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Executive Summary

This report is split into two parts and thus contains two different aspects ofrobust distributed MPC.
Chapter 1, contains a “Robustness analysis of nominal Model PredictiveControl for nonlinear
discrete-time systems”. Robust MPC methods are much more complex than those developed for
nominal conditions, requiring either an heavy on-line computational burden, or a long off-line
design phase. For this reason, it is still of interest to move back to the problem of analyzing
under which conditions nominal MPC can guarantee robustness in the faceof specific classes of
disturbances. This is exactly the goal of the presented research in Chapter 1. There, Input-to-State
Stability properties of a system subject to additive disturbances are studiedunder the assumption
that the origin of the nominal system is an asymptotically stable equilibrium. The analysis is
developed also for systems with a discontinuous dynamic equation. The obtained results are used
to establish robustness properties for perturbed systems controlled with a Model Predictive Control
law designed for the nominal model. It is shown that, under mild assumptions, thedesign of an
MPC law for a nominal model guarantees also robustness in perturbed conditions. This is proved
by first deriving a number of results for systems characterized by a notnecessarily continuous
dynamic equation and subject to additive disturbances. It is believed that these results can be of
wider applicability, including the study of other control synthesis techniques than MPC. Thus, this
can be seen as a basis for the application in hierarchical and distributed MPC.
Chapter 2 contains a method for “Fully Decentralized nominal MPC”. In this work a fully de-
centralized MPC is considered, i.e. that there does not exist any information exchange. In this
case, the possible interactions between subsystems are considered as unknown disturbances that
the controller must accomplish. The design of a fully decentralized MPC can be done relying on
a robust design of each predictive controller. The methodology to designthe nominal MPC for
each subsystem is presented. Under a certain design, the nominal MPC can ensure Input-to-State
Stability (ISS) of the system. The uncertainty is modeled as a parametric uncertain signal, not
as an additive disturbance. Assuming that the model function is uniformly continuous, enhanced
design of the robust controller is achieved: in the calculation of the constraints of the optimization
problem and in the stabilizing conditions. The obtained stabilizing design of the controller results
particularly interesting to relax the terminal conditions for a certain class of model functions yield-
ing to a less conservative control law. The controllers derived are appealing from a practical point
of view since can be constructed from standard nominal MPC. On the otherhand, the open-loop
nature of the problem may yield to the results to be useful only for small uncertainties. In order to
reduce this effect, semi-feedback approach is proposed.
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Chapter 1

Robustness analysis of nominal Model
Predictive Control for nonlinear
discrete-time systems

The contents of this chapter have been developed by Bruno Picasso, Delia Desiderio and Riccardo
Scattolini (Politecnico di Milano, Dipartimento di Elettronica e Informazione). The results will be
presented at “Nolcos 2010”, September, Bologna.

Abstract

Input-to-State Stability properties of a system subject to additive disturbances are studied under the
assumption that the origin of the nominal system is an asymptotically stable equilibrium. The analysis
is developed also for systems with a discontinuous dynamic equation. The obtained results are used
to establish robustness properties for perturbed systems controlled with a Model Predictive Control
law designed for the nominal model.

1.1 Introduction

Model Predictive Control (MPC) is a technique widely applied in the process industry in view of
its capability to explicitly consider state and control constraints, as well as to deal with very large
scale problems with hundreds of control and controlled variables, see [16] and references therein.
There are nowadays many ways to formulate stabilizing MPC methods, see e.g.[13] for a survey
on this topic. However, it is also well known that nominal MPC can be non robust with respect to
even arbitrarily small disturbances, see [2]. Moreover, as it is discussed in [5, 8], discontinuity of the
closed-loop dynamics, and of the Lyapunov functions for the nominal system, can emphasize such
a lack of robustness. This issue is crucial in MPC, where both the resultingfeedback law and the
available Lyapunov function (which is typically the value function associatedto the optimal control
problem defining MPC) can be discontinuous (see also [15]). For this reason, in the last years, atten-
tion has been focused on the development of MPC algorithms robust with respect to specific classes
of disturbances, see the review papers [12, 17]. This activity has leadto the development of two broad
classes of robust MPC algorithms. The first one is based on a min-max formulation of the underly-
ing optimization problem (see, inter alia, the synthesis method described in [10]); the second class
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of algorithms is based on the a-priori evaluation of the effect of the disturbance over the prediction
horizon and on the use of tighter and tighter constraints to be imposed in the optimization problem
to the predicted state trajectories. Examples of this approach are reported in[6, 14] and, for nominal
MPC, in [3].
In any case, robust MPC methods are much more complex than those developed for nominal condi-
tions, requiring either an heavy on-line computational burden, or a long off-line design phase. For this
reason, it is still of interest to move back to the problem of analyzing under which conditions nominal
MPC can guarantee robustness in the face of specific classes of disturbances. This is exactly the goal
of this note, which is organized as follows. In Section 1.2, the system is defined and the concepts of
Input-to-State Stability (ISS) and Input-to-State practical Stability (ISpS) are recalled together with
some related recent results, see [7, 4, 9, 11]. Section 1.3 presents the main results of the paper con-
cerning the characterization of stability properties in perturbed conditions which can be deduced by
the properties of a Lyapunov function for the nominal system. More specifically, a functionΨ is con-
structed in terms of standardK∞-functions used to boundV and its variation along trajectories [7].
The robustness analysis is then easily derived by the analysis of the behavior of such a functionΨ,
which thus represents a kind of robustness energy measure. The analysis includes the critical case
of systems with a discontinuous dynamic equation and discontinuous Lyapunov functions. A clas-
sical example, already considered in [5, 8], is revisited in view of the results reported in this paper.
Section 1.4 specializes the analysis to linear systems. Finally, in Section 1.5, the achieved results are
applied to closed-loop dynamics resulting by an MPC stabilizing the nominal system. In particular, it
is proved that, under mild and easily testable assumptions, robustness properties can be enforced by
properly selecting the free tuning parameters of an MPC algorithm designedfor the nominal model.
Some conclusions close the paper.
Notation and terminology: The sets of non negative integers and real numbers are denoted byN and
R+, respectively. LetGL(n,R) = {T ∈ R

n×n | detT 6= 0}.
A generic vector norm inRh is denoted by| · |. If Rn×n ∋P> 0, we let|x|P =

√
x′Pxand, forA∈R

n×n,
|A|P = maxx:|x|P=1 |Ax|P be the corresponding induced matrix norm. The Euclidean vector or induced
matrix norm is denoted by| · |2. A signal taking values inRn is denoted byw = {w(0),w(1), . . .}. For
W ⊆ R

n, let MW be the set of signals taking values inW and such that‖w‖= supk∈N |w(k)|<+∞.
The interior part of a setS ⊆ R

n is denoted byint(S ). For anyr > 0, letBr =
{

x∈ R
n : |x| ≤ r

}

.
A continuous functionα : R+ → R+ is a K -function iff α(0) = 0 and it is strictly increasing. A
continuous functionα :R+ →R+ is aK∞-function iff it is aK -function andα(s)→+∞ ass→+∞.
A function β : R+×N→ R+ is aK L -function iff, for any fixedk ≥ 0, β (·,k) is aK -function in
s and, for each fixeds> 0, β (s, ·) is decreasing andβ (s,k) → 0 ask → +∞. The identity function
s 7→ s is denoted byId.

1.2 Preliminaries: system definition and robust stability properties

Let the nominal nonlinear discrete-time model be

x(k+1) = f
(

x(k)
)

, k∈ N, x(0) = x̄, (1.1)

wherex(k) ∈R
n and f : Rn →R

n, with f (0) = 0, not necessarily a continuous function. Suppose that
the perturbed system takes the form

x(k+1) = f̃
(

x(k),w(k)
)

=
= f

(

x(k)
)

+w(k), k∈ N, x(0) = x̄,
(1.2)
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with w(k)∈W ⊆R
n. The solution of system (1.2) at timek for x(0) = x̄ and disturbancew is denoted

by x(k, x̄,w).
Consider the nominal system (1.1). The classical Lyapunov theorem states that if a continuous pos-
itive functionV exists such that∆V(x) = V( f (x))−V(x) is continuous and negative definite, then
the origin is an asymptotically stable equilibrium. However, if the functionf is discontinuous, the
continuity of bothV and∆V is not guaranteed in general and∆V < 0 is not sufficient for the asymp-
totic stability. Therefore, both the Lyapunov function definition and the stabilitytheorem have to be
suitably modified.

Definition 1 A setΓ ⊆ R
n is said to be positively invariant for system(1.1) iff ∀x∈ Γ, f (x) ∈ Γ.

Definition 2 A function V: Rn → R+ is a Lyapunov function for system(1.1) iff there exist two sets
Ω andΓ with Ω ⊆ Γ, 0∈ int(Ω), andK∞-functionsα1, α2 andα3 such that:

V(x)≥ α1(|x|) ∀x∈ Γ (1.3a)

V(x)≤ α2(|x|) ∀x∈ Ω (1.3b)

V( f (x))−V(x)≤−α3(|x|) ∀x∈ Γ. (1.3c)

Proposition 1 [7] Let V be a Lyapunov function for system(1.1) and assume thatΓ is positively
invariant. Then the origin is an asymptotically stable equilibrium inΓ.

For perturbed systems (1.2), stability notions capable of taking the effect of disturbancesw into ac-
count occur.

Definition 3 A setΓ ⊆ R
n is said to be robust positively invariant with respect toW ⊆ R

n (W -RPI)
for system(1.2) iff ∀x∈ Γ and∀w∈ W , f̃ (x,w) ∈ Γ.

Definition 4 Given a compact setΓ ⊆ R
n with 0 ∈ int(Γ), system(1.2) is said to be Input-to-State

practically Stable inΓ with respect toW ⊆ R
n
(

(Γ,W )-ISpS
)

iff Γ is a W -RPI set for(1.2) and
there exist aK L -functionβ , a K -functionγ and a constant c≥ 0 such that∀k ≥ 0, ∀x̄ ∈ Γ and
∀w ∈ MW ,

|x(k, x̄,w)| ≤ β (x̄,k)+ γ(‖w‖)+c. (1.4)

According to inequality (1.4), in the case of vanishing disturbance signals,only convergence of the
state trajectory towards the neighborhoodBc of the origin is guaranteed.

Definition 5 A function V: Rn → R+ is a (Γ,W )-ISpS Lyapunov function for system(1.2) iff Γ is
a compactW -RPI set and there exist a compact setΩ ⊆ Γ with 0 ∈ int(Ω), someK∞-functions
α1,α2,α3, a K -functionσ and constants c1,c2 ≥ 0 such that:

V(x)≥ α1(|x|) ∀x∈ Γ (1.5a)

V(x)≤ α2(|x|)+c1 ∀x∈ Ω (1.5b)

V( f̃ (x,w))−V(x)≤−α3(|x|)+σ(|w|)+c2 (1.5c)

∀x∈ Γ ∀w∈ W .

Proposition 2 [9] If (1.2)admits a(Γ,W )-ISpS Lyapunov function, then it is(Γ,W )-ISpS.
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Definition 6 Given a compact setΓ ⊂ R
n with 0 ∈ int(Γ), system(1.2) is said to be Input-to-State

Stable inΓ with respect toW ⊆ R
n
(

(Γ,W )-ISS
)

iff Γ is W -RPI for system(1.2) and there exist a
K L -functionβ and aK -functionγ such that∀k≥ 0, ∀x̄∈ Γ and∀w ∈ MW ,

|x(k, x̄,w)| ≤ β (x̄,k)+ γ(‖w‖).

Definition 7 A function V: Rn → R+ is a (Γ,W )-ISS Lyapunov function for system(1.2) iff Γ is
a compactW -RPI set and there exist a compact setΩ ⊆ Γ with 0 ∈ int(Ω), someK∞-functions
α1,α2,α3 and aK -functionσ such that:

V(x)≥ α1(|x|) ∀x∈ Γ (1.6a)

V(x)≤ α2(|x|) ∀x∈ Ω (1.6b)

V( f̃ (x,w))−V(x)≤−α3(|x|)+σ(|w|) (1.6c)

∀x∈ Γ ∀w∈ W .

Proposition 3 [11] If (1.2)admits a(Γ,W )-ISS Lyapunov function, then it is(Γ,W )-ISS.

1.3 Stability analysis in perturbed conditions

The stability properties for the perturbed system (1.2) are now analyzed assuming that the origin is
an asymptotically stable equilibrium for the nominal model (1.1). The proposedresults need only the
knowledge of theK∞-functionsαi ’s (i = 1,2,3) in inequalities (1.3) and associated with a Lyapunov
function for the nominal system.

Definition 8 Let V be a Lyapunov function for the nominal system(1.1). For s≥ 0, let ψ(s) =
maxς∈[0,s](α2−α3)(ς), then

Ψ(s) = (Id−α−1
1 ◦ψ)(s)

is called theΨ-function associated to V .

Remark 1 Notice that:

1. (α−1
1 ◦ψ)(s), and henceΨ(s), is well defined because

ψ(s)≥ ψ(0) = (α2−α3)(0) = 0;

2. if α2−α3 is a non decreasing function,ψ = α2−α3;

3. Ψ is a continuous function;

4. indeed, theΨ-function is depending on(α1,α2,α3) and it is not univocally determined by V
but, for the sake of brevity, it is referred to as “associated to V”.

Theorem 1 (RPI analysis) Let V be a Lyapunov function for the nominal system(1.1) and assume
that Γ is positively invariant. Let r> 0 be such thatBr ⊆ Ω. If Ψ(r)> 0, whereΨ is theΨ-function
associated to V , thenBr is aBµ -RPI set for the perturbed system(1.2)with

µ = Ψ(r). (1.7)
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Proof. We have to show that,∀x∈ Br and∀w∈ Bµ , f̃ (x,w) ∈ Br . Forx∈ Br andw∈ Bµ , it holds
that

| f̃ (x,w)| ≤ | f (x)|+ |w| ≤ | f (x)|+µ . (1.8)

Forx∈ Br , by inequalities (1.3c) and (1.3b), one has

V( f (x))≤V(x)−α3(|x|)≤ α2(|x|)−α3(|x|), (1.9)

where the last inequality can be applied becausex∈Br ⊆Ω. By the positive invariance ofΓ, f (x)∈ Γ
so that, by (1.3a) and (1.9),α1(| f (x)|)≤V( f (x))≤ (α2−α3)(|x|) whence

| f (x)| ≤
(

α−1
1 ◦ (α2−α3)

)

(|x|). (1.10)

Thus, combining inequalities (1.8) and (1.10),

| f̃ (x,w)| ≤
(

α−1
1 ◦ (α2−α3)

)

(|x|)+µ .

Therefore,f̃ (x,w) ∈ Br if

∀x∈ Br ,
(

α−1
1 ◦ (α2−α3)

)

(|x|)+µ ≤ r,

which in turn is equivalent to

µ ≤ r −maxx∈Br

(

α−1
1 ◦ (α2−α3)

)

(|x|) =
= r −α−1

1

(

maxς∈[0,r](α2−α3)(ς)
)

=

= r − (α−1
1 ◦ψ)(r) = Ψ(r)

and this holds in view of equation (1.7).

Remark 2 Notice that, for s> 0 such thatBs ⊆ Ω, (α2−α3)(s) ≥ 0, in fact for x∈ Ω by (1.9)one
has,

(α2−α3)(|x|)≥V( f (x))≥ 0.

An ISpS property can be obtained under the following mild assumption on theK∞-functionα1 asso-
ciated with the Lyapunov functionV for the nominal model.

Assumption 1 Let α1 be so that∃σ ∈ K∞ such that
∣

∣α1(|x|)−α1(|y|)
∣

∣≤ σ(|x−y|) ∀x,y∈ Ω. (1.11)

This holds, for instance, ifα1 is Lipschitz continuous inΩ.
The ISpS result is based on the following properties:

Lemma 1 Let V be a Lyapunov function for system(1.1)with Ω being a bounded set. Under Assump-
tion 1 one has:

a. the function V is such that
∣

∣V(x1)−V(x2)
∣

∣≤ σ(|x1−x2|)+d ∀x1,x2 ∈ Ω, (1.12)

where
d = supx∈Ω

(

α2(|x|)−α1(|x|)
)

; (1.13)
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b. if x ∈ Ω and w∈ W are such that f(x) ∈ Ω and f̃ (x,w) ∈ Ω, then

V( f̃ (x,w))−V(x)≤−α3(|x|)+σ(|w|)+d.

Proof. The proof is easy and it is omitted.

Theorem 2 (ISpS analysis)Let V be a Lyapunov function for the nominal system(1.1), assume that
Γ is positively invariant andΩ is a bounded set. Consider r> 0 such thatBr ⊆ Ω and Ψ(r) > 0,
whereΨ is theΨ-function associated to V . Then, under Assumption 1, the perturbed system (1.2) is
(Br ,Bµ)-ISpS withµ = Ψ(r). Moreover, V is a(Br ,Bµ)-ISpS Lyapunov function.

Proof. First notice that, by Theorem 1,Br is a (compact)Bµ -RPI set. Let us show thatV satisfies
inequalities (1.5) withΩ = Γ = Br , α1, α2 and α3 as in Definition 2,σ as in Assumption 1 and
suitable choices forc j ’s ( j = 1,2). The thesis then follows by Proposition 2.
Properties (1.5a) and (1.5b), that is

V(x)≥ α1(|x|) ∀x∈ Br

V(x)≤ α2(|x|)+c1 ∀x∈ Br ,

follow by inequalities (1.3a) and (1.3b), respectively, becauseBr ⊆ Ω ⊆ Γ. Thus, property (1.5b)
holds withc1 = 0.
Property (1.5c), that is

V( f̃ (x,w))−V(x)≤−α3(|x|)+σ(|w|)+c2

∀x∈ Br ∀w∈ Bµ ,

follows by Lemma 1.b and hence holds withσ and c2 = d given in equations (1.11) and (1.13),
respectively. It is sufficient to notice that such a lemma can be applied becauseBr is aBµ -RPI set
contained inΩ.
Finally, the most interesting property of ISS is analyzed.

Theorem 3 (ISS analysis)Let V be a Lyapunov function for the nominal system(1.1) and assume
that Γ is positively invariant. Let̄r be such thatBr̄ ⊆ Ω. If there exists aK∞-functionΨ̃ such that
∀ r ≤ r̄, Ψ(r) ≥ Ψ̃(r), whereΨ is the Ψ-function associated to V , then,∀ r ∈ (0, r̄] the perturbed
system(1.2) is (Br ,Bµ)-ISS withµ = Ψ(r) andṼ(x) = |x| is a (Br ,Bµ)-ISS Lyapunov function.

Proof. SinceΨ̃ is aK∞-function, thenΨ(r)≥ Ψ̃(r)> 0. Hence, by Theorem 1,Br is aBµ -RPI set.
Let us show that̃V(x) = |x| satisfies inequalities (1.6) withΩ = Γ = Br andα1 = α2 = Id, α3 = Ψ̃
andσ = Id. The thesis then follows by Proposition 3.
Inequalities (1.6a) and (1.6b) are trivial, let us then consider inequality (1.6c). Forx∈Br andw∈Bµ ,
one has

Ṽ( f̃ (x,w))−Ṽ(x)≤ | f (x)|− |x|+ |w| ≤
(a)
≤

(

α−1
1 ◦ (α2−α3)

)

(|x|)−|x|+ |w| ≤
(b)
≤ −

(

Id− (α−1
1 ◦ψ)

)

(|x|)+ |w|=
=−Ψ(|x|)+ |w| ≤ −Ψ̃(|x|)+ |w|,

where (a) follows by inequality (1.10), which can be applied becauseBr is aBµ -RPI set contained
in Ω, and (b) holds because(α2−α3)(s)≤ ψ(s) andα−1

1 is aK∞-function.
Notice thatṼ is a continuous function whileV is not necessarily continuous.
Finally, for state-dependent disturbances, asymptotic state convergence to the origin can be obtained
as it is stated in the following small-gain type result.
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Figure 1.1: (a) TheΨ-function associated toV; (b) Graph of the function̂Ψ.

Corollary 1 Under the hypotheses of Theorem 3, if x(0) ∈ Br and ∃θ ∈ [0,1) such that,∀k ∈ N,
|w(k)| ≤ θΨ(|x(k)|), then the state trajectory converges to the origin. In particular, if w= w(x), then
the origin is an asymptotically stable equilibrium inBr .

Proof. It easily follows by Theorem 3.

Example 1 Consider system(1.2)where x∈ R and

f (x) =

{

1 x> 1
0 x≤ 1.

The nominal system x(k+1) = f
(

x(k)
)

admits the discontinuous Lyapunov function given by

V(x) =

{

x2+1 x> 1
x2 x≤ 1

and hence nominal asymptotic stability of the origin holds. Indeed, it is straightforward to see that
the followingK∞-functions are such that inequalities(1.3)are satisfied1 (with |x| being the absolute
value of x):

α1(s) = α3(s) = s2

α2(s) =







s2 s≤
√

1− ε
(

1+ 1
ε
)

s2+1− 1
ε

√
1− ε ≤ s≤ 1

s2+1 s≥ 1,

whereε > 0 is any fixed and arbitrarily small constant.
This example has been studied in [5] and [8], where critical issues on therobustness properties have
been pointed out. Let us see which properties can be deduced by the proposed analysis based on the
Ψ-function associated to V . Elementary computations allow one to determine theΨ-function that
turns out to be

Ψ(s) =











s s≤
√

1− ε
s−

√

1
ε s2+1− 1

ε
√

1− ε ≤ s≤ 1

s−1 s≥ 1,

see Figure 1.1.a. Hence, according to Theorem 1,∀ r > 0, r 6= 1, Br is Bµ -RPI withµ = Ψ(r).
SinceΨ(1) = 0, for r = 1 no RPI properties forBr can be proved by Theorem 1. Furthermore, it

1To this end, notice that∀x∈ R, V
(

f (x)
)

−V(x) =−x2.
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is easy to show thatΨ(1) ≤ 0 for any choice of theK∞-functionsαi ’s satisfying inequalities(1.3).
Nevertheless, in this example, it is possible to exactly characterize the RPI properties of any closed
ball Br and to find that,∀ r > 0, Br is Bµ -RPI withµ = Ψ̂(r), where

Ψ̂(r) =

{

r r ≤ 1
r −1 r > 1

(see Figure 1.1.b). SincêΨ(r) is the maximal disturbance amplitude so that the robust positive in-
variance ofBr is preserved, thenΨ(r)≤ Ψ̂(r). Moreover,Ψ is a continuous function (see Remark 1).
Thus, one can think ofΨ as a continuous lower approximation of the discontinuous functionΨ̂. This
fact clarifies the reason why RPI properties cannot be deduced by Theorem 1 for the closed ballB1.
As for the ISS analysis, sinceΨ(1) = 0, according to Theorem 3 a lower bound̃Ψ ∈ K∞ for the Ψ
function does not exist on intervals[0, r̄] with r̄ ≥ 1. On the other hand, the same result allows one to
see that the perturbed system is(Br ,BΨ(r))-ISS∀r < 1.
For r > 1, instead, only ISpS properties hold. Theorem 2, withΓ = Ω = Br , shows that the system
is (Br ,BΨ(r))-ISpS. The same result also returns the values c1 = 0 and c2 = d = 1 for the constants
appearing in inequalities(1.5b)and(1.5c)whence it follows that, for disturbance signalsw such that
limk→+∞ w(k) = 0, trajectories converge to the closed ballB1 in the sense thatlimsupk→+∞ |x(k)| ≤ 1.
♣

1.4 Linear systems

The results derived in the previous section are now specialized to perturbed stable linear systems
described by

x(k+1) = f̃
(

x(k),w(k)
)

= Ax(k)+w(k), (1.14)

whereA ∈ R
n×n is a Schur matrix. It is well known that asymptotically stable linear systems enjoy

ISS properties. Let us show that such properties do follow by Theorem3.
A Lyapunov function for the nominal systemx(k+1) = Ax(k) is V(x) = x′Px, whereP> 0 is such
that

A′PA−P=−Q< 0.

Let us derive feasible choices for theK∞ functionsαi ’s, i = 1,2,3, so that inequalities (1.3) hold.
To this end, let us consider the vector norm| · |P. With this choice,α1(s) = α2(s) = s2 are so that
inequalities (1.3a) and (1.3b) are satisfied∀x∈ R

n. As for α3, one can considerα3(s) = cs2 for some
suitablec> 0. In fact, since

V(Ax)−V(x)≤−c|x|2P ∀x∈ R
n ⇔

⇔−x′Qx≤−cx′Px ∀x∈ R
n ⇔

⇔ c≤ x′Qx
x′Px ∀x∈ R

n\{0}

and infx∈Rn\{0}
x′Qx
x′Px ≥

λmin(Q)
λMax(P)

, thenc= λmin(Q)
λMax(P)

is a feasible choice forc. Other feasible choices are

c=
λmin

(

(T−1)′QT−1
)

λMax
(

(T−1)′PT−1
) , (1.15)

whereT ∈ GL(n,R) is a free parameter. In fact, letting ˆx= Tx, one has

infx∈Rn\{0}
x′Qx
x′Px = inf x̂∈Rn\{0}

x̂′(T−1)′QT−1x̂
x̂′(T−1)′PT−1x̂ .
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Moreover, it is not hard to see that the maximal feasible value ofc is obtained by takingT such that
T ′T = P and, in this case, one has

λmin
(

(T−1)′QT−1
)

λMax
(

(T−1)′PT−1
) = inf

x∈Rn\{0}

x′Qx
x′Px

= 1−|A|2P. (1.16)

Let us compute the correspondingΨ-function associated toV. Since(α2−α3)(s) = (1− c)s2 and,
according to Remark 2,(α2−α3)(s)≥ 0 ∀s≥ 0, thenc≤ 1 andψ(s) = (1−c)s2. Thus,

Ψ(s) = (Id−α−1
1 ◦ψ)(s) = (1−

√
1−c)s

andΨ ∈ K∞ because, byc> 0, one has(1−
√

1−c)> 0.
Hence, by Theorem 3, the perturbed system (1.14) is(Br ,Bµ)-ISS∀ r > 0, with

µ = Ψ(r) = (1−
√

1−c)r. (1.17)

Remark 3 Notice that, according to equation(1.17), the smaller
√

1−c is, the more robustness is
ensured for the perturbed system(1.14). By equation(1.16)and standard properties of the induced
matrix norms, it holds that

ρ(A)≤ |A|P ≤
√

1−c.

This means that, according to the proposed theory, the spectral radius of A provides a restriction on
the degree of robustness which can be proved.

Remark 4 The choice of a proper vector norm is crucial for the applicability of the proposed results.
For instance, if we consider V(x) = x′Px and the Euclidean vector norm| · |2, then inequalities(1.3)
are satisfied withα1(s) = λmin(P)s2, α2(s) = λMax(P)s2 andα3(s) = λmin(Q)s2. Hence, it is easy to
see that

Ψ(s) =
(

1−
√

λMax(P)−λmin(Q)
λmin(P)

)

s.

In this case, however, it is not guaranteed thatΨ ∈ K∞. If Ψ ∈ K∞, then robust positive invariance
properties of the Euclidean balls hold. Therefore, a necessary conditionin order that Ψ ∈ K∞ is
A′A− I < 0 (namely, that the system is 2-norm contractive).

1.5 Application to Model Predictive Control

The proposed analysis results are now applied to systems controlled with an MPC law designed on
the nominal model of a perturbed system. The goal is to provide MPC synthesismethods based on the
nominal model and capable of guaranteeing robustness properties for the corresponding closed-loop
system against additive disturbances.
Let the perturbed open-loop system be given by

x(k+1) = fo
(

x(k),u(k)
)

+w(k), k∈ N, x(0) = x̄, (1.18)

with x(k) ∈ R
n, u(k) ∈ R

m, w(k) ∈ W ⊆ R
n and fo(0,0) = 0. Let us now focus on the open-loop

nominal counterpart of the system, namely

x(k+1) = fo
(

x(k),u(k)
)

, k∈ N, x(0) = x̄. (1.19)
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The state and control variables are supposed to satisfy the following constraints:∀k∈ N,

x(k) ∈ X and u(k) ∈U, (1.20)

with X andU being compact subsets ofRn andRm, respectively, containing the origin as an interior
point.

Definition 9 For a given control law u= φ(x), a setX̄ ⊆ X is said to be an admissible set for the

nominal closed-loop system x(k+ 1) = fo
(

x(k),φ
(

x(k)
)

)

iff ∀x ∈ X̄ , φ(x) ∈ U, X̄ is a positively

invariant set and∀x(0) ∈ X̄ , limk→+∞ x(k) = 0.

A nominal MPC controller is defined as follows: fix the length of the prediction horizonN > 0 and let
u0,N−1 = [u(0),u(1), · · · ,u(N−1)]∈UN. For a given stage costl : Rn×R

m→R+, a terminal penalty
functionVf : Rn → R+ and a terminal setXf , consider the finite horizon optimal control problem
(FHOCP) that consists of minimizing, with respect tou0,N−1, the performance index

J(x̄,u0,N−1,N) = ∑N−1
k=0 l

(

x(k),u(k)
)

+Vf
(

x(N)
)

subject to

i. the nominal state dynamics (1.19);

ii. the constraints (1.20),∀k∈ [0,N−1];

iii. the terminal state constraintx(N) ∈ Xf .

Let uopt
0,N−1 be the optimal control sequence and suppose that only the first elementuopt

0,0(x̄) of such
a sequence is applied, then at the successive time instant the FHOCP is solved again with ¯x =
fo
(

x̄,uopt
0,0(x̄)

)

. This procedure defines a state feedback control law denoted by

u= φ MPC(x). (1.21)

Many results are available on the way to select the parameters that guarantee the stability of the origin
for the closed-loop system (1.19), (1.21), see e.g. [13]. Let us recall a standard formulation that
turns out to be suitable to our purpose of synthesizing an MPC controller for the nominal system and
ensuring closed-loop robustness properties.

Assumption 2 The function l(x,u) is such that l(0,0) = 0 and l(x,u) ≥ αl (|x|), whereαl (s) is a
K∞-function.

Assumption 3 The design parameters Vf and Xf are such that, given an auxiliary control law u=
φ f (x), one has:

1. Xf ⊆ X, Xf is closed and0∈ int(Xf );

2. φ f (x) ∈U, ∀x∈ Xf ;

3. fo(x,φ f (x)) ∈ Xf , ∀x∈ Xf ;

4. 0≤Vf (x)≤ βVf (|x|), ∀x∈ Xf , with βVf (s) being aK∞-function;

5. Vf ( fo(x,φ f (x))−Vf (x)≤−l(x,φ f (x)), ∀x∈ Xf .
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Proposition 4 [12] Let XMPC(N) be the set of the states such that a solution for the FHOCP exists.
Under Assumptions 2 and 3, Xf ⊆ XMPC(N), the origin is an asymptotically stable equilibrium for the
nominal closed-loop system(1.19), (1.21) and XMPC(N) is an admissible set. Moreover, V(x,N) =
J(x,uopt

0,N−1,N) is a Lyapunov function for the nominal closed-loop dynamics withα1 = α3 = αl , α2 =
βVf , Γ = XMPC(N) andΩ = Xf .

Consider the nominal closed-loop dynamics under the auxiliary control law:by Assumptions 3.4
and 3.5, it follows thatVf (x) is a Lyapunov function withα1 = α3 = αl andα2 = βVf . Hence, the
results reported in Section 1.3 allow one to analyze the robustness properties of the closed-loop system
in terms of such aK∞-functions. By Proposition 4, it also turns out that theK∞-functions associated
with the Lyapunov functionV(x,N) for the nominal closed-loop dynamics under the MPC law are
the same as those associated withVf (x). This means that, within the final setXf , the MPC controller
guarantees the same robustness properties as those which can be proved for the auxiliary law in terms
of the functionsαl andβVf . In particular, the validity of RPI properties forXf ensures that, under the
MPC law, the input and state constraints are robustly satisfied within the final set.
This result, however, does not allow one to conclude on robustness properties out of the final set.
Hence, for initial conditions far from the equilibrium, standard but more burdensome methods, such
as min-max [10, 17] or constraint tightening [6, 3], should be undertaken.

1.5.1 Auxiliary control law design

According to the previous discussion, a fundamental requirement to guarantee a robust closed-loop
dynamics with MPC is that robustness properties are ensured by the adopted auxiliary control law.
This fact calls for the need to investigate the way to design auxiliary control laws based on the nominal
open-loop model and capable of guaranteeing desired robustness properties for the corresponding
closed-loop dynamics. To this aim, stemming from [1], suppose that the mappingfo describing the
nominal dynamics is continuously differentiable in a neighborhood of the equilibrium (0,0). Let

fo(x,u) =
∂ fo
∂x

∣

∣

∣
x=u=0

x+ ∂ fo
∂u

∣

∣

∣
x=u=0

u+π(x,u) =

= Aox+Bu+π(x,u),

where

lim
|(x,u)|→0+

|π(x,u)|
|(x,u)| = 0. (1.22)

Assume that the pair(Ao,B) is stabilizable and let the auxiliary law take the form

u(k) = Kx(k),

with K such thatAo+BK is a Schur matrix. Consider a quadratic stage cost

l(x,u) = x′Qx+u′Ru, Q> 0, R> 0

and letP> 0 be the solution of the Lyapunov equation

(Ao+BK)′P(Ao+BK)−P=−β (Q+K′RK), (1.23)

with β > 1. Hence, considerVf (x) = x′Pxand the vector norm| · |P, thenαl (s) = cs2 andβVf (s) = s2,

wherec = λmin((T−1)′QT−1)
λMax((T−1)′PT−1)

(

for someT ∈ GL(n,R), see equation (1.15)
)

, are so that Assumptions 2
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and 3.4 are satisfied. Moreover, for the original nonlinear dynamics, one easily obtains

Vf
(

fo(x,Kx)
)

−Vf (x)+ l(x,Kx) =
=−(β −1)x′(Q+K′RK)x+eπ(x),

where, in view of (1.22),eπ is such that lim|x|→0+
|eπ (x)|
|x|2 = 0. Thus, for a sufficiently smallρ > 0,

Assumption 3 is satisfied withXf = {x∈ R
n|x′Px≤ ρ2}= Bρ .

Recalling thatα1(s) = α3(s) = cs2 andα2(s) = s2, theΨ-function associated toVf is then given by

Ψ(s) =
(

1−
√

1−c
c

)

s

and it is aK∞-function if and only ifc> 1
2, that is

λmin((T−1)′QT−1)

λMax((T−1)′PT−1)
>

1
2
. (1.24)

If condition (1.24) is satisfied, then Theorem 3 ensures that, with both the auxiliary law and MPC
designed on the nominal system (1.19), the closed loop system (1.18), (1.21) is (Br ,BΨ(r))-ISS,
∀ r ≤ ρ.
This result raises the issue of the existence and selection of the design parametersK, Q, R andβ so
that condition (1.24) is satisfied. To this end, the following result holds:

Proposition 5 If T ∈GL(n,R) and K∈R
m×n are so that|Ao+BK|2T ′T <

1
2, then Ao+BK is Schur and

there exists a sufficiently smallε > 0 such that, with Q= T ′T, R= εI andβ = 1+ε, condition(1.24)
is satisfied.

Proof. The matrixAo+BK is Schur becauseρ(Ao+BK)≤ |Ao+BK|T ′T <

√
2

2 < 1.
Let Q1 = β (Q+K′RK) andAc = Ao+BK. In the new coordinates ˆx = Tx, one hasÂc = TAcT−1,
Q̂= (T−1)′QT−1, Q̂1 = (T−1)′Q1T−1, P̂= (T−1)′PT−1. TakeQ, Randβ as in the assumptions, then
Q̂= I and, being|Âc|22 = |Ac|2T ′T <

1
2, there exists a sufficiently smallε > 0 such that

1− λMax(Q̂1)

2λmin(Q̂)
> |Âc|22. (1.25)

Equation (1.23) rewrites aŝP= Q̂1+Â′
cP̂Âc. Hence,λMax(P̂) = |P̂|2 ≤ |Q̂1|2+ |Â′

cP̂Âc|2 ≤ λMax(Q̂1)+
λMax(P̂)|Âc|22 so that

λMax(P̂)≤
λMax(Q̂1)

1−|Âc|22
. (1.26)

because|Âc|22 < 1. Thus,
λmin(Q̂)

λMax(P̂)

(a)
≥ λmin(Q̂)

λMax(Q̂1)
(1−|Âc|22)

(b)
>

1
2
,

where inequalities (a) and (b) follow by inequalities (1.26) and (1.25), respectively.
According to Proposition 5, for a givenT ∈ GL(n,R), the problem of the selection of the design pa-
rameters so that condition (1.24) holds is then reduced to determineK such that|T(Ao+BK)T−1|22 <
1
2. Such a control design issue can be expressed in the form of the following LMI problem: find
K ∈ R

m×n such that
[ √

2
2 I T (Ao+BK)T−1

(T−1)′(A′
o+K′B′)T ′

√
2

2 I

]

> 0.

If there existsK such thatρ(Ao+BK)<
√

2
2 , a suitable choice forT makes such an LMI feasible. In

fact, it is well known that,∀ε > 0,∃T ∈ GL(n,R) such that|Ao+BK|T ′T < ρ(Ao+BK)+ ε.
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1.6 Conclusions

In this paper, it has been shown that, under mild assumptions, the design of an MPC law for a nominal
model guarantees also robustness in perturbed conditions. This has been proved by first deriving
a number of results for systems characterized by a not necessarily continuous dynamic equation and
subject to additive disturbances. It is believed that these results can be of wider applicability, including
the study of other control synthesis techniques than MPC. More generalresults, accounting also for
state dependent disturbances, are currently under development.
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Chapter 2

Fully decentralized nominal MPC

The contents of this chapter have been developed by Daniel Limón (Dpto. Ingenieria de Sistemas y
Automatica Escuela Superior de Ingenieros, Universidad de Sevilla).

2.1 Introduction

Decentralized model predictive control (MPC) techniques are of greatinterest in the process industry
due to topological reasons and the possible limited exchange of data betweensubsystems. More-
over, this decentralized control technique often has the advantage to reduce the possibly large-size
optimization problem to the solution of smaller ones potentially more tractable.
Distributed MPC algorithms can be developed (i) assuming that there exists exchange of information
between the subsystems, or (ii) considering that there not exists any information exchange yielding
to a fully decentralized control structure. In this work the second case is considered, that is, a fully
decentralized MPC. In this case, the possible interactions between subsystems are considered as un-
known disturbances that the controller must accomplish. The design of a fully decentralized MPC can
be done relying on a robust design of each predictive controllers [29].
Model predictive control is one of the few techniques capable to controla nonlinear plant guaran-
teeing asymptotic stability to the target operating point fulfilling hard constraints on the state and
input. The control law is implicitly derived from the solution of an optimization problem at each
sampling time and the receding horizon technique ([13]). In the case that theprediction model differs
from the real plant, then the effect of the uncertainty must be considered. Under some mild assump-
tions, the predictive control law ensure robust stability in the case that the uncertainty is small enough
([22, 25]). In other case, the uncertainty model must be considered in the controller calculation in
order to provide robust stability and robust constraint satisfaction. In this case particularly interesting
are those approaches that provide robustness based on the solution ofa nominaloptimization prob-
lem. Input-to-state stability appears as a suitable framework for the robust stability analysis while
constraint satisfaction can be ensured by means of approximations of the reachable sets. See [26] and
the references there in for a survey on this topic.
In [29] a decentralized min-max MPC is proposed. Stability of the whole plant isachieved relying on
the ISS property of each single min-max MPC controller and assuming certain bounds on the coupling
terms. In this work we extend this result to the case of nominal MPC, which avoids the computational
complexity of the solution of the min-max optimization problem.
In this work we present the methodology to design the nominal MPC for each subsystem. Under a
certain design, which generalizes [24], the nominal MPC can ensure ISSof the system with a less
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conservative stability margin. The uncertainty is modeled as a parametric uncertain signal, not as an
additive disturbance. Assuming that the model function is uniformly continuous, enhanced design
of the robust controller is achieved: in the calculation of the constraints of the optimization problem
and in the stabilizing conditions. The obtained stabilizing design of the controllerresults particularly
interesting to relax the terminal conditions for a certain class of model functions yielding to a less
conservative control law.
Notation and basic definitions:
LetR, R≥0, Z andZ≥0 denote the real, the non-negative real, the integer and the non-negativeinteger
numbers, respectively. Given two integersa,b ∈ Z≥0, Z[a,b] , { j ∈ Z≥0 : a ≤ j ≤ b}. Given two
vectorsx1 ∈ R

a andx2 ∈ R
b, (x1,x2) , [x′1,x

′
2]
′ ∈ R

a+b. A norm of a vectorx∈ R
a is denoted as|x|.

Given a signalw∈R
a, the signal’s sequence is denoted byw, {w(0),w(1), · · ·} where the cardinality

of the sequence is inferred from the context.0 denotes a suitable signal’s sequence taking a null value.
If a sequence depends on a parameter, asw(x), w( j,x) denotes itsj-th element. The sequencew[τ]
denotes the truncation of sequencew, i.e. w[τ]( j) = w( j) if j ≤ τ andw[τ]( j) = 0 if j > τ. For a given

sequence, we denote‖w‖, supk≥0{|w(k)|}. The set of sequencesw, whose elementsw( j) belong to
a setW ⊆ R

a is denoted byMW. For a compact setA, Asup, supa∈A{|a|}.
Consider a functionf (x,y) : Ra×R

b → R
c, f is said to be uniformly continuous inx for all x ∈ A

andy∈ B if for all ε > 0, aδ (ε) > 0 exists such that| f (x1,y)− f (x2,y)| ≤ ε for all x1,x2 ∈ A with
|x1 − x2| ≤ δ (ε) and for ally ∈ B. For a given setA ⊂ R

a, the range of the function isf (A,y) ,
{ f (x,y) : x∈ A} ⊂ R

c.
A function γ : R≥0→ R≥0 is of classK (or a “K -function”) if it is continuous, strictly increasing
andγ(0) = 0. A function γ : R≥0→ R≥0 is of classK ∞ if it is a K -function andγ(s) → +∞ as
s→ +∞. A function β : R≥0 ×Z≥0 → R≥0 is of classK L if, for each fixedt ≥ 0, β (·,k) is of
classK , for each fixeds≥ 0, β (s, ·) is decreasing andβ (s,k)→ 0 ask→+∞. Consider a couple of
K -functionsσ1 andσ2, thenσ1 ◦σ2(s) , σ1(σ2(s)), besidesσ j

1(s) denotes thej-th composition of
σ1, i.e. σ j+1

1 (s) = σ1◦σ j
1(s) with σ1

1(s), σ1(s). A functionV : Ra → R≥0 is called positive definite
if V(0) = 0 and there exists aK -functionα such thatV(x)≥ α(|x|).

2.2 Problem statement

In this work it is considered that the subsystem to be controlled is describedby a discrete-time invari-
ant nonlinear difference equation as follows

x(k+1) = f (x(k),u(k),w(k)), k≥ 0 (2.1)

wherex(k) ∈ R
n is the system state,u(k) ∈ R

m is the current controlled variable andw(k) ∈ R
p is a

signal which models mismatches between the real plant and the model, that is, theunknown coupling
terms. The origin is an equilibrium point for the plant (i.e.f (0,0,0) = 0) which is the control target.
The solution of system (2.1) at sampling timek for the initial statex(0), a sequence of control inputs
u and uncertainty signalw is denoted asφ(k,x(0),u,w), whereφ(0,x(0),u,w) = x(0). It is assumed
that there is no trajectoryφ(k,x(0),u,w) that exhibits finite escape time for anyx(0), u andw. It is
also assumed that the state of the plantx(k) can be measured at each sample time.
It is considered that the uncertainty signalw(k) lies in a known ballW = {w : |w| ≤ µ}. Furthermore,
the control input and state of the plant must fulfill the following hard constraint:

(x(k),u(k)) ∈ Z (2.2)
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whereZ ⊆ R
n+m is closed and contains the origin in its interior.

The model function is assumed to be uniformly continuous in all its arguments in thesetZ ×W .
Then, there are threeK -functionsσx, σu andσw such that

| f (x1,u1,w1)− f (x2,u2,w2)| ≤ σx(|x1−x2|) (2.3)

+σu(|u1−u2|)
+σw(|w1−w2|)

for all (x1,u1,w1) and(x2,u2,w2) in Z ×W .
The nominal model of the plant (2.1) denotes the system considering zero-disturbance and it is given
by

x̃(k+1) = f̃ (x̃(k),u(k)), k≥ 0 (2.4)

where f̃ (x,u) , f (x,u,0). The solution to this equation for a given initial statex(0) is denoted as
φ̃(k,x(0),u), φ(k,x(0),u,0).
The aim of the work is to design a model predictive controller based on nominal predictions such
that the controlled plant is robustly stable while satisfying the constraints throughout the evolution.
In the following sections, the stability notion used in this work is briefly introduced: the regional
input-to-state stability.

2.2.1 Regional input-to-state stability (ISS)

The existence of constraints limits the domain where the system can be stabilized.Then, a regional
definition of the stability notions must be considered. In this work, robust stability is studied resorting
in the notion of input-to-state stability ([32, 23]). ISS has demonstrated to be auseful framework to
analyze robust stability of predictive controllers (see [26] and the references there in).
Consider that the system (2.1) is controlled by the lawu = κ(x) leading the following closed-loop
system

x+ = fκ(x,w), f (x,κ(x),w) (2.5)

x ∈ Xκ , {x∈ R
n : (x,κ(x)) ∈ Z } (2.6)

Now, some definitions and well-known results on regional ISS are summarized.

Definition 10 (Robust positively invariant (RPI) set) A setΓ ⊆ R
n is a robust positively invariant

(RPI) set for system (2.5) if fκ(x,w) ∈ Γ, for all x∈ Γ and all w∈ W . Furthermore, ifΓ ⊆ Xκ , thenΓ
is called admissible RPI set. �

Notice that the fact that the RPI setΓ is admissible ensures the robust satisfaction of the constraints
since for any initialx0 ∈ Γ, Φ(k,x0,w) ∈ Γ ⊆ Xκ for all k∈ Z≥0 andw ∈ MW .

Definition 11 (RegionalISSin Γ) Let Γ ⊆ R
n be an admissible RPI for system(2.5) including the

origin as an interior point. The system(2.5) is input-to-state stable (ISS) inΓ if there exist aK L -
functionβ and aK -functionσ such that

|φκ( j,x(0),w)| ≤ β (|x(0)|, j)+σ(||w[ j−1]||) (2.7)

for all x(0) ∈ Γ, w ∈ MW and j∈ Z≥0.
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ISS can be determined by means of a Lyapunov-like condition ([23, 27]),as follows.

Definition 12 (ISS-Lyapunov function inΓ) Let Γ be a RPI set containing the origin in its interior.
A function V: Rn → R≥0 is called an ISS-Lyapunov function inΓ for system (2.5) if there exist a
compact setΩ ⊆ Γ (including the origin as an interior point), suitableK∞-functionsα1,α2, α3 and
K -functionλ such that:

V(x) ≥ α1(|x|), ∀x∈ Γ (2.8)

V(x) ≤ α2(|x|), ∀x∈ Ω (2.9)

and for all x∈ Γ and w∈ W , the following condition holds

V( fκ(x,w))−V(x)≤−α3(|x|)+λ (|w|) (2.10)

�

Based on this Lyapunov-like functions, the following stability theorem can bederived ([23, 27]):

Theorem 1 If system (2.5) admits an ISS-Lyapunov function inΓ then it is ISS inΓ.

2.3 Proposed robust MPC

2.3.1 Semi-feedback approach

The most simple robust MPC formulations derive the control law from the solution of an optimization
problem based on open-loop predictions of the uncertain system evolution. This open-loop scheme
results to be very conservative from both a performance and domain of attraction points of view (see
[13, Section 4]). In order to reduce this conservativeness, a closed-loop (or feedback) formulation
of the MPC has been proposed ([31]). In this case, control policies instead of control actions are
taken as decision variables, yielding to an infinite dimensional optimization problem that is in general
very difficult to solve and for which there exists few efficient algorithm in the literature in the case
of linear systems ([28, 21]). A practical formulation between these two approaches is the so-called
semi-feedback formulation, where a family of parameterized control laws is used ([19, 20]). Thus the
decision variables are the sequence of the parameters of the control laws, and hence the optimization
problem is a finite-dimensional mathematical programming problem.
Consider that the control actions are derived from a given family of controllers parameterized by
v∈ R

s,
u(k) = π(x(k),v(k))

which is assumed to be uniformly continuous in its domain. The family of control laws is typically
chosen as an affine function of the state ([19]). Thus, system (2.1) is transformed in

x(k+1) = fπ(x(k),v(k),w(k)), k≥ 0 (2.11)

where fπ(x,v,w) , f (x,π(x,v),w). Notice thatv plays the role of the input of the modified system.
The solution of this equation is denoted asφπ(k,x,v,w). The nominal model of system (2.11) is
denoted as̃fπ(x,v) , fπ(x,v,0) and its solution as̃φπ(k,x,v) , φπ(k,x,v,0). Analogously, the con-
straints can be rewritten as

(x(k),v(k)) ∈ Zπ (2.12)

whereZπ is such that(x,π(x,v)) ∈ Z for all (x,v) ∈ Zπ .
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2.3.2 Nominal model predictive control

The proposed predictive controller is based on the nominal prediction of the trajectories and follows
the standard formulation of the MPC ([13]). The control law is derived from the solution of the
following mathematical programming problemPN(x) parameterized in the current statex.

min
v

N−1

∑
j=0

Lπ(x̃( j),v( j))+Vf (x̃(N)) (2.13)

s.t. x̃( j) = φ̃π( j,x,v), j ∈ Z[0,N] (2.14)

(x̃( j),v( j)) ∈ Zπ( j), j ∈ Z[0,N−1] (2.15)

x̃(N) ∈ X f (2.16)

whereLπ(x,v), L(x,π(x,v)) andL : Rn×R
m→R≥0 is the stage cost function,Vf : Rn →R≥0 is the

terminal cost function. The sequence of constraint sets{Zπ( j)} will be defined later on andXf ⊆ R
n

is the terminal region. It is assumed thatPN(x) is feasible in a non-empty region denotedXN. For
eachx∈ XN, the argument ofPN(x) is denotedv∗(x) and the optimal cost isV∗

N(x). The MPC control
law derives from the application of the solution in a receding horizon mannerκN(x) = v∗(0;x) and it
is defined for allx∈ XN.

2.3.3 Robust design of the proposed controller

The proposed controller is based on the availability of two sequence of sets{R( j)} and{F ( j)} that
are assumed to be calculated off-line (see next section). The sequence{F ( j)} is related with the free
response of the nominal system and must satisfy the following hypothesis:

Assumption 4 The sequence of sets{F ( j)} is such that: For every(x,v), φ̃π(k, x̂,v) ∈ φ̃π(k,x,v)⊕
F (k) for all x̂ such that|x̂−x| ≤ σw(µ).

On the other hand, the sequence{R j} is related to the reachable sets, that is, the sequence of possible
trajectories due to the effect of the disturbances. This sequence must satisfy the following conditions

Assumption 5 The sequence of sets{R( j)} is such that:

1. For every(x,v), φπ(k,x,v,w) ∈ φ̃π(k,x,v)⊕R(k) for all w ∈ MW

2. F ( j)⊕R( j)⊆ R( j +1)

The first condition states that each set of the sequence is an outer boundof the effect of the uncertainty
throughout the trajectory, while the second condition ensures that the sequence is monotone. This fact
will be more clearly demonstrated in the proof of lemma 1. Practical methods to calculate the proposed
sequences are presented in the following section.
Since sequence of sets{R( j)} provides an estimation of the effect of the disturbance with respect to
the nominal predictions, this can be used to counteract the effect of the disturbances in the constraint
satisfaction. This is done by using a sequence of tighter constraint sets{Zπ( j)} defined as follows:

Definition 13 Let the sequence{Zπ( j)} be defined as follows

Zπ( j) = Z ⊖ (R( j)×{0})

On the other hand, the terminal constraint setX f must satisfy the following assumption
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Assumption 6 The input vf ∈ R
s and the setsΩ andX f are such that

(i) Ω andX f are invariant sets for the system̃x+ = f̃π(x̃,vf )

(ii) Ω×{vf } ⊆ Zπ(N−1)

(iii) X f ⊕F (N−1)⊆ Ω

(iv) f̃π(x̃,vf ) ∈ X f , for all x̃∈ Ω.

Notice that this assumption requires thatΩ is an invariant set for the nominal system andX f a set
where the system evolves in one step. The main restriction is thatΩ must be a contractive invariant
set such that̃fπ(Ω,vf )⊕F (N−1)⊆ Ω. This implicitly states thatΩ is a robust positively invariant
set for the systemx+ = fπ(x,vf )+ω whereω ∈ F (N−1). In the case that the control lawπ makes
the system asymptotically stable in(x,v) ∈ Zπ , which is usual for simple systems such that linear
systems ([19]) or feedback linearizable system ([30]), setF (N−1) can be arbitrarily small for large
enough prediction horizon. This relaxes the standard assumption on the terminal constraint, that must
be a robust positively invariant set for the whole uncertainty set.
This proposed method to design the constraints of the optimization problemPN has been chosen in
order to ensure the robust feasibility of the controller, as it is demonstratedin the following lemma.

Lemma. 1 Consider the system(2.11) and the sequence of sets{Zπ( j)} based on the sequences
of sets{R( j)} and {F ( j)} which satisfy assumptions 4 and 5. Let the triplet(vf ,Ω,X f ) fulfill
assumption 6. Consider now a feasible state x∈ XN and v∗ the argument of PN(x). Let x+ be the
uncertain successor state and define the sequence of inputsv+ , {v∗(1), · · · ,v∗(N−1),vf}. Then the
following properties hold.

1. (φ̃π( j,x+,v+),v+( j)) ∈ Zπ( j)

2. φ̃π(N,x+,v+) ∈ X f

2.3.4 Calculation of the sequence of sets

The sequence of sets{F ( j)} and {R( j)} provides outer bounds on the effect of the uncertainty
throughout the prediction, then these can be calculated by methods that provides guaranteed prediction
of the uncertain system ([18, 30, 26]). Among these, it is worth to cite thosebased on polytopic
algorithms, interval arithmetics, zonotopic methods or DC-programming based techniques.
In this work we provide a simpler, although probably more conservative method, based on the uniform
continuity of the model function.

Lemma. 2 Let a system be given by model(2.1)and let define the following sets:

F ( j) , {x∈ R
n : |x| ≤ σ j

x ◦σw(µ)} (2.17)

R( j) , {x∈ R
n : |x| ≤ c j(µ)} (2.18)

where cj(µ) is given by the following recursion

c j(µ) = max{ σw(µ)+σx◦c j−1(µ),
c j−1(µ)+σ j−1

x ◦σw(µ)}
(2.19)

with c1(µ) = σx(µ).
Then the sequence of sets{F ( j)} and{R( j)} satisfy the assumptions 4 and 5.
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As it can be seen, these sets can be easily calculated off-line once provided the bounding functions. In
the case that Lipschitz continuity is exploited to derive the bounding functions, the resulting sets are
equal to those presented in [24]. Notice that if the uniform continuity is exploited, tighter (non-linear)
bounding functions can be used, and hence less conservative resultswill be obtained.

2.4 Input-to-state stability of the controlled system

In the previous sections, conditions on the constraints of the optimization problemPN(x) that suffices
to ensure robust feasibility are provided. However these conditions arenot sufficient to derive robust
stability of the closed-loop system. To this aim, the following additional assumptionsare required.

Assumption 7

1. Let the stage cost function Lπ(x,v) be a definite positive function in(x,v) uniformly continuous
in Zπ such that

Lπ(x,v) ≥ αL(|x|)
|Lπ(x1,v1)−Lπ(x2,v2)| ≤ λx(|x1−x2|)+λv(|v1−v2|)

whereαL, λx andλv areK -functions.

2. Let the terminal cost function Vf (x) be a definite positive function uniformly continuous inΩ
(see assumption 6) such that

αV(|x|)≤Vf (x) ≤ βV(|x|)
Vf ( f̃π(x,vf ))−Vf (x) ≤ −Lπ(x,vf )

|Vf (x1)−Vf (x2)| ≤ δ (|x1−x2|)

These assumptions are standard for the stabilizing design of nominal MPC ([13]). The only additional
requirement is the uniform continuity of the functions. Based on this, stability isstated in the following
theorem.

Theorem 2 Consider that assumptions 4 ,5, 6 and 7, hold. Then the system(2.1) controlled by
κMPC(x) = π(x,κN(x)) is ISS inXN and satisfies the constraints throughout the evolution.

2.5 Conclusions

This work has demonstrated that outer estimation of the reachable sets can beused to derive robust
stabilizing predictive controller based on nominal predictions. This class ofcontrollers are appealing
from a practical point of view since can be constructed from standard nominal MPC. On the other
hand, the open-loop nature of the problem may yield to the results to be useful only for small un-
certainties. In order to reduce this effect, semi-feedback approach is proposed. This is a simple and
practical method, but requires an analysis of the system to be controlled in order to find a nice family
of control laws.
Based on the uniform continuity of the model function and the defining functions of the MPC, suffi-
cient conditions for input-to-state stability has been proposed. Moreover, uniform continuity can also
be exploited to calculate the sequence of sets necessary for the design ofthe proposed controller.
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