;(k)
and optimizing only in the direction afi(k). This formulation allows to each subsystem take into
account the effect of its decisions in the behavior of the whole systertogardmote the cooperation
among subsystems. The convexity and feasibility of optimization proltiler (& @&ralyzed in[38].

In Section[3.B the algorithm for implementing_(3.6) is presented. In the nexio8ebe DMPC
problem is analyzed as a nonsymmetric bargaining game. This is a more Igeasraof DMPC
problems than the symmetric case presented in this section (the symmetry condiiemsarkB are
not considered).

3.2 Distributed model predictive control as a nonsymmetric bargaining
game

As itis shown in Sectioh 311, in order to derive a solution for a bargainingegan axiomatic approach
was proposed in[28]. Such a characterization is based on the symm#teiafrgaining game. Recall
that a bargaining gamé, d) is called symmetric itl, = dy = ... = du, and for everyp € Sany point
qNo e RM arising fromg by performing some permutation of its coordinates is als® ifia bargaining
game(S,d) does not satisfy these conditions, then it is called a nonsymmetric bargaammg g
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Consequently with the definition of nonsymmetric bargaining game, AXibm 1 isatxfied
for such games. Then, additional axioms should be included in order taatBeze the outcome of
nonsymmetric games. In such a way, Axidrhs 5[@nd 6 have been propoS8€iiamfl [33] respectively
(Axiom[@ is an example of the general principle of the game theoryi[43, 30])

Axiom 5 Individual Rationality:
For every bargaining gaméS, d) the outcome of the gangg(S,d) satisfiesp (S d) > d.

Axiom 6 Consistency:

For a ¢ RM and@ # L N, a, denotes the vector iR- obtained by deleting the coordinatesaf
belonging to NL. For Te RM, T :={B.: Be T}, (T,a).:={B.: BET, By =0n.}- Fora
game(T,d) and a solutionp, (T,d, ). := (T, ¢(T,d))., denote the utilityL |-tuple available for the
collective L, if the subsystem i outside L recey€l,d). Then, for all game$S. d), (T,d), and every
GALCNIf(Sd,¢)L=(T.d ¢, ¢.(Sd)=¢L(T.d).

LetRY, := {a e RM: a; > 0, foralli € N}. LetH denote a wighted hierarchy of, i.e.,H is
an orderedm-+ 1)-tupleH = <N1,...,Nm,w>, where(NY,...,N™) is a partition ofN (i.e., the sets
NI, j=1,...,mare pairwise disjoint nonempty sets whose union equalé)t@ndw R’L with
YieniW; =1foreveryj=1,..., m[30]. LetP(T):={a eT: thereisn@BeTwithB>a, B#a}
denotes the Pareto optimal subseTolLetL (T,y) :={i € L: there existsr € T with a; > y}. Let
argmaXf(a):aeT}:={aecT: f(a)>f(B)forall BcT}.

Then, taking in mind Axiom§&1P16 and the definition of weighted hierarchy adiairgg solu-
tion for a nonsymmetric gams, d) is associated by lexicographically maximizing “Nash products”
according to the partitions and the weight$Hri30].

Definition 5 Nonsymmetric bargaining solutioh [30, Definition 2.14]:
Let H= (N?,. ..,N™, w) be a weighted hierarchy of N. Let,§ = 0,...,m denote the feasible set for
the partition N. Then, the sets!'Sre defined as follows:

S:={peRM: pcP(S),p>d}
St:=argma{M(g—d)":ieN!, pe S}

@._ [ argma{M(g—d)":ie N2(S',d), pe St} ifN2(S',d) # @
T & otherwise

g ._ | argma{N(@—d):ie NL(S1.d), pe S1}if NI (91 d) £ &
) gt otherwise

g { argman{M1(@ —d)" : i € NI(S™,d), g e S} if NI(S™ . d) # &
' g1 otherwise

Remark 4 The solutiong™ (S d) of the lexicographic maximization problem of Definitidn 5 over

the set{(@ € S: d < ¢, i € N} is the solution of the gaméS d) corresponding to the weighted

hierarchy H and the produdil (@ — d;)" is called the nonsymmetric Nash product of the g&B8)d)

corresponding to the weighted hierarchy H.
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From Definitio 5 LemmaAl3 arises. This Lemma implies that the solution of a nonsymgeztnie
(S, d) assigning the unique element$8¥ is well-defined.

Lemma 3 Let H be a weighted hierarchy associated with a nonsymmetric ¢&mue. Let 3" be the
set defined in Definitionl 5. Thé8"| = 1, i.e., $" only has one element.

Proof 10 See([30]

In addition to Lemm&]3 it is possible to demonstrate thatS d) satisfies Axiom§&1216, hence is
the Nash bargaining solution of a nonsymmetric bargaining g& [30]. Also, ¢ (S, d) satisfies
Propositiod ]l and Lemnid 1.

Similar than in the symmetric case, the axiomatic game theory developed for nonsjcgames
have been developed for static games. Then, in order to analyze a DMBIEm as a nonsymmet-
ric bargaining game the concept of nonsymmetric discrete-time dynamic biagygeme should be
introduced. Furthermore, some concepts presented until here in thisnsgttiold be redefined be-
cause the DMPC problem is focused on the minimization of the cost functiaciatsd with each
subsystem.

3.2.1 DMPC as a nhonsymmetric discrete-time dynamic bargaimg game

In RemarK3B conditions for the symmetry of discrete-time dynamic bargaininggaere presented.
These conditions establish that for discrete-time dynamic bargaining game&)if= . .. = nu (k) for
k=0,1,2,..., and for everyp(k) € ©(k), any pointp(k) € RM arising fromg(k) by performing some
permutation of its coordinates is also insi@¢k) for k= 0,1,2,..., the game{(O(k),n(k))}x_q is
called symmetric. Such conditions are satisfied whex(k),u(k)) = fj(x(k),u(k)), gi(x(k),u(k)) =
g (x(k),u(k)), hi(x(k),u(k)) = hj(x(k),u(k)), andX; = X for all i, j € N. However, for real DMPC
applications the symmetry conditions discrete-time dynamic bargaining gamesaaily nestrictive,
mainly because real large-scale systems are composed by severahdifigbsystems with different
time evolution equations. Then, in general a DMPC gd¥€n (k)) }r_, is nonsymmetric.

Let us redefine the Pareto optimal subseTdsP(T) :={a € T: thereisnoB € T with 3 <
a, B # a}. Also let us redefine the skt (T,y) asL. (T,y) :={i € L: there exist&x € T with a; <
¥ }. Moreover, Axionib should be rewritten as follows:

Axiom 7 DMPC Individual Rationality:
For every bargaining gam¢(Y,n(k))}¢_o the outcome of the gamigh (Y, n(k))}r_, satisfies the
inequalityg (Y, n(k)) < n(k) fork=1,2,....

Based on these modifications to the original theory, the outcome of a §@me(k)) }_o with
weighted hierarchy is a sequencég™ (Y,n(0)),¢"(Y;n(1)),...} denoted by{¢" (Y,n(K))}io.
where for a fixed, ¢ (Y,n(l)) is given by the solution of the lexicographic optimization problem

Y0 = {o(u(l)) € RM: o(T(1)) € P(Y), @(T(1)) <n(1)}
Yhi=argmaxn(ni(l) —@(@(l))": i e N @) € Y}

YZ-:{ argmax{T(ni(l) — @)™ : ieN2(YLn(), e@()) € Y1} if N2 (YL n(l) # @
' ©! otherwise

Y= { argmax(ni(1) —a(U(h)))™: i e NP(Y™ 1 n(l)), @) € Y™ 1} if NP(Y™ 1 n(1)) # @
' Y™-1 otherwise
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Remark 5 Although the definition of weighted hierarchy requires the selection of thghtsefor
each subsystem, there are not guidelines for choosing their values e leotitrol theory field, the
values of the weights can be arbitrarily selected a&vﬁ, i=1,...,M (such a selection is made
in [9] 44,[16)/15]). However, performing controllability and/or sensitivityadysis can help to derive
guidelines for the selection of the weights w

Let H = (N,w). Then, in view of the lexicographic solution (B.7) the nonsymmetric bargaining
solution of a DMPC gamég (Y, n(k))}x_, at time stepk can be computed in a centralized way as
a solution of the maximization problef (B.8). This solution has the same propastibe solution
given by [3.%), except for Axio 1.

rﬁn(%xﬂi“il(ni(k) — @(T(k)))"

Subject to: (3.8)
ni(k) > @ (t(k))
u(k) € Q
Maximization problem[(318) can be written equivalently[as](3.9).

M
rup(%xi;Wi log(ni(k) — @ (u(k)))
Subject to: (3.9)

ni(k) > a(u(k))
uk) e Q

Then, maximization probleni (3.8) can be solved in a distributed way by localyngothe sys-
temwide control probleni{3.10).

malewr log(nr (k) — o (Gi (K), Ui (K)))

Subject to: (3.10)
N (k) > o (Gi(k), U-i(k))
ui(k) € Q;

Note that maximization probleri (3110) is equivalent to maximization prollerh (@8%idering fixed
u_i(k) and optimizing only in the direction afij(k). This formulation allows each subsystem to
take into account the effect of its decisions in the behavior of the whoterayand to promote the
cooperation among subsystems. The convexity and feasibilify_ofl (3.10¢semed in[[38]. In the
next Section, the algorithm for implementing a distributed solution of DMPC gamesepted in
Sectior 3.l and Secti¢n 3.2 is presented.

3.3 Negotiation model

A negotiation model is a sequence of steps for computing the outcome of a dautie literature
several negotiation models have been proposed for solvjpgrson games, almost all of them based
on the coalition formation (see [B2] and the references therein for monglete information). The
negotiation model presented in this work is based on the negotiation modekppy Nash ir [28].

It consists of the following steps:
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1. Attime stegk, each subsystem sends to the remaining subsystems the vakgg of); (k).

2. With the information received, each subsystem solves the local optimizatbiem

M
maxy wilog( ()~ 01 (G(K). 14 (K))

Subject to: (3.11)
N (k) > oy (Gi(k),u_i(k)), r=1,...,M
ti(k) € Q;

3. Letu’(k) denote optimal control actions for subsystem = 1,...,M. If (B811) is feasible,
subsysteni selects the first control action @f (k) as a control action. Otherwise, subsystem
selects the first control action @f(k), whereu; (k) is the initial condition of subsysteirat time

stepk for solving [3.11).

4. Each subsystem updates its disagreement poift. If|(3.11) is feasibipdhte of the disagree-
ment point of subsysteims given byn (k+ 1) = ni(k) — a[ni(K) — @ (t(k))]. Otherwise, the up-
date of the disagreement point of subsystesgiven byn (k+ 1) = ni(k) + [@(T(k)) — ni(k)].

5. Each subsystem sends its updated control action and its updateedivagt point.
6. Gotostep 1.

The initial condition for solving[(3.11) at time stép+ 1 are given by the shifted control inpu; (k+
1) = [uT(k+1),...,uT(k+Ny),0], where the superscriptdenotes the optimal value of the control
input. Negotiation model presented only considers the nonsymmetric caseplacing [[3.111) by

maxZIog N (K) — or (Gi (k), Ui (k)))

Subiject to:
Ne(K) > 07 (G (K), @i (K), T =1,...,M
ﬁi (k) € Q;

a distributed solution for symmetric DMPC games can be implemented. Note thatgiithioare is
not an explicit negotiation process in proposed algorithm the cost function

ler log(nr (k) — or (Ui (k), u_i(Kk)))

allows to every subsystem to have certain degree of coordination with th&irmielg subsystems.
Thus, subsysteiris able to compute its optimal control inputs in a separated way from the information
provided by the remaining subsystems. Furthermore, in comparison with grarige multipliers
based DMPC schemes, the proposed algorithm does not require awvétgnaicess for computing
the local control actions. This also allows to decrease the computatiorddrbof the solution of

the DMPC problem. In addition, using the definition of weighted hierarchy ibissible to analyze
hierarchical MPC schemes as bargaining game, providing a genema\iiark for applying MPC
schemes to the large-scale systems control (this is not included in this weakdeeis beyond of the
scope of this work).
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Furthermore, the bargaining process is formulated on the basis of howeaablsubsystem pro-
vide to the entire system performance and not in the concept of how ahskstem have to react
against the decisions of the other subsystems. With this basis, the bargaimteggallows to each
subsystem to perceive a benefit from the cooperative behaviotlyF-aighough the formulation pre-
sented in this work comes from a special case in which the centralizeducasioin can be expressed
as the sum of all local cost functions, this is not a requirement for thgab@ng process. Only local
functions that depend from decisions of the other subsystems is reqiineximakes more flexible
the approach presented in this work than almost all the DMPC schemeateatsethe literature.

In the next Section the convergence and the stability of the proposed Reglidine are analyzed.

3.4 Convergence and stability

Convergence and stability are the main properties of MPC schemes, spéaiadlistributed and
hierarchical MPC approaches. In this section the conditions for cgemee and stability of the
proposed method are established. Since the negotiation model presergetion[3.3 is applicable to
both symmetric and nonsymmetric DMPC games the conditions established fomntregence and
the stability also are valid for both games. However, only the nonsymmetrioxdtise considered
in this section.

3.4.1 Convergence

From the algorithm presented in Section] 3.3, the convergence of thesg@MPC method de-
pends on the decision of each subsystem about to cooperate or to sométhat at time stdp=0
all subsystems decide to cooperate. Thgi®) > a;(Ti(0),0_i(0)), i = 1,...,M andyM, ni(0) >
M, 6i(Ti(0),0_i(0)). Moreover, [3.I1) is feasible for all subsystems and the new value éaith
agreement point is given by (1) = n;i(0) — a[ni(0) — 6i(G;(0),u_;(0))], i=1,...,M.

Let C(k) C N denote the partition dl determined by the subsystems that decide to cooperate at
time stepk. Then, if at time stefk = 1, C(1) = N, ni(1) < n;(0) and thereforeg; (U;(0), Ui (0)) >
oi(Ui(1),ui(1)) for i =1,...,M. If the cooperative behavior remains foe=2.3,..., i.e.,,C(k) =
N, k= 1,2,..., then ni(0) > ni(2) > ... Hence, 6(G(0),G;(0)) > ai(Ti(1),0(1)) > ... and
M, G (T(0),0i(0) > TM, Gi(Gi(1),U_i(1)),... Since the global cost function is equal to the sum
of the local cost functions, i.eJy(X(k),U(k)) = Y™, @(t(k)) and @(T(k)) = oi(Gi(k),u_i(k)) the
global cost function is a decreasing functionkofTherefore the proposed algorithm converges if all
subsystems decide to cooperate every timelstep

However, if at any time steksome subsystems decide not to cooperate the disagreement point of
the noncooperating subsystems is increased in a fagtag (k),u_j(k)) anduj(k) = Uj(k—1). With
the increment of the value of the disagreement point the probability that bisystems cooperate in
the following time stegk+ 1 increases (but is not guaranteed). hgtax denote the maximum value
of the disagreement point of subsystenThen, if the subsystems does not cooperate-ai2,3, ...
the value ofn;(k) tends tonimax ask tends to. Moreover,U;(k) remains constant. Assume that
the system is stabilizable. Assume tliabelongs to the set of control inputs of the stabilizable set.
Then, although the subsystems does not cooperate the systemxgkatesnverge to some stable
trajectory. Therefore, the value &f(X(k), t(k)) converges to a value and thus the proposed algorithm
converge. Note that, if a subsystem does not cooperate does not impthehzontrol actions are
unfeasible. The control actions of the noncooperating subsystemsgbeiof®; but not to the set

{ui(k) € Qi ni(k) > a(k)}.
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In the case that all subsystems do not cooperate at the beginning, thasesanalyzed before
arise. Then the convergence of the algorithm is assured.

3.4.2 Stability

In order to demonstrate the stability of the closed-loop system two casesraidered:
1. All subsystems always cooperate.
2. Some subsystems do not cooperate but few time steps ahead startemt®op

In the first case, leV (X(k),u(k)) = Jy(X(k),u(k)) be the Lyapunov function of the system. Then
we have to prove that (X(k),u(k)) is positive for(X(k),u(k)) # 0 and equals to 0 ifX(k),u(k)) =
(0,0), and thaw/ (X(k), u(k)) —V (X(k— ) U(k—1)) < 0. Since@(u(k)) is a quadratic positive convex
function, and sincdy(X(k),U(k)) = SM, @(U(k)) the Lyapunov candidate function(X(k), t(k)) is
positive for(X(k),u(k)) # 0 and equals to 0 if%(k), u(k)) = (0,0).

Assume that all subsystem always cooperate. Thﬁ{k 1) > ni(k), gi(ti(k—1),ti(k—1)) >
ai(Gi(k),Gi(k)), andyM; G (Gi(k—1),0 (k- 1)) > sM 10',(u,(k) u_i(k)) for all time stepk. Since
() = mi(k—1) e[y (K~ 1) — 0i(G(k 1), T i(k~1))], i=1,...,Mand (K) > 0i(G(K),0i(K))
for all cooperating subsystery$ ; oi (T (k), Ui (k) — z,zla.(u.(k—l),ﬁ,i(k 1) <— Z. ra(ni(k—
1)~ 01(6(K), 0 (K))). Recall thatly(%(K), (k) = 3, g (6(K)) andaa(@i(k)) = 01 (G (). Ui (K)). So,
V(R(K),T(K) = 3™, 61(Ti(K), (k) andV (R(k— 1), T(k — 1)) — V(K(K),T(K)) < — My a(mi(k—

1) — oi(Gi(k),u_i(k))). Thus,V(X(k),u(k)) is a positive function bounded below by 0 which de-
creases asM, a(ni(k— 1) — 6i(Gi(k),U_i(k))). ThereforeV (X(k),T(k)) tends to 0 ak tends to.
Hence the closed-loop system is stable if all subsystems always decideperate.

If some subsystems decide not to cooperate at any time&kg@(k) # @), thenV (X(k),u(k)) =
Joc(X(K),u(k)) + Jgnc(X(k), u(k)), where the indexC is related with the subsystems that decide to
cooperate, and the indé&C is related with the subsystems that decide not to cooperate. In this case
Jyc(X(k),u(k)) is a decreasing function tending to Okaends tow, butJync(X(K), U(K)) is a function
tending to some value dstends tow (this value is given by the behavior of the states). Therefore
it is not possible to assure the(X(k),u(k)) is a decreasing function, but it is possible to guarantee
thatV (X(k),u(k)) converges to certain finite value. However, when the subsystems thee deit
to cooperate begin to cooperate agaliiX(k),u(k)) behaves as mentioned in the case in which all
subsystems decide to cooperate. Then the stability of the closed-loop systlsmassured.

The case where all/some subsystems always decide not to cooperatinidumed because the
global cost functionly(X(k),u(k)) tends to some value (under the assumptions that the system is
stabilizable), but it does not tends to 0. In this case, only, it is possiblenduate that the states of
the system converges to a neighborhood at the origin.

3.5 Simulation results

In this section simulation results are presented for both symmetric and nonsyonDd®C games.
For illustrating a case in which the proposed DMPC satisfies the symmetry corsdlitiee quadruple
tank process presented in_[45] is used. In the nonsymmetric case, thepouer valley (HPV)
described in[[31] is considered.
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3.5.1 Symmetric distributed model predictive control game

The four-tank plant is a laboratory plant that has been designed toosblkctechniques using in-
dustrial instrumentation and control systems. The plant consists of autigdpeocess of four inter-
connected tanks inspired by the educational quadruple-tank proagssspd by([45]. The process
constitutes a simple multivariable system with highly coupled nonlinear dynamitsahaexhibit
transmission zero dynamics. Figlrel3.1 shows a schematic diagram of threigjeatank process.

o

dil B i
-

R /

o) O-
7777777

Figure 3.1: Johansson’s quadruple-tank process diagram.

A continuous-time state-space model of the quadruple-tank procesmsyatebe derived from
first principles [45] to result in:

O”;lt(t) = -2V + 22 V2R + 2 aa) (3.12)

T - % g+ V2R + () (3.13)
2

dhg(t) ag (1—)43)

™ ng(t)+T3Qb(t) (3.14)

dhy(t) & (1-v)

P - A 2ghy(t) + A Ga(t) (3.15)

whereh;(t), Ai anda; with i € {1,2,3,4} refer to the level, cross section and the discharge constant of
tanki, respectivelyn;(t) andy; with j € {a,b} denote the flow and the ratio of the three-way valve
of pumpj, respectively and is the gravitational acceleration.

The plant parameters are shown in Tdblé 3.2.

Linearizing the model at an operating point given by the equilibrium levedsflaws shown in
Table[3.2 and defining the deviation variabled) = hi(t) — hP(t), uj(t) = g;(t) — ¢ we obtain the
continuous-time linear model

&= A +B) (3.16)

y(t) = Cx(t)
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| | value | unit | description |

Pmax 1.36 | m Maximum level in all cases
Pmin 0.2 m Minimum level in all cases
Omax 3.26 | m¥h | Maximum flow ofg, andqp
Qmin 0 m3/h | Minimum flow of g, andq,
aj,ay | 1.31e-4| m? Discharge constant of the tanks
az, 4
A1, A 0.06 | m? Cross-section of the tanks
Az, Aq
Va, Vb 0.3 Parameter of the 3-way valve
of g, andqy
h9 0.6042 | m Linearization level of tank 1
h9 0.6042 | m Linearization level of tank 2
hg 0.296 | m Linearization level of tank 3
hg 0.296 | m Linearization level of tank 4
@, | 1.63 | m¥h | Linearization flow ofg, andgp
Ts 5 S Sample time

Table 3.2: Parameters of the plant

wherex(t) = [x1(t), X2(t),xs(t), xa(t)]T, u(t) = [ua(t), u2(t)]", ¥(t) = Pxa (), %e(1)]", and
Toll i ?6 2 %j z 1 000
=10 6 = o ["B=] o (1:“’) ’Q:{o 10 o]
0O O %41 (1;4Va) 0
with Ti:g 2P < 0 the time constant of tarik

Similar than in [37], in this work the whole system is divided into two coupled ystesns as
follows: The subsystem 1 consists of tanks 1 and 3 while subsystem Bisooistanks 2 and 4, that
is, the subsystem 1 is characterized by the stébe = [x1(t),xs(t)]T and its outpuy (t) is x (t) while
the state of the subsystem Xig(t) = [x2(t),x4(t)]" and its outpuya(t) = xx(t). The continuous-time
models of subsystems 1 and 2 are given by

dXC:ILt(t) = AcX1(t) + Beyu(t) (3.17)
yi(t) = Cexa(t)

and by
Pl pgealt) + Beult) (3.18)
y2(t) = CeoXo(t)

respectively, wherécy, Be1 , Ce1, Aco, Beo andCe, comes fromA, Be, C.. Note that the subsystems
considered are coupled only through the inputs. The correspondicrgidigime model of each sub-
system is derived from the previous ones by means of the Tustin methede Will be denoted as
follows:
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xi(k+1) = Adgxa(K) + Baru(k) (3.19)
y1(k) = Cgixa(k)

X2(k+1) = Agoxa(K) +Bgou(k) (3.20)
y2(K) = Cgoxa(k)

In order to test the proposed DMPC scheme, we define a simulation expeiim&hich the
control objective is to follow the changes in the reference values of thaksl 2 by manipulating the
flows g, andqy,. The changes made in the reference values were:

1. The reference values of thanks 1 and 2 were s&t abdhJ respectively.

2. At 3000s a change 0f0.1h7 in the reference value of the tank 1 and a change #f{in the
reference value of tank 2 were made.

3. At 6000s the reference values was returneif tandh) respectively.

4. At 9000s a 30% increase in reference values of thanks 1 andeéspormnding to the 30% dsfi
andhg respectively were made.

For the design of the DMPC scheme, a local quadratic cost function

Np—1 Ny
Li(% (K), Gi (k) = t;) X" (k+t]K)Qixi (K +t )] +t; [uf (k+ )R (k+1)] (3.21)

4+ (K+ Np|K)Pxi (K+ Np|k)

i = 1,2 is used to measure the performance of each subsysteri. T (8.&1);t|k) denotes the
predicted value ok; at time stepk+t given the conditions at time stdp uj(k+t) denotes the
control inputy; at time stepk+t, % (k) = [x{ (KK),...,x" (k+Np|K)]T, Ti(k) = [uT(K),...,u (k+
Ny), ..., Ul (k+Np)]T, wherex;(k/k) = xi(k), anduj(k+1t) = ui(k+ Ny), fort = Ny+1,...,Np— 1,
Qi, R are diagonal matrices with positive diagonal elementsFabding the solution of the Lyapunov
equation

ALRAG—PR = -Q

Substituting the expression far(k +t|k) into (3.21), and by using the control horizon constraint
ui(k+t) = ui(k+Ny), fort =Ny +1,...,N, — 1, the functionL;(Xi (k), Ui (k)) can be expressed as a
quadratic functiong(u(k)), xi(k) being the value of the state vector at time stepf subsysteni.
Thus, the cost function of each subsystem becomes

@(0(k)) = T (k) Quuili(k) + 2x (K) Quuiti(k) + X (K) Quxixi(K) (3.22)

whereQuui > 0, fori =1,...,M. Then, we have a gam®gank = {N,{@(U(K) }ien, {Qi tien}, with
N = {1,2}, where all subsystems have the same goal: to compute the optimal controldnplthat
the global performance of the system is maximized, i.e., the reference gaskachieved by each
subsystems. In the gan@ank, Qi is given by the constraints in Taljle B.2.
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Evolution of the levels of the tanks and their reference values
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Figure 3.2: Evolution of the levels of the tanks.

Figure[3.2 shows the behavior of the levels of the liquid inside of the tanks wiee control
actions are computed as the solution of a DMPC game. From this figure it ibledssconclude that
the output levels are regulated to the desired values despite of the cluditigeset points.

Figure[3.8 shows the evolution of the control inputs, the disagreement poththe value of the
cost function of each subsystem. From this figure we have:

1. The disagreement points satisfipgk) = n2(k) for all time stepk.

2. The solution of the DMPC game associated with the four-tank system safisf ) (k)) =
$2(Y,n(k)), for all k.

3. uy(k) € (Q1NQ7) anduy(k) € (Q1NQy) for all k. Theng(Ti(k)) € Y.

So, we can conclude that under the conditions presented in this papeMR€E pProblem is a sym-
metric DMPC game. Moreover, in this figure it is also shown that the valueseo$ttites are not
required to be the same to maintain the symmetry of the game. The symmetry of the garae lsy
the symmetry of the system.

3.5.2 Nonsymmetric distributed model predictive control gme

Consider the HPV shown in Figufe B.4. This HPV is composed by three lakgsni = 1,2,3),
two of them (1, Lo) connected by a ductlg), and six dams@§;, j =1,...,6), each one of them
equipped with a turbine for electric power production. The dams are logated river, dividing it
in six reachesK;). Reaches;, R, are connected with lake; through a turbine-pumpCg) and a
turbine (T1) respectively. Moreover, reach&g, Rs are connected with lakkes by a turbine-pump
(C) and a turbineTy) respectively. Turbine$;, T, also are used for electric power generation, and

turbine-pump deviceS;, C, are used to produce electric power (in turbine mode) and to pump water

from reache®Ry, R4 in order to regulate the level of the lakes L3 respectively. Note that in pump
modeC;, C, consume electric power. Furthermore, readRgsR; are fed by the river flovg;, and
the tributary flowggriputary respectively.

A model suitable for control purposes for the HPV of Figuré 3.4 is ddring31]. This model is
based on the following assumptions:

1 The ducts are connected at the bottom of the lakes (or to the bottom of ¢éndeid).
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Evolution of the control actions, the disagreement points, and the value of the cost functions
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Figure 3.3: Evolution of the control actions, disagreement points, an@ wdlthe cost function of
each subsystem

Figure 3.4: HPV

1 The cross section of the reaches and of the lakes is rectangular.
1 The width of the reaches varies linearly along the reaches.
1 The river bed slope is constant along every reach

Based on these assumptions, the nonlinear, first-order Saint-Venéat gdferential equations
represent the state of the art for modeling one-dimensional river hiycsavith constant fluid density
[46]. In this equation the hydraulic state of the river is described by twiabkes: the water depth
h(t,z) and the discharge(t, z), both varying as a function of spazeand timet. Thus, the dynamics

of each reach are given by [31,146] 47] 48]

Jq 0s

gz o © e
10 /q 10 [\ oh B
gdt(s>+290z(52>+dz+lf_|°_o
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In 3.23),0=q(t,2), s=s(t,2), h=nh(t,2), |1 = 11(t,2), lo = lo(t,2), wheres(t,z) is the wetted
surface]¢(t,z) is the friction slopel,(t, z) is the river bed slope, argis the gravitational acceleration.
Since the cross section of the reaches and of the lakes is assumedulkzrttmgwetted surface and

the friction slope are given b/ (3.24) ald (3.25) respectively [31].

s(t,z) = w(z)h(t,z) (3.24)

.z — DD+ 20(.2) .29
B, (W(2)h(t,2)) ¥

wherew(z) is the river width, andks, is the Gauckler-Manning-Strickler coefficient. For modeling
the lakes, the duct, the turbines, and the turbine-pumps elerhents (3. 28)dR21sed [31].

(9h(t) _ Qin(t) — QOut(t)

= S (3.26)
qua(t) = Susign(H(t)) 29[H ()] (3.27)
Pr(t) = ke (t) ARy (t) (3.28)
pc(t) = ke(de(t))ae(t)Ahe(t) (3.29)

whereS s the surface area of the lakg,; is the section of the duck; is the turbine coefficient,
gin(t), Qout(t), are the input and output flows of the lakes respectivgly) is the turbine discharge,
Ah(t), Ahc(t) are the heads of the turbine and the turbine-pump respectively,

ke if Oc(t) >
etaet) = { R EO=0 )

is the turbine-pump coefficient, amti(t) = h 2(t) — hy1(t) + hy1, with h 1 (t), heo(t) the levels of the
lakes 1 and 2 respectively, ahd; the height difference of the duct.

Although [3.28){(3.29) describe the dynamic behavior of the HPV. Thisainisdunsuitable for
control purposes. Then in order to obtain a model suitable for contrpbges, a spatial discretization
of (8.23) is required. The expressions of the resulting model are giv&1]. Letx(t), u(t) denote
the states and the inputs of the system. Then

u(t) = [ora(t), gea(t), ra(t), dea(t), Ore(t), Gra(t), ORa(t), Gra(t)  ORs(t), Are(t)]”
X(t) = [h-ll_-m(t)’ q-lgl(t)a h-lgl(t)aq-Fl;Z(t)v hEZ(t)a q£3(t)’ h-lg3(t)7q-|£4(t)a h-FI;4(t)v q-|£5(t)a h-II;S(t)’ q-|£6(t)7 hEG(t)]T

with gri = [q1(1), . ..,0n, (1)], andhg) = [ha(t),...,hn+1(1)] the flows and the levels at each spatial
partition of reachR, | =1,...,6, Orp, Ocp, Ori, P = 1,2 the flows of the turbines, the turbine-
pumps, and the turbines at the reaches,Mnldeing the number of partitions. This model is used for
implementing in simulation a DMPC scheme for the control of the HPV.

The DMPC scheme proposed is designed considering the power traddngre proposed in
[31]. In this scenario, power output of the system should follow a giefarence while keeping
the water levels in the lakes and at the dams as constant as possible. Sop#iegst function
considered for the DMPC is composed by two terms: the first term penalizdsribrm of the power
tracking error, and the second term penalizes the 2-norm of the dewgiafitime levels in the lakes and
in the dams of their steady state values. Thus, the centralized MPC problemmigdted as follows
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[31]

)
T({?./o Alpe(t) — ydt+/ — hegTQ(h(t) — hss

Subject to: (3.30)

X(t) = f(x(t),u(t))
uit)eC

wherex(t) = d(t), T is the prediction horizon) > 0, Q > 0 are diagonal matrices (t), p(t) are
the power reference and the power produced by the HPV respectivgly the vector of the steady
state levelsf(.) is a function representing the HPV dynamics, &id the feasible set composed by
the constraints on(t) andx(t). The power reference to be followed by the entire system is known 24
hours in advance and the inputs of the system can be changed everyl88snin

Let Ts denote the sample time. Then the HPV mo@el (3.23)-(3.29) can be exprasselkhear
system as

X(k+1) = AgX(K) 4+ Bgu
y(k) = Cax(k) 4 Dgu(k)

whereAq,By,Cq,Dq are the matrices resulting of the linearization [of (B.23)-(83.29), Wkl is the
output of the system, IQ/(k) = [p(k), hB(k)]T, with hD(k) = [thNx’ hDZNXa hDgN><7 hD4N><7 hDSNX7 hDGNX]
the levels at the dams. Note that the power produced by the HPV is piecesfiiseddrespect ta(k)
due to the turbine-pump elements. In order to overcome this issue in the liigarjzzonstants

Kdes ; Kdeg Was introduced, virtual inputs; (k) € [—0pc1, tc1], U2(K) € [—0pc2, Geo] Was considered,
and a gain compensation

(3.31)

Up(k) = }

Kaespip (K) if Up(K) < O

Kpcp

{ "g;pup(k) if Uy(k) >0

was proposed, whermyci, dpc2, dc1, Gk are the maximum pumped flows and maximum turbined
flows for the turbine-pump elemen®, C, respectively,p = 1,2 (the values ofjyc1, Opc2, e, G2
are given in[[31]).
Note that optimization probleri (3.80) can be written as
nugikr; VP (K) — Yp(T(K)) |+ TT (K HT(k) + 2F T(K)
Subject to: (3.32)
uk) € Q
U(k+v) =u(k+Ny), YNy <v <Np—1

where pr (k) = [pr (K)......, pr (K + Np), Fp(@(K)) = [P(x(K),u(K)). ..., p(x(K), u(k + Np — 1)), H =

B QBq, F = xT (k)A] QBq, andQ is the feasible set composed by the input constraints and the map-
ping using [3:311) of the state constraints to input constraints, AjtBy the resulting matrices by

the prediction ofhp (k) alongN,. From [31], it is possible to divide the HPV of Figure B.4 into 8
subsystems:

1 Subsystem 1: lakes 1 and 2, turbih&, and turbine-pum@1.
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T Subsystem 2: lake 3, turbirfe2, and turbine-pum@2.
1 Subsystems 3-8: reachRBgto Rg respectively.
Let

01 (i (K), Ui (K)) = V1P (K) = Fp (G (K), 0 (K)) | -+ (G (k) O (k)] T Hi [0 (K), B ()] + 2R (G (k). O (K)

whereH;, F; are the resulting matrices of the permutation of the rows and coluntihgFofespectively.

(the state dependencea(f.) was omitted for notational convenience). From/[31], the state and input
constraints are time independent an only establishes lower and uppetabi@snto the states and
inputs. So, they are independent for each subsystems, i.e., there isupdé¢a constraints. Then,
for the control of the HPV we have a gar@pv = {N,{0;(Ui(K),u_i(K)) }ien, { Qi }ien}, With N =
{1,...,8}, in which all subsystems have the same goal: to minimize the power trackindkeejing

the levels in the lakes and at the dams as close as possible to their steadylatse Mance, the
gameGypy can be analyzed and solved as a discrete-time dynamic bargaining{g#mek)) } 2.

Note that the power produced by the HPV at time dteip equals to the sum of the powers
generated by all subsystems, and assuming that each subsystem cornesuhi&aalue of the states
and inputs to the remaining subsystems, each subsystem is able to computeeh@imoluced by
the other subsystems. Hence, the tefim (k) — Yp(Ui(K),u_i(k))| is reduced to compute the power
contribution of subsysteringiven the power produced by the remaining subsystems.

Based on the formulation presented in this section, a closed-loop simulaticaléP¥ described
of Figure[3.4 was performed along 24 hours (simulation time). In this simulatgg,= %(kar
Koc1), Kdee = 3 (kica + kpcz), Ts = 18005 (30 minutes) N, = 48 (corresponding to a day), = 32,
wio = %, ws_g = &° (the weights of subsystems 1 to 8(0) = 1% 10°, y=50,Q = (I being the
identity matrix), and the lower and upper values of the inputs and the statetheaparameters of the
model [3.2B8)1(3.29) were taken as the proposefdin [31].

Figure[3.5 shows the comparison between the power produced by the kP¥ea power ref-
erence when the proposed DMPC scheme computes the inputs of eaghtsnbsin this Figure
it is shown that the power produced by the HPV follows the power referesatisfying one of the
objectives proposed for the control scheme.

220

Power [MW]

Figure 3.5: Comparison between the power produced by the HPV with therpeference, when the
proposed game-theory-based DMPC is used for computing the inputs sifttkgstems
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In order to maintain the power demand, the levels of the reaches and theltaked be modified.
In Figure[3.B the behavior of the levels is presented. Although the levelsedbkes have larger
variations (see first panel of Figure 3.3) than the dams levels (seedspaoel of Figuré 316), the
second objective proposed for the control scheme is partially satisBedube the levels at the dams
are maintained as constant as possible. If it is considered that the sedstiean be used for maritime
traffic, then maintaining the levels of the reaches such a traffic can beedssu

- 55000 Y 1 -
4y ******N*”*“m* ****”*u***m*u******w

i i i
0 1 2 3 4 5 6 7 8
Time [s] x 10* D

Figure 3.6: Behavior of the levels in the lakes (first panel) and the levéfeatams (second panel)
of the HPV.

Moreover, despite of the lost of performance associated with the laoyestans of the levels of
the lakes, all the control inputs applied to the subsystems are inside of thedlifvel for them (see
Figure[3Y).
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Figure 3.7: Behavior of the applied control actions to each subsystem

Finally, in Figure[3.8 the evolution of the disagreement points is presentettislirigure, the
disagreement starts at the same point but as they are evolving eackteab$ys their own value
indicating the nonsymmetry of the gar@py (see Figuré 319 for a zoom in showing the different
values of the disagreement points).

Page 52/75




HD-MPC ICT-223854 Evaluation results including economic ad application potentials

x 10

ne

ne

x10*

Figure 3.9: Zoom in of the evolution of the disagreement points

3.6 Concluding remarks

In this work the DMPC problem was characterized as a bargaining gamestaxibmatic bargain-
ing game theory proposed by Nash for such games. From the axiomatig,thenditions for the
symmetry and nonsymmetry of the game associated with the DMPC problem walésbed. In
order to derive these conditions several concepts of the originahtiseould be redefined in order to
include the time evolution of the games. The conditions established allowed tluderibat in real
large-scale systems the symmetry conditions are heavily restrictive, leewmldarge-scale systems
have several elements with different state equations making difficult thevachent of the symme-
try. On the other hand, the characterization of the DMPC problem as gmaomstric game allowed
to conclude that the mathematical framework defined for nonsymmetric DMR@gaan be also
applied for hierarchical MPC schemes, providing a mathematical framei@oMPC applied to the
large-scale systems control.

Moreover, a negotiation model including both symmetric and honsymmetric DMiRi2g was
proposed. This algorithm is based on the transformation of the bargaing gaan equivalent
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noncooperative game, and solve the equivalent noncooperative glneetransformation allowed
to reduce the computational burden associated with the solution of the DM#tepr because it
is not required an iterative procedure for jointly compute the optimal coatitibn applied to each
subsystem, which is the main characteristic of the widely used Lagrange muitiphsed DMPC
methods. The convergence and stability of the proposed control scheraaiso discussed.

Finally, two application cases were presented: the quadruple tank prfocdkistrating a possible
situation in which the DMPC problem can be solved as a symmetric game, and dhegower
valley proposed in[31] for illustrating a situation in which the DMPC problem ba solved as a
nonsymmetric game. Both results shows the capabilities of the solution of a DM as a
bargaining game.
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Chapter 4

A Distributed Optimization-Based
Approach for Hierarchical MPC of
Large-Scale Systems with Coupled
Dynamics and Constraints

The research of this chapter has been developed by Minh Dang DaewdsTKeviczky, and Bart De
Schutter. The authors are with Delft Center for Systems and Control, Dailfersity of Technology,
Delft, The Netherlands

4.1 Introduction

Coordination and control of interacting subsystems is an essential reuitéor optimal operation
and enforcement of critical operational constraints in large-scale tinalysrocesses and infrastruc-
ture systems |1]. Model Predictive Control (MPC) has become the methadtbae when designing
control systems for such applicatiohs[[2, B, 4], due to its ability to handle irapigorocess constraints
explicitly. MPC relies on solving finite-time optimal control problems repeatedlynenwhich may
become prohibitive for large-scale systems due to the problem size or caoatioim constraints. Re-
cent efforts have been focusing on how to decompose the underlyimgizggion problem in order
to arrive at a distributed or hierarchical control system that can be impleheinder the prescribed
computational and communication limitations[[5, 6]. One common way to decompd8E @rprob-
lem with coupled dynamics or constraints is to use dual decomposition mefid8s 9y, which
typically lead to iterative algorithms (in either a distributed or hierarchical freonle) that converge
to feasible solutions only asymptotically. Implementing such approaches wittinMBRC update
period can be problematic for some applications.

Recently, we have presented a dual decomposition scheme for solviaestzatg MPC problems
with coupling in both dynamics and constraints, where primal feasible solutianse obtained
even after a finite number of iteratioris [10]. In the current paper wseptea novel method that
is motivated by the use of constraint tightening in robust MPC [11], along avjphimal averaging
scheme and distributed Jacobi optimization. Since an exact optimum of thengaan is not assumed
to be computable in finitely many iterations, an approximate scheme is needadvioggshe MPC
optimization problem in each time step. We present a solution approach thiaeseg nested two-
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layer iteration structure and the sharing of a few crucial parameters irradtiecal fashion. The
proposed framework guarantees primal feasible solutions and MPC staility a finite number of
iterations with bounded suboptimality.

The paper is organized as follows. In Secfiod 4.2, we describe the M@&Gingtion problem and
its tightened version, which will be used to guarantee feasibility of the origireddlem even with a
suboptimal primal solution. Sectign #.3 describes the main elements of the algos#urto solve
the dual version of the tightened optimization problem: the approximate suegradethod and the
distributed Jacobi updates. In Section 4.4, we show that the primal @sohgion generated by the
approximate subgradient algorithm is a feasible solution of the original optimizproblem, and
that the cost function decreases through the MPC updates. This allowisdtused as a Lyapunov
function for showing closed-loop MPC stability. Section]4.6 concludes themeand outlines future
research.

4.2 Problem description

4.2.1 MPC problem
We consideM interconnected subsystems with coupled discrete-time linear time-invariaamitys
X1=y Alx+Bly, i=1...M (4.1)
=1
and the corresponding centralized state-space model:

Xer1 = AX+ B (4.2)

with X = [(0)T ()T ... M T ue=[(ud) T (ud)T ... () T]T, A= [Aiji jeqr,..my andB = [Bijli jeq1,.m)-
The MPC problem at time stegs formed using a convex cost function and convex constraints:

t+N—-1
min th (XIQ)Q(+U-|I(—RL1<>+)((T+NP)Q+N (4.3)
st Xer= Y A +Bly,
je
i=1...M, k=t,... t+N-1 (4.4)
e X k=t+1...,t+N-1 (4.5)
XN E 2 C X (4.6)
e« k=t,....t+N-1 4.7)
ueQi=1....M, k=t,... t+N-1 (4.8)
X =Xt)e Z (4.9)

whereu = [uf,....ul \_q]", X=X, 4,....Xn]T, the matrice®, P, andR are block-diagonal and
positive definite, the constraint se#s, 2" and .2; are polytopes and have nonempty interiors, and
each local constraint s&; is a hyperbox. Each subsystéis assigned a neighborhood, denatéd,
containing subsystems that have direct dynamical interactions with sulmsy$teluding itself. The
initial statex; is the current state at time step
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As 7, 2 and Z; are polytopes, the constraints (4.5) andl(4.6) are represented byifirgagl-
ities. Moreover, the state vectriis affinely dependent on. Hence, we can eliminate state variables
Xei1,--.,%4N and transform the constrainfs _(4.4), {4.5), dndl(4.6) into linear inequaditidse in-
put variableu. Eliminating the state variables in_(#.3)=(4.9) leads to an optimization problem in the
following form:

fi = muin f(u,%) (4.10)
st g(u,x) <0 (4.11)
ueQ (4.12)

wheref andg = [gl,...,gm]T are convex functions, ard = ﬂi“ilﬂi with eachQ; = |‘|’|2‘:‘01 Qjisa
hyperbox. Note thaf (u,x) > 0,Yu # 0,% # 0, due to the positive definiteness@fP, andR.

We will use (u, %) to denote a feasible solution generated by the controller for profjlein (4.3)-
(4.9) at time step. This solution is required to be feasible but not necessarily optimal.We will make
use of the following assumptions:

Assumption 4.2.1 There exists a block-diagonal feedback gain K such that the mat8K is
Schur (i.e., a decentralized stabilizing control law for the unconstrainedeggge system).

Assumption 4.2.2 The terminal constraint se#; is positively invariant for the closed-loopx =
(A+BK)x (x € int(Z) = (A+BK)x € int(Z2%)).

Assumption 4.2.3 The Slater condition holds for proble@.10)-(4.12) i.e., there exists a vector that
satisfies strict inequality constraints [12]. It is also assumed that priorachetime step t, a Slater
vectoru, is available, such that

gj(U,%) <0,j=1,....m (4.13)

Remark 4.2.4 Since du,x) < 0 has a nonempty interior, so do its componenugk) < 0, ] =
1,...,m. Hence, there will always be a vector that satisfies the Slater conq@idf8) In fact, we
will only need to find the Slater vectar for the first time step, which can be computed off-line.
In Sectio4.5]1 we will show that a new Slater vector can then be obtaineddbrte> 1, using
Assumption 4.2]2.

Assumption 4.2.5 At each time step t, the following holds

f(U-1,% 1) — (O, %) > X 1Q% 1+ U _RU 1 (4.14)
For later reference, we definly > 0 which can be computed before time step t as follows:
D =x"1Qx 14U Ru 1 (4.15)

Remark 4.2.6 Assumptiofi 4,25 is often satisfied with an appropriate terminal penalty matix P.
method to construct a block-diagonal P with a given decentralized stabil&ingol law is provided

in [L3].
Assumption 4.2.7 For each x € 27, the Euclidean norm of(@, %) is bounded:
Lt > [|g(u, %) [|2,Yu € Q (4.16)

Remark 4.2.8 In the first time step, with giverpxwe can find b by evaluating||g(u,xo)||2 at the
vertices 0K, the maximum will then satisf.18)for t = 0, due to the convexity of g afd. For the
subsequent time steps, we will present a simple method to updatSé&ctiori 4.512.
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4.2.2 The tightened problem

We will not solve problem{4.10)E(4.112) directly. Instead, we will make afsgn iterative algorithm
based on a tightened version bf (4.10)=(#.12). Consider the tightenstt@iot:

L

g(u, %) = 9(u,%)+1mc <0 (4.17)

with ¢'(u,%) = [0, -, Ol T, 0< & < minj_1_m{—0;j(Ut,%)}, and1ly the column vector with every
entry equal to 1. Due tG (4113), we have

: o= I -
j:rgygm{g](ut,w j:rgygm{g,(ut,xt)} +6 <0 (4.18)
Hencegj(ut,x) < 0,j =1,...,m. Moreover, using{4.16) and the triangle inequality of the 2-norm,
we will getL; = Lt + ¢ as the norm bound fa, i.e. L{ > ||g/(u,%)||2, Yu € Q. Note that_{ implicitly
depends om;, asu; andc; are updated based on the current skate

Using the tightened constraifif (4117), we formulate the tightened problem:

" = min - f(u,x) (4.19)
st d(ux)<0 (4.20)
ueQ (4.21)

Remark 4.2.9 Only the coupled constraini®.11) are tightened, while the local input constraints
(412)are unchanged. The Slater condition also holds for the tightened pro@e@)-(4.21) with
U; being the Slater vector.

4.3 The proposed optimization algorithm

Our objective is to calculate a feasible solution for problem (4.:3)}-(4.9ywsimethod that is favorable
for distributed computation. The main idea is to use dual decomposition for theriigh problem

(4.19)-{4.21) instead of the original one, such that after a finite nunfhiegrations the constraint
violations in the tightened problem will be less than the difference between therngd and the
original constraints. Thus, even after a finite number of iterations, we bidio a primal feasible

solution for the original MPC optimization problem.

4.3.1 The dual problem

We will tackle the dual problem of (4.119)=(4121), in order to deal with ¢edigonstraing’(u,x) <0
in a distributed way. In this section, we define the dual problem and its adiegit. For simplicity, in
this section the dependence of functions on the initial condkias not indicated explicitly.

The Lagrangian of probleri (4.119)=(4121) is defined as:

L' (u,p) = f(u)+p'd(u) (4.22)

in whichu € Q, u € RT.
The dual function for{(4.19)E(4.21):

q (k) = min.Z"(u, ) (4.23)
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is a concave function oR'"', and it is non-smooth whefi andg’ are not strictly convex functions

[12].
Given the assumption that Slater condition holds[for (4.19)=(4.21), duadioyyt12] shows that:

q = f (4.24)

with ¢ = maxycrm o (1) and f{™ the minimum of [4.1P)EHZ4.21).

Thanks to this result, instead of minimizing the primal problem, we may maximize theizl
lem, which is often more amenable to decomposition due to simpler constraints. v&inmoay not
have the gradient af in all points ofR"", we will use a method based on the subgradient.

Definition 4.3.1 A vector d is called a subgradient of a convex function f a2éat the point xc 2"
if:

fly)>f(x)+(y—x"d, Vye2 (4.25)
The set of all subgradients of f at the point x is called the subdiffererftifibb x, denoted f (x).

For each Lagrange multipligr € R, first assume we hawgp) = argmin,cq-¢”'(u, 4). Then a
subgradient of the dual function is directly available, since [12]:

q (1) <d () + (u—1)'d (), Ve e RT (4.26)

In case an optimum of the Lagrangian is not attained due to termination of the agitonialgo-

rithm after a finite number of steps, a valiigu) that satisfies

Z'(@(R), 1) < minZ"(u, 1) + 8 (4.27)

will lead to the following inequality:
q (1) <d () + 0+ (u—p)"d (T(H)), Vi € RY (4.28)

whered (li(u)) is called ad-subgradient of the dual functiog at the pointu. The set of alld-
subgradients of at i is calledd-subdifferential ofg at u.

This means we do not have to look for the subgradiend¢subgradient) of the dual function, it
is available by just evaluating the constraint function at the primal va(ue (or G(Lu)).

4.3.2 The main algorithm

We organize our algorithm for solving (4]10)=(4.12) at time $tigpa nested iteration of an outer and
inner loop. The main procedure is described as follows:

Algorithm 4.3.2 Approximate subgradient method with nested Jacobi iterations

1. Given a Slater vecton; of (4.10)4.12) determine cand construct the tightened problem
(.19y-4.21)

2. Determine step siz® and suboptimalitys, see later in Sectidn 4.3.3.

3. Determine (the sufficient number of outer iterations), see later in Se€fionl4.3.3.
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4. Outer loop: Setu©® =0-1,. Fork=0,...,k, findu®, u1 such that:

2/, p®) <minz"(u. ) + & (4.29)
) %m{ a4 atd(")} (4.30)

where Zn denotes the projection onto the nonnegative orthafft,d g/ (™, x;).
Inner loop:

e Determinep (the sufficient number of inner iterations), see later in Se¢fion4.3.4.

e Solve problen{4d.29)in a distributed way with a Jacobi algorithm. For$0,..., p,
every subsystem i computes:

u'(p+1) = arg min."(uy(p),.., Ui-1(p), ti,
Ui+1(p)7---aUM(p),N(k)) (431)

whereQ; is the local constraint set for control variables of subsystem i.
o Defineu® £ [ul(p)T,...,uM(p)T]T, which is guaranteed to satis@.29)

5. Computdl® — 1 5%y takeu, = a*) as the solution of@I0-@12)
ke ZI 0

Remark 4.3.3 Algorithm[4.3.2 is suitable for implementation in a hierarchical fashion where the
main computations occur in the Jacobi iterations and are executed by ¢ocaiollers in parallel,
while the updates of dual variables and common parameters are cavtiey a higher-level coor-
dinating controller. This algorithm is also amenable to implementation in distribséttihgs, where
there are communication links available to help determine and propagateotinenon parameters
ay, &, ki, and p.

In the following sections, we will describe in detail how the computations argate and what
the resulting properties are.
4.3.3 Outer loop: Approximate subgradient method

The outer loop at iteratiok uses an approximate subgradient method. The primal average sequence
0 = 15K yul) has the following properties:

Fork>1:
l[g(@:0)] | < (Srr@s o
¥ ";;42 +a) (4.32)
f(O(k),xt> <t + HZ&HE + atzuz + & (4.33)

whereg' " denotes the constraint violation, i.¢/" = max{¢/,0- 1y,}. The proof of [43R) can be
found in [14], and the proof of (4.33) is given in Appenflix4]7.1.
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Determining a; and &

Using the lower bound of the cost reduction (4.14) and the upper boluthé suboptimality[(4.33)
for the tightened problenl (4.19)—=(4121), we will cho@seande; such thatf (ug, %) < f(Ut_1,%_1).
The step size; and suboptimality; should satisfy:

[of L{z

t& < (4.34)

where/\; is defined in[(4.15), ant] is the norm bound fog'. This condition allows us to show the
decreasing property of the cost function in probleéml(4[3)}(4.9), wtachthen be used as a Lyapunov
function.

Note that a largea; will lead to a smaller number of outer iterations, while a largewill lead to
a smaller number of inner iterations. For the remainder of the paper weettmmsvalues according
to

A
a = (4.35)
L{

Determining k

Using the constraint violation bourid{4132), we will choéssuch that at the end of the algorithm, we
will get a feasible solution for proble (4]10)=(41.12), which is the avecfgrimal iterates generated
by (4.29):

1k
ok = =35 ul (4.37)
k %o
The subgradient iteration (Z129)=(41.30) is performedkferd, ...k, with the integer
— 1 (3, o Ly? /ﬂ
=|—| —f(u,%)+ + ol 4.38
= | (St + % v o (4.38)

defineda priori, where[-] is the ceiling operator which gives the closest integer equal to or above a
real valuey = minj:L_”,m{—g’j (U, %)} = minj—1__m{—0j(u, %)} — &, andu, is the Slater vector of

@.I19)-H4.21).

4.3.4 Inner loop: Jacobi method

The inner iteration{4.31) performs parallel local optimizations based omdast Jacobi distributed
optimization method for a convex functia#f’ (u, u¥) over a Cartesian product, as describedn [15,
Section 3.3]. In order to find the sufficient stopping condition of this Jaitetation, we need to
characterize the convergence rate of this algorithm. In the following, wergrize the condition for
convergence of the Jacobi iteration, noting tié{u, u“‘)) is a convex quadratic function with respect
tou.

Page 65%/75




HD-MPC ICT-223854 Evaluation results including economic ad application potentials|

Proposition 4.3.4 Suppose the following condition holds:
/\min(Hii) > ZE(H” ),Vi (4.39)
J#I
where H; withi, j € {1,...,M} denotes a submatrix of the Hessian H&fw.r.t. u, containing entries
of H in rows belonging to subsystem i and columns belonging to subsysigin ineans the smallest
eigenvalue, and denotes the maximum singular value.
Thendg € (0,1) such that the aggregate solution of the Jacobi itera(f@31)satisfies:

lu(p) — u*[l2 < MgPmax(u'(0) —u™||2, ¥p>1 (4.40)
|

whereu* = argmin,cq .2’ (u, u™), andu'* is the component of subsystem win
We provide a proof for Propositidn 4.3.4 in Appendix417.2.

Remark 4.3.5 This proposition provides a linear convergence rate of the Jacobi iteratiader the
condition of weak dynamical couplingsetween subsystems. For the sake of illustrating condition
(4.39) let all subsystems have the same number of inputs. Consequepily,aHsquare and sym-
metric matrix for each pai(i, j), hence the maximum singular valag¢H;;j) equals to the maximum
eigenvalue. Inequalitfd.39)thus reads:

Amin(Hii) > ;]AmaX(Hij ), Vi

which implies that the couplings represented by H are small in comparigbreach local cost.

Remark 4.3.6 Note that conditiorf4.39)is required only for the convergence rate result of the Jacobi
iteration. Extensions to other types of systems, where the Lagrangiahecaalved with bounded
suboptimality, are immediate. In such cases we simply need to replacectbia dzration with the
new algorithm in the inner loop, while the outer loop will remain intact.

Determining px

As Z'(u,-) is continuously differentiable in a closed boundedQkeit is Lipschitz continuous.
Suppose we know the Lipschitz constanf % (u, -) overQ, i.e. for anyu?, u? € Q the following
inequality holds:

12" (ut, 1) — 2" (%, ) |2 < AlJut = U2 (4.41)
Takingu® = u(px) andu? = u* in @.41), and combining it witH{4.40), we obtain:
||$’(U(I5k),#(k))—L@gﬁl(u#(k))llz < Alju(p) —u|2
< AM g™ miax||u'(0) —u"|2 (4.42)
For_each € {1,...,M}, let D; denote the diameter of the €t w.r.t. the Euclidean norm, so we
have||u'(0) — u™||2 < Dj. Hence the relatioi (4.42) can be further simplified as
Z'(u(py), u®) < Lr;i(r;f’(u,u(k)) + AM P maxD; (4.43)

Based on[(Z4:43), in order to uskpy) as the solutioru® that satisfies[(4.29), we choose the
smallest integepy such that\M ¢P*max D; < &:

— &
Pk = {Iogq, AMmax D; Di—‘ (4.44)
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4.4 Properties of the algorithm

4.4.1 Distributed Jacobi algorithm with guaranteed convegence

The computations in the inner loop can be executed by subsystems in paretlet define an-step
extended neighborhood of a subsysterdenoted by #/', as the set containing all subsystems that
can influence subsysteimvithin r successive time stepst;' is the union of subsystem indices in the
neighborhoods of all subsystems.iff' ,:

M= A (4.45)
jes
Wheref/Vli = .#1. We can see that in order to get update information in the Jacobi iteratiacis, e
subsysteni needs to communicate only with subsystemsvﬁ]_l, whereN is the prediction horizon.
This set includes all other subsystems that couple wittthe problem[(4.70)E(4.12) after eliminating
the state variables. This communication requirement indicates that we will bieagficommunica-
tion reduction when the number of subsystdvhs much larger than the horizdw, and the coupling
structure is sparse.
Assume that the weak coupling conditidn (4.39) holds, then giteterations as computed by

(@.23), the Jacobi algorithm generates a soluti$h= u(py) that satisfied{4.29) in the outer loop.

4.4.2 Feasible primal solution

Proposition 4.4.1 Suppose Assumptiohs 4]2.1 4nd 4.2.3 hold. Constfuas gn (4.17) o as in
(@35) Let the outer loofd29)-@.30)with u© = 0- 1, be iterated for k=0, ..., k. Thend® is a
feasible solution of@.10)@.12) whereti®) is the primal average, computed .37)

Proof: With a finite number ok iterations [[43P) reads as

(o)

1 /3
— | =If _d*
ZS k{dt(){[ (Ut,Xt> q'[ :|

atLt,2 /
+ 2% + ol (4.46)
Moreover, the dual functiog is a concave function, therefogf’ > (0, % ). Recall thatf (u,x;) >
0,vu 7& 0, % 7& 0, thusq/(0>xt) - minUEQ f(U,Xt) +0- 11n—’lg’(uaxt) = minueﬂ f(U,Xt) > 0, thus
K + 1 /3, -
(o), % < 7(f Ur, %
@] ], < g (10
12

ortLt /
ol 4.47
+ 2 + tt) ( )

Combining [4:4F7) with[{4:38), and noticing tHatandc; are all positive lead to

H [g’(a(@,xt)r ) <G (4.48)
:>g’j<0(ﬁ),xt) <c¢, j=1,...,m (4.49)
= g <G(E‘>,xt) <0, j=1,...,m (4.50)

where the last inequality implies that®) is a feasible solution of problen (4]10)=(4.12), due to
G < minj—g,_m{—0; (U, %)} O
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4.4.3 Closed-loop stability

Proposition 4.4.2 Suppose Assumptions 4]14.3,4.2.5, and ¥%.2.7 hold. Then the so]ﬁﬁ?oguener-
ated by Algorithni 4.3]2 satisfies the following inequality:

Fu,x) < F(ue 1% 1), WteZ, (4.51)

Proof: Using [Z.3B) and{4:34), and noting thaf) = 0, we obtain:

_ (O)H a L/2
f(ﬂ“‘t), ) < gy 1K Tt g <4 4.52
%) <4ty tas A (4.52)

Notice thatu, is also a feasible solution df (ZJ19)—(41.21) (due to the way we construtigtitened
problem: u; still belongs to the interior of the tightened constraint set), whileis the optimal cost
value of this problem. As a consequence,

fi < f(ue,x) (4.53)

Combining [4.5R),[(4.33), an@{4]14), and noting that 0 leads to:
f(ut,xt) < f(ut,]_,Xt,l), Vvt e Z+ (4.54)
]

Note that besides the decreasing propertf(of, X ), all the other conditions for Lyapunov stabil-
ity of MPC [16] are satisfied. Therefore, Proposition 4.4.2 leads to clasmaMPC stability, where
the cost functiorf (u, % ) is a Lyapunov candidate function.

4.5 Realization of the assumptions

In this section, we discuss the way to update the Slater vector and the aunstran bound for each
time step, implying that Assumptiohs 4.2.3 &nd 4.2.7 are only necessary in therfestep { = 0).

4.5.1 Updating the Slater vector

Lemma 4.5.1 Suppose Assumptibn 4.2.2 holds. Uydie the solution of the MPC proble@.3)-(4.9)
at time step t, computed by Algoritfim 4]3.2. Thien constructed by shifting; one step ahead and
addingl, n = KX N, is a Slater vector for constrairfd.11)at time step t- 1.

Proof: Note that based on Propositimmi@ is a feasible solution of problerh (4]10)=(4.12).
Moreover, the strict inequality {4.50) means thét) is in the interior of the constraint set ¢f {#.3)—
@.9). This also yields:

XN € int(.27) (4.55)

Moreover, due to Assumptign 4.2.2, we have+ BK)x N € int(.2t). This means that if we use
Ui n = KX N, then the next state is also in the interior of the terminal constrainZgselNote thatZ
and.Z" do not change when problein (4.3)=(4.9) is shifted ftamt + 1, hence all the inputs af 1
and their subsequent states are in the interior of the correspondinaionsets. Thereforél;, 1 as
constructed at step 5 of Algorithm 4.B.2 is a Slater vector for the constfaldt)(at time step+ 1.0J

This means we can usg,; = {i; .1 as the qualifying Slater vector for Assumption 412.3 at time
stept + 1.
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4.5.2 Updating the constraint norm bound

In our general problem setupg(u, x) is composed of affine functions ovarandx, and thus can be
written compactly as

g(u,X) ==x+0Ou+T1 (4.56)
with constant matrices, © and vectorr. Then for eachx;_1, X, andu € Q, the following holds:

g(u, %) = g(u,%-1) + =(% —X%—_1)
= [lg(u, %) [l2 < |9(U, Xe-1) [l2 + (% — %-1) |2 (4.57)

In order to find a bound; for g(u,x ) in eacht > 1 step, we assume to have the constraint norm
bound available from the previous step:

Li—1 > ||9(u,%—1)||2,Vu € Q (4.58)
Hence, combining the above inequalities a norm bound updatgox;) can be obtained as:

L = Li—1+ [|2(% —%—1)]|2 (4.59)

4.6 Conclusions

We have presented a constraint tightening approach for solving an M&@ization problem with
guaranteed feasibility and stability after a finite number of iterations. The ndivoahés applicable
to large-scale systems with coupling in dynamics and constraints, and the satubased on ap-
proximate subgradient and Jacobi iterative methods, which facilitate impletioertaa hierarchical
or distributed way. Future extensions of this scheme inclugesteriorichoice of the solution by
comparing the cost functions associated with the Slater vegtand the primal averagg® in a
distributed way.

4.7 Appendix

4.7.1 Proof of the upper bound on the cost functior{d.33)

This proof is an extension of the proof of Proposition 3(b)(inl [14], the ndlifference being the
incorporation of the suboptimalits in the update of the primal variable (4]129).
Using the convexity of the cost function, we have:

f(())—f<1ij ) 1k1f o)

1k 1 lkfl
=i 2 (U @TgW) - 5 u)'gu?) (4.60)
|=

Note that” (u), u)) = <f(u('))+g’(u('))Tu(l)> and

£ (W "y <ming’ (W u®) + & =d (V) + &,

ueQ
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VI <k (4.61)
Combining the two inequalities above, we then have:
1S Mo (u®
~ = /
(a _k%q )+ & k (1) g(u)
k-1
<q +&— k (uMTd® (4.62)
whered!) = ¢/(u("), and the last inequality is due ¢§" > o (1)), V.
Using the expression of squared sum:
I < a4+ odD 3
= V15 + 20 ()T + | od 13 (4.63)
we have:
1
A0 < o (10 - I B+ ol ) (4.6

forl =0,...,k—1.
Summing side by side fdr=0,...,k— 1, we get:

k—1
_ INTgh) <« — 11y K12
5 (17" <o (111 3)
+ 85 1002 (4.65)
2 2,412
Linking (4.62) and[(4.65), we then have:

1
() <q' +at g Qm nﬁww“wﬁ

+ﬁk7 Hd(I)HZ

k2,

@2 | aly?
< )
<o+ ka +—5-ta (4.66)

in which we get the last inequality by usihg as the norm bound for aff (u)),1 =0,... k—1.
Finally, with the Slater condition, there is no primal-dual gap,d&é= f* (cf. (4.23)), hence:

(0)”2 ARG
£y < g M ikt
O =t + e T2

+ &
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4.7.2 Proof of the convergence result of the Jacobi iteratio(Proposition[4.3.4)

According to Proposition 3.10 in [15, Chapter 3], the Jacobi algorithmaHaear convergence w.r.t.
the block-maximum norm, as defined below:

Definition 4.7.1 For each vector x= [xI,...,x};] with % € R", given a norm|| - ||; for each i, the
block-maximum norm based ¢gn||; is defined as:

[]]b-m = max | (4.67)

Definition 4.7.2 With any matrix Ac R"*"  we associate the induced matrix norm of the block-
maximum norm:

AX|[i
Al = max|| li _ max || AX||; (4.68)
x#0 [IX[[j [xil=1

In this paper, we use the Euclidean norm as the default basis for blocikamma norm, i.e |- ||i =
I+ |l2. .

Proposition 3.10 in[15, Chapter 3] states thép) generated by (4.31) will converge to the opti-
mizer of #’(u,x) with linear convergence rate w.r.t. block-maximum norm (jl@(p) — u*||p-m <
@P||u(0) — u*||p-m, With u* = argmin, .Z’(u,x) andg € [0, 1)) if there exists a positive scalgrsuch
that the mappingR: Q — R™, defined byR(u) = u— y1,-¢’(u,X), is a contraction w.r.t. the block-
maximum norm.

Our focus now is to derive the condition such tRétl) is a contraction mapping.

Note that sincef (u,x ) is a quadratic function, and(u,x) contains only linear functions, the
function.Z’(u, x) is also a quadratic function w.ri, hence it can be written as:

Z'(u, %) =u"Hu+b"u+c (4.69)

whereH is a symmetric, positive definite matrilg,is a constant vector arwlis a constant scalar.

In order to derive the condition fd®(u) to be a contraction mapping, we will make use of Propo-
sition 1.10 in[[15, Chapter 3], stating that:

If f:R%— R™ is continuously differentiable and there exists a scalar[0,1) such that

I —yG (DR (u) " [li + ;rveil(DjF.w))Tnu <o,
J#I
Yu e Q. Vi (4.70)
then the mapping : Q — R™ defined with each componeint {1,...,M} by Ti(u) = u; — yG; *F (u)
is a contraction with respect to the block-maximum norm.
The mappind (u) will become the mappinB(u) if we takeG; = 1", Vi andF (u) = 0,.%" (u, %) =

2Hu + b. With such choice, and evaluating the induced matrix ndrm4.68) inl(4.7®)dhdition
for contraction mapping dR(u) is to find @ € [0, 1) such that:

I~ 2+ 3 2l < . (@.71)
1Bl
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whereH;; with i, j € {1,...,M} denotes the submatrix &f, containing entries at rows belonging to
subsystennand columns belonging to subsyst¢éniNote that the matrix inside the first induced matrix
norm is a square, symmetric matrix, while the matriggsare generally not symmetric, depending on
the number of variables of each subsystem. The sgadg0, 1) is also the modulus of the contraction.

Using the properties of eigenvalue and singular value of matrices, weédren@.71) into the
following inequality:

mAax|2y/\(Hii)—1\+2y§5(Hij) < @,Yi (4.72)
J#I

whereA means eigenvalue, amddenotes the maximum singular value.
In order to findy > 0 andg € [0, 1) satisfying [4.7R), we need:

mAa>42y)\(Hii) —1 +2y§5(Hij) < 1,vi (4.73)
k&l
{ 2yAmax(Hii) =142y i 0(Hij) <1
1—2VAmin(Hii)+2VZj7&i o(Hij) <1’

y<1/ ()\max(Hii)j' Y i#i E(Hij)) i
{:){ Amin(Hii) > ¥ j4i U(Hi;) ! )

vi (4.74)

The first inequality of[(4.75) shows how to choggeavhile the second inequality df (4]75) needs
to be satisfied by the problem structure, which implies therenaak dynamical couplingsetween
subsystems.

In summary, the mappinB(u) satisfies[(4.70) and thus is a contraction mapping if the following
conditions hold:

1. For alli;

Amin(Hii) o(Hij) (4.76)
> ;o i

2. The coefficieny is chosen such that:

1

V= K Fi) + 3 2 0 (F )

Vi (4.77)
So, when conditior {4.76) is satisfied and wjitbhosen by[(4.77), we can defiges (0,1) as:
J#I

1—2y()\min(Hn)—;U(Hij))}} (4.78)

This @ is the modulus of the contractid®(u), and also acts as the coefficient of the linear conver-
gence rate of the Jacobi iteratién (4.31), which means:
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lu(p) —u*lo-m < ¢|u(0) ~U"[lpm,  ¥P>1 (4.79)
whereu* = argmin,cq -2’ (U, %).

Note that the closer ap to 0, the faster the aggregate updat@) converges to the optimizer of
the Lagrange function.

In order to get the convergence rate w.r.t. the Euclidean norm, we will teeédk from the
Euclidean norm to the block-maximum norm:

M . .
[IX]l2 < lelx' l2 < Mmax][x |2 = M|[x][b-m (4.80)
i=

Hence, the convergence rate of Jacobi iterafion {4.31) w.r.t. the Euclidean is:

lu(p) —u*[l2 < M@Pmax|ju'(0) — u'*||2, Vp>1 (4.81)
1
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