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Executive Summary

The objective of this report is to provide a compact literature review on existing coordination
mechanisms and to summarize results of the assessment of different coordination mechanisms. For
this purpose we introduce the problem of coordination, on the hand by somepractical motivation
and on the other hand by some mathematical problem description. Coordinationmechanisms are a
crucial part of hierarchical and distributed model predictive control methods. The literature review
provides an overview of the existing coordination methods: Many of them are closely related to
each other and based on some price-driven coordination. Then we provide some short compact
results of our own assessments. The results are analyzed regarding properties such as optimality
and performance. Finally we give an overview of the results and discusspossible alternative
coordination approaches.
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Chapter 1

Introduction

Communication, cooperation, and coordination are the main properties that distinguish hierarchical
and distributed model predictive control (MPC) methods from decentralized model predictive control
methods. Decentralized MPC is considered to be the most important advancedcontrol technology
in large-scale systems, such as chemical plants or power plants, today. While the optimal control
strategy for the entire plant, or a network of interconnected plants, would be to have a centralized
model predictive controller, there are many challenges of this centralized method, that cannot be
solved today, e.g.,

• If the size of the considered processes increases or the process time constants decrease, cen-
tralized MPC will demand tremendous computing power and thus will not be applicable for a
real-time application [7, 30];

• In case of a spatially distributed system, e.g., a water supply network, communication among
different subsystems of the global process might be limited;

• Maintainability of a centralized large-scale control structure is difficult [6];

• Reliability of a decentralized control structure might be better than the one of acentralized
control structure [7].

Hence, today, the method of choice is to have decentralized MPCs1, where each of the MPCs au-
tonomously controls one part of the entire process, but without taking into account the interactions of
the different subsystems. Hence, decentralized MPC will in general leadto a suboptimal control of
the entire plant. Moreover, the neglection of interaction may also lead to reduced robustness of the
control structure or even to instability. This can be seen in the following example: We shortly discuss
the control problem of a plant with inputsu∈ R

2 and outputsy∈ R
2, which can be described by the

linear transfer matrix:

G(s) =

[
1

s+1
2

s+6

1
s+3

1
s+1

]

If we useK1 = 20 for the control ofG11 andK2 = 18 for the control ofG22, we get a stable step
response as depicted in Figure 1.1 on the left. However if the same controllers are applied to the entire
systemG, then we get an unstable step response as depicted in Figure 1.1 on the right.

1With a slight abuse of notation (note that MPC is an abbrevation of “model predictive control”) we will use MPCs to
denote “model predictive controllers” or “MPC-based controllers”.
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Figure 1.1: Instability due to interacting subsystems: On the left, there is the stepresponse of decou-
pled subsystems. On the right, there is the step response for interacting subsystems.
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Hence, the goal of hierarchical and distributed MPC is to have methods, combining the advantages
of centralized and decentralized MPC:

• optimal control of the overall process,

• stability and robustness,

• low computational requirements,

• easy maintainability,

• reliability,

• low communication requirements.

Therefore, the approach of hierarchical and distributed MPC is to decompose the subordinate dynam-
ical optimization problem of the MPC control into several smaller subproblems.However, in order
to achieve stability, robustness, and optimality of the resulting accumulated solution, there has to be
communication, cooperation and coordination between the different local (infimal) controllers, as it
is depicted in Figure 1.2.

Before we formulate the problem in more detail, we first define the three different properties:
communication, cooperation, and coordination:

• Communication means only a weak amount of interaction between different controllers. The
controllers only share the information of the local subunit with other subunits. However, no
information concerning overall optimality is spread. Hence, in general communication only
will not result in optimal, stable, and robust plant operation [23].

• Cooperation means that compared to communication additional information is spread by local
units in order to provide information, on how to achieve overall optimality. In MPC, this will
also be referred to as distributed MPC.

• Coordination is almost the same as cooperation. However, there, the subproblems are coordi-
nated by a supervisor, in order to achieve overall optimality. As there are two control layers, in
MPC, this will also be referred to as hierarchical MPC.

The remainder of the report is organized as follows: Chapter 2 presentsthe mathematical problem
of coordination. Chapters 3 and 4 provide a short literature overview for hierarchical and distributed
coordination mechanisms. Then, in Chapter 5 we present some of our own assessment of coordination
mechanisms. Finally, the conclusion (Chapter 6) summarizes the report and introduces possible future
developments.

Remark: In the context of the HD-MPC project not only the tasks T3.1, T3.2 and T3.3(Hierarchical
and distributed nonlinear MPC, Hierarchical and distributed robust nonlinear MPCandCoordination
mechanisms) cannot be handled independently, but also WP4 (Optimisation methods for hierarchical
and distributed MPC) of the project is extremely closely related to the work to be done within WP3
(Development of hierarchical and distributed MPC methods). Hence, there will always be some
overlapping parts within the related results.
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Figure 1.2: Illustration of distributed MPC control of a network
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Chapter 2

Problem formulation

The idea of model predictive control (MPC) is to numerically solve a dynamic optimization problem
at each sampling time. MPC uses a receding horizon approach, in which onlythe control signals
for the first subsequent period of time are applied to the process; then theoptimization problem has
to be solved again for new initial conditions and again also only the first values for the manipulated
variables are applied to the process. This method is repeated for each of the following sampling times
of the control problem.

The same idea is to be implemented in hierarchical and distributed MPC. Thus, thebasis for HD-
MPC is an optimization problem, which has to be decomposed for different subsystems. As various
versions of MPC are considered, e.g., linear and nonlinear MPC, discrete-time and continuous-time
MPC, there exist also many different formulations of the optimization problem. Exemplarily in the
following a quite general mathematical formulation of the control problem is introduced. We consider
the global nonlinear optimal control problem:

min
u

Φ(t,x,u,m), (2.1a)

w.r.t. ẋ = f (t,x,u,m), x(0) = x0, (2.1b)

0≤ g(t,x,u,m), (2.1c)

0≤ π(t f ,x(t f ),u(t f ),m(t f )), (2.1d)

m= H [xT ,uT ]T , (2.1e)

whereΦ ∈ R is the objective function,t ∈ R is the time,x∈ R
n is the state vector,u∈ R

p is the input
vector,m∈ R

q is the vector of coupling or interaction variables, i.e., the variables that represent the
couplings between different subsystems, andt f is the final time of the optimization problem. The
system dynamics are represented by (2.1b), the input and state constraints are summarized in (2.1c),
and (2.1d) contains the constraints for the final time. The last equation (2.1e) describes the couplings
within the system and is called the coupling constraint.

In case of the hierarchical and distributed MPC problem, the global optimization problem (2.1)
has to be solved by the solution process of local problems for theN subsystems, which are described
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by the following local optimization problems:

min
ui

Φi(t,xi ,ui ,mi), (2.2a)

w.r.t. ẋi = fi(t,xi ,ui ,mi), xi(0) = xi,0 (2.2b)

0≤ gi(t,xi ,ui ,mi) (2.2c)

0≤ πi(t f ,xi(t f ),ui(t f ),mi(t f )), (2.2d)

mi = Hi [x
T ,uT ]T . (2.2e)

Therebyxi is the local state vector,ui is the local input vector, andmi are the local coupling variables
of the subsystemi. The local interaction variables depend on the global state and input variables.
Hence, in case of hierarchical and distributed MPC one task of coordination or cooperation is to
provide meaningful information on how to derive the local interaction variables.

It is important to keep in mind that the objective function is not necessarily additive, i.e., in general

Φ(t,x,u,m) 6=
N

∑
i=1

Φi(t,xi ,ui ,mi) . (2.3)

Furthermore, the set of state variables{xi |i = 1, . . . ,N} does not necessarily have to be a disjunct set.
However, usually the objective functionΦ is assumed to be additive and the set of state variables is
assumed to be disjunct.

The second task of coordination and cooperation is to modify the local optimization problems (2.2),
such that the accumulated result{uopt

i |i = 1, . . . ,N} of the local optimization problems (2.2) is the
same as the resultuopt of the global optimization problem:

uopt !
=

[(
uopt

1

)T
,
(
uopt

2

)T
, . . . ,

(
uopt

N

)T
]T

(2.4)

For this purpose, the local optimization problems (2.2) can be adapted in different ways: Coordination
can be achieved by the intervention of the subsystems using coordination parameters, which can be
divided into two subsets [14]: On the one hand the submodels can be modified, which is called model
coordination; on the other hand, in goal coordination the objective function of the local problems are
modified.
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Chapter 3

Coordination mechanism in hierarchical
model predictive control schemes

Here, we discuss two different coordination mechanisms for hierarchical MPC schemes, while in the
following chapter we discuss coordination in distributed MPC. For an extended overview of HD-MPC
methods, which are all related to coordination, see the review article [24] and the report [26].

3.1 Mixed method

This MPC method used in interconnected systems with different temporal dynamics [3], large scale
systems [1] and systems with delays [2] is based on the local optimization of several defined cost
functionals subject to the prediction of interactions among subsystems done by a coordinator layer.
The method was firstly developed in 60’s by Yasuhiko Takahara.
Let a discrete-time process be decomposed inM subsystems as (3.1) shows, whereZi(k) are the
interconnection relation at timek. Equation (3.2) shows the global cost function to optimize.

Xi(k+1) = AiXi(k)+BiUi(k)+CiZi(k) (3.1a)

Zi(k) =
M

∑
j=1

Li j Xj(k)+Ki jU j(k) (3.1b)

J(U) =
M

∑
i=1

{
1
2

XT
i (N)PiXi(N)+

N−1

∑
k=1

[
XT

i (k)QiXi(k)+UT
i (k)RiUi(k)

]
}

(3.2)

For this restricted optimization problem a solution method by using Lagrange multipliers is proposed.
A coordinator layer is responsible to compute the interaction variablesZi(k) and a group of Lagrange
multipliers βi(k) corresponding to the restrictions in (3.1b). Once the coordinator computesZi(k)
andβi(k), the global optimization problem defined by (3.1) and (3.2) can be decomposed inM local
optimization as (3.3) shows:

min
{Xi ,Ui}

{N−1

∑
k=1

(XT
i (k)QiXi(k)+UT

i (k)RiUi(k)

+β oT
i (k)ZoT

i (k)−
M

∑
j=1

β oT
i (k) [Li j Xj(k)+Ki jU j(k)])+

1
2

XT
i (N)PiXi(N)

}
(3.3)
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where the superscript∗oT refers to a value computed by the coordinator layer. The coordinator layer
uses the first derivative criteria to compute the optimum for the coordination variables and its Lagrange
multipliers (Zi(k) andβi(k)).

This method solvesM local optimization problems in a parallel way, and they are harmonized by
a recursive prediction of the coordination variables. The convergence was proved by A. Titli in 70’s.
Due to the parallel features and fast convergence reported in [3], thismethod becomes very interesting
for large-scale systems.

3.2 Price-driven coordination

The coordination mechanism is based on the solution of several optimization problems. A total plant
optimization problem described in (3.4) can be partitioned into several subproblems corresponding
to controlled subsystems called unit-based MPCs. These subsystems are related by interactions that
were not taken into account in the control design, i.e., they are in a decentralized structure:

min
Xset,Uset

z1 = (Yset(k)−Y∗)TQy(Yset(k)−Y∗)+(Uset(k)−U∗)TQu(Uset(k)−U∗)

+CY(Yset(k)−Y∗)+CU(Uset(k)−U∗)+ηTCT
ηCηη

s.t. (3.4)

Yset(k) = AUset(k)+E(k)+D(K)

D(k) = D(k−1)+Σ(k)

Ymin−η ≤Yset≤Ymax+η
Umin ≤Uset≤Umax

η ≥ 0

E(k) = AUset(k)

The algorithm to solve the optimization problem above is based on the adding of aprice that penalizes
the interaction terme(k) in the cost function as in equation (3.5) below. Then several subproblems
(as many as there are unit-based MPCs in the total plant) are solved in each iteration as in equation
(3.5) below. The prices for each subsystems are actualized at each iteration until they converge to an
equilibrium value.

min
xset,uset

z2 = (yset(k)−y∗)TQy(yset(k)−y∗)+(uset(k)−u∗)TQu(uset(k)−u∗)

+Cy(yset(k)−y∗)+Cy(uset(k)−u∗)+ηTCT
ηCηη −pTe(k)

s.t. (3.5)

yset(k)−Kuset(k) = e(k)+d(K)

d(k) = d(k−1)+δ (k)

ymin− ε ≤ yset≤ ymax+ ε
umin ≤ uset≤ umax

ε ≥ 0

In equations (3.4) and (3.5) upper case letters have been used to represent a set of all the variables
in the whole plant and the lowercase letters have been used to represent the variables in a unit-based
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MPC. Finally the algorithm to upgrade the price is defined as

∆(p) = ei −
N

∑
j=1

K i j u j , i = 1, ...,N, j 6= i (3.6)

This method has an important drawback that it requires a model of the entire plant were the interac-
tions among unit-based MPCs are included. When the problem becomes large, likely a model of this
type cannot be available.
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Chapter 4

Distributed coordination methods:
Literature review

In this chapter a literature review about coordination mechanisms in distributedcontrol schemes is
presented. For each approach described in this chapter, a brief description of the proposed method
emphasizing in the coordination mechanisms is shown. From the description presented in the fol-
lowing sections it is possible to see that the base of the coordination mechanismsin distributed MPC
schemes is the information exchange. This is the main way to confront the problem of coupling among
subsystems in this control scheme and the main mechanism to carry out the cooperation.

4.1 Broadcast coordination

In the approach proposed in [5], the main objective is to achieve some degree of coordination among
agents that are solving MPC problems with locally relevant variables, costs,and constraints without
solving a centralized MPC problem. Also it is assumed that the connectivity of the communication
network is sufficient for the agents to obtain information regarding all the variables that appear in their
local problems. Such coordination schemes are useful when the local optimization problems are much
smaller in size than a centralized problem, as in network control applications, but they are determined
by the information structure, i.e., the connectivity and capacity of the interagent communication net-
work.

Here, the coordination mechanism used was to send a broadcast to the neighbors with the results
of the last iteration, and to receive from them the same information to adjust theLagrange multipliers
associated with the exchanged variables (interconnection variables).

4.2 Coordination based on prediction interchange

Similarly to the coordination mechanism depicted in the previous section, in [11] adistributed MPC
scheme with stability constraints is proposed. Each controller is coordinated with the others by ex-
changing their predictions. In this approach there is no centralized coordinator. This is an interesting
feature because it provides robustness to the decentralized control scheme even if communication
failures are present.

To carry out the proposed method local MPCs are used. The control actions are computed based
on local state measurements. The controllers exchange information about their measurements and
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predictions and incorporate this information in their local computations.
In this case, the model used to describe the local agent dynamics is given by

xi(k+1) = Fi(xi(k),ui(k),νi(k),wi(k)) (4.1)

wherexi denotes the states of all neighbor subsystems,ui denotes de local control inputs,νi denotes the
neighbor predictions, andwi denotes the disturbances. Thus the local optimization problem becomes

min
xi(k),ui(k)

Jlocal(xi(k),ui(k)) (4.2)

In this work, the coordination is given through the exchange of local measurements and predic-
tions, and by taken it into account in the prediction model of each subsysteminside a neighborhood.

4.3 Distributed model predictive control as a game with coupled con-
straints

In [29], formally the benefits of cooperation among subsystems in a distributed MPC scheme are
analyzed. In this work, the cooperation is carried out by local agents taking into account the objectives
of the others. Also for each agentp it is assumed that there exists a controllerup = kpxp. Thus the
MPC problem is formulated in a distributed fashion as

min
up(k),ũp(k)

Jp(xp(k),up(k))+ ∑
q∈Np

Jq(xq(k), ũq(k)) (4.3)

subject to the discrete solution of the system dynamics over the prediction horizon, and the subsystem
operational constraints, whereNp is the set of neighbors of agentp. In this case, it was assumed that
the neighbor subsystems are coupled by the constraints modeled as

∑
q∈Np

Ecqxq +Fcqkqxq ∈ Zc, ∀c∈Cp, (4.4)

whereCp denotes the set of constraints involving the subsystemp.
In the objective function, the termJq(xq(k), ũq(k)) is associated with the objectives of the neighbor

subsystems. Moreover, the optimization is solved taking into account the neighbor control inputs
ũq(k), however its values are not communicated to the others.

To assure optimality, in this approach only one subsystem at each sample time solves its local
optimization problem, thus the computed control inputs converge at each time to a Nash equilibrium
point. This is important because, from the point of view of game theory, the Nash equilibrium point
is the optimal solution of a non-cooperative game. To solve the optimization problem in serial way, a
central agent is required to assign the sequence of solution.

4.4 Dynamic dual decomposition for distributed control

In the same way, in [22] the Lagrange multipliers are conceived as prices ina market mechanisms
serving to achieve mutual agreements among the subproblems (agents). Based on the previous inter-
pretation of Lagrange multipliers, in this reference dynamic price mechanisms were used for decom-
position and distribution of the optimization of the control systems. To develop thetopics presented
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before the dual decomposition and saddle algorithm is introduced and applied to optimal control prob-
lems.

Also in [21] ideas from game theory and economics, and its role in decentralized controller design
in complex engineering systems are presented. [21] starts with presenting ideas and notions of game
theory such as the definition of game, payoff function, Nash equilibrium point, and team problems.
Then, a team problem with a graph structure is studied, and finally a team problem with strategies
with global impact is introduced.

An application of the concepts and ideas presented in [21] is presented in [20]. In this reference
an optimal control, based on team theory, for a system with stochastic uncertainties and information
delays is proposed, considering a linear quadratic stochastic control problem. The problem involves
several different controllers acting as a team, but with access to different measurements.

To formulate the optimization problem as a cooperative game, the subsystems representation used
is as follows

xi (t +1) = Ai1x1(t)+ . . .+Aii xi (t)+ . . .+Ainxn(t) (4.5)

+Bi1u1(t)+ . . .+Bii ui (t)+ . . .+Binun(t)

Let us, for alli 6= j, definevi j as the opinion of subsystemi about the value of the state variables of
subsystemj, wi j as the opinion of subsystemi about the value of the input variables of subsystemj,
pi j as the price associated to the influence of subsystemi in the state variables of subsystemj , and
qi j as the price associated to the influence of subsystemi in input variables of subsystemj. Then the
subsystem representation becomes

xi (t +1) = Ai1vi1 (t)+ . . .+Aii xi (t)+ . . .+Ainvin (t) (4.6)

+Bi1wi1 (t)+ . . .+Bii ui (t)+ . . .+Binwin (t)

From the system representation (4.6), using dual decomposition and team theory, the optimization
problem can be rewritten as follows [22]:

max
pi j ,qi j

min
xi(t),ui(t)

N−1

∑
k=0

l i [xi (t +k) ,ui (t +k)]+Fi +Gi

s.t. xi (t +1) = Aii xi (t)+Bii ui (t)

operational constraints (4.7)

where

Fi (xi (t) ,v) = 2 ∑
j∈Ψ(i)

[pi j ]
T (xi −vi j )

Gi (xi (t) ,w) = 2 ∑
j∈Ψ(i)

[qi j ]
T (ui −wi j )

In (4.7), the strategy of each node isµi = (xi (t) ,ui (t)) and its payoff function is

l i (xi (t +k) ,ui (t +k))+Fi (xi (t +k) ,v)+Gi (xi (t +k) ,w) ,

wherel i (xi (t +k) ,ui (t +k)) is its own cost, andFi (xi (t +k) ,v) +Gi (xi (t +k) ,w) is the price that
theith subsystem pays to its neighbors, or receives from them, for influencing their behavior. This is a
game withn players and a number of “market makers”, who adjust the price variablespi j andqi j . The
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Nash equilibrium of this game corresponds to a global optimum of the original optimization problem
[22].

The optimization problem formulation (4.7), has an advantage that no global models are required
to find the optimal solution. Moreover, it is more general than the formulation proposed in [22, 21],
because it includes the influence of the neighbors inputs into the behavior of the ith subsystem. With
the inclusion of the influence of the inputs, it is possible to avoid the troubles reported in [34] about
suboptimal convergence and its related unstable behavior.

4.5 Non-cooperative game approach to distributed model predictive con-
trol

In [32, 31], a formulation of distributed MPC as a non-cooperative game isproposed. In this ap-
proach, the negotiation among agents is included as a step of the game solution [16]. It gives to each
agent the possibility of deciding whether it takes into account the neighbors’ information in its local
optimization problem, depending on its local payoff function value.

A distributed MPC problem can be viewed as a setG = {N,{µi}i∈N,{νi}i∈N} whereN is a finite
set ofn subsystems,µi is a finite set of control actions of thei-th subsystem, andνi is the performance
index associated with the control actions of thei-th player. Thus the distributed MPC problem can be
formulated as a non-cooperative game as follows:

max
µi

{
n

∑
i=1

θ N
i log[dN

i −νi(xi ,µi)]}

s.t. dN
i ≥ νi(xi ,µi)

µi ∈ ∆(µi)

xi(k+1) =
n

∑
j=1

[Ai j x j(k)+Bi j µ j(k)]

yi(k+1) = Cixi(k+1)+Diµi(k)

operational constraints

(4.8)

or in distributed form

max
µi

{θ N
i log[dN

i −νi(xi ,µi)]}

s.t. dN
i ≥ νi(xi ,µi)

µi ∈ ∆(µi)

xi(k+1) =
n

∑
j=1

[Ai j x j(k)+Bi j µ j(k)]

yi(k+1) = Cixi(k+1)+Diµi(k)

operational constraints

(4.9)

wheredN
i can be defined as the maximum deviation from the goal allowed for the system or
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computed as the optimal solution of the optimization problem

min
µi(k)

νi [xi(k),µi(k)]

s.t. xi(k+1) = Aixi(k)+Biµi(k)

yi(k+1) = Cixi(k+1)+Diµi(k)

operational constraints

(4.10)

The MPC problem formulation shown in (4.9) allows to quantify the effects of taking into account
the neighbors’ information and the benefits for the system when the subsystems cooperate. It can
be seen in (4.9) that only if the cooperation among subsystems gives a bestpayoff, the subsystems
cooperate, otherwise each subsystem works alone.
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Chapter 5

Assessment of coordination mechanisms

In the following sections, we briefly summarize the results of the assessment of different coordination
mechanisms.

5.1 Communication-based distributed MPC

Venkat et al. have already assessed communication-based MPC for discrete-time linear time-invariant
systems [35, 23]. In a first example the communication-based MPC method not only resulted in a
suboptimal control performance. Moreover, the resulting MPC leads to anunstable behaviour of the
example system. However, for a second example, the communication-based MPC method leads to
a stable system behaviour with a system performance close to the optimal control, i.e., with huge
improvement compared to decentralized MPC.

5.1.1 Communication-based MPC for event-driven continuous-time systems

In [28] we consider a communication-based distributed MPC approach foran event-driven continuous-
time model, namely a baggage handling system. The baggage handling system ofan airport is one
of the most important factors that determine the airport’s efficiency and reliability. State-of-the-art
baggage handling systems transport luggage in an automated way using destination coded vehicles
(DCVs). These vehicles transport the bags at high speeds on a “mini” railway network. The consid-
ered DCV-based baggage handling system is sketched in Figure 5.1. Thissystem operates as follows:
given a dynamic demand of bags (identified by their unique code) and a buffer of empty DCVs for
each loading station, together with the network of tracks, the optimal route of each DCV (from a given
loading station to the corresponding unloading station) has to be computed subject to operational and
safety constraints such that the performance of the system is optimized.

The considered track network hasS junctions S1, S2,. . . , SS, while each junction has at most 2
incoming links and at most 2 outgoing links, both indexed byl ∈ {0,1}. Each junction has a switch
going into the junction and a switch going out of the junction.

There are five types of events that can occur:

• loading a new bag into the system

• unloading a bag that arrives at its end point

• updating the position of the switch-in
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track network
(black box)

loading stations

buffer of
DCVs

unloading stations

loading conveyors

end points

L1 L2 LL

U1 U2 UU

Figure 5.1: Baggage handling system using DCVs.

• updating the position of the switch-out

• updating the speed of a DCV.

The model of the baggage handling system is an event-driven one consisting of a continuous part
describing the movement of the individual vehicles transporting the bags through the network, and of
the discrete events listed above.

Distributed model predictive control: Here performance of the local, decentralized control is in-
creased by implementing adistributedapproach that uses additional communication and coordination
between neighboring junctions. Data will be communicated between consecutive levels of influence.
It is considered that the communication of the future actions is performed downstream.

The computation of the local control is performed according to the following algorithm whereK
is the largest level of influence assigned in the network.

Algorithm: Distributed computation of local control

1: for κ = 1 toK do
2: compute in parallel local switching sequences for influence levelκ taking into account the

control on influence levelκ −1
3: end for

Every time a bag crosses a junction the local control of all junctions is updated. Recall that the
controllers of the junctions on levelκ have to wait for the completion of the computation of the
switching sequences of the controllers on the previous level before starting to compute their future
control action. Therefore, when comparing with decentralized MPC, such distributed MPC may im-
prove the performance of the system, but at the cost of higher computationtime due to the required
synchronization and iteration in computing the control actions.

Results: To solve the optimization problems ageneticalgorithm of the Matlab optimization toolbox
has been chosen with multiple runs.

Based on simulations the proposed control methods could be compared for the given scenarios.
Figure 5.2 shows the results obtained when using centralized, decentralized, and respectively dis-
tributed MPC for various scenarios.

Clearly the best performance of the system is obtained when using centralized switch control.
However, centralized control becomes intractable in practice when the number of junctions is large
due to the large computation time required. The simulations indicate that both decentralized MPC and

Page 19/30



HD-MPC ICT-223854 D3.3.1 - Coordination mechanisms

0 5 10 15 20 25
10

−1

10
0

10
1

10
2

10
3

10
4

10
5

 

 

centr. MPC (N=4)
distr. MPC. (N=5)
dec. MPC (N=5)

J t
ot

(s
)

scenario index

(a) closed loop performance

0 5 10 15 20 25
10

3

10
4

10
5

10
6

to
ta

l c
om

pu
ta

tio
n 

tim
e 

(s
)

 

 

centr. MPC (N=4)
distr. MPC (N=5)
dec. MPC (N=5)

scenario index

(b) computation time

Figure 5.2: Comparison of the proposed control approaches.

distributed MPC offer a balanced trade-off between computation time and optimality. However, the
results confirm that the communication of the intended control action between neighboring junction
may increase the performance of the system, but at the cost of bigger computational effort.

5.2 Price-driven coordination methods

Price-driven coordination methods clearly dominate research of hierarchical and distributed MPC
as well as distributed, large-scale optimization. While there also exist alterative approaches for price-
driven coordination, e.g., in [15], the dual optimization method [12, 13] seems to be the most important
method, today. We have assessed this method for different applications, linear and nonlinear, and also
considered modified versions of dual optimization.

5.2.1 Dual optimization with an additional penalty term

In this application we consider water networks. To improve the operation of water systems the con-
trollers that control different parts of the water network should cooperate and coordinate their local
water management actions, and take into account predictions or forecastsof future rain fall, future
droughts, future arrival of increased water flow via rivers, etc. (using various weather and hydrological
sensors, and prediction models). Using distributed MPC more efficient floodand water management
with less risks and less costs can be obtained. In [18, 19] we apply a particular distributed MPC
scheme, recently proposed in [17], for improving the operation of a particular type of water systems,
viz. irrigation canals.

Coordination mechanism:Overall optimality is achieved by a modification of the objective function
of the local MPC units, i.e., there is a modified optimization problem:

min
x̃i(k+1),ũi(k),ỹi(k),

w̃in, ji,1i(k),...,w̃in, ji,mi
i(k),

w̃out, ji,1i(k),...,w̃out, ji,mi
i(k)

Jlocal,i (x̃i(k+1), ũi(k), ỹi(k))

+ ∑
j∈Ni

J(s)
inter,i

(
w̃in, ji (k), w̃out, ji (k)

)
, (5.1)

subject to the local dynamics of subnetworki over the horizon. In this, the additional objective
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functionJinter,i at iterations is defined as

J(s)
inter,i

(
w̃in, ji (k), w̃out, ji (k)

)
=

[
λ̃ (s)

in, ji (k)

−λ̃ (s)
out,i j (k)

]T [
w̃in, ji (k)
w̃out, ji (k)

]

+
γc

2

∥∥∥∥
[
w̃in,prev,i j (k)− w̃out, ji (k)
w̃out,prev,i j (k)− w̃in, ji (k)

]∥∥∥∥
2

2

.

This additional objective functionJinter,i consists of two parts:

• The first term is well-known, from dual optimization: A product of Lagrange multipliers and
the corresponding constraints.

• The second term is an additional penalty term for unsatisfied constraints.

The Lagrange multipliers are updated as in dual optimization:

λ̃ (s+1)
in, ji (k) = λ̃ (s)

in, ji (k)+ γc

(
w̃(s)

in, ji (k)− w̃(s)
out,i j (k)

)
.

Model: The method has been assessed for a system of irrigation channels. The dynamics of irrigation
canals can be modeled in detail, e.g., using the Saint Venant equations [8] resulting in systems of
highly-nonlinear partial differential-algebraic equations. However, similarly as in [33], the integral
delay model [27] has been employed to model the dynamics of a canal reach. This model has shown
to adequately capture relevant dynamics [27], and reduces computationsrequired for simulation of
the dynamics significantly.

The model describing how the levelhi of the water in the canal reachi changes from one control
cyclek to the next control cyclek+1 is given by:

hi(k+1) = hi(k)+
Tc

ci
qin,i(k−kd,i)−

Tc

ci
qout,i(k)

+
Tc

ci
qext,in,i(k)−

Tc

ci
qext,out,i(k). (5.2)

Canal reaches are connected to one another. When two canal reaches are connected to each other, the
inflow of one canal reach is equal to the outflow of the other. Hence, forneighboring reachesi and j
this interconnection is given by

qout,i(k) = qin, j(k). (5.3)

Results:Fig. 5.3(a) shows the changes in the set-points decided upon by the controllers. Fig. 5.3(b)
shows the closed-loop evolution of the deviations of the water levels from thereference values. It can
be seen that the inflow of canal reach 1 is increased right before the additional offtake increase takes
place in order to prevent having a too low water level after the additional offtake. It can also be ob-
served that the deviations of the water levels after the offtake increase are minimal due to the changes
in the set-points. We observe that after about 25 control cycles the set-points settle at a constant value,
while the deviations of the water levels from the references are minimal, and that thus the controllers
have performed their tasks adequately.

The costs computed over the full simulation using the distributed MPC scheme are1832.10−7.
A centralized MPC controller based on the same objectives obtains costs over the full simulation of
1831.10−7. This difference in performance is negligible, and hence, in this case in which the assump-
tions made are valid, indeed, the distributed controllers have achieved a performance comparable to
the performance obtained by a centralized MPC controller.

Page 21/30



HD-MPC ICT-223854 D3.3.1 - Coordination mechanisms

10 20 30 40 50 60
−0.04

−0.02

0

0.02

0.04

0.06

 

 

h i
(k

)
(m

3 /
s)

k

i = 1
i = 4
i = 6
i = 7

(a)

10 20 30 40 50 60
−2

0

2

4

6

8

10
x 10

−4

 

 

h i
(k

)
−

h t
ex

tr
e

f,i
(γ

m
)

k

i = 1
i = 4
i = 6
i = 7

(b)

Figure 5.3: Evolution for four representative canal reaches of (a) set-points and (b) deviation of the
water levels from reference values.

5.2.2 Dual optimization with Han’s method

In another paper [9] we have assessed the dual optimization approach,where the dual problem has
been using solved Han’s method [10]. The following discrete-time, linear time-invariant model has
been considered:

xi(k+1) = ∑
j∈N i

Ai j x j(k)+Bi j u j(k), (5.4)

An important part of this assessment has been the quite general type of constraints, i.e.,

∑
j∈N i

N−1

∑
k=0

Di j (k)x j(k)+Ei j (k)u j(k) = ceq (5.5)

∑
j∈N i

N−1

∑
k=0

D̄i j (k)x j(k)+ Ēi j (k)u j(k) ≤ c̄ineq (5.6)

For the optimization within the MPC problem a decoupled and convex quadratic cost function

J =
M

∑
i=1

N−1

∑
k=0

((
ui(k)

)T
Riu

i(k)+
(
xi(k+1)

)T
Qix

i(k+1)
)

(5.7)

is assumed with positive definite weightsRi ,Qi ,∀i. Hence, the problem can be reformulated in a
compact form as:

min
x

xTHx (5.8)

s.t. aT
l x = bl , l = 1, . . . ,neq

aT
l x ≤ bl , l = neq+1, . . . ,s.

Coordination method: The main idea is to use Han’s algorithm [10] to solve the dual problem of the
centralized optimization using parallel computations in an iterative scheme.
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Han’s algorithm for general convex problems: The class of optimization problems tackled by Han’s
algorithm is the following:

min
x

q(x) (5.9)

s.t. x ∈C , C1∩·· ·∩Cs

whereC1, · · · ,Cs are closed convex sets andC 6= ∅.

The algorithm is an iterative procedure. We usep as iteration counter of the algorithm. We use a
superscript(p) to denote the values of variables computed at iterationp.

Let α be a sufficiently large number1 and definey(0) = y(0)
1 = · · · = y(0)

s = 0, with y(0),y(0)
l ∈

R
nx , l = 1, . . . ,s, andx(0) = ∇q∗

(
y(0)

)
with q∗ being the conjugate function2 of q. For p = 1,2, . . . ,

we perform the following computations:

1) For l = 1, . . . ,s, find z(p)
l that solves

min
z

1
2
‖z+αy(p−1)

l −x(p−1)‖
2

2 (5.10)

s.t. z∈Cl

2) Assign

y(p)
l = y(p−1)

l +(1/α)
(

z(p)
l −x(p−1)

)
(5.11)

3) Sety(p) = y(p)
1 + · · ·+y(p)

s

4) Compute

x(p) = ∇q∗
(

y(p)
)

(5.12)

Distributed version of Han’s algorithm with regional coordination method: Han’s algorithm involves
calculation of the global variables, therefor a global coordination method isrequired. By exploiting the
structure of problem (5.8), we can implement a distributed version of Han’salgorithm that requires
a regional coordination method, in which each subsystem coordinates the computations of several
variables and thus only needs to communicate with its neighbors.

This idea is illustrated in Figure 5.4, with a simple system consisting of 4 subsystemsand the
coupling matrix that shows how subsystems are coupled via their variables (boxes on a same row
illustrate the variables that are coupled in one constraint). In the centralizedcoordination version, a
subsystem has to communicate with all other subsystems in order to compute the updates of global
variables. For the distributed coordination version, each subsystem onlycommunicates with the other
subsystems of which the variables are necessary for computing the updates of its local variables.

Model: For the assessment of the method, here a model of coupled oscillators has been used. The
system consists ofM oscillators that can move only along the vertical axis, and that are coupled by
springs that connect each oscillator with its two closest neighbors. An exogenous vertical force will
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Figure 5.4: Communication links of the 2nd subsystem with (a) the centralized coordination version
and (b) the distributed coordination version of Han’s algorithm for an example 4-subsystem problem.
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Figure 5.5: Setup with coupled oscillators
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be used as the control input for each oscillator. The setup is shown in Figure 5.5. Each oscillator is
considered as one subsystem. Let the superscripti denote the index of the oscillators. The continuous-
time dynamics equation of oscillatori is then defined as

mai(t) = k1pi(t)− fsv
i(t)+k2(pi−1(t)− pi(t))+k2(pi+1(t)− pi(t))+F i(t), (5.13)

wherepi(t), vi(t), andai(t) denote the position, velocity, and acceleration of oscillatori at time t,
respectively. The control force exerted at oscillatori is F i(t). The system parameters arek1, k2, m,
and fs, representing respectively the stiffness of the vertical spring at eachoscillator, the stiffness of
the springs that connect the oscillators, the mass of each oscillator, and thefriction coefficient for
movement of the oscillators.

The positions of the subsystems are required to satisfy the coupled constraints:
∣∣∣∣pi(t)−

pi−1(t)+ pi+1(t)
2

∣∣∣∣ ≤ 1, i = 2, ...,M−1,∀t (5.14)

which means that each oscillator must not deviate too far from the middle of its twoclosest neighbors.

Results: Figure 5.6 shows the evolution in the first sampling interval of the normalized 2-norm
error between the solution of the proposed distributed MPC method and the centralized optimum for
the optimal control problem as a function of the iteration stepp, for different values ofα . Clearly, as
more iterations are performed, the error reduces. Although in [10] the recommended design parameter
α is α0 = s

ρ , we have performed simulations with different values ofα to show the influence ofα on
the convergence speed. We see that with the recommendedα = α0, the convergence speed is very low,
and that whenα is smaller, the algorithm converges faster. However, we cannot reduceα too much,
there is a lower limit ofα so that the algorithm still converges. In fact, we illustrate in Figure 5.7 that
the algorithm diverges forα = 0.00001α0.

1α is a design parameter that has to be sufficiently large. Withα ≥ s/ρ Han’s method will converge [10]. For positive
definite QPs we can chooseρ as one half of the smallest eigenvalue of the Hessian matrix. A smallerα leads to a faster
convergence rate, but anα that is too small could lead to convergence problems.

2The conjugate function of a functionq(x), x ∈ R
nx is defined by:q∗(y) = supx∈Rnx

(
yTx−q(x)

)
. The conjugate

functionq∗ is always convex [4].
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Chapter 6

Conclusions

We have presented an overview of existing coordination methods, for hierarchical as well as dis-
tributed model predictive control (MPC) methods. Most of the existing coordination mechanisms are
related to price-driven coordination. In order to achieve an overall optimum, prices are defined, e.g.,
by a supervisor, which are included in the objective function of each local MPC controller. Thus, the
local MPC controllers take into account knowledge of the overall system. There are different ideas on
how to calculate these prices, the most popular one is the dual optimization method. There, Lagrange
multipliers represent the prices and are calculated as a solution of the dual problem.

Then we have assessed some of the existing coordination mechanisms. On theone hand we exam-
ined a simple distributed MPC scheme, which is based on communication only. We have verified that
communication can increase overall performance of the control comparedto a completely decentral-
ized control. However, communication is not sufficient to achieve an overall optimum of the control
problem. The proposed coordination scheme requires more computational power than a completely
decentralized control, though it can be computed much faster than the centralized MPC.

On the other hand we have assessed price-driven coordination mechanisms based on dual opti-
mization. This coordination mechanism leads to an overall optimal control of thedistributed system,
i.e., to a control performance that equals the performance of centralized MPC. However, we have seen
that convergence of the method strongly depends on the parameters chosen. Unfavorable parameters
can lead to slow convergence or even to divergence.

It is not always clear how the existing price-driven coordination mechanisms can be extended or
improved in the future. This is a topic of ongoing research. Moreover, in arecent work [25], we have
introduced a new coordination scheme. In order to achieve overall optimality, the overall objective
is partly approximated by a linearization of the global objective. Hence, the coordination method
requires the calculation of first order sensitivities. This method, that we refer to as gradient-based
distributed dynamic optimization (GBDDO), revealed some promising properties,in particular fast
convergence. Furthermore, there are no free (tuning) parameters to choose. Thus, the method is easy
to implement. Hence, the related coordination mechanism is one that we will also focus on also in
future research.
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