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Executive Summary

The objective of this report is to provide a compact literature review ortiegisoordination
mechanisms and to summarize results of the assessment of different etiordinechanisms. F
this purpose we introduce the problem of coordination, on the hand by paotical motivatio
and on the other hand by some mathematical problem description. Coordimetdtranisms are
crucial part of hierarchical and distributed model predictive contrahas. The literature revie
provides an overview of the existing coordination methods: Many of thentlasely related t
each other and based on some price-driven coordination. Then wigl@ome short compagt
results of our own assessments. The results are analyzed regardiegtigs such as optimali
and performance. Finally we give an overview of the results and digmossible alternativ
coordination approaches.
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Chapter 1

Introduction

Communication, cooperation, and coordination are the main properties ttiagdish hierarchical

and distributed model predictive control (MPC) methods from decentdatizadel predictive control
methods. Decentralized MPC is considered to be the most important advemdedl technology

in large-scale systems, such as chemical plants or power plants, todale tiéhoptimal control

strategy for the entire plant, or a network of interconnected plants, wauld Ihave a centralized
model predictive controller, there are many challenges of this centralizéidbdhethat cannot be
solved today, e.g.,

e If the size of the considered processes increases or the process tistants decrease, cen-
tralized MPC will demand tremendous computing power and thus will not be apjgidor a
real-time application [7, 30];

e In case of a spatially distributed system, e.g., a water supply network, conmationiamong
different subsystems of the global process might be limited;

e Maintainability of a centralized large-scale control structure is difficult [6]

¢ Reliability of a decentralized control structure might be better than the onecehialized
control structure [7].

Hence, today, the method of choice is to have decentralized KR@wre each of the MPCs au-
tonomously controls one part of the entire process, but without taking actmuat the interactions of
the different subsystems. Hence, decentralized MPC will in generaltéeaduboptimal control of
the entire plant. Moreover, the neglection of interaction may also lead toeddobustness of the
control structure or even to instability. This can be seen in the following ebeartiye shortly discuss
the control problem of a plant with inputsc R? and outputs € R?, which can be described by the
linear transfer matrix:

2

s+e]

1

s+1

If we useK; = 20 for the control 0fG1; andK; = 18 for the control ofG,,, we get a stable step
response as depicted in Figure 1.1 on the left. However if the same corstanieapplied to the entire
systemG, then we get an unstable step response as depicted in Figure 1.1 on the righ

A
[

G(s) = [

w

S+

1with a slight abuse of notation (note that MPC is an abbrevation of “modeligive control”) we will use MPCs to
denote “model predictive controllers” or “MPC-based controllers”.
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Figure 1.1: Instability due to interacting subsystems: On the left, there is theesigpnse of decou-
pled subsystems. On the right, there is the step response for interactsygtsubs.
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Hence, the goal of hierarchical and distributed MPC is to have methoadicmng the advantages
of centralized and decentralized MPC:

e optimal control of the overall process,
o stability and robustness,

e low computational requirements,

e easy maintainability,

o reliability,

e low communication requirements.

Therefore, the approach of hierarchical and distributed MPC is tondeose the subordinate dynam-
ical optimization problem of the MPC control into several smaller subproblétosvever, in order
to achieve stability, robustness, and optimality of the resulting accumulated soliltewe has to be
communication, cooperation and coordination between the different limmhél) controllers, as it
is depicted in Figure 1.2.

Before we formulate the problem in more detail, we first define the threereliffeoroperties:
communication, cooperation, and coordination:

e Communication means only a weak amount of interaction between differetitbliers. The
controllers only share the information of the local subunit with other subukitsvever, no
information concerning overall optimality is spread. Hence, in general coriwamion only
will not result in optimal, stable, and robust plant operation [23].

e Cooperation means that compared to communication additional information &dgpydocal
units in order to provide information, on how to achieve overall optimality. InQVithis will
also be referred to as distributed MPC.

e Coordination is almost the same as cooperation. However, there, theobldips are coordi-
nated by a supervisor, in order to achieve overall optimality. As there aredwtrol layers, in
MPC, this will also be referred to as hierarchical MPC.

The remainder of the report is organized as follows: Chapter 2 pretsensathematical problem
of coordination. Chapters 3 and 4 provide a short literature overviewiéoarchical and distributed
coordination mechanisms. Then, in Chapter 5 we present some of oussessaent of coordination
mechanisms. Finally, the conclusion (Chapter 6) summarizes the reportaottlites possible future
developments.

Remark: In the context of the HD-MPC project not only the tasks T3.1, T3.2 and (Fi&archical

and distributed nonlinear MP@Hierarchical and distributed robust nonlinear MP&hdCoordination
mechanismiscannot be handled independently, but also WBgtimisation methods for hierarchical
and distributed MPC of the project is extremely closely related to the work to be done within WP3
(Development of hierarchical and distributed MPC methodslence, there will always be some
overlapping parts within the related results.
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Figure 1.2: lllustration of distributed MPC control of a network
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Chapter 2

Problem formulation

The idea of model predictive control (MPC) is to numerically solve a dynapiicrazation problem
at each sampling time. MPC uses a receding horizon approach, in whictihengontrol signals
for the first subsequent period of time are applied to the process; thaptingzation problem has
to be solved again for new initial conditions and again also only the first sdwethe manipulated
variables are applied to the process. This method is repeated for eaetfalfalving sampling times
of the control problem.

The same idea is to be implemented in hierarchical and distributed MPC. Thimsdisdfor HD-
MPC is an optimization problem, which has to be decomposed for differesystéms. As various
versions of MPC are considered, e.g., linear and nonlinear MPC, tlisiimee and continuous-time
MPC, there exist also many different formulations of the optimization problexemplarily in the
following a quite general mathematical formulation of the control problem isduoired. We consider
the global nonlinear optimal control problem:

muin d(t,x,u,m), (2.1a)
w.rt. X= f(t,x,u;m), x(0)=Xo, (2.1b)
0 <g(t,x,u,m), (2.1¢)

0< n(tfvx(tf)auaf)am(tf))a (Zld)
m=Hx",u"", (2.1e)

where® € R is the objective functiort, € R is the time x € R" is the state vectoy € RP is the input
vector,m € RY is the vector of coupling or interaction variables, i.e., the variables tha¢sept the
couplings between different subsystems, gnis the final time of the optimization problem. The
system dynamics are represented/by (2.1b), the input and state cassaraisummarized in (2.1c),
and (2.1d) contains the constraints for the final time. The last equatior) (24eribes the couplings
within the system and is called the coupling constraint.

In case of the hierarchical and distributed MPC problem, the global optimizptblem [(2.1)
has to be solved by the solution process of local problems falthgbsystems, which are described
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by the following local optimization problems:

min ®i(t,;, Ui, m), (2.2a)
wrt. X = fi(t,x,u,m), x(0)=Xo (2.2b)
0 < gi(t, %, u,m) (2.2c)

0 < m(te, xi(te), ui(ts), mi(tr)), (2.2d)

m =H[x",u"]". (2.2e)

Therebyx; is the local state vectou is the local input vector, analy are the local coupling variables
of the subsystenm. The local interaction variables depend on the global state and inpubleia
Hence, in case of hierarchical and distributed MPC one task of codialinar cooperation is to
provide meaningful information on how to derive the local interaction vég@b

Itis important to keep in mind that the objective function is not necessarilyiaeld.e., in general

cD(t,X,U,m) #‘icbi(taxiauian]) . (23)

Furthermore, the set of state variab{egi = 1,...,N} does not necessarily have to be a disjunct set.
However, usually the objective functiah is assumed to be additive and the set of state variables is
assumed to be disjunct.

The second task of coordination and cooperation is to modify the local optiorizaoblems/(2.2),
such that the accumulated res(ulfpt“ =1,...,N} of the local optimization problems (2.2) is the
same as the resulf! of the global optimization problem:

L[ @) ] @4

For this purpose, the local optimization problems (2.2) can be adapted irediffgays: Coordination
can be achieved by the intervention of the subsystems using coordinateongiars, which can be
divided into two subsets [14]: On the one hand the submodels can be modifiieth is called model

coordination; on the other hand, in goal coordination the objective fumcfithe local problems are
modified.
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Chapter 3

Coordination mechanism in hierarchical
model predictive control schemes

Here, we discuss two different coordination mechanisms for hieratdiliie&€ schemes, while in the
following chapter we discuss coordination in distributed MPC. For an egttnderview of HD-MPC
methods, which are all related to coordination, see the review article [24hareport [26].

3.1 Mixed method

This MPC method used in interconnected systems with different temporahiy® 3], large scale
systems [1] and systems with delays [2] is based on the local optimization efaselefined cost
functionals subject to the prediction of interactions among subsystems gamnedordinator layer.
The method was firstly developed in 60’s by Yasuhiko Takahara.

Let a discrete-time process be decomposeiisubsystems as (3.1) shows, wheték) are the
interconnection relation at time Equation/(3.2) shows the global cost function to optimize.

kot ) = AX(0) + BUK + G2 (9 (3.1a)
Zl_.,xJ )+ KijUj () (3.1b)
M 1 N—-1
V)= _Z{ZKT(N)P'Xa(N)Jr S [XT(KQX%(K) +uF<k>Rui<k>}} (32)
i= k=1

For this restricted optimization problem a solution method by using Lagrange mukijsiproposed.
A coordinator layer is responsible to compute the interaction variab{&sand a group of Lagrange
multipliers i (k) corresponding to the restrictions in (3.1b). Once the coordinator comgi(tes
andp;(k), the global optimization problem defined by (3.1) and(3.2) can be dec@&dpoM local
optimization as (3.3) shows:

N-1

min { 3 07 QX9 +UT (WRUi (k)
=1

{X.,Ui}

+BT (02T (k ZB."T 1L ()4 KUK+ X (NPX(N) - (33)
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where the superscripfT refers to a value computed by the coordinator layer. The coordinatar laye
uses the first derivative criteria to compute the optimum for the coordinagioables and its Lagrange
multipliers ¢ (k) andp;(Kk)).

This method solveM local optimization problems in a parallel way, and they are harmonized by
a recursive prediction of the coordination variables. The convesgeas proved by A. Titli in 70’s.
Due to the parallel features and fast convergence reported in [3in#tlsod becomes very interesting
for large-scale systems.

3.2 Price-driven coordination

The coordination mechanism is based on the solution of several optimizatibleprs. A total plant
optimization problem described in (3.4) can be partitioned into several sbilepns corresponding
to controlled subsystems called unit-based MPCs. These subsystemkage lpg interactions that
were not taken into account in the control design, i.e., they are in a dalieedr structure:

min z = (Yeer(K) = Y*)"Qy(Yeer(K) = Y*) + (User(k) —U*)" Qu(Uset(k) —U")

Xset,Uset

+Cy (Yeet(K) = Y*) +Cy (Uset(K) —U*) +nTCICyn

s.t. (3.4)
Yset(k) - KUset(k) + E(k) + D(K)
D(K) = D(k— 1) +5(K)
Ymin— N < Yset < Ymax+ 1
Unmin < Uset < Umax
n=0
E(K) = AUger(k)

The algorithm to solve the optimization problem above is based on the addingioédhat penalizes

the interaction terne(k) in the cost function as in equatidn (3.5) below. Then several subproblems
(as many as there are unit-based MPCs in the total plant) are solved in gatibritas in equation
(3.5) below. The prices for each subsystems are actualized at eadioitenatil they converge to an
equilibrium value.

min 22 = (yset(k) —y") " Qy(Yser(k) —¥*) + (Uset(k) —u*)T Qu(User(k) — ")

Xset,Uset

+Cy(yset(k) = Y*) + Cy(Uset(k) —u*) +nTCICyn — pTe(k)
s.t. (3.5)

Yset(K) — Kusei(k) = e(k) +d(K)
d(k) =d(k—1) + o(k)
Ymin— € < Yset < Ymax+ €
Umin < Uset < Umax
>0

In equations (3/4) and (3.5) upper case letters have been used wemmaeset of all the variables
in the whole plant and the lowercase letters have been used to represeatitibles in a unit-based
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MPC. Finally the algorithm to upgrade the price is defined as

N

=1

This method has an important drawback that it requires a model of the elatimewere the interac-
tions among unit-based MPCs are included. When the problem becomedilaiyea model of this
type cannot be available.
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Chapter 4

Distributed coordination methods:
Literature review

In this chapter a literature review about coordination mechanisms in distribotgdbl schemes is
presented. For each approach described in this chapter, a brieipptiescof the proposed method
emphasizing in the coordination mechanisms is shown. From the descripteenged in the fol-

lowing sections it is possible to see that the base of the coordination mechamidistsibuted MPC

schemes is the information exchange. This is the main way to confront thieprobcoupling among

subsystems in this control scheme and the main mechanism to carry out tkeeatap

4.1 Broadcast coordination

In the approach proposed in [5], the main objective is to achieve someeadefjcoordination among
agents that are solving MPC problems with locally relevant variables, @uis;onstraints without
solving a centralized MPC problem. Also it is assumed that the connectivityeafdmmunication
network is sufficient for the agents to obtain information regarding all thebfes that appear in their
local problems. Such coordination schemes are useful when the Idsalzgiion problems are much
smaller in size than a centralized problem, as in network control applicatiorthdy are determined
by the information structure, i.e., the connectivity and capacity of the intetagenmunication net-
work.

Here, the coordination mechanism used was to send a broadcast to thieansigyith the results
of the last iteration, and to receive from them the same information to adjusatrange multipliers
associated with the exchanged variables (interconnection variables).

4.2 Coordination based on prediction interchange

Similarly to the coordination mechanism depicted in the previous section, in [dis}rébuted MPC
scheme with stability constraints is proposed. Each controller is coordindtiedhe others by ex-
changing their predictions. In this approach there is no centralizedioatod This is an interesting
feature because it provides robustness to the decentralized corteshscven if communication
failures are present.

To carry out the proposed method local MPCs are used. The contimha@re computed based
on local state measurements. The controllers exchange information abountasurements and
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predictions and incorporate this information in their local computations.
In this case, the model used to describe the local agent dynamics is given b

Xi(k—‘r 1) = F,(xi(k),ui(k),vi(k),wi(k)) (4.1)

wherex; denotes the states of all neighbor subsystesrdenotes de local control inputg,denotes the
neighbor predictions, ang; denotes the disturbances. Thus the local optimization problem becomes

in J i(K),ui(k 4.2
Xi(mhri](k) hocal (X (K), Ui (K)) (4.2)
In this work, the coordination is given through the exchange of local ureasents and predic-
tions, and by taken it into account in the prediction model of each subsyssae a neighborhood.

4.3 Distributed model predictive control as a game with coupled con-
straints

In [29], formally the benefits of cooperation among subsystems in a distibMfC scheme are
analyzed. In this work, the cooperation is carried out by local agenitsgtako account the objectives
of the others. Also for each ageptit is assumed that there exists a controligr= kpx,. Thus the
MPC problem is formulated in a distributed fashion as

P 0xp(0: (k) £ I (k). (k) (4.3)

min
k), Gp( 9EHp

up(K)
subject to the discrete solution of the system dynamics over the predicti@omaand the subsystem

operational constraints, whese; is the set of neighbors of agept In this case, it was assumed that
the neighbor subsystems are coupled by the constraints modeled as

> EcqXq+FegkaXq € Ze, Ve e Cp, (4.4)
aEH

whereC, denotes the set of constraints involving the subsygtem

In the objective function, the terdy (xq(k), Ug(K)) is associated with the objectives of the neighbor
subsystems. Moreover, the optimization is solved taking into account thebaeigbntrol inputs
Ug(k), however its values are not communicated to the others.

To assure optimality, in this approach only one subsystem at each sample hime it® local
optimization problem, thus the computed control inputs converge at each timeashagguilibrium
point. This is important because, from the point of view of game theory, tshNquilibrium point
is the optimal solution of a non-cooperative game. To solve the optimizatiotepnab serial way, a
central agent is required to assign the sequence of solution.

4.4 Dynamic dual decomposition for distributed control

In the same way, in [22] the Lagrange multipliers are conceived as pricesnarket mechanisms
serving to achieve mutual agreements among the subproblems (agen&g).oBake previous inter-
pretation of Lagrange multipliers, in this reference dynamic price mechaniemesuged for decom-
position and distribution of the optimization of the control systems. To developpies presented
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before the dual decomposition and saddle algorithm is introduced anddfmptiptimal control prob-
lems.

Also in [21] ideas from game theory and economics, and its role in decesttalantroller design
in complex engineering systems are presented. [21] starts with presemagddd notions of game
theory such as the definition of game, payoff function, Nash equilibriumtpand team problems.
Then, a team problem with a graph structure is studied, and finally a teastepravith strategies
with global impact is introduced.

An application of the concepts and ideas presented in [21] is present2d]inf this reference
an optimal control, based on team theory, for a system with stochastictainties and information
delays is proposed, considering a linear quadratic stochastic cortimepr. The problem involves
several different controllers acting as a team, but with access to differeasurements.

To formulate the optimization problem as a cooperative game, the subsysfeesemation used
is as follows

X(t4+1) = Anxe(t)+...+AX () +...+ApX (t) (4.5)
+Bjqug (t) + ... +Bjiti (t) + ... + Binun (t)

Let us, for alli # j, definev; as the opinion of subsysteimabout the value of the state variables of
subsysten], wj; as the opinion of subsystenabout the value of the input variables of subsysfigm
pij as the price associated to the influence of subsysterthe state variables of subsystgmand

gij as the price associated to the influence of subsystarmput variables of subsysteim Then the
subsystem representation becomes

Xi(t+1) = Aavia(t)+...+AiX (t)+...+AnVin () (4.6)
+BitWig (t) 4 ... + Bt (t) + ... + Binwip (1)

From the system representation (4.6), using dual decomposition and teany, tthe optimization
problem can be rewritten as follows [22]:
N-1
max min i (t+Kk),u(t+K)]+F+G
Pij i X (1), t) kZO (k) Utk + R+ G
S.t. X (t+1) = Aix (t) + By (t)
operational constraints 4.7

where
FOit),v) = 25 [pi]" (6—v)
jew(i)

G(t)w = 23 (o] (u—w)
jew(i)

In (4.7), the strategy of each nodegis= (x; (t),u; (t)) and its payoff function is
li (% (t+K), Ui (t+K)) +F (% (t+K),v) +Gi (% (t+K),w)

wherel; (x (t +K),u; (t+K)) is its own cost, andr (x (t +Kk),v) +G;i (X (t+Kk),w) is the price that
theith subsystem pays to its neighbors, or receives from them, for influgtto@ir behavior. This is a
game withn players and a number of “market makers”, who adjust the price varighlasdq;;. The
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Nash equilibrium of this game corresponds to a global optimum of the origptahization problem
[22].

The optimization problem formulatioh (4.7), has an advantage that no glolshdisnare required
to find the optimal solution. Moreover, it is more general than the formulatiopgsed in/[22, 21],
because it includes the influence of the neighbors inputs into the beh&tith subsystem. With
the inclusion of the influence of the inputs, it is possible to avoid the troubpestesl in [34] about
suboptimal convergence and its related unstable behavior.

4.5 Non-cooperative game approach to distributed model predictive con-
trol

In [32,31], a formulation of distributed MPC as a non-cooperative ganpeaposed. In this ap-
proach, the negotiation among agents is included as a step of the game sdlGlidhdjives to each
agent the possibility of deciding whether it takes into account the neighh@wemation in its local
optimization problem, depending on its local payoff function value.

A distributed MPC problem can be viewed as aGet {N, {i }ien, {Vi}ien} WhereN is a finite
set ofn subsystemgy; is a finite set of control actions of thi¢h subsystem, ang is the performance
index associated with the control actions of tkth player. Thus the distributed MPC problem can be
formulated as a non-cooperative game as follows:

rr)l?x{i; 6" log[d™ — vi(x;, )]}

st d > vi(x, 1)

i € A(Hi) 4.8)

(k1) = 3 (A9 + B K]
2

yi(k+1) = Cixi(k+1) + Dipi(K)
operational constraints

or in distributed form

max{ 6" 1og[d" — vi(x, )]}

st d > vi(x, 1)

i € A(Hi)
n (4.9)
Xi(k+1) = Zl[Ainj (k) + Bij (k)]
=
Yi(k+1) = Cixi(k+ 1) + Dipi(k)
operational constraints

wherediN can be defined as the maximum deviation from the goal allowed for the system o
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computed as the optimal solution of the optimization problem
minvi[x; (), i (K)]
i ()
S.t. Xi(k—‘r 1) :AiXi(k)—i—Bi[li(k) (4.10)
yi(k+1) =Cixi(k+ 1) + Djpi (k)
operational constraints

The MPC problem formulation shown in (4.9) allows to quantify the effectskifigpinto account
the neighbors’ information and the benefits for the system when the fabwsysooperate. It can

be seen in/ (4.9) that only if the cooperation among subsystems gives payest, the subsystems
cooperate, otherwise each subsystem works alone.
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Chapter 5

Assessment of coordination mechanisms

In the following sections, we briefly summarize the results of the assessirdifiecent coordination
mechanisms.

5.1 Communication-based distributed MPC

Venkat et al. have already assessed communication-based MPC feteigme linear time-invariant
systems| [35, 23]. In a first example the communication-based MPC methodhlgatesulted in a
suboptimal control performance. Moreover, the resulting MPC leads tmstable behaviour of the
example system. However, for a second example, the communication-bd&edndthod leads to
a stable system behaviour with a system performance close to the optimailcoatr with huge
improvement compared to decentralized MPC.

5.1.1 Communication-based MPC for event-driven continuousime systems

In [28] we consider a communication-based distributed MPC approaeimfevent-driven continuous-
time model, namely a baggage handling system. The baggage handling systemaigdort is one
of the most important factors that determine the airport’s efficiency andildlja State-of-the-art
baggage handling systems transport luggage in an automated way udingttes coded vehicles
(DCVs). These vehicles transport the bags at high speeds on a “mimiayanetwork. The consid-
ered DCV-based baggage handling system is sketched in Figure 5.ky$tésn operates as follows:
given a dynamic demand of bags (identified by their unique code) andfer lafifempty DCVs for
each loading station, together with the network of tracks, the optimal routecbf@2CV (from a given
loading station to the corresponding unloading station) has to be compujedtgotbperational and
safety constraints such that the performance of the system is optimized.

The considered track network h&junctions 3, S,..., S, while each junction has at most 2
incoming links and at most 2 outgoing links, both indexed ly{0,1}. Each junction has a switch
going into the junction and a switch going out of the junction.

There are five types of events that can occur:

¢ loading a new bag into the system
e unloading a bag that arrives at its end point

e updating the position of the switch-in
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Figure 5.1: Baggage handling system using DCVs.

e updating the position of the switch-out
e updating the speed of a DCV.

The model of the baggage handling system is an event-driven onetaomsisa continuous part
describing the movement of the individual vehicles transporting the bagsghithe network, and of
the discrete events listed above.

Distributed model predictive control: Here performance of the local, decentralized control is in-
creased by implementingdistributedapproach that uses additional communication and coordination
between neighboring junctions. Data will be communicated between conselawels of influence.
It is considered that the communication of the future actions is performedsimam.

The computation of the local control is performed according to the followiggrigthm wherez
is the largest level of influence assigned in the network.

Algorithm: Distributed computation of local control

1: for k =1to.# do

2. compute in parallel local switching sequences for influence levilking into account the
control on influence levet — 1

3: end for

Every time a bag crosses a junction the local control of all junctions is ugpd&ecall that the
controllers of the junctions on leved have to wait for the completion of the computation of the
switching sequences of the controllers on the previous level befoténgtéw compute their future
control action. Therefore, when comparing with decentralized MPQ distributed MPC may im-
prove the performance of the system, but at the cost of higher computiatierdue to the required
synchronization and iteration in computing the control actions.

Results: To solve the optimization problemsgagneticalgorithm of the Matlab optimization toolbox
has been chosen with multiple runs.

Based on simulations the proposed control methods could be comparee fgivéim scenarios.
Figure 5.2 shows the results obtained when using centralized, decemnlralizd respectively dis-
tributed MPC for various scenarios.

Clearly the best performance of the system is obtained when using cesdralidtch control.
However, centralized control becomes intractable in practice when theamwhpunctions is large
due to the large computation time required. The simulations indicate that bothmdized MPC and
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Figure 5.2: Comparison of the proposed control approaches.

distributed MPC offer a balanced trade-off between computation time and diptintdowever, the
results confirm that the communication of the intended control action betwatghhworing junction
may increase the performance of the system, but at the cost of biggeutaimapal effort.

5.2 Price-driven coordination methods

Price-driven coordination methods clearly dominate research of higcatcand distributed MPC
as well as distributed, large-scale optimization. While there also exist aleegiproaches for price-
driven coordination, e.g., in [15], the dual optimization method [12, 13}see be the most important
method, today. We have assessed this method for different applicaticaas, dind nonlinear, and also
considered modified versions of dual optimization.

5.2.1 Dual optimization with an additional penalty term

In this application we consider water networks. To improve the operatioratédrvgystems the con-
trollers that control different parts of the water network should caaeeand coordinate their local
water management actions, and take into account predictions or foretdstsre rain fall, future
droughts, future arrival of increased water flow via rivers, etsing various weather and hydrological
sensors, and prediction models). Using distributed MPC more efficient 8loddvater management
with less risks and less costs can be obtained. In [18, 19] we apply ayartdistributed MPC
scheme, recently proposed in [17], for improving the operation of a péatitype of water systems,
viz. irrigation canals.

Coordination mechanism: Overall optimality is achieved by a modification of the objective function
of the local MPC units, i.e., there is a modified optimization problem:

min Jiocati (Xi(K+1),Gi(k),¥i(k
) >”<i(k+1)-,ﬁil(~k)~,7i(k)v ocall (XI( (—:) )7til( ),Y|( 3)
YVin.ji_yli(k)v"'7v‘~/i”~ji=mii(k)’ + z Jnteri (Win,ji(k>aWouLji(k))7 (5.1)
Woutji‘li(k) 4---,Woutjimi(k) jeM 7

subject to the local dynamics of subnetwadrkver the horizon. In this, the additional objective

Page 20/30




|HD-MPC ICT-223854 D3.3.1 - Coordination mechanisms

functionJineer; at iterationsis defined as
~ T
N N A (k) Wi (k)
J_(s) (Win it (K), Wout ii (K)) = “in,ji [~|n,1|
mter,l( |n71|( ) OULJ'( )> [_/\osu)tij(k)] WouLji(k)
[Win,prev,ij (K) — Wou ji (k)}
Wout,previj (k) - V~Vin,ji (k)

This additional objective functiodneri consists of two parts:

2

2

e The first term is well-known, from dual optimization: A product of Lagygarmultipliers and
the corresponding constraints.

e The second term is an additional penalty term for unsatisfied constraints.

The Lagrange multipliers are updated as in dual optimization:

3 (st+1) 3 (s) ~ ~
Ainji (K) =2 iriji (K +ve (Wi(:?ji (k) —Wg?pij (k)> :

Model: The method has been assessed for a system of irrigation channelsyriimeick of irrigation
canals can be modeled in detail, e.g., using the Saint Venant equationsu8ing in systems of
highly-nonlinear partial differential-algebraic equations. However, sityikas in [33], the integral
delay model [27] has been employed to model the dynamics of a canal fEsishmodel has shown
to adequately capture relevant dynamics [27], and reduces computeguised for simulation of
the dynamics significantly.

The model describing how the levial of the water in the canal rea¢tthanges from one control
cyclek to the next control cycl&+ 1 is given by:

T T
hi(k+1) = hi(k) + E(_:Qin,i (k—kg;i) — E(_:QOuLi (k)
i i
T Te
+ ECQext,irLi (k) - E_CQext,outi (k) (5-2)
i i

Canal reaches are connected to one another. When two canaly@aelomnnected to each other, the
inflow of one canal reach is equal to the outflow of the other. Hencendighboring reachesand
this interconnection is given by

Qouti (K) = Qin,j (k). (5.3)

Results: Fig.|5.3(a) shows the changes in the set-points decided upon by thelleostrig| 5.3(b)
shows the closed-loop evolution of the deviations of the water levels frometbieence values. It can
be seen that the inflow of canal reach 1 is increased right before tlitioadl offtake increase takes
place in order to prevent having a too low water level after the additiofi@kef It can also be ob-
served that the deviations of the water levels after the offtake increaseimimal due to the changes
in the set-points. We observe that after about 25 control cycles th@sdspettle at a constant value,
while the deviations of the water levels from the references are minimal, anthtisathe controllers
have performed their tasks adequately.

The costs computed over the full simulation using the distributed MPC scheni83240 .

A centralized MPC controller based on the same objectives obtains costtevell simulation of
183110 7. This difference in performance is negligible, and hence, in this caseighwte assump-
tions made are valid, indeed, the distributed controllers have achievedoanp@nce comparable to
the performance obtained by a centralized MPC controller.
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Figure 5.3: Evolution for four representative canal reaches ofefapaints and (b) deviation of the
water levels from reference values.
5.2.2 Dual optimization with Han’s method
In another paper [9] we have assessed the dual optimization appralaere the dual problem has

been using solved Han's method [10]. The following discrete-time, linear itiwsgiant model has
been considered:

X(k+1)= 5 AIX(k)+BIu(K), (5.4)
jeni

An important part of this assessment has been the quite general typestrfagots, i.e.,

> ,:iD‘j (k)X () +E' (K)ul (k) = Ceq (5.5)
jeNT k=
_ :Z:ISIJ (k)xj (k) + éj (k)uj (k) < Eineq (5,6)
jeNT k=

For the optimization within the MPC problem a decoupled and convex quadesti¢unction
M N-1

I=2 2 () TRU () + (X (k+1) QX (k+ 1)) (5.7)

is assumed with positive definite weigh®s Q;,Vi. Hence, the problem can be reformulated in a
compact form as:

min x"Hx (5.8)
X
st ax=b, 1=1...ng

a'x<b, |=neg+1,....s

Coordination method: The main idea is to use Han’s algorithm [10] to solve the dual problem of the
centralized optimization using parallel computations in an iterative scheme.
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Han'’s algorithm for general convex problemiBhe class of optimization problems tackled by Han’'s
algorithm is the following:

min q(x) (5.9)
st. xeC&2Cin---NGCq

whereCy,--- ,Cs are closed convex sets aBd# @.

The algorithm is an iterative procedure. We ysas iteration counter of the algorithm. We use a

superscrip{p) to denote the values of variables computed at itergpion

Let a be a sufficiently large numbkand definey© = y{¥ = ... = y{? = 0, with y© y\? ¢
R™ 1 =1,...,s andx® = Og* (y\?) with g* being the conjugate functiérof g. Forp=1,2,...,
we perform the following computations:

1) Forl =1,...,s find zl(p) that solves

1 . 5
min - Slz+ay® X, (5.10)
S.t. Z€C|
2) Assign
yl(p) :yl(p—1)+(1/a) (Zl(p)_x(p—l)) (5.11)
3) Sety(P) :y(lp)+...+ygp)
4) Compute

Distributed version of Han’s algorithm with regional coordination methbin’s algorithm involves
calculation of the global variables, therefor a global coordination methegjisred. By exploiting the
structure of problem (5.8), we can implement a distributed version of Hagaithm that requires
a regional coordination method, in which each subsystem coordinatesrigutations of several
variables and thus only needs to communicate with its neighbors.

This idea is illustrated in Figure 5.4, with a simple system consisting of 4 subsysiednthe
coupling matrix that shows how subsystems are coupled via their varialiges(lon a same row
illustrate the variables that are coupled in one constraint). In the centraledination version, a
subsystem has to communicate with all other subsystems in order to computel#tesupf global
variables. For the distributed coordination version, each subsystenc@amiyunicates with the other
subsystems of which the variables are necessary for computing the sipélatelocal variables.

Model: For the assessment of the method, here a model of coupled oscillatoredrasded. The
system consists d¥l oscillators that can move only along the vertical axis, and that are coupled b
springs that connect each oscillator with its two closest neighbors. Ageexws vertical force will
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Figure 5.4: Communication links of thé®subsystem with (a) the centralized coordination version

and (b) the distributed coordination version of Han’s algorithm for amgta 4-subsystem problem.

pi A

Figure 5.5: Setup with coupled oscillators
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be used as the control input for each oscillator. The setup is shown ineFigl. Each oscillator is
considered as one subsystem. Let the supersa@tote the index of the oscillators. The continuous-
time dynamics equation of oscillatbis then defined as

mal(t) = kep'(t) — fov' (1) +ke(p" (1) — P'(1)) +ke(PH(E) — P'(1) +F' (1), (5.13)

wherep'(t), V/(t), anda'(t) denote the position, velocity, and acceleration of oscillatat timet,
respectively. The control force exerted at oscilldte F'(t). The system parameters aeg ko, m,
and fs, representing respectively the stiffness of the vertical spring at esahator, the stiffness of
the springs that connect the oscillators, the mass of each oscillator, africtioe coefficient for
movement of the oscillators.

The positions of the subsystems are required to satisfy the coupled datsstra

i—1 i+1
d(t)— P (t);p ®l<1, =2 .M-1w (5.14)
which means that each oscillator must not deviate too far from the middle of itsldsest neighbors.

Results: Figure 5.6 shows the evolution in the first sampling interval of the normalizeair-
error between the solution of the proposed distributed MPC method andrttralzed optimum for
the optimal control problem as a function of the iteration gigfor different values ofx. Clearly, as
more iterations are performed, the error reduces. Although in [10] deemmended design parameter
aisag= g, we have performed simulations with different valuesxadb show the influence af on
the convergence speed. We see that with the recommendeda, the convergence speed is very low,
and that wherr is smaller, the algorithm converges faster. However, we cannot redtee much,
there is a lower limit ofr so that the algorithm still converges. In fact, we illustrate in Figure 5.7 that
the algorithm diverges far = 0.00001.

1a is a design parameter that has to be sufficiently large. Withs/p Han’s method will converge [10]. For positive
definite QPs we can choogeas one half of the smallest eigenvalue of the Hessian matrix. A sntalleads to a faster
convergence rate, but anthat is too small could lead to convergence problems.

2The conjugate function of a functiog(x), x € R™ is defined by:q*(y) = SUBcrm (yTqu(x)). The conjugate
functiong* is always convex [4].
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Figure 5.6: Normalized norm of difference between the centralized amtidinbuted solutions versus
the iteration step for different values ofr.
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Figure 5.7: Normalized norm of difference between the centralized amtidinduted solutions versus
the iteration step. Fora = 0.00001ag the algorithm diverges.
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Chapter 6

Conclusions

We have presented an overview of existing coordination methods, farbtigcal as well as dis-

tributed model predictive control (MPC) methods. Most of the existingdioation mechanisms are
related to price-driven coordination. In order to achieve an overdinopn, prices are defined, e.g.,
by a supervisor, which are included in the objective function of each MP&L controller. Thus, the

local MPC controllers take into account knowledge of the overall systdratelare different ideas on
how to calculate these prices, the most popular one is the dual optimization métresd, Lagrange

multipliers represent the prices and are calculated as a solution of therdbbdm.

Then we have assessed some of the existing coordination mechanisms.oDe ttzad we exam-
ined a simple distributed MPC scheme, which is based on communication only.W&/edrified that
communication can increase overall performance of the control compaeedompletely decentral-
ized control. However, communication is not sufficient to achieve an thatimum of the control
problem. The proposed coordination scheme requires more computatoywed fhan a completely
decentralized control, though it can be computed much faster than thelizectidPC.

On the other hand we have assessed price-driven coordination nsokarased on dual opti-
mization. This coordination mechanism leads to an overall optimal control afistributed system,
i.e., to a control performance that equals the performance of centraliP&l Mowever, we have seen
that convergence of the method strongly depends on the parametees chlwgavorable parameters
can lead to slow convergence or even to divergence.

It is not always clear how the existing price-driven coordination meishascan be extended or
improved in the future. This is a topic of ongoing research. Moreoverrétent work/[25], we have
introduced a new coordination scheme. In order to achieve overall optiptaktyverall objective
is partly approximated by a linearization of the global objective. Hence, dbedmation method
requires the calculation of first order sensitivities. This method, that fee te as gradient-based
distributed dynamic optimization (GBDDO), revealed some promising propentiggrticular fast
convergence. Furthermore, there are no free (tuning) parametdredeec Thus, the method is easy
to implement. Hence, the related coordination mechanism is one that we will &is® éo also in
future research.
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