
SEVENTH FRAMEWORK PROGRAMME
THEME – ICT

[Information and Communication Technologies]

Contract Number: 223854
Project Title: Hierarchical and Distributed Model Predictive Control of Large-

Scale Systems
Project Acronym: HD-MPC

HD−MPC

Deliverable Number: D3.2.1
Deliverable Type: Report
Contractual Date of Delivery: 01/09/2009
Actual Date of Delivery: 28/08/2009
Title of Deliverable: Report on literature survey and analysis

of (optimization) methods for robust dis-
tributed MPC

Dissemination level: Public
Workpackage contributing to the Deliverable: WP3 - WP4
WP Leader: Wolfgang Marquardt - Moritz Diehl
Partners: TUD, POLIMI, RWTH, USE, UNC, UWM,

SUPELEC, KUL
Author(s): Carlo Savorgnan, Moritz Diehl

c© Copyright by the HD-MPC Consortium



HD-MPC ICT-223854 Optimisation methods for robust distributed MPC

Table of contents

Executive Summary 3

1 Introduction 4
1.1 Model predictive control . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . 4
1.2 Robust model predictive control . . . . . . . . . . . . . . . . . . . . . . . . .. . . 5

1.2.1 Feedback MPC for linear systems with additive uncertainty . . . . . . . . .6
1.2.2 Feedback MPC for general uncertain systems . . . . . . . . . . . . . . .. . 7

2 Robust distributed MPC 8
2.1 Networked systems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
2.2 Robust distributed MPC for networked systems . . . . . . . . . . . . . . . . .. . . 9

2.2.1 Linear subsystems with additive uncertainty sharing a common resource. . . 9
2.2.2 Cascaded linear subsystems with additive uncertainty . . . . . . . . . . . .. 10

2.3 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

Bibliography 12

Page 2/13



HD-MPC ICT-223854 Optimisation methods for robust distributed MPC

Project co-ordinator

Name: Bart De Schutter
Address: Delft Center for Systems and Control

Delft University of Technology
Mekelweg 2, 2628 Delft, The Netherlands

Phone Number: +31-15-2785113
Fax Number: +31-15-2786679

E-mail: b.deschutter@dcsc.tudelft.nl

Project web site: http://www.ict-hd-mpc.eu

Executive Summary

In this report we give an overview of the methods that can be used in robust distributed MPC.
The literature on this subject is limited but we show how some methods from robust MPC and
distributed optimization can be combined to obtain new distributed robust MPC schemes.
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Chapter 1

Introduction

In this chapter we review the basics of standard and robust MPC.

1.1 Model predictive control

Consider a system described by the difference equation

xt+1 = φ(xt ,ut), t = 0,1,2, . . . (1.1)

wheret, xt ∈ R
n andut ∈ R

m represents the time, state and input, respectively. For a given initial
condition x̄0, we consider the optimal control problem (OCP) of finding a control sequence{ut}

∞
t=0

that minimizes the cost
∞

∑
t=0

ℓt(xt ,ut), (1.2)

subject to the constraints

xt ∈ X and ut ∈ U , ∀t = 0,1,2, . . . . (1.3)

This problem is in general hard to solve due to the fact that the control horizon is infinite. MPC solves
this problem by solving iteratively a finite horizon approximation of this OCP. The method can be
summarized as follows

1. Choose a prediction horizonN;

2. Measure the current value of the state ¯x;

3. Solve the optimization problem

min x0,...,xN
u0,...,uN−1

∑N
t=0ℓt(xt ,ut)

s.t. x0 = x̄
xt+1 = φ(xt ,ut) ∀t = 0, . . . ,N −1
xt ∈ X ∀t = 0, . . . ,N
ut ∈ U ∀t = 0, . . . ,N −1

(1.4)

4. Apply the computed value of the inputu0;

5. Go to step (2).
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Before proceeding with the illustration of robust MPC we should underline two important facts.

• Applying MPC gives exactly the same result that we would obtain using the control derived
with dynamic programming applied to the finite horizon approximation of the originalOCP. The
advantage of MPC lies in the fact it requires the solution of the finite dimensional optimization
problem (1.4), while dynamic programming requires the solution of a problem which is usually
infinite dimensional.

• MPC easily deals with state and input constraints in a seamless way. This constitutes a big
advantage with respect to many other control techniques.

Remark 1 The OCP considered and the MPC algorithm presented are basic. However, by modifying
problem (1.4), we can obtain better MPC formulations which can guarantee constraint satisfaction
and stability (see, e.g., the survey [16]).

1.2 Robust model predictive control

In practical control applications the system dynamics is not always knownexactly. To model this fact
we can add to the system model the uncertaintyw ∈ R

p:

xt+1 = φ(xt ,ut ,wt), t = 0,1,2, . . . (1.5)

The uncertainty is assumed to take values in a compact setW ⊂ R
p.

In the optimization context it has been shown that little uncertainties in the problemdata can cause
a significant violation of the constraints (see [1] and the references therein). Therefore, including the
information about the uncertaintywt in the design of the input sequence{ut}t=0,...,N−1 is of paramount
importance for the MPC framework.

There are several papers dealing with robust versions of MPC. An account of the methods in the
literature can be found in the books [14, 6, 19]. The easiest approach, which is commonly referred to
asopen-loop MPC, can be seen as a minor modification to the algorithm presented for certain systems
in Section 1.1. In open-loop MPC, one identifies a nominal system dynamics

x̃t+1 = φ̃(x̃t ,ut) = φ(x̃t ,ut , w̃), t = 0,1,2, . . . . (1.6)

obtained for specific value of the uncertainty ˜w ∈ W . The cost function is then minimized for the
nominal trajectory{x̃t}t=0,...,N−1, while the state and input constraints are satisfied for every possible
uncertainty sequence{wt}t=0,...,N−1 ∈ W . Some of the early results on robustness of nominal open-
loop MPC can be found in [7, 22, 15]. A good survey about this subjectis [16].

A significant drawback of open-loop MPC is that the choice of the controlsequence is suboptimal
and results in poor performance. This is due to the fact that this method doesn’t take into account the
fact that the real state is measured for every value oft and this allows to counteract the effect of the
uncertainty. This is also the reason why open-loop MPC and dynamic programming are not equivalent
when the system is uncertain.

To overcome the limitations of open-loop MPC, we can modify the optimization problem solved
online such that we do not determine a control sequence but a sequenceof control policies. The
methodology obtained can be referred to asfeedback MPC [10, 13, 21]. It is important noticing
that there is a fundamental difference between calculating a classical feedback control law and using
feedback MPC. While in the former we look for a control law which assigns an input value toevery
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admissible state, in the latter we are interested in a control law which is defined only for the states on
the trajectories that originated from the initial condition and correspond to anuncertainty sequence
{wt}t=0,...,N−1 ∈ W . In other words, assuming that we can keep the real trajectory of the system close
to the nominal trajectory, we want to find a control law which assigns an inputvalue only for the
states in a neighborhood of the nominal trajectory. This is the reason which makes feedback MPC
more interesting from a computational point of view.

Although feedback MPC can be seen as a more viable alternative to classical feedback control, the
optimization problem which should be solved iteratively inside the MPC loop is still computationally
prohibitive. In fact, optimizing over (local) control policies is in general aninfinite dimensional
optimization problem. In practice, a common approach is to use a parametrization of the control
policy around the nominal trajectory. Although this may be restrictive, this hasshown to perform well
in practice.

In the next subsection we illustrate the basics of feedback MPC for linear systems with additive
uncertainty.

1.2.1 Feedback MPC for linear systems with additive uncertainty

Consider the uncertain system
xt+1 = Axt +But +wt (1.7)

where the state and uncertainty vectors are assumed to have the same dimension, A ∈ R
n×n andB ∈

R
n×m are the state and input matrices. We assume that the uncertainty setW is compact and contains

the origin.
Since 0∈ W , we can define the nominal trajectory as

x̃t+1 = Ax̃t +Bũt (1.8)

where ˜ut is the nominal input. Defining the state erroret = xt − x̃ and ût = ut − ũt we obtain the
following equation

xt+1 = x̃t+1 + et+1 = A(x̃t + et)+B(ũt + ût)+wt (1.9)

and therefore
et+1 = Aet +Bût +wt . (1.10)

Thanks to the system linearity and the additivity of the uncertainty the evolution of x̃t and et can
be seen as independent and we can calculate the input components ˜ut and ût so that we obtain a
good nominal trajectory with the former and we minimize the effect of the uncertainty with the latter.
Since the value ofwt is unknown a priory, in order to minimize the effect ofwt , we cannot use an
open-loop input sequence{ût}t=0,...,N−1 but we need to compute a sequence of feedback controls
ût = γt(et). As we have already mentioned above, optimizing over generic feedback laws is not
computationally tractable and since the system is linear, a good compromise is the choice of linear
feedback ˆut = Ktet . Unfortunately, also after this simplification the optimization problem to be solved
can be computationally too demanding (the number of variables correspondingto the matricesKt are
n×m×N) and in practice it is easier to precompute only one gain matrixK (see [8] for another
interesting approach). In this case, the dynamics governing the erroret is

et+1 = (A+BK)e+wt . (1.11)

If K is chosen such that the spectral radius ofA + BK is smaller than 1, there exists a bounded setE

such thatet ∈ E ∀t (this is due to the fact that the uncertainty setW is bounded). The setE is said to
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robustly invariant for the system (1.11) (for the details on the computation ofthis set see the book [5]
and the references therein). Since 0∈ W , it follows that 0∈ E .

Define the following set operations (Z ⊆ R
n andY ⊆ R

n):

• set addition
Y ⊕Z := {y+ z| y ∈ Y andz ∈ Z }; (1.12)

• set subtraction
Y ⊖Z := {x ∈ R

n| x⊕Z ⊆ Y }. (1.13)

Sinceet ∈ E ∀t and the dynamics of the system (1.7), it easy to conclude that the trajectory
{xt}t=0,...,N is such thatxt ∈ x̃⊕E for all t = 0, . . . ,N. In other words, the real trajectory is contained
in a tube centered around the nominal trajectory (the concept of tubes in control was introduced in
[2, 3]). We can therefore state that if the nominal trajectory is such that

x̃t ∈ X ⊖E ∀t = 0, . . . ,N (1.14)

then the real trajectory satisfies the state constraintxt ∈ X ∀t = 0, . . . ,N. Also the input constraint
ut ∈ U can be rephrased in terms of the nominal input ˜u:

ũt ∈ U ⊖KE ∀t = 0, . . . ,N (1.15)

whereKE = {Ke| e ∈ E }. Therefore, to obtain a robust MPC method we can solve online the same
optimization problem (1.4) where we substitute the real trajectory and input sequence with the nominal
one. The constraint setsX ansU should be substituted with the setsX ⊖E andU ⊖KE which can
be computed offline.

1.2.2 Feedback MPC for general uncertain systems

In the previous subsection we have seen how a feedback MPC algorithm can be used to deal with
the robust control of linear systems with additive uncertainty. It is important noticing that robustness
with respect to constraint satisfaction has been obtained without requiringthe online solution of an
optimization problem which is more difficult than the one that should be solved for the same system if
there was no uncertainty. This technique base on tubes can be extended also to other kinds of systems.
The interested reader is referred to [19, Chapter 3], for a detailed illustration of feedback MPC with
tubes for nonlinear systems and linear systems with parametric uncertainty (themethods in the book
are based on [11, 17]).
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Chapter 2

Robust distributed MPC

In the previous chapter we have illustrated some basic concepts of standard and robust MPC. In this
chapter we consider networked systems and we discuss how robust MPCcan be decentralized to cope
with these systems.

2.1 Networked systems

Consider an uncertain networked system composed byM interconnected subsystems each one de-
scribed by a difference equation of the form

xi
t+1 = φ i(x j

t ,u
j
t ,w

i
t ; j ∈ Ni), t = 0,1,2, . . . (2.1)

wherexi
t ∈R

ni , ui
t ∈R

mi andwi
t ∈R

pi represent the state, the input and the uncertainty of the subsystem
i at timet. We assume thatwi

t takes values in the compact setW i ⊂R
pi . The index setN i contains the

indexi and all the indices of the subsystems which interact with the subsystemi. Consider for example
the networked system in Figure 2.1 where the arrows indicate interaction between the subsystems

Σ1

Σ2

Σ3
Σ4

Figure 2.1: An example of networked systems.

Σ1,Σ2,Σ3,Σ4. If we considerΣ4 we haveN 4 = {3,4} and therefore

x4
t+1 = φ4(x3

t ,x
4
t ,u

3
t ,u

4
t ,w

4
t ). (2.2)

Denote byxt andut the state and the input of the centralized system:

xt =
[

x1
t

T
. . . xM

t
T
]T

, ut =
[

u1
t

T
. . . uM

t
T
]T

. (2.3)

Denote by∑∞
t=0ℓt(xt ,ut) the cost which should be minimized in the given optimal control problem

and byxt ∈ X andut ∈ U the constraints on the state and input vectors. Depending on the problem
considered we can have different notions of separability:

Page 8/13



HD-MPC ICT-223854 Optimisation methods for robust distributed MPC

• the cost is separable if there exist a family of functions{ℓi
t(·, ·)}i=1,...,M such that

ℓt(xt ,ut) =
M

∑
i=1

ℓi
t(x

i
t ,u

i
t); (2.4)

• the constraint setX is separable if there exist family of sets{X i}i=1,...,M such that

(xt ∈ X ) ⇐⇒ (xi
t ∈ X

i ∀i = 1, . . . ,M) (2.5)

whereX i ⊆ R
ni ;

• the constraint setU is separable if there exist family of sets{U i}i=1,...,M such that

(ut ∈ U ) ⇐⇒ (ui
t ∈ U

i ∀i = 1, . . . ,M) (2.6)

whereU i ⊆ R
ni .

It is clear that when the subsystem dynamics are decoupled (N i = {i}) and the cost and the
constraint sets are separable, the centralized MPC problem can trivially decomposed and solved sep-
arately. In the next section we shall consider problems where there is somecoupling between the
subsystems.

2.2 Robust distributed MPC for networked systems

The scientific literature on robust distributes MPC is quite limited. This can be explained by the fact
that the interest in distributed MPC is quite recent and robust distributed MPCrepresents a second
step in this direction. Another possible reason is that robust optimization is generally quite demanding
from a computational point of view and, therefore, the time constraints for the online implementation
of the algorithms can be too restrictive in practice. However, first attempts to cope with robust dis-
tributed MPC can be found in the literature. In [9] a distributes scheme is obtained using min-max
optimization. [20] exploits a constraint tightening procedure to take into account of the coupling be-
tween the subsystems. In [24] robust MPC based on tubes is extended to networked systems. In [18],
subsystem couplings are considered as additional uncertainties and input to state stability is investi-
gated.

Although the literature on robust distributed MPC is limited, it should be noticed that some meth-
ods derived for robust centralized MPC can be seamlessly combined with distributed optimizations
techniques and used for the control of networked systems. In the following subsection we will con-
sider two classes of OCP where we can extend the feedback MPC framework to obtain a distributed
control algorithm.

2.2.1 Linear subsystems with additive uncertainty sharing acommon resource

Consider a system composed of two subsystems with decoupled dynamics:

x1
t+1 = A1x1

t +B1u1
t +w1

t x2
t+1 = A2x2

t +B2u2
t +w2

t (2.7)

Assume the cost and the input constraint setU are separable and that the state constraint setX can
be written as

X = (X 1×X
2)∩{(x1,x2)|G1x1 +G2x2 ≤ h} (2.8)
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This situation can be easily found in practical situations when two or more subsystems share a com-
mon resource1. By introducing a slack variableγ we can separate the setX with respect to the state
vectors of the two subsystems:

X =
(

X
1×∩{x1|G1x1 ≤ h− γ}

)

×
(

X
2∩{x2|G2x2 ≤ γ}

)

(2.9)

For a fixed value ofγ we can observe that the centralized OCP can be separated in two completely in-
dependent problems which can be solved using tube MPC. Using the same notation used in Subsection
1.2.1, in order to satisfy the state constraints, the nominal trajectories must satisfy the constraints

x̃1
t ∈

(

X
1×∩{x1|G1x1 ≤ h− γ}

)

⊖E
1 (2.10)

and
x̃2

t ∈
(

X
2∩{x2|G2x2 ≤ γ}

)

⊖E
2 (2.11)

whereE 1 andE 2 correspond to the setE for the two subsystems.
Denote byφ1(γ) andφ2(γ) the optimal cost associated to the optimization problem to be solved

online when implementing tube MPC for the two subproblems for a fixed value ofγ.
To obtain a distributed tube MPC scheme, we can solve at every MPC iteration the following

master problem
min

γ
φ1(γ)+φ2(γ) . (2.12)

A solution of problem (2.12) can be obtained using a subgradient method

γk+1 = γk −αkgk (2.13)

whereαk is the step size andgk is the the subgradient ofφ1(γ)+φ2(γ). A value ofgk can be calculated
solving in parallel the optimization subproblems and using the sensitivities w.r.t.γ obtained from the
Lagrange multipliers.

The method we obtained can be seen as an application of the primal decomposition method (also
known as resource allocation) [23] to tube MPC.

2.2.2 Cascaded linear subsystems with additive uncertainty

Consider two subsystems interconnected like in Figure 2.2.

Σ1 Σ2

Figure 2.2: An example of cascaded subsystems.

Assume the subsystem dynamics are

x1
t+1 = A1x1

t +B1u1
t +w1

t and x2
t+1 = A2x2

t +B2u2
t +Cx1

t +w2
t . (2.14)

wherew1
t andw2

t belong the the compact setsW 1 andW 2 (0 ∈ W 1 and 0∈ W 2). If we apply the
same procedure of Subsection 1.2.1 to the first subsystem, we can write the statex1

t asx1
t = x̃1

t + e1
t

1We can use the same method illustrated in the sequel to consider also the casewhereU is not separable but can be
written in a form similar to (2.8).
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(x̃1
t is the nominal state of the first subsystem ande1

t represents the error). Splitting the input vector
u1

t into two components ˜u1
t andû1

t and using the second to minimizee1
t , we can guarantee thate1

t is
contained inside the bounded setE 1.

The dynamics of the second subsystem can by then written as

x2
t+1 = A2x2

t +B2u2
t +Cx̃1

t +Ce1
t +w2

t
= A2x2

t +B2u2
t +Cx̃1

t + w̄2
t

. (2.15)

We can now writex2
t = x̃2

t + e2
t and u2

t = ũ2
t + ū2

t where the nominal state ˜x2
t is governed by the

difference equation
x̃2

t+1 = A2x̃2
t +B2ũ2

t +Cx̃1
t (2.16)

and the errore2
t is governed by the difference equation

e2
t+1 = A2e2

t +B2ū2
t + w̄2

t . (2.17)

Sincew̄2
t belongs to the bounded setW 2⊕CE 1, if the matrix pair(A2,B2) is controllable, we can

design a feedback control ¯u2
t = K2e2

t such thate2
t ∈ E 2, whereE 2 is a bounded set.

If the cost and the constraint sets are separable, the optimization problem tobe solved in the tube
MPC iterations can be easily distributed among the subsystems using dual decomposition (see [12, 4]
for a detailed description of this optimization method).

Remark 2 From the example considered in this subsection we can notice that if the coupling between
the subsystems is due to an interaction between the dynamics (i.e. for some subsystem we have that
N i does not contain only i), we need to take into account how the uncertainty propagates between the
systems. This can be avoided when the coupling is due to an inequality constraint between variables
belonging to different subsystems.

2.3 Conclusions

As we have pointed out in the previous section, the literature about robustdistributed MPC is lim-
ited. However, we have shown how we can combine techniques from robust MPC and distributed
optimization to obtain new control schemes when the OCPs considered have a special structure.
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