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Executive Summary

In this report we give an overview of the methods that can be used irstralstributed MPC
The literature on this subject is limited but we show how some methods fromtrbiRE and
distributed optimization can be combined to obtain new distributed robust MRnssh
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Chapter 1

Introduction

In this chapter we review the basics of standard and robust MPC.

1.1 Model predictive control

Consider a system described by the difference equation
XH,]_:(,U(Xt,Ut), t=012,... (11)

wheret, x € R" andu; € R™ represents the time, state and input, respectively. For a given initial
conditionxo, we consider the optimal control problem (OCP) of finding a control sege{u };* ,
that minimizes the cost

b (%, W), (1.2)
2
subject to the constraints

x€eZ and we%, Vt=012.... (1.3)

This problem is in general hard to solve due to the fact that the contriaidmois infinite. MPC solves
this problem by solving iteratively a finite horizon approximation of this OCR ifethod can be
summarized as follows

1. Choose a prediction horizadh
2. Measure the current value of the state

3. Solve the optimization problem

min XOwuXN thzogt(Xtaut)

S.t. Xo =X
X+1= @, W) vt=0,...,N—1 (1.4)
€2 vt=0,...,N
wew vt=0,...,.N—-1
4. Apply the computed value of the inpu;
5. Goto step (2).
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Before proceeding with the illustration of robust MPC we should underlimeitwportant facts.

e Applying MPC gives exactly the same result that we would obtain using thieatatrerived
with dynamic programming applied to the finite horizon approximation of the orig@i@#. The
advantage of MPC lies in the fact it requires the solution of the finite dimerisiptianization
problem|(1.4), while dynamic programming requires the solution of a probleithvis usually
infinite dimensional.

e MPC easily deals with state and input constraints in a seamless way. This desstitbig
advantage with respect to many other control techniques.

Remark 1 The OCP considered and the MPC algorithm presented are basic. However, by modifying
problem (1.4), we can obtain better MPC formulations which can guarantee constraint satisfaction
and stability (see, e.g., the survey [16]).

1.2 Robust model predictive control

In practical control applications the system dynamics is not always kreswactly. To model this fact
we can add to the system model the uncertamty RP:

XtJr]_:@(Xt,U[,Wt), t=0,12,... (15)

The uncertainty is assumed to take values in a compa®'setRP.

In the optimization context it has been shown that little uncertainties in the pratdtacan cause
a significant violation of the constraints (see [1] and the referencesimel herefore, including the
information about the uncertainty in the design of the input sequenfa® }:—o_. n—1 iS of paramount
importance for the MPC framework.

There are several papers dealing with robust versions of MPC. éguat of the methods in the
literature can be found in the books [14, 6, 19]. The easiest appradith is commonly referred to
asopen-loop MPC, can be seen as a minor modification to the algorithm presented for certmsys
in Section 1.1. In open-loop MPC, one identifies a nominal system dynamics

)~(t+1:(P()?t,Ut):§0()ztaUtaW), t:071727"" (16)

obtained for specific value of the uncertainty="%". The cost function is then minimized for the
nominal trajectory{% }t—o_.. n—1, While the state and input constraints are satisfied for every possible
uncertainty sequenc@m }i—o,.. N—1 € #. Some of the early results on robustness of nominal open-
loop MPC can be found in [7, 22, 15]. A good survey about this suliggdas].

A significant drawback of open-loop MPC is that the choice of the cos&rqlience is suboptimal
and results in poor performance. This is due to the fact that this method'ti@d® into account the
fact that the real state is measured for every valueanfd this allows to counteract the effect of the
uncertainty. This is also the reason why open-loop MPC and dynamicgmuging are not equivalent
when the system is uncertain.

To overcome the limitations of open-loop MPC, we can modify the optimization probtdved
online such that we do not determine a control sequence but a seqofecoetrol policies. The
methodology obtained can be referred tofeslback MPC [10, 13, 21]. It is important noticing
that there is a fundamental difference between calculating a classidalfgecontrol law and using
feedback MPC. While in the former we look for a control law which assignsput value toevery
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admissible state, in the latter we are interested in a control law which is defihefbothe states on
the trajectories that originated from the initial condition and correspond tmaertainty sequence
{W }t—0...n—1 € # . In other words, assuming that we can keep the real trajectory of ttensyéose
to the nominal trajectory, we want to find a control law which assigns an igue only for the
states in a neighborhood of the nominal trajectory. This is the reason whikesneedback MPC
more interesting from a computational point of view.

Although feedback MPC can be seen as a more viable alternative to cléssiizack control, the
optimization problem which should be solved iteratively inside the MPC loop is stifipuitationally
prohibitive. In fact, optimizing over (local) control policies is in generaliafinite dimensional
optimization problem. In practice, a common approach is to use a parametrizatioe control
policy around the nominal trajectory. Although this may be restrictive, thishawn to perform well
in practice.

In the next subsection we illustrate the basics of feedback MPC for linsterag with additive
uncertainty.

1.2.1 Feedback MPC for linear systems with additive uncertaity

Consider the uncertain system
X1 = A% + Bug +w 1.7)

where the state and uncertainty vectors are assumed to have the same dipfeasid™ " andB e
R"™M are the state and input matrices. We assume that the uncertait#yisetompact and contains
the origin.

Since Oc 7, we can define the nominal trajectory as

%41 = A% + Bl (1.8)

wherel is the nominal input. Defining the state ermgr= x — X and u; = u; — G; we obtain the
following equation

X1 =%t+1+ 6411 =A%+ &)+ B(G + G) +w (1.9)
and therefore
&1 = Ae + Bl +w. (1.10)

Thanks to the system linearity and the additivity of the uncertainty the evolufiéh and g can

be seen as independent and we can calculate the input compopemd Ui so that we obtain a
good nominal trajectory with the former and we minimize the effect of the uringrtaith the latter.
Since the value o¥y is unknown a priory, in order to minimize the effect\wf, we cannot use an
open-loop input sequendgk }t—o_.n—1 but we need to compute a sequence of feedback controls
G: = (&). As we have already mentioned above, optimizing over generic feedbaskidanot
computationally tractable and since the system is linear, a good compromise Istbe of linear
feedbacku = K;g. Unfortunately, also after this simplification the optimization problem to be solved
can be computationally too demanding (the number of variables correspdodhgymatrice; are

nx mx N) and in practice it is easier to precompute only one gain matrigsee [8] for another
interesting approach). In this case, the dynamics governing theegisor

a1 = (A+BK)e+w. (1.11)

If K is chosen such that the spectral radiug\ef BK is smaller than 1, there exists a bounded&et
such thatg € & vVt (this is due to the fact that the uncertainty %étis bounded). The sef is said to
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robustly invariant for the system (1.11) (for the details on the computatitm$et see the book [5]
and the references therein). Since @, it follows that Oc &.
Define the following set operationg{ C R" and% C R"):

e set addition
Yo% ={y+zlye % andze Z}; (1.12)

e set subtraction
Yo ={xeR"\xaZ C¥}. (1.13)

Sinceg € & Vvt and the dynamics of the system (1.7), it easy to conclude that the trajectory
{X }t=0,..N is such thak € X& & for allt =0,...,N. In other words, the real trajectory is contained
in a tube centered around the nominal trajectory (the concept of tubestrolcwas introduced in
[2, 3]). We can therefore state that if the nominal trajectory is such that

fe2o0& Ww=0,...N (1.14)

then the real trajectory satisfies the state constrqiat.2” vt = 0,...,N. Also the input constraint
W € % can be rephrased in terms of the nominal input ~

ke %cKE Yt=0,...N (1.15)

whereK& = {Ke| e € &}. Therefore, to obtain a robust MPC method we can solve online the same
optimization problem (1.4) where we substitute the real trajectory and inguésee with the nominal
one. The constraint set®” ans? should be substituted with the sets© & and% © K& which can

be computed offline.

1.2.2 Feedback MPC for general uncertain systems

In the previous subsection we have seen how a feedback MPC algoutiinecused to deal with
the robust control of linear systems with additive uncertainty. It is importatiting that robustness
with respect to constraint satisfaction has been obtained without reqtheéngnline solution of an
optimization problem which is more difficult than the one that should be solvatidsame system if
there was no uncertainty. This technique base on tubes can be extéswitdaiher kinds of systems.
The interested reader is referred to [19, Chapter 3], for a detailed dtigstrof feedback MPC with
tubes for nonlinear systems and linear systems with parametric uncertaintgdtheds in the book
are based on [11, 17]).
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Chapter 2

Robust distributed MPC

In the previous chapter we have illustrated some basic concepts of stardhrobust MPC. In this
chapter we consider networked systems and we discuss how robust&iRe decentralized to cope
with these systems.

2.1 Networked systems

Consider an uncertain networked system composel¥ hgterconnected subsystems each one de-
scribed by a difference equation of the form

)(Ltl:(pi(xtjvu'[javvj;je%% t:07172>"' (21)

wherex; € R™, ul ¢ R™ andw € RP represent the state, the input and the uncertainty of the subsystem
i attimet. We assume that, takes values in the compact ¢t ¢ RP.. The index set# contains the
indexi and all the indices of the subsystems which interact with the subsyst@omsider for example

the networked system in Figure 2.1 where the arrows indicate interactiordettie subsystems

Figure 2.1: An example of networked systems.

31,%2,%3,%4. If we consideiz, we have #4 = {3,4} and therefore

Xt = @' 08, U wh). 2.2)
Denote byx andy; the state and the input of the centralized system:
T T T T

xt:[xtl L } , ut:[utl T } . (2.3)

Denote byy > o4t (%, Ut) the cost which should be minimized in the given optimal control problem
and byx, € 2" andu € % the constraints on the state and input vectors. Depending on the problem
considered we can have different notions of separability:
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(%, ) = Zf{(x{,U{): (2.4)

.....

xe€Z) = (e Vvi=1,. M) (2.5)
where 2" C R":
e the constraint se¥ is separable if there exist family of se{t@/‘}izlw’M such that
(We?%) — (Uex' Yi=1...,M) (2.6)
whereZ/! C R",

It is clear that when the subsystem dynamics are decouplet= {i}) and the cost and the
constraint sets are separable, the centralized MPC problem can trivealyrghbosed and solved sep-
arately. In the next section we shall consider problems where there is smmpéng between the
subsystems.

2.2 Robust distributed MPC for networked systems

The scientific literature on robust distributes MPC is quite limited. This can blaiexgl by the fact
that the interest in distributed MPC is quite recent and robust distributed Mp@sents a second
step in this direction. Another possible reason is that robust optimizationésajnquite demanding
from a computational point of view and, therefore, the time constraints éooifine implementation
of the algorithms can be too restrictive in practice. However, first attemptspe with robust dis-
tributed MPC can be found in the literature. In [9] a distributes scheme is @otaising min-max
optimization. [20] exploits a constraint tightening procedure to take into atewfithe coupling be-
tween the subsystems. In [24] robust MPC based on tubes is extendemvtirked systems. In [18],
subsystem couplings are considered as additional uncertainties anddrgtate stability is investi-
gated.

Although the literature on robust distributed MPC is limited, it should be noticedstime meth-
ods derived for robust centralized MPC can be seamlessly combined igfitiioated optimizations
techniques and used for the control of networked systems. In the fotjosuibsection we will con-
sider two classes of OCP where we can extend the feedback MPC frakneaabtain a distributed
control algorithm.

2.2.1 Linear subsystems with additive uncertainty sharing a&ommon resource
Consider a system composed of two subsystems with decoupled dynamics:
o= A B R = AR B e @7)

Assume the cost and the input constraint®&etre separable and that the state constrainZSetan

be written as
X = (X% 22 n{(xx)|GX +G*%* < h} (2.8)
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This situation can be easily found in practical situations when two or morg/siginss share a com-
mon resource By introducing a slack variablgwe can separate the séf with respect to the state
vectors of the two subsystems:

2 = (2 %G <h—y}) x (220 |GHE < y}) (2.9)

For a fixed value off we can observe that the centralized OCP can be separated in two completely in
dependent problems which can be solved using tube MPC. Using the statiemased in Subsection
1.2.1, in order to satisfy the state constraints, the nominal trajectories must gaisonstraints

e (2txn{xGx <h-y})ost (2.10)

and
2 e (22N |G < y}) o &? (2.11)

where&! and&? correspond to the set for the two subsystems.

Denote byp'(y) and@?(y) the optimal cost associated to the optimization problem to be solved
online when implementing tube MPC for the two subproblems for a fixed valye of

To obtain a distributed tube MPC scheme, we can solve at every MPC iteraéidolbwing
master problem

min oY)+ @*(y) . (2.12)
A solution of problem|(2.12) can be obtained using a subgradient method
Yir1 = Y — OOk (2.13)

whereay is the step size angk is the the subgradient @f' (y) + @?(y). A value ofgy can be calculated
solving in parallel the optimization subproblems and using the sensitivities watitained from the
Lagrange multipliers.

The method we obtained can be seen as an application of the primal deconmpositimd (also
known as resource allocation) [23] to tube MPC.

2.2.2 Cascaded linear subsystems with additive uncertaint

Consider two subsystems interconnected like in Figure 2.2.

(=)

Figure 2.2: An example of cascaded subsystems.
Assume the subsystem dynamics are
)t =AN +BM +wE and  xE ;= ABC 4+ BUZ 4+ X+ wE. (2.14)

wherew! andw? belong the the compact se#s! and#? (0 € #'* and 0c #?). If we apply the
same procedure of Subsection 1.2.1 to the first subsystem, we can writatthe asx' = % + e

1We can use the same method illustrated in the sequel to consider also thehesed” is not separable but can be
written in a form similar tof(2.8).
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(% is the nominal state of the first subsystem ahdepresents the error). Splitting the input vector
ut into two componentsiiandu} and using the second to minimizg, we can guarantee thet is
contained inside the bounded s&t

The dynamics of the second subsystem can by then written as

Xy = A B +CR +Cel +wf (2.15)
= A+ B2+ CR 4+ WP ' '
We can now writex? = % + & and u? = 02 + U2 where the nominal stat& is governed by the
difference equation
%2, 1 = A%+ B2 +C& (2.16)

and the errog? is governed by the difference equation
€., = A%el + B?U2 +W2. (2.17)

Sincew? belongs to the bounded s&t? & C&2, if the matrix pair(A2, B?) is controllable, we can
design a feedback contraf = K2€? such tha&? € &2, where&? is a bounded set.

If the cost and the constraint sets are separable, the optimization problenstdved in the tube
MPC iterations can be easily distributed among the subsystems using dualpieition (see [12, 4]
for a detailed description of this optimization method).

Remark 2 Fromthe example considered in this subsection we can notice that if the coupling between
the subsystems is due to an interaction between the dynamics (i.e. for some subsystem we have that
/1 does not contain only i), we need to take into account how the uncertainty propagates between the
systems. This can be avoided when the coupling is due to an inegquality constraint between variables
belonging to different subsystems.

2.3 Conclusions

As we have pointed out in the previous section, the literature about rdisisbuted MPC is lim-
ited. However, we have shown how we can combine techniques fronstrt¥ildC and distributed
optimization to obtain new control schemes when the OCPs considered haeeia structure.
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