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Executive Summary

This report is split into two parts and thus contains two different aspectdbast distributed MPC|
Chaptel[]L, contains a “Robustness analysis of nominal Model Pred@tinérol for nonlinear
discrete-time systems”. Robust MPC methods are much more complex than éveseped for|
nominal conditions, requiring either an heavy on-line computational buraea long off-line
design phase. For this reason, it is still of interest to move back to the praiifieénalyzing
under which conditions nominal MPC can guarantee robustness in theffapecific classes o|
disturbances. This is exactly the goal of the presented research ine@lafrhere, Input-to-Stat
Stability properties of a system subject to additive disturbances are stuntied the assumptio
that the origin of the nominal system is an asymptotically stable equilibrium. Thgsinés
developed also for systems with a discontinuous dynamic equation. Theexbtasults are use
to establish robustness properties for perturbed systems controlled watel Rredictive Contro
law designed for the nominal model. It is shown that, under mild assumptiondettign of a
MPC law for a nominal model guarantees also robustness in perturbddions. This is proved
by first deriving a number of results for systems characterized by aew®ssarily continuou
dynamic equation and subject to additive disturbances. It is believed s thsults can be ¢
wider applicability, including the study of other control synthesis techniquesMPC. Thus, thig
can be seen as a basis for the application in hierarchical and distribut€d MP

Chaptef 2 contains a method for “Fully Decentralized nominal MPC”. In thigkvaofully de-
centralized MPC is considered, i.e. that there does not exist any informatichange. In thig
case, the possible interactions between subsystems are consideréai@srudisturbances thg
the controller must accomplish. The design of a fully decentralized MPC ealoibe relying o
a robust design of each predictive controller. The methodology to dédsggnominal MPC fo
each subsystem is presented. Under a certain design, the nominal MRGstae Input-to-Stat
Stability (ISS) of the system. The uncertainty is modeled as a parametric uncggaal, not
as an additive disturbance. Assuming that the model function is uniformiyncmus, enhancef
design of the robust controller is achieved: in the calculation of the camistiat the optimizatio
problem and in the stabilizing conditions. The obtained stabilizing design obitiieotler results
particularly interesting to relax the terminal conditions for a certain class oéhfiodctions yield-
ing to a less conservative control law. The controllers derived areadimg from a practical poi
of view since can be constructed from standard nominal MPC. On the lodinel;, the open-loof
nature of the problem may yield to the results to be useful only for small taigges. In order -'
reduce this effect, semi-feedback approach is proposed.
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Chapter 1

Robustness analysis of nominal Model
Predictive Control for nonlinear
discrete-time systems

The contents of this chapter have been developed by Bruno Picad#n Desiderio and Riccardo
Scattolini (Politecnico di Milano, Dipartimento di Elettronica e Informazionehe Tesults will be
presented at “Nolcos 2010", September, Bologna.

Abstract

Input-to-State Stability properties of a system subject to additive distuesaare studied under the
assumption that the origin of the nominal system is an asymptotically stable equilibFhe analysis
is developed also for systems with a discontinuous dynamic equation. Theembtasults are used
to establish robustness properties for perturbed systems controlled witidel Mredictive Control
law designed for the nominal model.

1.1 Introduction

Model Predictive Control (MPC) is a technique widely applied in the prodedustry in view of
its capability to explicitly consider state and control constraints, as well asaiovdth very large
scale problems with hundreds of control and controlled variables,| $3eafitl references therein.
There are nowadays many ways to formulate stabilizing MPC methods, sd&3].6pr a survey
on this topic. However, it is also well known that nominal MPC can be nonsblith respect to
even arbitrarily small disturbances, seg [2]. Moreover, as it is disduss5, 8], discontinuity of the
closed-loop dynamics, and of the Lyapunov functions for the nominaésyscan emphasize such
a lack of robustness. This issue is crucial in MPC, where both the resttatipack law and the
available Lyapunov function (which is typically the value function associtigtie optimal control
problem defining MPC) can be discontinuous (see alsb [15]). For thsore in the last years, atten-
tion has been focused on the development of MPC algorithms robust witbatet® specific classes
of disturbances, see the review papers[12, 17]. This activity hasdethd development of two broad
classes of robust MPC algorithms. The first one is based on a min-max|&ionuof the underly-
ing optimization problem (see, inter alia, the synthesis method described i {i€]second class
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of algorithms is based on the a-priori evaluation of the effect of the dishaod over the prediction
horizon and on the use of tighter and tighter constraints to be imposed in the @iimiproblem
to the predicted state trajectories. Examples of this approach are repojéd4) and, for nominal
MPC, in [3].

In any case, robust MPC methods are much more complex than those @el/&domominal condi-
tions, requiring either an heavy on-line computational burden, or a |dAmefdesign phase. For this
reason, it is still of interest to move back to the problem of analyzing unti@haconditions nominal
MPC can guarantee robustness in the face of specific classes of distagh This is exactly the goal
of this note, which is organized as follows. In Secfion 1.2, the system isededind the concepts of
Input-to-State Stability (ISS) and Input-to-State practical Stability (ISp&Yyecalled together with
some related recent results, see [71.14, 9, 11]. Secfidn 1.3 presentsitheesudts of the paper con-
cerning the characterization of stability properties in perturbed conditidrishvean be deduced by
the properties of a Lyapunov function for the nominal system. More spaltyfi a function¥ is con-
structed in terms of standards,-functions used to bound and its variation along trajectories [7].
The robustness analysis is then easily derived by the analysis of theidnebfasuch a function¥,
which thus represents a kind of robustness energy measure. Thaianatyudes the critical case
of systems with a discontinuous dynamic equation and discontinuous Lyajfumctions. A clas-
sical example, already considered[in([5, 8], is revisited in view of thelteeseported in this paper.
Sectior 1.4 specializes the analysis to linear systems. Finally, in Sectlon 1.8htbeeal results are
applied to closed-loop dynamics resulting by an MPC stabilizing the nominabhsysteparticular, it
is proved that, under mild and easily testable assumptions, robustnesgipsopan be enforced by
properly selecting the free tuning parameters of an MPC algorithm desfgnéte nominal model.
Some conclusions close the paper.

Notation and terminology: The sets of non negative integers and real numbers are denobkeemy
R, respectively. LeGL(n,R) = {T € R™"| detT # 0}.

A generic vector norm iiR" is denoted by-|. If R™" > P > 0, we let|x|p = v/X'Pxand, forA € R™",
|Alp = max,.—1 |Ax|p be the corresponding induced matrix norm. The Euclidean vector or idduce
matrix norm is denoted by |,. A signal taking values ifR" is denoted byv = {w(0),w(1),...}. For
W CR", let.#y be the set of signals taking valuesiti and such thatw|| = sugy [W(K)| < +oo.
The interior part of a se#” C R" is denoted bynt(.#”). For anyr >0, let%, = {x e R": [x| <r}.

A continuous functioror : Ry — R is a.# -function iff a(0) = 0 and it is strictly increasing. A
continuous functiom : R, — R is a#,-function iff it is a.’# -function anda (s) — +o ass— +oo.

A function B : Ry x N — R, is a.# Z-function iff, for any fixedk > 0, B(-,k) is a.# -function in
sand, for each fixed > 0, (s,-) is decreasing anfl(s,k) — 0 ask — +c. The identity function
s+ sis denoted byd.

1.2 Preliminaries: system definition and robust stability properties
Let the nominal nonlinear discrete-time model be

x(k+1)=f(x(k)), keN, x(0)=x (1.1)

wherex(k) € R"andf : R" — R", with f(0) = 0, not necessarily a continuous function. Suppose that
the perturbed system takes the form

x(k+1) = f(x(k),w(k)) =
= f

(x(K)) +w(k), keN, x(0)=% (1.2)
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with w(k) € 7 C R". The solution of systeni (1.2) at tinkdor x(0) = x and disturbance is denoted
by x(k, x,w).

Consider the nominal systeiin (IL.1). The classical Lyapunov theorens $aiteif a continuous pos-
itive functionV exists such thaf\V (x) = V(f(x)) —V(x) is continuous and negative definite, then
the origin is an asymptotically stable equilibrium. However, if the functiois discontinuous, the
continuity of bothV andAV is not guaranteed in general aftd < 0 is not sufficient for the asymp-
totic stability. Therefore, both the Lyapunov function definition and the staltiiéprem have to be
suitably modified.

Definition 1 A setl C R" is said to be positively invariant for systefn)iff Vx e I, f(x) €T,

Definition 2 A function V: R" — R, is a Lyapunov function for systeff.T) iff there exist two sets
Qandl withQ C T, 0 € int(Q), and.#-functionsas, a, and as such that:

V(xX) > ai(|x]) Vxel (1.3a)
V(x) <az(]x]) vYxeQ (1.3b)
V(f(x))—V(x) < —as(]x]) Vxerl. (1.3c)

Proposition 1 [7] Let V be a Lyapunov function for systef@.]) and assume thaft is positively
invariant. Then the origin is an asymptotically stable equilibriunfrin

For perturbed systemg (1.2), stability notions capable of taking the effelistarbancesv into ac-
count occur.

Definition 3 A setl’ C R" is said to be robust positively invariant with respect#6C R" (# -RPI)
for system(I.2)iff Yxe I andvwe 7/, f(x,w) € T.

Definition 4 Given a compact sdt C R" with 0 € int(I"), system({L.2) is said to be Input-to-State
practically Stable inl" with respect toy” C R" ((I',#)-1Sp9 iff I is a #/-RPI set for(I.2) and
there exist a# .Z-function 3, a .# -functiony and a constant ¢ 0 such thatvk > 0, Vx e I and
Yw e ./fw,

[x(k, X, w)| < B(XK) + y([wl]) +c. (1.4)

According to inequality[(1]4), in the case of vanishing disturbance sigaalg,convergence of the
state trajectory towards the neighborhao@d of the origin is guaranteed.

Definition 5 A function V: R" — R is a (I, #)-ISpS Lyapunov function for systefn?) iff I is
a compact” -RPI set and there exist a compact §&tC I' with 0 € int(Q), some.%.-functions
a1, a0, a3, a % -functiono and constantsicc, > 0 such that:

V(X) > ai(|x]) Vxel (1.5a)

V(X) <ax(]x))+c1 VxeQ (1.5b)

V(f(x,w)) =V (x) < —as(|X]) + a(|w]) +c2 (1.5c)
vxelvwe .

Proposition 2 [9] If (@.2)admits a(l",#")-ISpS Lyapunov function, then it(E, # )-I1SpS.
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Definition 6 Given a compact sdt C R" with 0 € int(I"), system({L.2) is said to be Input-to-State
Stable inl" with respect to#” C R" (I, #)-ISS iff [ is #/-RPI for systen{I.2) and there exist a
A Z-functionB and a.# -functiony such thatvk > 0, Yx e I andVw € .Zy,

X(k,x;w)| < B(X.K) + y([[wl)-

Definition 7 A function V: R" — R, is a ([, #)-ISS Lyapunov function for systef@2) iff I is
a compact”’-RPI set and there exist a compact €&tC I with 0 € int(Q), some.#,-functions
ai, 0o, a3 and a7 -functiono such that:

V(X) >ai(|x]) Vxel (1.6a)

V(x) <az(x]) vxeQ (1.6b)

V(Foxw) —V(x) < —as(|x) + o(|w]) (1.6¢)
Vxelrvwe#.

Proposition 3 [11] If (T.2)admits a(I", #')-ISS Lyapunov function, then it (5, #)-ISS.

1.3 Stability analysis in perturbed conditions

The stability properties for the perturbed systém]|(1.2) are now analysmeonang that the origin is
an asymptotically stable equilibrium for the nominal modell(1.1). The propesadts need only the
knowledge of thes,-functionsa;’s (i = 1,2,3) in inequalities[(113) and associated with a Lyapunov
function for the nominal system.

Definition 8 Let V be a Lyapunov function for the nominal syst@indl). For s> 0, let @(s) =
MaX.cjo,g (02 — a3)(¢), then
W(s) = (Id—a; o )(s)

is called theW-function associated to V.
Remark 1 Notice that:

1. (a;*o)(s), and hencéd(s), is well defined because
Y(s) = Y(0) = (az—a3)(0) = 0;

2. if a, — azis a non decreasing functiogj = a, — as;
3. Wis a continuous function;

4. indeed, thépP-function is depending ofory, az,a3) and it is not univocally determined by V
but, for the sake of brevity, it is referred to as “associated to V".

Theorem 1 (RPI analysis) Let V be a Lyapunov function for the nominal sys{ind) and assume
thatT" is positively invariant. Let t~ 0 be such that, C Q. If W(r) > 0, whereW is theW-function
associated to V, theg, is a %,,-RPI set for the perturbed systefnd) with

u="Y(r). a.7)
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Proof. We have to show that/x € %, andvVw € %, f(x, W) € %;. Forx € %, andw € %, it holds
that

[Foow)| < [FOO]+ W] < ()] + . (1.8)
Forx € %;, by inequalities[(1.3c) an@ (1.Bb), one has
V(H(x) <V (x) —as(]x]) < az([x]) — as(|x]), (1.9)

where the last inequality can be applied because’, C Q. By the positive invariance df, f(x) € I

so that, by[(T.3a) an@ (.9 (| f (X)|) <V(f(x)) < (a2 —a3)(|x|) whence
[f(0] < (ayto (a2 —az)) (X)) (1.10)
Thus, combining inequalities (1.8) arid (11.10),
[f(xw)| < (ato (a2 —ag)) (X)) + K
Therefore,f(x,w) € %, if
vxe %, (arto(mp—az))(X)+u<T,
which in turn is equivalent to

U< r—maxes, (oo (az—as)) (X)) =
1 o
r—a; (maxce[Or](GZ_GS)(C)) =

= r—(a;Toy)(r)=W(r)
and this holds in view of equation (1.7k

Remark 2 Notice that, for s> 0 such that%s C Q, (a2 — az)(s) > 0, in fact for xe Q by (1.9) one
has,
(a2~ at3) (X)) >V (F(x)) > 0.

An ISpS property can be obtained under the following mild assumption ar¥ihéunction a; asso-
ciated with the Lyapunov functiov for the nominal model.

Assumption 1 Leta; be so thato € 7, such that
la1(X)) —aw(ly])| < a(jx—yl) VxyeQ. (1.11)

This holds, for instance, iff; is Lipschitz continuous .
The ISpS result is based on the following properties:

Lemma 1 LetV be a Lyapunov function for syst¢hl)with Q being a bounded set. Under Assump-
tion[d one has:

a. the function V is such that
V(x2) =V (x2)| < o(|x1—Xz|) +d VX1, % € Q, (1.12)

where
d = supcq (a2(]X) — ax(|))); (1.13)
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b. if x € Q and we # are such that fx) € Q and f(x,w) € Q, then
V(f(x.w)) =V (x) < —as(x]) +o(|w]) +d

Proof. The proof is easy and it is omitteas

Theorem 2 (ISpS analysis)Let V be a Lyapunov function for the nominal systém), assume that
I is positively invariant and is a bounded set. Considerx 0 such that%, C Q and¥(r) > 0,
whereW is theW-function associated to V. Then, under Assumgiflon 1, the perturbedrsfis® is
(S, PBu)-1SpS withu = W(r). Moreover, V is & %;, %,,)-1SpS Lyapunov function.

Proof. First notice that, by Theorel 4, is a (compacty4,-RPI set. Let us show that satisfies
inequalities [I.b) withQ = I = %, a1, a, and az as in Definition[2,0 as in Assumptiofi]l and
suitable choices for;’s (j = 1,2). The thesis then follows by Propositioh 2.

Properties[(1.5a) an@ (1]5b), that is

V(x) > o(]x) Vxe %
V(x) <ax(|x))+c1 Vxe %,

follow by inequalities [I.3a) and (1.Bb), respectively, becaégec Q C I'. Thus, property[(1.8b)
holds withc; = 0.
Property[(Z.5c), that is

V(fxw)) =V (x) < —as(|x) + o(|w]) + ¢z
VXxe % VYwe By,

follows by Lemma[Jlb and hence holds witlw andc, = d given in equations{1.11) and (1113),
respectively. It is sufficient to notice that such a lemma can be appliedibees is a %,-RPI set
contained iMQ. m

Finally, the most interesting property of ISS is analyzed.

Theorem 3 (ISS analysis)Let V be a Lyapunov function for the nominal systind) and assume
that ™ is positively invariant. Lef be such that-C Q. If there exists a%«-function® such that
vr<r, W(r)> LTJ(r), whereW is the W-function associated to V, thely € (0,r] the perturbed
systen(@2)is (%, B,)-1SS withu = W(r) andV (x) = |x| is a (%, %, )-ISS Lyapunov function.

Proof. SinceW is a.%a-function, ther(r) > ®(r) > 0. Hence, by Theoref 1%, is a%,-RPI set.
Let us show tha¥/ (x) = |x| satisfies inequalitie§ (1.6) with = = %, anda; = ax = Id, az = ¥
ando = Id. The thesis then follows by Propositibh 3.

Inequalities[(1.6a) an@ (1.6b) are trivial, let us then consider inequalfig)1Forx € %, andw € 4y,
one has

<a
—

=y
Py

X, W) =V (x) < [ (x)] x| +|w| <

N

(a; o (az—aa)) (X)) — x|+ w| <

—(1d —(ag o)) (X)) +|w =
—W(Ix]) 4w < =®(|x]) + [w],
where (a) follows by inequality (1.10), which can be applied becadses a %,-RPI set contained
in Q, and (b) holds becauge, — a3)(s) < Y(s) anda; * is a.7e.-function. m
Notice thatV is a continuous function whilé is not necessarily continuous.
Finally, for state-dependent disturbances, asymptotic state convergetite origin can be obtained
as it is stated in the following small-gain type result.

I |/\§

Page 9/26




HD-MPC ICT-223854 New methods for robust nonlinear HD-MPC

2.5 2.

U(s) W(r)

2 2]

1.5 1.5]

1 1

0.5] . : 0.5]

G0 0.5 1 15 2 25

3 0 05 T 15 2 25 3
S T

(@) (b)

Figure 1.1: (a) ThéP-function associated t@; (b) Graph of the functiots.

Corollary 1 Under the hypotheses of Theorein 3, (b)xc %, and36 < [0,1) such that,vk € N,
lw(k)| < 8W(|x(k)|), then the state trajectory converges to the origin. In particular, #w(x), then
the origin is an asymptotically stable equilibrium 4, .

Proof. It easily follows by Theorernl3m

Example 1 Consider systerl.2) where xc R and

1 x>1
f(x):{ 0 x<1

The nominal system(ik+ 1) = f (x(k)) admits the discontinuous Lyapunov function given by

X+1 x>1
V(X):{xz Xx<1

and hence nominal asymptotic stability of the origin holds. Indeed, it is $tifmigvard to see that
the following.#5-functions are such that inequaliti€E.3) are satisfied (with |x| being the absolute
value of x):

a1(s) = az(s) = &°

S s<Vl-¢
ay(s) = £21+g)32+1—g 1-e<s<1
+1 s>1,

wheree > 0is any fixed and arbitrarily small constant.

This example has been studied[ih [5] and [8], where critical issues omdiiestness properties have
been pointed out. Let us see which properties can be deduced by pgwspdanalysis based on the
W-function associated to V. Elementary computations allow one to determinié-fhaction that
turns out to be

S s<Vl-g
W) =1 s—/1f+1-1  J1-e<s<1
s—1 521,

see Figur¢ T]1.a. Hence, according to Theokémrl> O, r # 1, %4, is %,,-RPl withp = W(r).
SinceW(1) = 0, for r = 1 no RPI properties for, can be proved by Theordm 1. Furthermore, it

170 this end, notice thatx € R, V (f(x)) —V(x) = —x2.
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is easy to show tha#(1) < 0 for any choice of the#,-functionsa;’s satisfying inequalitie{1.3).
Nevertheless, in this example, it is possible to exactly characterize ther&Rirpes of any closed
ball %, and to find thatyr > 0, %, is #,,-RPl withu = W(r), where

A r r<i1

P = { r-1 r>1
(see Figurd_111.b). Sindé'(r) is the maximal disturbance amplitude so that the robust positive in-
variance of%; is preserved, thew(r) < ®(r). Moreover¥ is a continuous function (see Remark 1).
Thus, one can think 8P as a continuous lower approximation of the discontinuous functoihis
fact clarifies the reason why RPI properties cannot be deduced byr@El for the closed bali;.
As for the ISS analysis, siné(1) = 0, according to Theoreml 3 a lower bouliéic %, for the W
function does not exist on intervdld r| with r > 1. On the other hand, the same result allows one to
see that the perturbed systen{i&;, Zy))-1ISSvr < 1.
For r > 1, instead, only ISpS properties hold. Theoiem 2, With Q = %, shows that the system
is (%, By(r))-1SpS. The same result also returns the valyes 0 and ¢ = d = 1 for the constants
appearing in inequalitie§l.50)and (I.5d)whence it follows that, for disturbance signalsuch that
limi 1. W(K) = O, trajectories converge to the closed batl in the sense thdimsup,_, ., [x(k)| < 1.

&

1.4 Linear systems

The results derived in the previous section are now specialized to pedtsthble linear systems
described by N
X(k+1) = f(x(k),w(k)) = Ax(K) +w(k), (1.14)

whereA € R™" is a Schur matrix. It is well known that asymptotically stable linear systems enjoy
ISS properties. Let us show that such properties do follow by The@rem
A Lyapunov function for the nominal systerik+ 1) = Ax(k) is V(x) = XPx, whereP > 0 is such
that
APA-P=-Q<0.

Let us derive feasible choices for thé, functionsa;i’s, i = 1,2,3, so that inequalities (1.3) hold.
To this end, let us consider the vector nofnje. With this choice,a1(s) = az(s) = s are so that
inequalities[(T.3a) an@(1.Bb) are satisfiede R". As for as, one can considerz(s) = cs for some
suitablec > 0. In fact, since

V(AX) —V(X) < —c[x]3 VXeR" &
& —X0Ox< —cXPx VxeR" <
& c< XX yxeR"\ {0}

X'Px
and infcrn (0} f(',%(‘ > QL‘A‘:X(@)), thenc = 3‘&‘;((%)) is a feasible choice far. Other feasible choices are

. Amin ((Til)/QTil)
C Avax((T-LYPT-1)’

(1.15)

whereT € GL(n,R) is a free parameter. In fact, lettiZdg="T x, one has

. / . )A(/ T—l ! T—lf\
infyckn (0} ¥ox = INfrckn\ (0} T TyoT—z-

Page 11726




|HD-MPC ICT-223854 New methods for robust nonlinear HD-MPC]

Moreover, it is not hard to see that the maximal feasible valurisfbtained by taking such that
T'T = P and, in this case, one has
Amin((T71)QT-1) _ XQx

= in =1—|A]. 1.16
Amax((T~1)PT-1)  xer\{0} XPX Al (1.16)

Let us compute the correspondilgfunction associated td. Since(a, — a3)(s) = (1—c¢)s’ and,
according to RemailK 2, — as)(s) > 0Vs> 0, thenc < 1 andy(s) = (1—c)s. Thus,

W(s)=(Id—a;tog)(s) =(1-vV1-c)s

andW¥ e %, because, bg > 0, one hagl—+/1—c) > 0.
Hence, by Theoref 3, the perturbed system {1.14%s 4,,)-ISSVr > 0, with

pu=¥r)=(1-v1i-cjr. (1.17)

Remark 3 Notice that, according to equatiof.17) the smallery/1—c is, the more robustness is
ensured for the perturbed systdfin14) By equation(1.18)and standard properties of the induced
matrix norms, it holds that

p(A) < |Alp < vI-C

This means that, according to the proposed theory, the spectral raflidgpmvides a restriction on
the degree of robustness which can be proved.

Remark 4 The choice of a proper vector norm is crucial for the applicability of theposed results.
For instance, if we consider ) = X'Px and the Euclidean vector norpn|, then inequalitiegL.3)
are satisfied withay(S) = Amin(P)S?, 02(S) = Amax(P)s? and as(s) = Amin(Q)S?. Hence, it is easy to
see that
_ _ )\Max(P)*)‘min(Q)
W(s) = (1 @) s

In this case, however, it is not guaranteed tHaE 7. If W € 75, then robust positive invariance
properties of the Euclidean balls hold. Therefore, a necessary conditiander thatW € 7 is
A'A—1 < 0 (namely, that the system is 2-norm contractive).

1.5 Application to Model Predictive Control

The proposed analysis results are now applied to systems controlled witiP@nldw designed on
the nominal model of a perturbed system. The goal is to provide MPC synthetisds based on the
nominal model and capable of guaranteeing robustness propertieg foortesponding closed-loop
system against additive disturbances.

Let the perturbed open-loop system be given by

X(k+1) = fo(x(k),u(k)) +w(k), ke N, x(0) =X, (1.18)

with x(k) € R", u(k) € R™, w(k) € #" C R" and f,(0,0) = 0. Let us now focus on the open-loop
nominal counterpart of the system, namely

x(k+1) = fo(x(k),u(k)), keN, x(0)=x (1.19)
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The state and control variables are supposed to satisfy the followingraions. Vk € N,
x(k) e X and u(k)eU, (1.20)

with X andU being compact subsets Bf' andR™, respectively, containing the origin as an interior
point.

Definition 9 For a given control law u= ¢(x), a setX C X is said to be an admissible set for the
nominal closed-loop systenkd- 1) = fo(x(k),(p(x(k))) iff Yxe X, g(x) €U, X is a positively
invariant set and/x(0) € X, limy_, ;. x(k) = 0.

A nominal MPC controller is defined as follows: fix the length of the predictionzonN > 0 and let
Uon-1 = [u(0),u(1), - ,u(N—1)] € UN. For a given stage cobt R" x R™ — R, , a terminal penalty

functionVs : R" — R, and a terminal seX;, consider the finite horizon optimal control problem
(FHOCP) that consists of minimizing, with respecutQy—1, the performance index

J(%uon-1,N) = TR (x(K),u(k)) + Vi (X(N))
subject to
i. the nominal state dynamids (1]119);
ii. the constraintd(1.20yk € [O,N —1];
iii. the terminal state constrairtN) € Xs.

Let ugf’,\t,fl be the optimal control sequence and suppose that only the first eleﬁf@&ﬁﬁ of such

a sequence is applied, then at the successive time instant the FHOCP i$ aghia withx =

fo(X; ugfoot(ﬂ). This procedure defines a state feedback control law denoted by

u= @"(x). (1.21)

Many results are available on the way to select the parameters that geatengtability of the origin
for the closed-loop systenh (1]19), (11.21), see é.d. [13]. Let udlractandard formulation that
turns out to be suitable to our purpose of synthesizing an MPC controtlérdanominal system and
ensuring closed-loop robustness properties.

Assumption 2 The function (x,u) is such that (0,0) = 0 and I(x,u) > a;(|x|), wherea(s) is a
He-function.

Assumption 3 The design parameters\And X are such that, given an auxiliary control law=4
@ (X), one has:

1. Xs C X, X is closed and € int(Xs);
@ (X) €U, VX E Xs;
- fo(X @5 (X)) € Xi, VX € Xs;

2
3
4. 0 <Vi(x) < By (|x]), Vx € X¢, with By, (s) being a.%-function;
5

- Vi (To(X, @5 (X)) — Vi (X) < —1(X, ¢ (X)), VX € X;.

| Page 1326




|HD-MPC ICT-223854 New methods for robust nonlinear HD-MPC]

Proposition 4 [12] Let X""(N) be the set of the states such that a solution for the FHOCP exists.
Under Assumptiors 2 and 3; X2 X"*¢(N), the origin is an asymptotically stable equilibrium for the
nominal closed-loop syste@.19) (I.21) and X"*(N) is an admissible set. Moreover,(¥N) =

J(X, ug_P,jfl, N) is a Lyapunov function for the nominal closed-loop dynamics wite a3 = a;, az =

Bv,, T = X"P¢(N) andQ = X;.

Consider the nominal closed-loop dynamics under the auxiliary control lBwAssumption$13.4
and[3.5, it follows tha¥s(x) is a Lyapunov function witto; = a3 = a; andaz = By,. Hence, the
results reported in Sectién 1.3 allow one to analyze the robustness prepéttie closed-loop system
in terms of such a#-functions. By Propositiofl4, it also turns out that ti&-functions associated
with the Lyapunov functiorV (x,N) for the nominal closed-loop dynamics under the MPC law are
the same as those associated Witfx). This means that, within the final s¥t, the MPC controller
guarantees the same robustness properties as those which can lofqrdve auxiliary law in terms
of the functionsa; andfy, . In particular, the validity of RPI properties fo% ensures that, under the
MPC law, the input and state constraints are robustly satisfied within the final se

This result, however, does not allow one to conclude on robustnepsrtias out of the final set.
Hence, for initial conditions far from the equilibrium, standard but morelbnsome methods, such
as min-max|[[10, 17] or constraint tightening [6, 3], should be undertaken

1.5.1 Auxiliary control law design

According to the previous discussion, a fundamental requirement t@peara robust closed-loop
dynamics with MPC is that robustness properties are ensured by the d@apiéary control law.
This fact calls for the need to investigate the way to design auxiliary contwslib@ased on the nominal
open-loop model and capable of guaranteeing desired robustngsste for the corresponding
closed-loop dynamics. To this aim, stemming fram [1], suppose that the mappaescribing the
nominal dynamics is continuously differentiable in a neighborhood of thiilegum (0,0). Let

fo(x,u) = 2o x+ Tl U+ 71(X, U) =

X=u=0 X=u=0
= AoX+Bu+ m(x,u),
where
|71(x, u)|
xu)=0t |(X,U)|

=0. (1.22)
Assume that the paitA,, B) is stabilizable and let the auxiliary law take the form
u(k) = Kx(k),
with K such thatA, + BK is a Schur matrix. Consider a quadratic stage cost
[(x,u) =XQx+URu Q>0 R>0
and letP > 0 be the solution of the Lyapunov equation
(Ao +BK)'P(Ay+BK) — P = —B(Q+K'RK), (1.23)

with B > 1. Hence, considért (x) = X Pxand the vector norm |p, thenaj (s) = ¢ andBy, () = &,

wherec = % (for someT € GL(n,R), see equatiod (1.15)are so that Assumptions 2

| Page 14726 |




| HD-MPC ICT-223854 New methods for robust nonlinear HD-MPC

and’3.4 are satisfied. Moreover, for the original nonlinear dynamieseasily obtains

Vi (fo(%, KX)) = Vi (X) +1(x,Kx) =
= —(B—DX(Q+K'RK)x+en(x),
where, in view of [L.2R)e, is such that liny_,o+ 'jf((l’z‘)‘ = 0. Thus, for a sufficiently smajp > 0,
Assumptior B is satisfied with; = {x € R"|XPx< p?} = %,.
Recalling thatr; (s) = az(s) = ¢ anday(s) = %, theW-function associated t¢; is then given by

Y(s) = (1— \/%) S

and it is a#,-function if and only ifc > % that is

Amin((T71'QTH) < 1
Max((T-LYPT-1) = 27
If condition (I.22) is satisfied, then Theoréin 3 ensures that, with both tkibaayi law and MPC
designed on the nominal system (1.19), the closed loop sy$tem (L18]) 4.4, Byr))-ISS,
vr <p.
This result raises the issue of the existence and selection of the designeparK, Q, Randf so
that condition[(1.24) is satisfied. To this end, the following result holds:

Proposition 5 If T € GL(n,R) and K€ R™" are so thatA, + BK|2,+ < 3, then A +BK is Schur and
there exists a sufficiently small> 0 such that, with Q= T'T, R= ¢l and 3 = 1+ ¢, condition(T.24)
is satisfied.

Proof. The matrixA, + BK is Schur because(A; + BK) < |As+ BK|t7 < @ <1
Let Q1 =L(Q+ K’ARK) andA. = A, + BK. In the new coordinates= Tx, one hasA. = TA.T 1,
Q=T HQT L Q= (T YQT 1, P= (T 1)PT 1. TakeQ, Randp as in the assumptions, then
Q=1 and, beingAc|3 = |Ac|2 < 3, there exists a sufficiently smal> 0 such that

Avax(Q .

1 Mex(Q) Acl3. (1.25)

2/\min(Q)
Equation[[L.2B) rewrites &= Qy + A{PA.. Hence Avax(P) = |Pl2 < [Qul2+ |ALPAC|2 < Avax(Q) +
Mviax(P)|Ac|3 so that

(1.24)

a )\Max(él)
Avax(P) < ———=. 1.26
becauseAc|3 < 1. Thus,
)\min(Q) (>a) )\min(é) A2 01
< <~ (1— -
AMax(P) n )\Max(Ql)( |AC|2) ~ 2

where inequalities (a) and (b) follow by inequalities (1.26) dnd (1.25peets/ely. m

According to Propositiohl5, for a giveh € GL(n,R), the problem of the selection of the design pa-
rameters so that condition (1]24) holds is then reduced to deteKrsneh thatT (A, +BK)T 1|3 <

%. Such a control design issue can be expressed in the form of the fajjdwith problem: find

K € R™" such that

1 2| T(Ao—i—\/éBK)T*l o
(T~ (A +K'B)T! 2

If there existK such thaipp (A, + BK) < @ a suitable choice fof makes such an LMI feasible. In
fact, it is well known thaty e > 0, 3T € GL(n,R) such thatA, + BK|t1 < p(A;+ BK) + €.
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1.6 Conclusions

In this paper, it has been shown that, under mild assumptions, the desigivViéf@ law for a nominal
model guarantees also robustness in perturbed conditions. This hapioeed by first deriving
a number of results for systems characterized by a not necessarilywmmgidynamic equation and
subject to additive disturbances. Itis believed that these results cdmimeo applicability, including
the study of other control synthesis techniques than MPC. More gemestdts, accounting also for
state dependent disturbances, are currently under development.
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Chapter 2

Fully decentralized nominal MPC

The contents of this chapter have been developed by Danidn {{dpto. Ingenieria de Sistemas y
Automatica Escuela Superior de Ingenieros, Universidad de Sevilla).

2.1 Introduction

Decentralized model predictive control (MPC) techniques are of gneaest in the process industry
due to topological reasons and the possible limited exchange of data befulegystems. More-
over, this decentralized control technique often has the advantageuceréte possibly large-size
optimization problem to the solution of smaller ones potentially more tractable.

Distributed MPC algorithms can be developed (i) assuming that there exi$tareye of information
between the subsystems, or (ii) considering that there not exists anynation exchange yielding
to a fully decentralized control structure. In this work the second casensiaered, that is, a fully
decentralized MPC. In this case, the possible interactions between wrbsyare considered as un-
known disturbances that the controller must accomplish. The design by dégentralized MPC can
be done relying on a robust design of each predictive controllefs [29]

Model predictive control is one of the few techniques capable to coatranlinear plant guaran-
teeing asymptotic stability to the target operating point fulfilling hard constraimtthe state and
input. The control law is implicitly derived from the solution of an optimization peaip at each
sampling time and the receding horizon techniquel ([13]). In the case thatdtietion model differs
from the real plant, then the effect of the uncertainty must be consideredier some mild assump-
tions, the predictive control law ensure robust stability in the case thatttestainty is small enough
([22,125]). In other case, the uncertainty model must be considerect indhtroller calculation in
order to provide robust stability and robust constraint satisfaction.idrcése particularly interesting
are those approaches that provide robustness based on the solwionroinal optimization prob-
lem. Input-to-state stability appears as a suitable framework for the rotalsslitg analysis while
constraint satisfaction can be ensured by means of approximations efitteable sets. See [26] and
the references there in for a survey on this topic.

In [29] a decentralized min-max MPC is proposed. Stability of the whole plathgeved relying on
the ISS property of each single min-max MPC controller and assuming ceoianb on the coupling
terms. In this work we extend this result to the case of nominal MPC, whiadsitlee computational
complexity of the solution of the min-max optimization problem.

In this work we present the methodology to design the nominal MPC for adzdystem. Under a
certain design, which generalizés [24], the nominal MPC can ensurefl8f® system with a less
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conservative stability margin. The uncertainty is modeled as a parametridaincggnal, not as an
additive disturbance. Assuming that the model function is uniformly contisuenhanced design
of the robust controller is achieved: in the calculation of the constraintseabptimization problem
and in the stabilizing conditions. The obtained stabilizing design of the contreleits particularly
interesting to relax the terminal conditions for a certain class of model furscyimiding to a less
conservative control law.

Notation and basic definitions:

LetR, R>o, Z andZ=o denote the real, the non-negative real, the integer and the non-negagyer
numbers, respectively. Given two integ@® € Z>o, Zjap, £1{je€Zs0:a<j<b}. Given two
vectorsx; € R? andx; € RP, (xg,%2) £ [X), %] € R&*P. A norm of a vectox € R? is denoted a$|.
Given a signal < R3, the signal’'s sequence is denotediy {w(0),w(1),---} where the cardinality
of the sequence is inferred from the contéxtlenotes a suitable signal’'s sequence taking a null value.
If a sequence depends on a parametew(@s, w(j,x) denotes itsj-th element. The sequenee;
denotes the truncation of sequencd.e. Wy (j) = w(j) if j < 1andwy(j)=0if j > 1. Foragiven
sequence, we denoffev|| £ sup.o{|w(k)|}. The set of sequences whose elements(j) belong to
a seW C R?is denoted byy. For a compact se&, AS'P £ sup,_.{|al}.

Consider a functiorf (x,y) : R x R? — RS, f is said to be uniformly continuous for all x € A
andy e Bif for all € >0, ad(g) > 0 exists such thatf (x1,y) — f(x2,y)| < € for all x1,%> € A with
X1 — X%o| < &(¢) and for ally € B. For a given sefA C R?3, the range of the function i§(Ay) £
{f(x,y): xe A} CR®

A functiony : R>o— R is of class’#” (or a “J# -function”) if it is continuous, strictly increasing
andy(0) = 0. A functiony: R>o— Rxg is of class#«, if it is a % -function andy(s) — + as
s— +oo. A function 3 : R>, x Z>, — R, is of class.#".Z if, for each fixedt > 0, B(-,k) is of
class.%’, for each fixeds > 0, B(s, -) is decreasing anfl(s,k) — 0 ask — +o. Consider a couple of
¢ -functionso; and a,, thenoy o 02(s) £ 01(02(s)), besidess; (s) denotes thg-th composition of
o1, i.e. 0" (s) = 0100} (s) with a(s) £ 01(s). A functionV : R® — R~ is called positive definite
if V(0) = 0 and there exists & -functiona such thav (x) > a(|x|).

2.2 Problem statement

In this work it is considered that the subsystem to be controlled is desdnbadliscrete-time invari-
ant nonlinear difference equation as follows

x(k+1) = f(x(k),u(k),w(k)), k>0 (2.1)

wherex(k) € R" is the system stateyk) € R™ is the current controlled variable amgk) € RP is a
signal which models mismatches between the real plant and the model, thatisktieevn coupling
terms. The origin is an equilibrium point for the plant (if¢0,0,0) = 0) which is the control target.
The solution of systeni (2.1) at sampling tikaéor the initial statex(0), a sequence of control inputs
u and uncertainty signav is denoted ag(k,x(0),u,w), where(0,x(0),u,w) = x(0). Itis assumed
that there is no trajectorg(k, x(0),u,w) that exhibits finite escape time for ar§0), u andw. It is
also assumed that the state of the pldR) can be measured at each sample time.

It is considered that the uncertainty signdk) lies in a known bal?” = {w: |w| < u}. Furthermore,
the control input and state of the plant must fulfill the following hard coirgtra

(x(k), u(k)) € Z (2.2)
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whereZ C R™Mis closed and contains the origin in its interior.
The model function is assumed to be uniformly continuous in all its arguments isethi#& x 7.
Then, there are thre# -functionsoy, g, anda,, such that

(%, U, wa) — F(%2, U, W2) [ < Ox([X0 — Xo) (2.3)
+0u(|ug —ug|)
+0w(|w1 —w2)

for all (x1,uz,w1) and(xz,uz,Wo) in 2 x #'.
The nominal model of the plari(2.1) denotes the system consideringlistuwbance and it is given
by

f(k+1) = f&®K),uKk), k>0 (2.4)
where f(x,u) £ f(x,u,0). The solution to this equation for a given initial stai@®) is denoted as
@(k,x(0),u) £ p(k,x(0),u,0).
The aim of the work is to design a model predictive controller based on nbmiedictions such
that the controlled plant is robustly stable while satisfying the constraintsghoat the evolution.
In the following sections, the stability notion used in this work is briefly introducine regional
input-to-state stability.

2.2.1 Regional input-to-state stability (ISS)

The existence of constraints limits the domain where the system can be stabllfzsd. a regional
definition of the stability notions must be considered. In this work, robubtlgyas studied resorting
in the notion of input-to-state stability ([32,123]). ISS has demonstrated tousefal framework to
analyze robust stability of predictive controllers (Se€ [26] and theeates there in).

Consider that the syster (2.1) is controlled by the law k(x) leading the following closed-loop
system

Xt = fK(XaW) = f(X7K(X)’W) (25)
X € X ={xeR":(xK(X) € Z} (2.6)

Now, some definitions and well-known results on regional ISS are sumrdarize

Definition 10 (Robust positively invariant (RPI) set) A setl C R" is a robust positively invariant
(RPI) set for systeni (2.5) if fx,w) € I', for all x e " and all we #. Furthermore, iflr C X, thenl’
is called admissible RPI set. O

Notice that the fact that the RPI detis admissible ensures the robust satisfaction of the constraints
since for any initiakg € I', ®(k,Xo,w) € ' C X for allk € Z>g andw € .Zy .

Definition 11 (RegionallSSin ') Let" C R" be an admissible RPI for systeg@.3) including the
origin as an interior point. The syste(@.B)is input-to-state stable (ISS) nif there exist a# .%-
functionf and a_# -functiono such that

@ (1, x(0), W) < B(X(O), ) + o (llwj—g]]) (2.7)

forallx(0) e, we .#y and j€ Z>o.
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ISS can be determined by means of a Lyapunov-like condition [([23, 23 Tpllows.

Definition 12 (ISS-Lyapunov function ih) Letl be a RPI set containing the origin in its interior.
A function V: R" — R0 is called an I1SS-Lyapunov function infor system[(Z]5) if there exist a
compact sef2 C I' (including the origin as an interior point), suitable,-functionsay, a», az and
¢ -functionA such that:

V(x)
V(¥

ai(x)), vxerl (2.8)

>
< (X)), WxeQ (2.9)

and for all xe I and we 7, the following condition holds
V (f(x,w)) =V (x) < —as(|x]) + A (Jw]) (2.10)
O

Based on this Lyapunov-like functions, the following stability theorem caddoved ([23[27]):
Theorem 1 If system[(2)5) admits an ISS-Lyapunov functioh then it is ISS irT".

2.3 Proposed robust MPC

2.3.1 Semi-feedback approach

The most simple robust MPC formulations derive the control law from theisalof an optimization
problem based on open-loop predictions of the uncertain system evoldtios open-loop scheme
results to be very conservative from both a performance and domattradtaon points of view (see
[13, Section 4]). In order to reduce this conservativeness, a closed(or feedback) formulation
of the MPC has been proposed ([31]). In this case, control policidsadsof control actions are
taken as decision variables, yielding to an infinite dimensional optimization pnabiat is in general
very difficult to solve and for which there exists few efficient algorithm ia titerature in the case
of linear systems|[([28, 21]). A practical formulation between these twooagpes is the so-called
semi-feedback formulation, where a family of parameterized control lanseid (i19[ 20]). Thus the
decision variables are the sequence of the parameters of the controhtasence the optimization
problem is a finite-dimensional mathematical programming problem.
Consider that the control actions are derived from a given family ofrobers parameterized by
v E RS,

u(k) = 1i(x(k), v(k))

which is assumed to be uniformly continuous in its domain. The family of contra lawypically
chosen as an affine function of the state([19]). Thus, system (2. Bnisfarmed in

X(K+1) = fr(x(k),v(k),w(k)), k>0 (2.11)

where f(x,v,w) £ f(x, 1(x,v),w). Notice thatv plays the role of the input of the modified system.
The solution of this equation is denoted @gk,x,v,w). The nominal model of systeri (2]11) is
denoted ag(x,v) £ f (x,v,0) and its solution agy(k,x,v) £ @(k,x,v,0). Analogously, the con-
straints can be rewritten as

(x(k),v(k)) € Zx (2.12)

where 27 is such thatx, ri(x,v)) € 2 for all (x,v) € Z7.
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2.3.2 Nominal model predictive control

The proposed predictive controller is based on the nominal predictioredfdfectories and follows
the standard formulation of the MPC ([13]). The control law is derivexrfrithe solution of the
following mathematical programming probldf(x) parameterized in the current state

N-1

min ;eri(i),v(nwvf (X(N)) (2.13)
J:

st.  X(j) = @u(i.xV), j € Zpgn (2.14)
(X(j),v(j)) € Znli), | € Zon-1 (2.15)
K(N) € 23 (2.16)

whereL(x,Vv) = L(x, 1(x,v)) andL : R" x R™ — R~ is the stage cost functioly : R" — R~g is the
terminal cost function. The sequence of constraint §&ts(j)} will be defined later on an¥; C R"

is the terminal region. It is assumed th&t(X) is feasible in a non-empty region denotéd,. For
eachx € Xy, the argument o\ (x) is denoted/* (x) and the optimal cost ¥y (x). The MPC control
law derives from the application of the solution in a receding horizon maxyes) = v*(0;x) and it
is defined for alk € 2.

2.3.3 Robust design of the proposed controller

The proposed controller is based on the availability of two sequence of#¢i9} and{.7 ()} that
are assumed to be calculated off-line (see next section). The sequeii¢e} is related with the free
response of the nominal system and must satisfy the following hypothesis:

Assumption 4 The sequence of sefs? ()} is such that: For everyx,v), @:(k,%,v) € @(k,x,v) &
Z (k) for all X such thafX — x| < gw(u).

On the other hand, the sequer{c#, } is related to the reachable sets, that is, the sequence of possible
trajectories due to the effect of the disturbances. This sequence risft gg following conditions

Assumption 5 The sequence of seftsZ(j)} is such that:
1. For every(x,v), @u(k,X,V,W) € @r(k,x,v) ® Z(K) for all w € .y
2. F(j)oz(i) cZ(i+1)

The first condition states that each set of the sequence is an outerdifdhackffect of the uncertainty
throughout the trajectory, while the second condition ensures that thersegjis monotone. This fact
will be more clearly demonstrated in the proof of lenitha 1. Practical methods tdataithe proposed
sequences are presented in the following section.

Since sequence of sef&(j)} provides an estimation of the effect of the disturbance with respect to
the nominal predictions, this can be used to counteract the effect of thebdisces in the constraint
satisfaction. This is done by using a sequence of tighter constraint£atg)} defined as follows:

Definition 13 Let the sequencgZ,(j)} be defined as follows
Zn()) = Z o (2()) x{0})

On the other hand, the terminal constraint. 86t must satisfy the following assumption
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Assumption 6 The input y € R® and the set§) and 2% are such that
() Q and.2% are invariant sets for the systefih = fn(i,vf)
(i) Qx{vi} C Zn(N-1)
(i) ZrdF(N-1)CQ
(iv) (% vi) € 2%, forall X e Q.

Notice that this assumption requires tifais an invariant set for the nominal system afid a set
where the system evolves in one step. The main restriction i€tmatist be a contractive invariant
set such thaf(Q,v¢) ®.Z (N — 1) C Q. This implicitly states tha€ is a robust positively invariant
set for the system™ = f(x,v¢) + w wherew € % (N — 1). In the case that the control lamwmakes
the system asymptotically stable (r V) € 27, which is usual for simple systems such that linear
systems ([19]) or feedback linearizable system!([30]),8éN — 1) can be arbitrarily small for large
enough prediction horizon. This relaxes the standard assumption onrtfieabconstraint, that must
be a robust positively invariant set for the whole uncertainty set.

This proposed method to design the constraints of the optimization prd®ldmas been chosen in
order to ensure the robust feasibility of the controller, as it is demonstrathad following lemma.

Lemma. 1 Consider the systerf.11) and the sequence of sefs*;(j)} based on the sequences
of sets{Z(j)} and {.Z (j)} which satisfy assumptioi$ 4 ahH 5. Let the triglet, Q, 2%) fulfill
assumptior}6. Consider now a feasible state £y andv* the argument of (x). Let x" be the
uncertain successor state and define the sequence of wipgts{v*(1),--- ,v*(N—1),v¢}. Then the
following properties hold.

1' ((plT(j7X+7v+)’V+(j)) € ffn(])
2. @u(N, X" V1) € 25

2.3.4 Calculation of the sequence of sets

The sequence of sefs#(j)} and{Z(j)} provides outer bounds on the effect of the uncertainty
throughout the prediction, then these can be calculated by methods thidigsrguaranteed prediction
of the uncertain system[([1L8, 130,]26]). Among these, it is worth to cite thased on polytopic
algorithms, interval arithmetics, zonotopic methods or DC-programming basecidgees.

In this work we provide a simpler, although probably more conservative rdefased on the uniform
continuity of the model function.

Lemma. 2 Let a system be given by mod@2I1) and let define the following sets:
Z (1)
Z(])

{(xeR": |x| < g oow(u)} (2.17)
{xeR": x| <cj(u)} (2.18)

> >

where G(u) is given by the following recursion

i) = max{ G() + Oxocj_1(H),

&) 1(1)+ ol o gu(u)} (2:19)

with ¢i (1) = ox(H).
Then the sequence of s§t% (j)} and{Z ()} satisfy the assumptiohs 4 and 5.

| Page 22726




|HD-MPC ICT-223854 New methods for robust nonlinear HD-MPC]

As it can be seen, these sets can be easily calculated off-line oncequth@bounding functions. In
the case that Lipschitz continuity is exploited to derive the bounding functibagesulting sets are
equal to those presented in[24]. Notice that if the uniform continuity is éealptighter (non-linear)
bounding functions can be used, and hence less conservative redbis obtained.

2.4 Input-to-state stability of the controlled system

In the previous sections, conditions on the constraints of the optimizatiotepnék (x) that suffices
to ensure robust feasibility are provided. However these conditionscausufficient to derive robust
stability of the closed-loop system. To this aim, the following additional assumpienequired.

Assumption 7

1. Let the stage cost function{x, v) be a definite positive function i{x,v) uniformly continuous
in % such that

La(x,v) > ac(|x)
ILr(X1,v1) — La(x2,v2)| < Ax(]x1 —X2|) + Av(|vi — V2|)

wherea,, Ay and A, are ¢ -functions.

2. Let the terminal cost functions\k) be a definite positive function uniformly continuousin
(see assumptidd 6) such that

av(Ix) <Vi(x) < Bu(|x])
Vi(fa(xve)) =Vi(x) < —La(x,vy)
Vi(x1) =Vi(x2)| < O(]x1—Xzl)

These assumptions are standard for the stabilizing design of nominal KIBIE: (The only additional
requirement is the uniform continuity of the functions. Based on this, stabiktaied in the following
theorem.

Theorem 2 Consider that assumptiori$ @ 5, 6 and 7, hold. Then the sy@eincontrolled by
Kmpc(X) = TI(X, Kn (X)) is ISS inZn and satisfies the constraints throughout the evolution.

2.5 Conclusions

This work has demonstrated that outer estimation of the reachable sets uaedo® derive robust
stabilizing predictive controller based on nominal predictions. This clasertfollers are appealing
from a practical point of view since can be constructed from standandmal MPC. On the other
hand, the open-loop nature of the problem may yield to the results to be oséfufor small un-
certainties. In order to reduce this effect, semi-feedback approachpsged. This is a simple and
practical method, but requires an analysis of the system to be controlledento find a nice family
of control laws.

Based on the uniform continuity of the model function and the defining funstid the MPC, suffi-
cient conditions for input-to-state stability has been proposed. Moraawiéorm continuity can also
be exploited to calculate the sequence of sets necessary for the degigrpadposed controller.
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