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Executive Summary

This report presents three coordination mechanisms for distributed MPC withneighbor-to-
neighbor communications, i.e. there is no need for a global coordinator.
In the first case, a dual-decomposition scheme based on Fenchel’s dualityis employed to solve the
centralized optimization problem in a distributed way. The distributed method is ableto achieve
the optimal solution as if it were obtained using a corresponding centralized algorithm. In order to
deal with the slow convergence rate, which is a standard issue of dual decomposition approaches,
we also introduce an improved algorithm that uses heterogeneous step sizes together with warm-
starting, and that can still be implemented using local communications.
The second approach is based on a new sensitivity-driven coordination. The Quadratic Program
(QP) resulting for the optimal control problem of the MPC is solved in a distributed way. In each
local QP, sensitivity information of neighboring subsystems is included. By this means, the method
provides optimality as a centralized solution. In contrast to dual-decompositionapproaches, the
method can provide fast convergence, provided a proper decomposition is given.
Finally, the third approach is based on a non-iterative scheme with neighbor-to-neighbor commu-
nication among the subsystems where partial (local) structural information is needed. The main
rationale behind that approach is to transmit among the neighbors the future reference trajectories
and to interpret the difference between these trajectories and the true ones as disturbances to be
rejected by a proper robust MPC method. Therefore it is not necessary for each subsystem to know
the dynamical models governing the trajectories of the other subsystems and the transmission of
information is limited.
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Chapter 1

Synopsis of the report

1.1 Introduction

Hierarchical and distributed model predictive control relies strongly on the hierarchical or distributed
optimization method (see the reports of WP 4 for the related research results)and in particular on the
coordination mechanisms used. The coordination mechanism defines how thedifferent controllers in
the hierarchical or distributed control topology interact by communication, cooperation or coordina-
tion.

This report presents three coordination mechanisms for single layer distributed model predictive
control developed in the HD-MPC project:

1. A distributed coordination scheme based on Fenchel’s duality,

2. a distributed coordination scheme based on a sensitivity-driven coordination, and

3. a coordination scheme with low communication requirements based on robustMPC methods.

The notion of these coordination mechanisms differs in many ways. In the following three sections,
the idea of the methods is briefly explained. Then, this chapter contains general conclusions on the
new coordination mechanisms for DMPC. Full descriptions of the researchresults can be found in
Chapters 2 – 4.

1.2 An iterative scheme for distributed model predictive control using
Fenchel’s duality

In [1] (see also Chapter 2), we present a cooperative distributed MPCapproach using neighbor-
to-neighbor communications only, i.e. there is no need for a global coordinator. Considering the
MPC problem of interacting discrete-time linear subsystems, a dual-decomposition scheme based on
Fenchel’s duality is employed to solve the centralized optimization problem in a distributed way. The
distributed method is able to achieve the optimal solution as if it were obtained usinga correspond-
ing centralized algorithm. The method is further improved to achieve faster convergence speed. We
also demonstrate the application of our methods in a simulated water network control problem, and
discussed the open issues of the proposed scheme.

Consider a plant consisting ofM dynamically coupled LTI subsystems. The dynamics of each sub-
system are assumed linear and to be influenced directly by only asmallnumber of other subsystems.
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The centralized MPC problem, named(P), can be cast in a compact form as

min
x

xTHx (1.1)

s.t. aT
l x = bl , l = 1, . . . ,neq

aT
l x ≤ bl , l = neq+1, . . . ,s

whereH is a block-diagonal and positive definite matrix,s= neq+nineq.

1.2.1 Solution approach

Han’s parallel method for convex programs

Problem(P) can be solved using Han’s parallel algorithm [2], which is a method to decompose the
Fenchel’s dual problem [3] of a convex optimization problem. Han’s methodessentially uses iterative
projection of the dual variables onto the local constraint sets, this helps splitting the computation
into s parallel subproblems, wheres is the number of constraints. However, it requires aglobal
update schemeand the parallel problems operate with the full-sized decision vector. Implementing
the scheme in a DMPC system, where the goal is to reduce the size of local computations and to rely
on local communication between subsystems only, is not straightforward. Our main approach is to
exploit the structure of the problem(P), resulting in a distributed algorithm that does not require
global communications.

Distributed version of Han’s method for the MPC problem

The main idea behind the distributed version of Han’s method is illustrated in Figures 1.1(a) and
1.1(b), with a simple system consisting of 4 subsystems and the coupling matrix that shows how
subsystems are coupled via their variables (boxes on the same row indicate the variables that are
coupled in one constraint). In Han’s method using global variables, a subsystem has to communicate
with all other subsystems in order to compute the updates of the global variables. For the distributed
version of Han’s method, each subsystemi only communicates with the other subsystems of which
the variables are necessary for computing the updates of its local variables, i.e., the subsystems in its
neighborhood.

1.2.2 Main results

In [1], we show that both the proposed distributed algorithm and the original Han’s method generate
the same updates. This allows us to implement a DMPC scheme using the distributed algorithm,
which only need neighbor-to-neighbor communications. We also show that feasibility, and stability
properties of the DMPC scheme are achieved upon convergence of the iteration at every time step.

One typical drawback of dual decomposition-based approaches is the slow convergence rate,
which is also a valid issue of Han’s method and the distributed variation. In order to use this al-
gorithm in MPC, we need to speed up the convergence of the iteration so thatproblem(P) can be
solved within each sampling period. We present an improved distributed version of Han’s method that
employs warm-starting and acceleration using heterogeneous step sizes. Its efficiency is demonstrated
in the example of irrigation canal control, which is described in detail in Chapter 2.

To conclude, we summarize open issues of using Han’s method and other dual decomposition
methods for MPC, including the topics of distributed formulation, convergence rate, primal feasibility,
and stability of MPC. These issues are used to recommend future researchdirections.
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1 2 3 4

(a)

1 2 3 4

(b)

Figure 1.1: Illustration of communication links with (a) the centralized coordination version and (b)
the distributed coordination version of Han’s algorithm for an example 4-subsystem problem. In (a),
an update for a global variable requires the 2nd subsystem to communicate with all the others. In (b),
the 2nd subsystem only cares about its local variable, therefore it should only communicate with the
1st subsystem.

1.3 Sensitivity-driven coordination

The idea of sensitivity-driven coordination has first been studied in [4]in the context of nonlinear op-
timal control, where the method has been applied to control a four-tanks system. Due to the promising
results, we have continued research on this method as reported in [5] and[6] in the context of linear
quadratic constrained optimal control.

The main idea is to transcribe the continuous-time (see [5]) or discrete-time (see [6]) optimal
control problem into constrained parametric optimization problem. For general problems, this results
in an NLP

min
p

N

∑
i=1

Φi(p), (1.2)

s.t. ci(p) ≥ 0, ∀i, (1.3)

with objective functionΦ = ∑N
i=1 Φi(p) and the set of constraint functionsci(p),∀i. Here,p defines

the parameters of the NLP, which are divided intoN subvectorspi , and i indicates the subsystem.
For the linear quadratic optimal control problem a QP is derived. The QP (or in general, the NLP) is
then solved in a distributed manner. The subproblems are coordinated driven by sensitivities of the
objective function and the constraint function. Hence, the decomposition results in the set of NLPs
[5]

min
pi

Φ∗
i (p) (1.4)

s.t. ci(p) ≥ 0, (1.5)

with objective functions

Φ∗
i = Φi(p)+






N

∑
j=1
j 6=i

∂ Φ j

∂ pi

∣
∣
∣
∣

T

p[k]

−λ [k] T
j

∂ c j

∂ pi

∣
∣
∣
∣
p[k]




(pi − p[k]

i ), (1.6)
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which are solved iteratively. Under certain assumptions, the solution of the distributed algorithm will
converge to solution of the original optimization problem [5, 6].

The sensitivity-driven coordination-mechanism has been assessed onseveral case studies, e.g.

• a simulated nonlinear distributed chemical plant for the alkylation of benzene [5],

• a real implementation of Johansson’s quadruple tank benchmark [7], where it has been com-
pared to a set of other predictive controllers [8], and

• an synthetic unstable process [6].

Exemplarily, the results of the last contribution can be found in Chapter 3. The resulting distributed
model predictive control scheme is referred to as sensitivity-driven distributed MPC (or S-DMPC for
short). S-DMPC is an optimal controller, i.e. it reproduces the same trajectories as an centralized
MPC. The main challenges of future work are to guarantee stability and convergence of the proposed
scheme, as suggested in [5].

1.4 Distributed non-cooperative MPC

A new state feedback distributed control algorithm, based on model predictive control (MPC), is here
proposed: Distributed Predictive Control (henceforth called DPC) [9]. It is based on a non iterative
scheme with neighbor-to-neighbor (i.e., partially connected) communication among the subsystems
where partial (local) structural information are needed, and is deeply inspired to the robust state feed-
back MPC approach first introduced in [10].
The main rationale behind DPC is to transmit among the neighbors the future reference trajectories
and to interpret the difference between these trajectories and the true ones as disturbances to be re-
jected by a proper robust MPC method. Therefore in DPC it is not necessary for each subsystem to
know the dynamical models governing the trajectories of the other subsystemsand the transmission
of information is limited; moreover joint constraints between the subsystems couldbe included, so
that DPC can also be used for control of independent systems with coupling constraints. Finally,
convergence results can be established.

An off-line design phase must be carried out in order to apply the DPC algorithm:
1) Define a decentralized control law (i.e., the auxiliary control law) which,at the same time, (a) stabi-
lizes the local subsystems when neglecting the interconnections, (b) stabilizes the overall large scale
system, (c) has a Lyapunov function which basically corresponds to a weighted sum of local Lya-
punov functions. The above-mentioned issues can be addressed usinga number of well-established
results, worked out in the past in the field of decentralized control. For instance, one can rely on
milestone results onconnective stability[11], vector Lyapunov functions and the so-called “weighted
sum approach” for proving connective stability [12]. More recently, problems (a) and (b) have been
successfully addressed in [13], where a small gain condition for large-scale (nonlinear) systems has
been derived.
2) Set the stage and final cost functions.
3) Define the proper sets to constrain the state and input trajectories using set-theoretic considerations.
4) For each subsystemi = 1, . . . ,M, define an initial reference state trajectory.

Once the cost functions and the constraining sets are properly defined,the minimization problems
to be solved on-line correspond to low-order MPC problems, defining local subsystem’s inputs. Note
that the reference trajectory, for each subsystem, is incrementally defined.
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Concluding, DPC enjoys the following properties:
Classes of distributed systems.DPC has been designed for controlling a wide class of large scale
systems. Specifically, it can be used for dynamically coupled subsystems, as well as for subsystems
with coupled constraints on the state variables.
Local knowledge. Each subsystem is required to know and store only the model governing thedy-
namics of its local state variables, and how the outputs of the neighboring subsystems influence them.
Information transmission. DPC requires neighbor-to-neighbor communication among subsystems.
Furthermore, the data transmitted to each subsystem correspond only to the value of the local refer-
ence state variableN-steps ahead (which is ani dimensional variable). Finally, information must be
transmitted and received with non-iterative communication protocol i.e, once within a sampling time,
and no negotiation is required among subsystems.
Scalability. The DPC algorithm is scalable: as the number of subsystems grows (while, for instance,
the average number of neighbors for each subsystem remains constant), the information required to
be stored, processed and transmitted by each subsystem not linked to the new subsystems remains
constant.
Guaranteed properties. The convergence of the overall system controlled with DPC is guaranteed
under suitable assumptions, and both local and global constraints on state and input variables are
handled.

1.5 General conclusions

We have introduced three coordination methods for distributed MPC, which are all based on neighbor-
to-neighbor communication. While the scheme based on Fenchel’s duality and the sensitivity-based
coordination reproduce the optimality of a centralized controller, the non-cooperative DPC scheme
features low-communication requirements and does not rely on an iteration ofthe solution, which
may be advantageous. While S-DMPC features fast convergence properties, extensions are necessary,
e.g. to guarantee closed-loop stability. For DMPC on Fenchel’s duality, speed of convergence could
be improved, however there is still a desire to speed up convergence. Furthermore, there is a desire to
implement less conservative stability property than the zero-terminal constraint. The non-cooperative
DPC approach provides some conservatism for a caused by its robustness approach. However, as a
consequence DPC features several advantages over the other schemes (and also compared to many
others in literature), i.e. it is a non-iterative approach, and only local information is required for each
controller. However, there are also still important issues to solve in future,i.e. to provide appropriate
sets for the control errors in order to measure the uncertainties of the coupling variables.
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Chapter 2

An iterative scheme for distributed model
predictive control using Fenchel’s duality

This chapter is based on a paper that has been accepted for publication inthe Journal of Process
Control, Special Issue for Hierarchical and Distributed Model Predictive Control, with particular cita-
tion: M.D. Doan, et al., An iterative scheme for distributed model predictive control using Fenchel’s
duality, J. Process Control (2011), doi: 10.101/j.jprocont.2010.12.009.

2.1 Introduction

Nowadays, Model Predictive Control (MPC) is widely used for controlling industrial processes [14],
and it also has been studied thoroughly by the scientific community [15, 16, 17]. MPC can naturally
handle operational constraints and, moreover, it is designed for multi-input multi-output systems, both
of which contributed to the popularity of MPC. Another advantage of MPC is that it relies on opti-
mization techniques to solve the control problem. Hence, improvements in optimization techniques
can help to broaden the applications of MPC for more complex problems.

When considering a control problem for a large-scale networked system (such as complex manu-
facturing or infrastructure processes), using MPC in a centralized fashion may be considered imprac-
tical and unsuitable due to the computational burden and the requirement of global communications
across the network. It is also inflexible against changes of network structure and the limitation of
information exchange between different authorities who might be in controlof a local subsystem.
In order to deal with these limitations, Distributed MPC (DMPC) has been proposed for control of
such large-scale systems, by decomposing the overall system into small subsystems [18, 19]. The
subsystems then employ distinct MPC controllers that only solve local controlproblems, use local
information from neighboring subsystems, and collaborate to achieve globally attractive solutions.

DMPC is an emerging topic for scientific research. The open issues of DMPC have recently been
discussed in [20, 21]. Several DMPC methods were proposed for different problem setups. For sys-
tems with decoupled dynamics, a DMPC scheme for multiple vehicles with coupled cost functions was
proposed in [22], utilizing predicted trajectories of the neighbors in each subsystem’s optimization.
A DMPC scheme with a sufficient stability test for dynamically decoupled systemswas presented in
[23], in which each subsystem optimizes also over the behaviors of its neighbors. In [24], Richards
and How proposed a robust DMPC method for decoupled systems with coupled constraints, based on
constraint tightening and a serial solution approach. For systems with coupled dynamics and decou-
pled constraints, a DMPC scheme has been developed in [25] based on a Jacobi algorithm that deals
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with the primal problem, using a convex combination of new and old solutions. In[26], the neigh-
boring subsystem states are treated as bounded contracting disturbances, and each subsystem solves a
min-max problem. A partitioning-based algorithm was proposed in [27, 28], with sufficient conditions
for the a posteriori stability analysis. In [29], Li et al. proposed an algorithm with stability conditions
in which subproblems are solved in parallel in order to get a Nash equilibrium.Several DMPC al-
gorithms based on decomposing of the global optimization problems were proposed in [30, 31, 32].
Other recent work on applications of DMPC is reported in [33, 34, 35].

In this paper, we present a decomposition scheme based on Han’s parallel method [36, 2], aiming
to solve the centralized optimization problem of MPC in a distributed way. This approach results in
two distributed algorithms that are applicable to DMPC of large-scale industrialprocesses. The main
ideas of our algorithms are to find a distributed update method that is equivalent to Han’s method
(which relies on global communications), and to improve the convergence speed of the algorithm [37].
We will demonstrate the application of our methods in a simulated water network control problem.
The open issues of the proposed scheme will be discussed to formulate future research directions.

The paper is organized as follows. The MPC problem is formulated and the underlying opti-
mization problem is stated in Section 2.2. In Section 2.3, we summarize Han’s parallel method for
convex programs [2] as the starting point for our approach. In Section2.4, we present two distributed
MPC schemes that exploit the structure of the optimization problem for local communications. The
first DMPC scheme uses a distributed iterative algorithm that we prove to be equivalent to Han’s
algorithm. As a consequence of this equivalence, the proposed DMPC scheme achieves the global
optimum upon convergence and thus inherits feasibility and stability propertiesfrom its centralized
MPC counterpart. The second DMPC scheme is an improved algorithm that aimsto speed up the con-
vergence of the distributed approach. In Section 2.5, we illustrate the application of the new DMPC
schemes in an example system involving irrigation canals. In Section 2.6, we discuss the open issues
of Han’s method and other dual decomposition techniques for DMPC that motivate directions for
future research. Section 2.7 concludes the paper.

2.2 MPC problem formulation

2.2.1 Subsystems and their neighborhood

Consider a plant consisting ofM dynamically coupled subsystems. The dynamics of each subsystem
are assumed linear and to be influenced directly by only asmallnumber of other subsystems. More-
over, each subsystemi is assumed to have local linear coupled constraints involving only variables
from a small number of other subsystems.

Based on the couplings, we define the ‘neighborhood’ of subsystemi, denoted asN i , as the set
including i and the indices of subsystems that have either a direct dynamical coupling or a constraint
coupling with subsystemi.
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2.2.2 Coupled subsystem model

We assume that each subsystem can be represented by a discrete-time, linear time-invariant model of
the form1:

xi
k+1 = ∑

j∈N i

Ai j x j
k +Bi j u j

k, (2.1)

wherexi
k ∈ R

ni
andui

k ∈ R
mi

are the states and control inputs of thei-th subsystem at time stepk,
respectively.

2.2.3 Linear coupled constraints

Each subsystemi is assumed to have local linear coupled constraints involving only variables within
its neighborhoodN i . Within one prediction period, all constraints that subsystemi is involved in can
be written in the following form

∑
j∈N i

N−1

∑
k=0

Di j
k x j

k +Ei j
k u j

k = ceq (2.2)

∑
j∈N i

N−1

∑
k=0

D̄i j
k x j

k + Ēi j
k u j

k ≤ c̄ineq (2.3)

in which N is the prediction horizon,ceq andc̄ineq are column vectors, andDi j
k , Ei j

k , D̄i j
k , andĒi j

k are
matrices with appropriate dimensions.

2.2.4 First MPC problem

We will formulate the centralized MPC problem for systems of the form (2.1) using a terminal point
constraint approach that imposes constraints to zero out all terminal states. Under the conditions
that a feasible solution of the centralized MPC problem exists, and that the point with zero states
and inputs is in the relative interior of the constraint set, this MPC scheme ensures feasibility and
stability, as shown in [16] and [38]. However, the algorithm proposed in this paper will also work
with any other centralized MPC approach that does not require a terminal point constraint, provided
that the subsystems have local stabilizing terminal controllers. We will furtherassume without loss of
generality that the initial time is zero.

The optimization variable of the centralized MPC problem is constructed as a stacked vector of
predicted subsystem control inputsandstates over the prediction horizon:

x =
[(

u1
0

)T
, . . . ,

(
uM

0

)T
, . . . ,

(
u1

N−1

)T
, . . . ,

(
uM

N−1

)T
,

(
x1

1

)T
, . . . ,

(
xM

1

)T
, . . . ,

(
x1

N

)T
, . . . ,

(
xM

N

)T
]T

(2.4)

Recall thatni andmi denote the numbers of states and inputs of subsystemi. The number of
optimization variables for the centralized problem is thus:

nx = N
M

∑
i=1

mi +N
M

∑
i=1

ni (2.5)

1This system description is chosen for simplicity of exposition and our framework can be easily extended to consider
output signals with appropriate observability assumptions.
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The cost function of the centralized MPC problem is assumed to be decoupled and convex quadratic:

J =
M

∑
i=1

N−1

∑
k=0

((
ui

k

)T
Riu

i
k +
(
xi

k+1

)T
Qix

i
k+1

)

(2.6)

with positive definite weightsRi ,Qi . This cost function can be rewritten using the decision variablex
as

J = xTHx (2.7)

in which the HessianH is an appropriate block-diagonal, positive definite matrix.

Remark 2.2.1 The positive definiteness assumption on Qi and Ri and the choice of the centralized
variable as described in(2.4) without eliminating state variables will help to compute the inverse of
the Hessian easily, by allowing simple inversion of each block on the diagonal of the Hessian.

The centralized MPC problem, named(P), is defined as: the minimization of (2.6), subject
to (2.1) for i = 1, . . . ,M,k = 0, . . . ,N − 1, (2.2) and (2.3) fori = 1, . . . ,M, as well asxi

N = 0 for
i = 1, . . . ,M.

We can rewrite problem(P) in a compact form as

min
x

xTHx (2.8)

s.t. aT
l x = bl , l = 1, . . . ,neq

aT
l x ≤ bl , l = neq+1, . . . ,s

with s= neq+ nineq. The algorithms to be described in the next sections will focus on how to solve
this optimization problem.

2.3 Han’s parallel method for convex programs

Han’s algorithm [2] is a method to decompose the Fenchel’s dual problem [3]. Fenchel’s duality
theorem aims at minimizing a differencef (x)−g(x), wheref is a convex function andg is a concave
function. A special case of this problem is minimizingf over a constraint setC, whereg is a penalty
function for violating the constraint. In Han’s problem, the setC is the intersection of local constraint
sets, and the dual variables are iteratively projected onto the local constraint sets. As a consequence,
the sum of the dual variables converges to the minimizer of the Fenchel’s dual problem [2]. In this
section, we summarize the main elements of Han’s parallel method, followed by a simplified version
for the case of definite quadratic programming.

2.3.1 Han’s algorithm for general convex problems

The class of optimization problems tackled by Han’s algorithm is the following:

min
x

q(x) (2.9)

s.t. x ∈C , C1∩·· ·∩Cs
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whereC1, · · · ,Cs are closed convex sets andC 6= ∅, and whereq(x) is uniformly convex2 and differ-
entiable onRnx .

A problem of type (2.9) can be solved by Han’s algorithm. In the following algorithm we will
describe Han’s method, which is an iterative procedure. We usep as iteration counter of the algorithm,
and the superscript(p) for variables that are computed at iterationp.

Algorithm 2.3.1 Han’s algorithm for convex programs

Let α be a sufficiently large number3 and definey(0) = y(0)
1 = · · · = y(0)

s = 0, with y(0),y(0)
l ∈

R
nx , l = 1, . . . ,s, andx(0) = ∇q∗

(
y(0)
)

with q∗ being the conjugate function4 of q. For p= 1,2, . . . , we
perform the following computations:

1) For l = 1, . . . ,s, findz(p)
l that solves

min
z

1
2

∥
∥
∥z+αy(p−1)

l −x(p−1)
∥
∥
∥

2

2
(2.10)

s.t. z∈Cl

2) Assign

y(p)
l = y(p−1)

l +(1/α)
(

z(p)
l −x(p−1)

)

(2.11)

3) Sety(p) = y(p)
1 + · · ·+y(p)

s

4) Compute

x(p) = ∇q∗
(

y(p)
)

(2.12)

In [2], Han and Lou also showed that Algorithm 2.3.1 converges to the global optimum if the
conditions onq andC mentioned after (2.9) are satisfied.

Remark 2.3.2 Han’s method essentially solves the dual problem of(2.9), so thaty(p) converges to
the solution of the Fenchel’s dual problem:

min
y

(
q∗(y)−δ ∗(y|C)

)
(2.13)

in whichδ (x|C) is the indicator function, which is 0 ifx ∈C and∞ otherwise. The conjugate function
of δ (x|C) is δ ∗(y|C) = supx∈C yTx. According to Fenchel’s duality theorem [3], the minimum of
the convex problem f(x)− g(x), where f is a convex function onRnx and g is a concave function
on R

nx , equals the maximum of the concave problem g∗(y)− f ∗(y), or equivalently the minimum of
f ∗(y)−g∗(y). In this situation f≡ q and g≡ δ . A valuey(p̄) achieved when Algorithm 2.3.1 converges
is an optimizer of(2.13), hencex(p̄) = ∇q∗

(
y(p̄)
)

is the solution of(2.9).

2A function q(x) is uniformly convex (or strongly convex) on a setS if there is a constantρ > 0 such that for any
x1, x2 ∈ Sand for anyλ ∈ (0,1):

q(λx1 +(1−λ )x2) ≤ λq(x1)+(1−λ )q(x2)−ρλ (1−λ )‖x1−x2‖
2.

3α is a design parameter that has to be sufficiently large. Withα ≥ s/ρ Han’s method will converge [2]. For positive
definite QPs we can chooseρ as one half of the smallest eigenvalue of the Hessian matrix.

4The conjugate function of a functionq(x), x ∈ R
nx is defined by:q∗(y) = supx∈Rnx

(
yTx−q(x)

)
. The conjugate

functionq∗ is always convex [39].
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2.3.2 Han’s algorithm for definite quadratic programs

In case the optimization problem has a positive definite cost function and linear constraints as in
(2.9), the optimization problem (2.10) and the derivative of conjugate function (2.12) have analytical
solutions, and then Han’s method becomes simpler. In the following we show how the analytical
solutions of (2.10) and (2.12) can be obtained when applying Algorithm 2.3.1to the problem (2.8).

Remark 2.3.3 The result of simplifying Han’s method in this section is slightly different from the
original one described in [2], so as to correct the minor mistakes we found in that paper.

As in (2.9), each constraintx ∈Cl is implicitly expressed by a scalar linear equality or inequality
constraint. So (2.10) takes one of the following two forms:

min
z

1
2
‖z+αy(p−1)

l −x(p−1)‖
2

2 (2.14)

s.t. aT
l z = bl

or

min
z

1
2
‖z+αy(p−1)

l −x(p−1)‖
2

2 (2.15)

s.t. aT
l z≤ bl

Let us first consider (2.15):

• If aT
l

(

x(p−1)−αy(p−1)
l

)

≤ bl , thenz(p)
l = x(p−1)−αy(p−1)

l is the solution of (2.15). Substitut-

ing thisz(p)
l into (2.11), leads to the following update ofy(p)

l :

y(p)
l = y(p−1)

l +(1/α)
(

x(p−1)−αy(p−1)
l −x(p−1)

)

⇒ y(p)
l = 0 (2.16)

• If aT
l

(

x(p−1)−αy(p−1)
l

)

> bl , then the constraint is active. The optimization problem (2.15)

aims to find the point in the half-spaceaT
l z≤ bl that minimizes its distance to the pointx(p−1)−

αy(p−1)
l (which is outside that half-space). The solution is the projection of the pointx(p−1) −

αy(p−1)
l on the hyperplaneaT

l z = bl , which is given by the following formula:

z(p)
l = x(p−1)−αy(p−1)

l −
aT

l

(
x(p−1)−αyl

)
−bl

aT
l al

al (2.17)

Substituting thisz(p)
l into (2.11), leads to:

y(p)
l = y(p−1)

l +
1
α



−αy(p−1)
l −

aT
l

(

x(p−1)−αy(p−1)
l

)

−bl

aT
l al

al





= −
aT

l

(

x(p−1)−αy(p−1)
l

)

−bl

αaT
l al

al (2.18)
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Then definingγ(p)
l = aT

l

(

x(p−1)−αy(p−1)
l

)

−bl yields

y(p)
l = −

γ(p)
l

αaT
l al

al (2.19)

If we define

γ(p)
l = max{aT

l

(

x(p−1)−αy(p−1)
l

)

−bl ,0} (2.20)

then we can use the update formula (2.19) for both cases.
Similarly, for the minimization under equality constraint (2.14), we define

γ(p)
l = aT

l

(

x(p−1)−αy(p−1)
l

)

−bl (2.21)

and the update formula (2.19) gives the result of (2.11).
Now we consider step 4) of Algorithm 2.3.1. As shown in [39], the functionq(x) = xTHx with H

being a positive definite matrix, is uniformly convex onR
nx and has the conjugate function:

q∗(y) =
1
2

yTH−1y (2.22)

⇒ ∇q∗(y) = H−1y (2.23)

Consequently, in Han’s algorithm for the definite quadratic program (2.8), it is not necessary to
computez(p), andy(p) can be eliminated using (2.19). We are now ready to describe the simplified
Han’s algorithm for problem (2.8), with the choiceα = s/ρ (cf. footnote 3).

Algorithm 2.3.4 Han’s algorithm for definite quadratic programs

For each l= 1, . . . ,s, compute

cl =
−1

αaT
l al

H−1al (2.24)

Initialize γ(0)
1 = · · · = γ(0)

s = 0 andx(0) = 0. For p= 1,2, . . . , perform the following computations:

1) For each l corresponding to an equality constraint (l= 1, . . . ,neq), computeγ(p)
l = aT

l x(p−1) +

γ(p−1)
l −bl .

For each l corresponding to an inequality constraint (l= neq+1, . . . ,s), computeγ(p)
l = max{aT

l x(p−1)+

γ(p−1)
l −bl ,0};

2) Set

x(p) =
s

∑
l=1

γ(p)
l cl (2.25)

Note that Han’s method splits up the computation intos parallel subproblems, wheres is the
number of constraints. However, although Algorithm 2.3.4 is simpler than the original form in Al-
gorithm 2.3.1, it still requires aglobal update schemeand the parallel problems still operate with the
full-sized decision vector. Implementing the scheme in a DMPC system, where thegoal is to reduce
the size of local computations and to rely on local communication between subsystems only, is not
straightforward. In the following section, we will exploit the structure of theproblem (2.8), resulting
in a distributed algorithm that does not require global communications.
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2.4 Distributed version of Han’s method for the MPC problem

2.4.1 Distributed version of Han’s method with common step size

The main idea behind the distributed version of Han’s method is illustrated in Figures 2.1(a) and
2.1(b), with a simple system consisting of 4 subsystems and the coupling matrix that shows how
subsystems are coupled via their variables (boxes on the same row indicate the variables that are
coupled in one constraint). In Han’s method using global variables, a subsystem has to communicate
with all other subsystems in order to compute the updates of the global variables. For the distributed
version of Han’s method, each subsystemi only communicates with the other subsystems of which
the variables are necessary for computing the updates of its local variables, i.e., the subsystems in its
neighborhoodN i .

1 2 3 4

(a)

1 2 3 4

(b)

Figure 2.1: Illustration of communication links with (a) the centralized coordination version and (b)
the distributed coordination version of Han’s algorithm for an example 4-subsystem problem. In (a),
an update for a global variable requires the 2nd subsystem to communicate with all the others. In (b),
the 2nd subsystem only cares about its local variable, therefore it should only communicate with the
1st subsystem.

For the algorithm presented in this section, we useM local controllers attached toM subsystems.
Each controlleri then computesγ(p)

l with regards to a small set of constraints indexed byl ∈ Li , where
Li is a set of indices5 of several constraints that involve subsystemi. Subsequently, it performs a local
update for its own variables, such that the parallel local update scheme willbe equivalent to the global
update scheme in Algorithm 2.3.4.

Initialization of the algorithm

Store invariant parameters
The parameterα is chosen as in Algorithm 2.3.4 and stored in the memory of all local controllers.
We also computes invariant valuescl as in (2.24), in which eachcl corresponds to one constraint

of (2.8). Note thatH is block-diagonal,H−1 can be computed easily by inverting each block ofH
and has the same block structure asH. Hencecl is as sparse as the correspondingal . We can see that
cl can be computed locally by a local controller with a priori knowledge of the parameteral and the
weighting blocks on the diagonal ofH that correspond to the non-zero elements ofal .

5The choice ofLi will be described in the next section.
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We assume that each local controlleri knows its local dynamics, and the input and state weights
of its neighbors in the cost function. Then each local controlleri can compute thecl values associated
with its dynamic equality constraints.

Assign responsibility of each local controller
Each local controller is in charge of updating the variables of its subsystem.Moreover, we also

assign to each local controller the responsibility of updatingsomeintermediate variables that relate to
several equality or inequality constraints in which its subsystem’s states or inputs appear. The control
designer has to assign each of thes scalar constraints to one of theM local controllers6 such that the
following requirements are satisfied:

• Each constraint is taken care of by one and only one local controller (even for a coupled con-
straint, there will be only one controller that is responsible).

• A local controller can only be in charge of constraints that involve its own variables.

Let Li denote the set of indicesl that local controlleri is in charge of7. We also defineLN i as
the set of indicesl corresponding to the constraints that are taken care of by subsystemi or by any
neighbor ofi:

LN i =
⋃

j∈N i

L j (2.26)

If a local controlleri is in charge of the constraints indexed byl ∈ Li , then it computes locally
cl using (2.24) and exchanges these values with its neighbors. Then each local controlleri stores
{cl}l∈L

N i in its memory throughout the optimization process.

Iterative procedure

The distributed algorithm consists of an iterative procedure running within each sampling interval. At
each iteration, four steps are executed: two steps are communications between each local controller
and its direct neighbors, and two are computation steps that are performedlocally by the controllers
in parallel. Since feasibility is only guaranteed upon convergence of Han’s algorithm, we assume that
the sampling time used is large enough such that the algorithm can converge within one sampling
interval. This assumption will be used in Proposition 2.4.7, and its restrictiveness will be discussed in
Section 2.6.

In this algorithm description,p is used to denote the iteration step. Values of variables obtained at
iterationp are denoted with superscript(p).

Definition 2.4.1 (Index matrix of subsystems)In order to present the algorithm compactly, we in-
troduce the index matrix of subsystems: each subsystem i is assigned a square diagonal matrix
I

i ∈ R
nx×nx , with an entry on the diagonal being1 if it corresponds to the position of a variable

of subsystem i in the vectorx, and0 otherwise. In short,Ii is a selection matrix such that the multi-
plicationI

ix only retains the variables ui0, . . . ,u
i
N−1,x

i
1, . . . ,x

i
N of subsystem i in its nonzero entries.

6Note thats, the total number of constraints, is often much larger thanM.
7Note that this partitioning is not unique and has to be created according to a procedure that is performed in the initial-

ization phase.

Page 18/60



HD-MPC ICT-223854 Coordination mechanisms

From Definition 2.4.1 it follows that:

M

∑
i=1

I
i = I (2.27)

Definition 2.4.2 (Self-image)We denote withx(p)|i ∈ R
nx the vector that has the same size asx,

containing ui,(p)
0 , . . . ,ui,(p)

N−1,x
i,(p)
1 , . . . ,xi,(p)

N (i.e. the values of i’s variables computed at iteration p) at
the right positions, and zeros for the other entries. This vector is called the self-image ofx(p) made by
subsystem i.

Using the index matrix notation, the relation betweenx(p)|i andx(p) is:

x(p)|i = I
ix(p) (2.28)

Definition 2.4.3 (Neighborhood image)Extending the concept of self-image, we denote withx(p)|N i

the neighborhood image of subsystem i made fromx. At step p of the iteration, subsystem i constructs
x(p)|N i

by putting the values of its neighbors’ variables and its own variables into the right positions,
and filling in zeros for the remaining slots ofx. The neighborhood imagex(p)|N i

satisfies the following
relations:

x(p)|N i
= ∑

j∈N i

x(p)| j (2.29)

x(p)|N i
=

(

∑
j∈N i

I
j

)

x(p) (2.30)

By definition, we also have the following relation between the self-image and theneighborhood
image made by the same subsystem:

x(p)|i = I
ix(p)|N i

(2.31)

Using the notation described above, we now describe the subtasks that each controller will use in
the distributed algorithm.

• Communications with the neighbors

Each controlleri communicates only with its neighborsj ∈ N i to get updated values of their
variables and sends its updated variables to them. The data that each subsystemi transmits to
its neighborj ∈ N i consists of the self-imagex(p)|i and the intermediate variablesγ(p)

l , l ∈ Li ,
which are maintained locally by subsystemi.

• Update intermediate variablesγl

When the local controlleri updatesγl corresponding to each constraintl ∈ Li under its respon-
sibility, it computes in the following manner:

– If constraintl is an equality constraint (l ∈ {1, . . . ,neq}), then

γ(p)
l = aT

l x(p−1)|N i
+ γ(p−1)

l −bl (2.32)
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– If constraintl is an inequality constraint (l ∈ {neq+1, . . . ,s}), then

γ(p)
l = max{aT

l x(p−1)|N i
+ γ(p−1)

l −bl ,0} (2.33)

• Update main variables

Local controlleri uses allγ(p)
l values that it has (by communications and those computed by

itself) to compute an ‘assumed neighborhood image’x(p)|N i

assumed. Note thatx(p)|N i

assumedhas the same

structure as the neighborhood imagex(p−1)|N i
. However, it is not the exact update of the

neighborhood image. Indeed,x(p)|N i

assumedis used only for constructing the new self-image by

selecting the variables of subsystemi in x(p)|N i

assumed:

x(p)|i = I
ix(p)|N i

assumed (2.34)

which containsui,(p)
0 , . . . ,ui,(p)

N−1,x
i,(p)
1 , . . . ,xi,(p)

N .

• Check the local termination criteria

For each local controller, there are local termination criteria. The local termination criteria also
aim to keep a subsystem informed when other subsystems terminate. Hence when one set of
local termination criteria is satisfied, the termination criteria for all subsystems are also satis-
fied. Each controller checks the local termination criteria using local communications only8.
When all local controllers have converged, the algorithm stops and the local control actions are
implemented.

In the following, we will describe the new method using the distributed algorithm.

Algorithm 2.4.4 Distributed algorithm for definite quadratic programs

Initialize with p= 0, ui,(0)
k = 0,xi,(0)

k+1 = 0,∀i,k = 0, . . . ,N−1 (this meansx(0)|i = 0,∀i, implying

x(0) = 0), andγ(0)
l = 0, l = 1, . . . ,s

Next, for p= 1,2, . . . , the following steps are executed:

1) Communications to get the updated main variables

Each controller i gets updated values ofx(p−1)| j from its neighbors j∈N i , where only non-zero
elements need to be transmitted9.

Then controller i constructs theneighborhood imagex(p−1)|N i
using formula(2.29).

2) Update intermediate variablesγl in parallel

Each local controller i updatesγl for each l∈ Li , using(2.32)or (2.33).

3) Communications to get the updated intermediate variables

Each local controller i getsγ(p)
l , l ∈ LN i that are updated by controllers in the neighborhood of

i.
8Checking the termination criteria in a distributed fashion requires a dedicatedlogic scheme, several schemes were

described in [40, Chapter 8].
9Sincex(p−1)|i only has a few non-zero elements, which areui,(p−1)

0 , . . . ,ui,(p−1)
N−1 ,xi,(p−1)

1 , . . . ,xi,(p−1)
N , only these values

need to be transmitted by controlleri to reduce communications.
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4) Update main variables in parallel

Each local controller i computes anassumed neighborhood imageof x:

x(p)|N i

assumed= ∑
l∈L

N i

γ(p)
l cl (2.35)

Then controller i constructs the newself-image, using(2.34).

5) Check the local termination criteria in parallel

Each local controller checks the local termination criteria. If local termination criteria are
satisfied, the algorithm stops, otherwise go to step 1) to start a new iteration.

controller i controller j ∈ N i

x
(p−1)|i

x
(p−1)|j

controller i updates γℓ:

γ
(p)
l = aT

l x
(p−1)|N i

+ γ
(p−1)
l − bl, ℓ ∈ Li, ℓ ≤ neq

γ
(p)
l = max{aT

l x
(p−1)|N i

+ γ
(p−1)
l − bl, 0}, ℓ ∈ Li, ℓ > neq

controller i controller j ∈ N i

γℓ, ℓ ∈ Li

γℓ, ℓ ∈ Lj

controller i computes:

x
(p)|N i

assumed =
∑

ℓ∈L
Ni

γ
(p)
ℓ cℓ

x
(p)|i = I

i
x

(p)|N i

assumed

p← p + 1

controller i checks local

termination criteria
controller j ∈ N i

algorithm converges?
no

Figure 2.2: Computation and communication flow-chart of controlleri in each iteration of Algo-
rithm 2.4.4. Controlleri only needs to communicate with its neighborj ∈ N i .

In Algorithm 2.4.4, the activities of one local controller can be demonstrated bythe diagram in
Figure 2.2. The diagram clearly shows that in the distributed algorithm, each local controlleri only
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communicates with its neighborsj ∈ N i , enabling implementation of the method in a distributed
setting. The properties of the distributed algorithm will be discussed in the following subsections.

Proof of equivalence to Han’s algorithm using a global update scheme

In Algorithm 2.3.4, at step 2), the centralized variablex(p) is updated via a global update scheme.
In Algorithm 2.4.4, by the local update scheme we obtainx(p)|i for i = 1, . . . ,M. The equivalence of
these two algorithms is stated in the following proposition:

Proposition 2.4.5 Applying Algorithms 2.3.4 and 2.4.4 to the same problem(2.8)with the same pa-
rameterα , at any iteration p, the following statements hold:

a) γ(p)
l are the same in Algorithms 2.3.4 and 2.4.4, for all l∈ {1, . . . ,s}.

b) x(p) = ∑M
i=1x(p)|i , in which x(p) is calculated in Algorithm 2.3.4 whilex(p)|i , i = 1, . . . ,M are

calculated in Algorithm 2.4.4.

Hence, Algorithm 2.3.4 and Algorithm 2.4.4 are equivalent.

Proof: The proposition will be proved by induction.
It is clear that properties a) and b) hold forp = 0.
Now consider iterationp, and assume that the properties a) and b) hold for all iterations before

iterationp.
First, we prove property a). For anyl andi such thatl ∈ Li , we have:

aT
l x(p−1) = aT

l

M

∑
j=1

I
jx(p−1)| j (2.36)

= aT
l

(

∑
j∈N i

I
jx(p−1)| j + ∑

j 6∈N i

I
jx(p−1)| j

)

Due to the definition ofneighborhood, a subsystem outsideN i does not have any coupled constraints
with subsystemi. Therefore,aT

l ∑ j 6∈N i I
jx(p−1)| j = 0, which - in combination with (2.29) - leads to:

aT
l x(p−1) = aT

l ∑
j∈N i

I
jx(p−1)| j = aT

l x(p−1)|N i
(2.37)

Equation (2.37) then guarantees thatγ(p)
l computed at step 1) of Algorithm 2.3.4 and at step 2) of

Algorithm 2.4.4 are the same.
Now consider property b), where the main argument is the following: The same set ofγ(p)

l and

cl are used for updatingi’s variables inx(p)|N i

assumed(at step 4 of Algorithm 2.4.4) and inx(p) (at step 2
of Algorithm 2.3.4). Thus each vector of local updatex(p)|i , which contains values ofi’s variables

selected fromx(p)|N i

assumed, is a part of the centralized updatex(p).
More specifically, we can express the formula ofx(p)|i computed in Algorithm 2.4.4 as

x(p)|i = I
ix(p)|N i

assumed= I
i ∑
l∈L

N i

γ(p)
l cl

⇒
M

∑
i=1

x(p)|i =
M

∑
i=1

I
i ∑
l∈L

N i

γ(p)
l cl (2.38)
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Note that in the following equations,x(p) refers to the update of the decision variable computed
by (2.25) in Algorithm 2.3.4, which we can express as

x(p) =
M

∑
i=1

I
ix(p) =

M

∑
i=1

I
i

s

∑
l=1

γ(p)
l cl (2.39)

in which the first equality is due to the relation (2.27), the second equality is from (2.25).
Recall thatcl has the same structure asal , and if l 6∈ LN i thenal andcl do not have any non-zero

values at the positions associated with variables of subsystemi. Therefore

I
i

s

∑
l=1

γ(p)
l cl = I

i

(

∑
l 6∈L

N i

γ(p)
l cl + ∑

l∈L
N i

γ(p)
l cl

)

= I
i ∑
l∈L

N i

γ(p)
l cl (2.40)

This equality shows that (2.39) and (2.38) are equivalent, thus proving the equality in property b):
x(p) = ∑M

i=1x(p)|i . 2

The equivalence of Algorithms 2.3.4 and 2.4.4 implies that problem (2.8) can besolved using
Algorithm 2.4.4. This allows us to implement a DMPC scheme using Algorithm 2.4.4 that does not
need global communications.

Properties of the distributed MPC controller

Convergence, feasibility, and stability properties of the DMPC scheme usingAlgorithm 2.4.4 are
established by the following propositions:

Proposition 2.4.6 Assume that(P) has a feasible solution. Then Algorithm 2.4.4 asymptotically
converges to the centralized solution of(P) at each sampling step.

Proof: In [2] it is shown that Han’s method is guaranteed to converge to the centralized solution
of the convex quadratic program (2.8) under the conditions thatq(x) is uniformly convex and differ-
entiable onRnx and (2.8) has a feasible solution. Due to the positive definiteness ofQi andRi , and
the assumption that(P) has a feasible solution, such conditions hold for the quadratic problem (2.8).
Moreover, Algorithm 2.4.4 is equivalent to Han’s method for the problem (2.8). Hence, the distributed
scheme in Algorithm 2.4.4 converges to the centralized solution of (2.8), whichis the same as(P).
2

Proposition 2.4.7 Assume that at every sampling step, Algorithm 2.4.4 asymptotically converges.
Then the DMPC scheme is recursively feasible and stable.

Proof: By letting Algorithm 2.4.4 converge at every sampling step, the centralized solution of
(P) is obtained. Recursive feasibility and stability is guaranteed as a consequence of centralized
MPC with a terminal point constraint, as shown in [16] and [38]. 2

It is also worth to address the conservativeness of the MPC formulation using the terminal point
constraintxN = 0, which would reduce the domain of attraction of MPC. However, this issue isnot
related to Han’s method. In fact, the distributed Han’s method is able to handle optimization prob-
lems of other MPC formulations, given that the cost function has a sparse coupling structure. Note
that finding other MPC formulations with a sparse coupling structure is not straightforward, we will
discuss this problem in Section 2.6.
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2.4.2 Distributed version of Han’s method with scaled step size

A disadvantage of Han’s method (and its distributed version) is the slow convergence rate, due to the
fact that it is essentially a projection method to solve the dual problem of (2.8). Moreover, Han’s
(distributed) method uses zeros as the initial guess, which prevents warm starting of the algorithm by
choosing an initial guess that is close to the optimizer. Therefore, we need tomodify the method to
achieve a better convergence rate.

In this section, we present two modifications of the distributed version of Han’s method:

• Scaling of the step sizes related to dual variables by using heterogeneousαl for the update of
eachl -th dual variable instead of the sameα for all dual variables.

• Use of nonzero initial guesses, which allows taking the current MPC solution as the start for the
next sample step.

Note that the modified distributed algorithm is then not equivalent to the centralized algorithm
anymore. There is no convergence proof for the modified distributed algorithm yet; this will be
discussed in Section 2.6.

In order to implement the above modifications, the improved distributed version of Han’s method
is initialized similarly to the distributed algorithm in Section 2.4.1, except for the following proce-
dures:

1. Pre-computed invariant parameters

Each subsystemi computes and stores the following parameters throughout the control scheme:

• For eachl ∈ Li : αl =
(
kα
)

l α0, wherekα is the scaling vector.αl acts as local step size re-
garding thel -th dual variable, and thereforekα should be chosen such that the convergence
rates of alls dual variables are improved. The method to choosekα will be discussed in
Remark 2.4.9.

• For eachl ∈ Li : c̄l = −1
aT

l al
H−1al . We can see that ¯cl can be computed locally by a local

controller with a priori knowledge of the parameteral and the weighting blocks on the
diagonal ofH that correspond to the non-zero elements ofal .

2. MPC step

At the beginning of the MPC step, the current states of all subsystems are measured. The
sequences of predicted states and inputs generated in the previous MPC step are shifted forward
one step, then we add zero states and zero inputs to the end of the shifted sequences. The new
sequences are then used as the initial guess for solving the optimization problem in the current
MPC step10. The initial guess for each subsystem can be defined locally. For subsystem i,
denote the initial guess asx(0)|i . At the first MPC step, we havex(0)|i = 0,∀i.

The current state is plugged into the MPC problem, then we get an optimization problem of
the form (2.8). This problem will be solved by the following modified distributedalgorithm of
Han’s method.

10The idea of using previously predicted states and inputs for initialization is a popular technique in MPC [17]. Especially
with Han’s method, whose convergence rate is slow, an initial guess that isclose to the optimal solution will be very helpful
to reduce the number of iterations.
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Algorithm 2.4.8 Improved distributed algorithm for the MPC optimization problem

Initialize with p= 0. Each subsystem i uses the initial guess asx(0)|i .
Next, for p= 1,2, . . . , the following steps are executed:

1) See step 1 of Algorithm 2.4.4.

2) See step 2 of Algorithm 2.4.4, except that for p= 1, each subsystem i computes the initial
intermediate variables by11:

γ(1)
l = aT

l

(

x(0)|N i
−

αl

s
Hx(0)|N i

)

−bl , l ∈ Li , l ≤ neq (2.41)

γ(1)
l = max

{

aT
l

(

x(0)|N i
−

αl

s
Hx(0)|N i

)

−bl ,0
}

, l ∈ Li , l > neq (2.42)

3) See step 3 of Algorithm 2.4.4.

4) See step 4 of Algorithm 2.4.4 but with a different formula to update the assumed neighborhood
image for each i:

x(p)|N i

assumed= ∑
l∈L

N i

1
αl

γ(p)
l c̄l (2.43)

5) See step 5 of Algorithm 2.4.4.

When the iterative procedure finishes, each subsystem applies the firstinput ui,(p)
0 , then waits for

the next state measurement to start a new MPC step.

Remark 2.4.9 The main improvement of Algorithm 2.4.8 over Algorithm 2.4.4 is the improved con-
vergence speed, which heavily depends on a good choice of the scalingvector kα . We have observed
that the convergence rate of some dual variables under the responsibility of a subsystem i will affect
the convergence rate of dual variables under the responsibility of its neighbors inN i . Therefore the
choice of scaling vector should focus on improving the convergence rateof dual variables that appear
to converge more slowly. In our case, we rely on the Hessian to find the scaling vector. Specifically, for
each subsystem i, let̄hi denote the average weight of its variables (i.e. average of entries relatedto i’s
states and inputs in the diagonal of the Hessian). We then choose the scalingfactor

(
kα
)

l = 1/h̄i , for
all l ∈ Li . We also multiply the scaling vector kα with a factorθ ∈ (0,1) for enlarging the step sizes
of all dual variables. In the first MPC step, we start tuning withθ ≃ 1 and gradually reduceθ until it
causes the algorithm to diverge, then we stop and choose the smallestθ such that the algorithm still
converges.

The choice of the scaling vector depends on the structure of the centralized optimization problem,
thus we only need to choose it once in the first MPC step. Then for the next MPC steps, we can re-use
the same scaling vector.

The efficiency of Algorithm 2.4.8 will be demonstrated in the example of irrigationcanal control,
which is presented in the next section.

11The intermediate variables are constructed following the formulas (2.20)–(2.21) with replacing the commonα by αl

for eachl ∈ {1, . . . ,s}, where we implicitly usey(0)
l = 1

sy(0),∀l ∈ {1, . . . ,s} andy(0) = Hx(0). Also note that sinceal only

involves neighboring subsystems andH is block-diagonal, the computationaT
l

(

x(0) − αl
s Hx(0)

)

only uses values from

neighboring subsystems, similarly to the argument for (2.37).
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2.5 Application of Han’s method for distributed MPC in canal systems

2.5.1 The example canal system

The novel DMPC approach is applicable to a wide range of large-scale systems which could be mod-
eled in the LTI form as described in Section 2.2. In this section, we demonstrate its application in
an example control problem, where the objective is to regulate the water flowsin a system of irriga-
tion canals. Irrigation canals are large-scale systems, consisting of many interacting components, and
spanning vast geographical areas. For the most efficient and safe operation of these canals, maintain-
ing the levels of the water flows close to pre-specified reference values iscrucial, both under normal
operating conditions as well as in extreme situations. Manipulation of the water flows in irrigation
canals is typically done using devices such as pumps and gates.

The example irrigation canal to be considered is a 4-reach canal system as illustrated in Figure 2.3.
In this system, water flows from an upstream reservoir through the reaches, under the control of 4 gates
and a pump at the end of the canal system that discharges water.

The control design is based on the master-slave control paradigm, in whichthe master controllers
compute the flows through the gates, while each slave controller uses the local control actuators to
guarantee the flow set by the master controller [41]. We will use the new DMPC method to design the
master controllers.

reach 1

reach 2

reach 3

reach 4

gate 1

gate 2

gate 3

gate 4

pump

upstream
reservoir

Figure 2.3: The example canal system

2.5.2 Modeling the canal

The canal system is divided into 4 subsystems, each of which corresponds to a reach and also includes
the local controller at the upstream gate of the reach. The 4th subsystem has one more controller,
corresponding to the pump at its downstream end.

We use a simplified model for each subsystem as illustrated in Figure 2.4, and then obtain the
overall model by connecting the subsystem models. A subsystem is approximately modeled by a
reservoir with upstream in-flow and downstream out-flow.
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The discrete-time model of reachi is represented by:

hi
k+1−hi

k =
Ts

Ai
s

[(
Qi

in

)

k−
(
Qi

out

)

k

]
(2.44)

where superscripti represents the subsystem index, subscriptk is for the time index,Ts is the sampling
time,h is the downstream water level of the reach,As is the water surface (i.e. the volume of reservoir
= h·As), Qin andQout are the in-flow and the out-flow of the canal which are measured at the upstream
and downstream ends, respectively. Denote the flow passingith gate byqi , and the flow passing the
pump by p4. Due to the mass conservation law, we haveQi

out = Qi+1
in = qi+1, for i = 1,2,3, and

Q4
out = p4.

h

Q in Q out

A s

Figure 2.4: Model of a reach

In order to derive local dynamics, we choose input and state vectors ofsubsystemi as

xi
k = hi

k

ui
k =







qi
k , i = 1,2,3

[
qi

k
pi

k

]

, i = 4

The dynamics of each subsystem can be represented by a discrete-time, linear time-invariant
model of the form (2.1) with the state-space matrices:

Aii = 1 , i = 1, . . . ,4; Ai j = 0 , i 6= j

Bii = Ts/Ai
s , i = 1,2,3; B44 =

[
Ts/A4

s −Ts/A4
s

]

Bi(i+1) = −Ts/Ai
s , i = 1,2; B34 =

[
−Ts/A4

s 0
]

Bi j = 0 , i = 1,2,3, j 6∈ {i, i +1}.

2.5.3 Simulation results

DMPC methods are applied to the regulation problem of the simulated canal system described in pre-
vious subsections using sampling timeTs = 240s, with a perturbed initial state. We use the distributed
Han’s method with and without the modifications described in Section 2.4, and compare the results.
Figure 2.5 shows the convergence of the distributed solutions to the centralized solution for the prob-
lem. Starting from the same initial guess in the first MPC step, i.e. all variables are initialized with
zeros, the distributed algorithm with modifications achieves a better convergence rate, allowing the
distributed optimization to converge within an acceptable number of iterations. Similar results were
also achieved for the next MPC steps, when we simulate the closed-loop MPCand let the distributed
solutions converge to the centralized solution at every step, with maximally 100 iterations per step.
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Figure 2.5: Comparison of convergence rates of two distributed versionsof Han’s method for the first
sampling time step (k=1)

2.6 Discussion and outlook on future research

Two distributed versions of Han’s method have been described in Section 2.4, followed by a short
demonstration of their usage in Section 2.5. Although these algorithms help to implement Han’s
method in a distributed setting for MPC, there are still some theoretical issues that need to be ad-
dressed.

Firstly, the proposed distributed algorithms deal with quadratic programs only. Although many
MPC problems for linear time-invariant systems are formulated as quadratic programs, there are other
variants that use different objective functions, and nonlinear MPC would also yield more complicated
optimization problems than quadratic programs. With such problems, we might notbe able to im-
plement Han’s parallel method in a distributed fashion. This issue motivates theresearch on other
decomposition methods that can handle more general problems, e.g. convexproblems with linear or
decoupled nonlinear constraints.

As noted in Section 2.4.1, the MPC formulation in this paper employs the terminal constraint
xN = 0, which is a conservative approach. In case we want to use less conservative MPC, e.g. MPC
with a terminal constraint set and a terminal controller, we need to find a separable terminal penalty
function and local terminal constraint sets. However, to the authors’ best knowledge, there is still no
distributed scheme available to construct local terminal constraint sets and local terminal controllers
(and also the terminal penalty matrix that is solution of the Riccati equation), other than assuming them
to be completely decoupled. Therefore, although distributed Han’s method can also be applied to any
uniformly convex QP with sparse coupling structure, it requires further research on MPC formulations
that have such optimization problems.

In general, Han’s method has a slow convergence rate due to its iterative projection nature, which
is inherited by Algorithm 2.4.4. Since the feasibility and stability properties are derived upon conver-
gence of the algorithm within each sampling step, we need to speed up the convergence of this method.
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The distributed version of Han’s method with scaling can improve the convergence rate significantly,
as illustrated in Section 2.5. However, its proof of convergence is still lacking. We observe that in
setups that are more complicated, the proposed method to choose the scaling vector does not always
work well (sometimes after several sample steps, the algorithm does not converge anymore). Due to
the requirement not to have global communications, it is difficult to adjust the scaling vector during
the iteration to reach convergence. Therefore speeding up Han’s method while providing a proof for
convergence is still an open issue, and we may use a coordinator at a higher level of hierarchy that has
global communication capabilities to tackle this issue.

Another issue is due to the formulation of the optimization problem for MPC, where we keep both
inputs and states as variables of the centralized optimization problem and do not eliminate the states
using the dynamic model equations. This formulation is advantageous in distributed MPC because the
Hessian will then keep a block diagonal structure, and the neighborhoodof each subsystem will only
contains its direct neighbors (the neighborhood would be greatly extended if we eliminate the states
in the optimization problem). However, using states as variables requires considering the dynamical
equations as equality constraints of the optimization problem, and the existence of equality constraints
typically requires an exact solution in order to guarantee feasibility. Since Han’s method converges
asymptotically, we may not be able to get the exact optimal multipliers in real-time, andthen the
corresponding primal iterates would not be guaranteed to be feasible. Ingeneral, most dual decompo-
sition methods do not provide primal feasible solutions before reaching the dual optimal solutions, so
this feasibility issue also applies to other dual decomposition methods.

In future research, we will also study dual decomposition methods that canprovide primal feasible
solutions in a finite number of iterations. In order to tackle the convex problem,we intend to make use
of the subgradient schemes proposed in [42] and [43], which extend the traditional primal recovery
schemes for linear programs [44, 45]. With this approach, the standard proof for MPC stability, which
is based on optimality, will not be obtained. Therefore, we need to prove stability of suboptimal MPC,
which can be based on the theorems proposed in [46], i.e. showing the reduction of the cost function
(acting as a Lyapunov function) associated with the feasible solution. We intend to use the bounds
of suboptimality of the subgradient iterations to show the decreasing property of the cost function.
Finding such bounds that are suitable for proving suboptimal MPC stability is still an open question.

2.7 Conclusions

A decomposition approach based on Fenchel’s duality and Han’s parallelmethod has been developed
in this paper, resulting in two distributed algorithms that are applicable to DMPC. The first distributed
algorithm generates updates that are equivalent with those computed globally by Han’s method for
definite quadratic problems, and therefore it has the same convergence property as Han’s method.
Moreover, feasibility and stability of DMPC are achieved upon convergence of the iterations. The
second distributed algorithm aims to improve the convergence speed by usingscaled step sizes and
nonzero initial guess. The new methods have been applied to an example irrigation canal network,
demonstrating their applicability for water network and other large-scale networked systems. We have
also summarized open issues of using Han’s method and other dual decomposition methods for MPC,
including the topics of distributed formulation, convergence rate, primal feasibility, and stability of
MPC. These issues were used to recommend future research directions.
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Chapter 3

Distributed model predictive control
driven by simultaneous derivation of
prices and resources

This chapter is part of the research accepted for publication at the 2011IFAC World Congress, Milan,
Italy, with particular citation: Holger Scheu and Wolfgang Marquardt, Distributed Model-Predictive
Control Driven by Simultaneous Derivation of Prices and Resources, Proceedings of the 2011 IFAC
World Congress, Milan, Italy.

3.1 Introduction

Chemical processes, among other processes, are usually described by dynamic multi-input multi-
output (MIMO) models. Industrial plants are typically operated by decentralized control technology,
e.g. single-input single-output (SISO) PID loops, enhanced by supervisory optimal controllers. Op-
timal control methods such as linear or nonlinear model predictive control (MPC) have become im-
portant technologies, as they ensure an optimal operation of the plant whilemaintaining operational
constraints and while, in contrast to the SISO PID controllers, consideringthe MIMO behavior of the
system. The industrial state of the art on model predictive control technology is outlined in the paper
of [47].

Recently, distributed control methods have become an important area in control research. These
methods are expected to provide better computational performance [48] compared to decentralized
controllers and to remove possible communication bottlenecks. Furthermore, compared to a cen-
tralized solution, reliability and maintainability could be increased [49]. Finally, completely new
applications are addressed requiring decentralized control [50, 51, 52]. A process plant usually con-
sists of different subsystems, namely the process units, which exchangematerial, energy or signals
as illustrated in Figure 3.1. On a coarser scale, there are multiple plants on a production site or in
a supply chain, which again interact also by the exchange of material, energy and signals. Hence,
process plants and production sites are represented by large-scale dynamical models composed by a
set of coupled smaller models. Similar topologies can be found e.g. in water or power systems.

These systems are either controlled by a single centralized controller or independently by de-
centralized controllers. The decentralized controllers typically neglect theinteractions between the
subsystems. However, nominal stability, feasibility, optimality, reliability and maintainability are de-
sired properties for the implemented control system. Distributed model predictive control (DMPC)
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Figure 3.1: Example for a distributed process with reaction and separation units.

methods are expected to contribute towards this aim as they combine the optimality properties of
centralized predictive controllers and the modularity and flexibility of decentralized controllers. In
addition they are expected to cope with large-scale systems.

Already in the early 1970s, the basis of distributed control, and in particular, distributed optimal
control, has been established [53]. Two main decomposition methods, which are the basis for DMPC,
have been proposed, namely primal decomposition [54, 55] and dual decomposition [56]. Various
early survey papers exist on distributed control, i.e. [57], [58], and [12]. The present status of research
in the field of distributed optimal control is summarized by [20]. Different control architectures have
been reviewed by [21] recently.

Focus in recent research of DMPC is on linear systems. [59] consider SISO linear time-invariant
systems with output coupling and apply dual decomposition. The dual problem is solved using a
subgradient optimization algorithm in this work. [60] propose a proximal center-based dual decom-
position method. The aim of the method is to smooth the Lagrangian function resulting in a smooth
convex objective function, while the primal problems involve strongly convex objective functions. A
DMPC method based on primal decomposition, called feasible cooperation-based control, is proposed
by [61]. The full objective function is included in all controllers to ensurecoordination and a feasible
solution is generated in each iteration of the method. [62] consider linear step-response models and
formulate a DMPC formulation based on resource allocation, i.e. a primal decomposition approach,
which is successfully applied to a fluid catalytic cracking process. A strength of the method is its fast
convergence.

Results related to nonlinear DMPC are limited. [63] propose a cooperative distributed model
predictive control method for nonlinear systems. Communication and cooperation is restricted to
neighboring subsystems. Lyapunov-based DMPC is proposed by [64]. In order to ensure stability the
optimal control problem embedded into the DMPC includes an additional dynamicequation ensuring
a decrease of a Lyapunov function. [65] proposes a distributed MPC method and applies the method
to a system of coupled oscillators. [66] propose a stabilizing non-cooperative decentralized MPC
scheme for nonlinear discrete-time systems.

In the following, we will focus on a new sensitivity-driven distributed modelpredictive control
(S-DMPC) for discrete-time systems, which is based on a novel distributed dynamic optimization
method [4]. In order to achieve optimality for the overall process, the subsystems’ objective functions
are modified using information of the whole process. The modification of the objective functions
incorporates a linearization of neighboring objective and constraint functions in the adapted subprob-
lems. Hence, the coordination in the distributed method is based on first ordersensitivities. In this
paper we focus on linear discrete-time systems, while [5] considered continuous-time systems. A
convergence analysis is provided for discrete-time systems. The method is applied to an unstable dis-
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tributed system to illustrate its capabilities. In the case study, fast convergence can be observed, while
computing time is reduced compared to a centralized controller.

The remainder of this paper is organized as follows: In Section 3.2, we statethe discrete-time
optimal control problem to be solved. Section 3.3 presents the distributed model predictive control
method and a convergence analysis of the method. In Section 3.4, the S-DMPC method is applied to
a simulated process. Finally, we conclude the paper with a summary and an outlook in Section 3.5.

3.2 Problem formulation

We consider the distributed discrete-time linear time-invariant system

x(k+1) = A x(k)+B u(k), x(0) = x0. (3.1a)

N denotes the number of subsystems,A = [Ai j ]i, j=1,...,N, the system matrix, andB = [Bi j ]i, j=1,...,N, the
input matrix. x(k) ∈ R

n is the state vector withx = (x1, . . . ,xN)1 andxi(k) ∈ R
ni , u(k) ∈ R

m is the
input vector withu = (u1, . . . ,uN) andui(k) ∈ R

mi . x0 = (x10, . . . ,xN0) refers to the initial condition,
while k refers to the time index witht = t0 +k ∆t and sampling time∆t. The linear quadratic control
problem reads as

min
x,u

1
2

k′+K−1

∑
k=k′

(
‖x(k)‖2

Q +‖u(k)‖2
R

)
+‖x(h)‖2

P, (3.2a)

s.t. x(k+1) = Ax(k)+Bu(k), k = k′, . . . ,k′ +K−1, (3.2b)

x(k′) = xk′ , (3.2c)

with Q = [Qi j ]i, j=1,...,N, R= [Ri j ]i, j=1,...,N, P = [Pi j ]i, j=1,...,N, on a moving horizon withk′ = 0,1,2, . . .
without consideration of measurement noise.k′ denotes the initial time sample of the moving hori-
zon problem formulation. The submatricesQi j ∈ R

ni×n j , Ri j ∈ R
mi×mj , andPi j ∈ R

ni×n j are positive
definite weighting matrices,K ·∆t is the prediction and control horizon withK time samples. While
inequality constraints for input variablesu and state variablesx are not considered in this work, the
theory presented can be extended as described in [5].

The optimal control problem for the individual subsystemsi is coupled through the dynamics
as well as the objective function. For distributed control, the optimal controlproblem (3.2) is de-
composed intoN subproblems such that it can be solved by the correspondingN controllers of the
distributed MPC. Thus, the optimal control problem (3.2) is first reformulated as

min
xxx,uuu

N

∑
i=1

Φi (3.3a)

s.t. Φi =
N

∑
j=1

1
2

(
xxxT

i Qi j xxx j +uuuT
i Ri j uuu j

)
, (3.3b)

0 = ci (3.3c)

ci = −Ixxxi +
N

∑
j=1

(
AAAi j xxx j +BBBi j uuu j +Xi jk ′

)
, (3.3d)

∀i ∈ {1, . . . ,N}, k′ = 0,1,2, . . . ,

1The brackets(v1 . . .vN) indicate[vT
1 . . .vT

N]T .
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with

xxxi = (xi(k
′ +1), . . . ,xi(k

′ +K)),

uuui = (ui(k
′), . . . ,ui(k

′ +K−1)),

Qi j = diag(Qi j , . . . ,Qi j ,Pi j ),

Ri j = diag(Ri j , . . . ,Ri j ),

Xi jk ′ = (Ai j x j(k
′),0, . . . ,0),

AAAi j =









0

Ai j
. . .
. . . .. .

Ai j 0









,BBBi j =









Bi j
. . .

. . .
Bi j









.

The objective function is separated such that the separable parts are assigned to the unique correspond-
ing subsystems. The coupled parts are equally assigned to both of the corresponding subsystems, here.
The variables in the constraint functionsci are separated with respect to their indices, i.e.

ci =
[
AAAii − I , BBBii

]
(xxxi ,uuui)+

N

∑
j=1

Xi jk ′

+
N

∑
j=1
j 6=i

[
AAAi j , BBBi j

]
(xxx j ,uuu j). (3.4)

We finally introducezzzi = (xxxi ,uuui), zzz= (zzz1, . . . ,zzzN), Ti j =

[
Qi j 0
0 Ri j

]

, Ai j =
[
AAAi j , BBBi j

]
, andIi =

[
Ii ,0
]

to obtain the quadratic program (QP)

min
zzz

N

∑
i=1

Φi (3.5a)

s.t. Φi =
1
2

N

∑
j=1

zzzT
i Ti j zzzj , (3.5b)

0 = ci (3.5c)

ci = (Aii −Ii)zzzi +
N

∑
j=1

Xi jk ′ +
N

∑
j=1
j 6=i

Ai j zzzj , (3.5d)

∀i ∈ {1, . . . ,N}.

The QP derived is coupled by the objective as well as the constraint functions.
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3.3 Distributed model predictive control

We suggest to coordinate the distributed optimal control embedded in the QP (3.5) using the adapted
objective functions [5]

Φ∗
i = Φi +






N

∑
j=1
j 6=i

∂ Φ j

∂zzzi

∣
∣
∣
∣
zzz[l ]

−
∂ c j

∂zzzi

∣
∣
∣
∣
zzz[l ]

λ [l ]
j




(zzz[l+1]

i −zzz[l ]
i ), (3.6)

which includes the local objective functionΦ as well as linear information of the full optimal control
problem provided by first order sensitivities. Thus, the method is referred to as Sensitivity-Driven
Distributed Model Predictive Control (S-DMPC) for discrete-time. There, the upper index[l ] refers to
the l -th iteration of the corresponding variable.

The QP (3.5) is replaced by a set of QP with minimizer

zzz[l+1]
j = argmin

zzzi
Φ∗

i (3.7a)

s.t. Φ∗
i =

1
2

zzzT
i Tii zzzi +

1
2

N

∑
j=1
j 6=i

zzzT
i Ti j zzz[l ]

j

+






N

∑
j=1
j 6=i

∂ Φ j

∂zzzi

∣
∣
∣
∣
zzz[l ]

−
∂ c j

∂zzzi

∣
∣
∣
∣
zzz[l ]

λ [l ]
j




(zzzi −zzz[l ]

i ),

(3.7b)

0 = (Aii −Ii)zzzi +
N

∑
j=1

Xi jk ′ +
N

∑
j=1
j 6=i

Ai j zzz
[l ]
j , (3.7c)

∀i ∈ {1, . . . ,N}.

QP (3.7) has the same minimizer as QP (3.5) [5]. The proof is done by comparing the necessary
conditions of optimality (NCO), the so-called Karush-Kuhn-Tucker conditions. In this distributed QP
formulation prices (given by the Lagrange multipliersλ ) and resources (given by primal variables
zzz) are derived simultaneously, while for the most common approach in distributed MPC, namely
optimization based on dual decomposition [56], the prices and resources are sequentially calculated on
different hierarchical layers. Furthermore, the S-DMPC presented isable to cope with non separable
cost functionsΦi due to the inclusion of the corresponding sensitivities in each of the subsystems cost
functions.

Convergence of the iterative method is analyzed in the following. For this purpose, the NCO are
stated for the decomposed QP (3.7). First, the Lagrangian function

Li = Φ∗
i (zzz)−λici(zzz) (3.8)

is stated for each subsystemi. The NCO are

∂ Li

∂zzzi
= 0 = Tii zzz

[l+1]
i +

N

∑
j=1
j 6=i

Ti j zzz
[l ]
j

−
N

∑
j=1
j 6=i

A
T
ji λ [l ]

j − (Aii −Ii)
Tλ [l+1]

i (3.9)
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and

∂ Li

∂λi
= 0 = ci(zzz)

= (Aii −Ii)zzz
[l+1]
i +

N

∑
j=1

Xi jk ′ +
N

∑
j=1
j 6=i

A ji zzz
[l ]
j . (3.10)

We define a mappingζi with (zzzi ,λi) = ζi(zzz,λ ), whereλ = (λ1, . . . ,λN) is the aggregated vector of
Lagrange multipliers. Aggregating equations (3.9) and (3.10) for alli results in the mapping(zzz,λ ) =
ζ (zzz,λ ) given by

[
zzz[l+1]

λ [l+1]

]

= Ξ−1
d Ξ1

[
zzz[l ]

λ [l ]

]

+Ξ−1
d Ξ0

︸ ︷︷ ︸

=ζ (zzz[l ],λ [l ])

(3.11a)

with

Ξd =

[
Td [I −Ad]

T

[I −Ad] 0

]

, (3.11b)

Ξ1 =

[
(Td−T ) (A −Ad)

T

(A −Ad) 0

]

, (3.11c)

Ξ0 =

[
0

−X0

]

. (3.11d)

As a result of the contraction mapping theorem [67], the method is convergent for

L = ‖Ξ−1
d Ξ1‖ < 1. (3.12)

The matrices are defined as follows:

Ad = diag(A11, . . . ,ANN),

I = diag(I1, . . . ,IN),

Td = diag(T11, . . . ,TNN),

A = (Ai j )i, j=1,...,N,

T = (Ti j )i, j=1,...,N,

X0 = (XXXi jk ′)i, j=1,...,N.

An open question is a proper stopping criterion for the iterative method. We suggest one of the
following three criteria: the change of the variableszzz, i.e. ‖zzz[l+1]−zzz[l ]‖/‖zzz[l ]‖ < εzzz; the change of the
calculated objective functions, i.e.‖Φ[l+1]−Φ[l ]‖/‖Φ[l ]‖< εΦ; or a fixed numberJ of total iterations.
At each sampling time, the S-DMPC method needs a proper initialization of the variableszzz[0] and
λ [0]. Here, we suggest to initialize these variables using the values of the last iterate of the previous
sampling time, i.e.zzz[0]|k = zzz[J]|k−1 andλ [0]|k = λ [J]|k−1. Alternative initialization methods are the
subject of future work.
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d2

Σ1 Σ2 Σ3

u1 u2 u3

d1 d3

Figure 3.2: Illustration of the case study: Cascaded system with feedbackand disturbances

3.4 Case study

For illustration of the method, we consider the discrete-time linear system

x(k+1) = A x(k)+B u(k)+D d(k)

with

A =





A11 0 A0

A0 A22 0
0 A0 A33



 , B = D =





B0 0 0
0 B0 0
0 0 B0



 ,

A11 =





1 1 0
0 1 1

0.125 −0.75 2.5



 , A22 =





1 1 0
0 1 1

0.008 −0.12 1.6



 ,

A33 =





1 1 0
0 1 1

−0.027 −0.27 0.1



 , A0 =





0 0 0
0 0 0

0.025 0 0



 ,

B0 =
[
0 0 1

]T
.

x1(k), x2(k), andx3(k) ∈ R
3 are the state vectors,u1(k), u2(k), andu3(k) the scalar inputs, andd(k) ∈

R
3 an unknown disturbance vector. The topology of the system is depicted in Figure 3.2. The system

consists of three cascaded subsystemsΣ1, Σ2, andΣ3, with a feedback representing a recycle. Hence,
there is a strong coupling between the variables of one subsystem, but a weaker coupling between the
different subsystems represented by the zero submatrices and the sparse submatricesA0. The system
considered is open-loop unstable. Its eigenvalues are depicted in Figure3.3.

Table 3.1: Controller performance: Absolute performanceΦabs, relative performanceΦrel and average
computing timēt for the controllers considered.

Method It. Φabs Φrel [%] t̄ [s]
Cen. MPC – 1.94e4 – 0.112
Dec. MPC – 1.34e5 589 3×0.026
S-DMPC 1 1.95e4 0.5 3×0.030
S-DMPC 2 1.94e4 0 3×0.059
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Figure 3.3: Eigenvalues of the system considered in the case study. The solid line indicates the
stability bound.
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Figure 3.4: State trajectories
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Figure 3.5: Input trajectories
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The optimal control problem for this case study is defined as

min
x,u

1
2

k′+K−1

∑
k=k′

(
‖x(k)‖2

Q +‖u(k)‖2
R

)

s.t. x(k+1) = Ax(k)+Bu(k), k = k′, . . . ,k′ +K−1,

x(k′) = xk′ ,

whereQ= diag(Q11,Q22,Q33), R= diag(R11,R22,R33) with Qii = I ∈R
3, i = 1,2,3 andRii = 1000, i =

1,2,3 andk′ = 0,1, . . . ,599. The aim is to stabilize the plant at the set point. The plant is simulated
for H = 600 time samples. During the simulation, disturbancesd1, d2, andd3 with

d1(k) =

{

0.1, for 75≤ k≤ 150

0, else
,

d2(k) =

{

0.1, for 225≤ k≤ 300

0, else
,

d3(k) =

{

0.1, for 375≤ k≤ 450

0, else
,

affect the system and are unknown to the controller. There is no estimation model included in the
controllers. We assume state feedback in the case study.

We compare the distributed controller to a decentralized as well as a centralized controller in order
to judge its performance. While the centralized controller has full knowledgeon the system dynamics
and solves QP (3.5), the decentralized controller as well as the distributed controller have only reduced
knowledge of the dynamics of the corresponding subsystem. Hence, the DMPC solves the coupled
QP (3.7), while the decentralized MPC neglects all interactions and solves thesmall-scale QP

min
zzzi

1
2

zzzT
i Tii zzzi

s.t. 0=
[
AAAii − I , BBBii

]
zzzi +Xiik ′ ,

∀i ∈ 1,2,3, k′ = 0,1,2, . . . ,

independently. For the controllers considered the control and predictionhorizon isK = 50. For the
S-DMPC method, a fixed numberJ ∈ {1,2} of iterations is chosen.

First we analyze the mappingζ for the system considered. The corresponding Lipschitz constant
L is calculated asL = 0.54< 1 (cf. equation (3.12)). Thus, the S-DMPC method is convergent and
applicable for the case study.

Then, each of the three MPC schemes is implemented for the case study. Figure 3.4 shows rep-
resentative trajectories for each of the subsystems, while the corresponding inputs are depicted in
Figure 3.5. The decentralized MPC is hardly able to stabilize the distributed system. The simulated
time horizon is not sufficient to achieve a steady-state for the closed-loop system using decentralized
MPC. In contrast, for the centralized MPC (which is considered as the reference) and the S-DMPC,
the system is stabilized at a new steady state almost immediately after each changein the disturbances.
Figure 3.4 and 3.5 contain the results of S-DMPC withJ = 1. A summary on the control performance
is given in Table 3.1. It contains the absolute performance given by the objective function

Φabs=
H−1

∑
k=0

(
‖x(k)‖2

Q +‖u(k)‖2
R

)
,
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considering the complete simulation horizon and a relative performance

Φrel =
Φabs−Φabs,ref

Φabs,ref
,

whereΦabs,ref is the absolute performance of the reference method, i.e. the centralized MPC. While
the decentralized MPC clearly is not able to compete with the centralized MPC, thedistributed MPC
scheme proposed is capable to achieve almost optimal results at a very low number of iterations. For
J = 1, the loss of performance, compared to the reference solution is only 0.5%, while for J = 2
optimal results can be achieved. A key requirement for this low number of iterations is a proper ini-
tialization of the variableszzz andλ . Although, a simple initialization is chosen in this work, this is
very effective. In addition, Table 3.1 provides the average computing time2 t̄ for each of the meth-
ods implemented. The average computing time can be reduced for the decentralized as well as the
distributed MPC, in particular if the different controllers use different processors. Then, forJ = 2
iterations, the average computing timet̄ = 0.059s of SD-DMPC is reduced by 47% compared to the
average computing timēt = 0.112 of the centralized MPC.

3.5 Conclusions

We have adopted the concept of Sensitivity-Driven Distributed Model Predictive Control (S-DMPC) to
the control of discrete-time systems. The optimal control formulation includes a sum of non separable
cost terms, i.e. the cost functions is non-additive. Though, the coordination mechanism can handle the
non-separable cost function. Hence, e.g. arbitrary final costs can be included. A necessary condition
of convergence is provided to prove the applicability of the method. Coordination is possible in case
the internal coupling of each subsystem is strong compared to the coupling between the subsystems.
The method has been successfully applied to a case study. An almost optimal control sequence can
be achieved after only one iteration in this case, while a significant reductionof the computing time
compared to a centralized MPC can be observed. While we did not considerany inequality constraints
in this work, the method can be extended to consider inequality constraints forthe inputsu and the
state variablesx. In addition the method can be extended to accelerate convergence. For details of
both extensions we refer to [5].

A remaining task is to explicitly consider stability of the closed-loop system, while in the case
study provided, stability is achieved by a sufficiently large prediction horizon. In addition, a ma-
jor challenge is to extend the results presented to nonlinear systems. Finally, the method has to be
implemented for large-scale systems.

2The controllers have been implemented using the standard Matlab QP solverquadprog on an Intel Core2 Quad Q6700
machine. Only one core has been assigned to Matlab.
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Chapter 4

Distributed non-cooperative MPC with
neighbor-to-neighbor communication

This research of this chapter has been developed by Marcello Farina and Riccardo Scattolini, Diparti-
mento di Elettronica e Informazione, Politecnico di Milano, Milan, Italy and will be presented at the
2011 IFAC World Congress [9].

4.1 Introduction

The majority of results in the field of model predictive control (MPC) have been developed under the
assumption that the available data and information are gathered in single locationand processed by a
single computer. Unfortunately, many industrial problems cannot be solvedin a centralized fashion,
such as those arising when dealing with large scale systems [12].
Real-world examples of large scale systems are power networks [11, 68,69] transport networks [12,
70, 71] and hydro power plants [72, 73], which are characterized bystrongly interacting and spatially
distributed subsystems, possibly with uncertainties, and which may suffer from limited computation
capabilities and transmission load. In [74] the authors call for new ideas for dividing the centralized
control synthesis problem into almost independent subproblems and for coping with limited computa-
tional capabilities and memory, as well as with uncertainties and perturbations.In [75] it is remarked
that another important challenge is to reduce, as much as possible, the information exchange among
the subsystems, in order to satisfy technological constraints and for economical reasons.
In the last years many distributed control structures have been developed based on MPC techniques.
Specifically, completely decentralized architectures [76, 77], distributed schemes (see, e.g., [65, 78,
79, 25, 80, 81], just to mention some recent contributions) and coordinated control techniques for
independent (dynamically uncoupled) systems [82, 83, 24, 84] have been proposed.
Focusing more specifically on distributed MPC schemes [21], they can be classified according to the
topology of the transmission network (i.e.,fully connectedor partially connectednetworks), to the
information exchange protocol needed (i.e.,non-iterativeor iterative algorithms) and to the type of
cost function which is optimized (i.e.,cooperativeor non-cooperativealgorithms).
For example, in [65] a non-iterative, non-cooperative distributed MPC technique is proposed for
continuous-time systems based on neighbor-to-neighbor information exchange, where it is required
that each subsystems knows only its own dynamic subsystem and how the neighboring subsystems
states affect its dynamics. In [79] two distributed cooperative MPC algorithms for continuous-time
systems are proposed, where each actuator is required to know the overall system model: specifically,
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the authors propose a non-iterative sequential (partially connected) algorithm based on previous re-
sults presented in [78], and a novel iterative fully connected one.
In [25, 80, 81] a cooperative fully connected output-feedback MPC algorithm for discrete time sys-
tems is discussed, where only input constraints can be assigned and full knowledge on the system
dynamics is required to all the subsystems. Interestingly, this algorithm guarantees stability both in
its iterative and non-iterative formulation, while optimal performance (i.e., equivalent to the perfor-
mances provided by a centralized MPC algorithm) are attained when an iterative transmission protocol
is employed.
In this work we propose a non-iterative, non-cooperative MPC algorithm where a neighbor-to-neighbor
(i.e., partially connected) communication network and partial (regional) structural information are
needed. The rationale of the proposed technique is that, at each sampling time, each subsystem sends
to its neighbor information about its future reference trajectory, and guarantees that the actual tra-
jectory lies within a certain bound in the neighborhood of the reference one. Then, a robust MPC
approach inspired by [10] provides a tool for the statement of the local optimization problems solved
by each subsystem.
The proposed algorithm handles input and state constraints and, under mildassumptions on the ex-
istence of a suitable decentralized auxiliary control law, we prove convergence of the closed loop
control system.
The highlights of the proposed approach are: (i) it is not necessary for each subsystem to know
the dynamical models governing the trajectories of the other subsystems (noteven the ones of the
neighbors); (ii ) the transmission of information is limited, in that each subsystem needs the refer-
ence trajectories only of the variables of one’s neighbors which actually affect its dynamics (which
is normally a narrow subset of the neighbors’ variables); (iii ) its rationale is very similar to the MPC
algorithms presently employed in industry, where reference trajectories tailored on the dynamics of
the system under control are used; (iv) the required transmission burden is even smaller in steady
state conditions, when no transmission would be needed even in presence of small perturbations of
the subsystems’ trajectories, while the variables affecting the state variableslie within a given set.
Notation. We use the short-handv = (v1, . . . ,vs) to denote a column vector withs (not necessarily
scalar) componentsv1, . . . , vs. The symbol⊕ denotes the Minkowski sum, namelyC = A⊕B if and
only if C= {c : c= a+b, for all a∈A,b∈B}. We also denote

⊕M
i=1Ai = A1⊕·· ·⊕AM. For a discrete-

time signalst anda,b∈N, a≤ b, we denote(sa,sa+1, . . . ,sb) with s[a:b]. Finally, a continuous function
α : R+ → R+ is aK∞ function iff α(0) = 0, it is strictly increasing andα(s) → +∞ ass→ +∞.

4.2 Partitioned systems

Consider a process which obeys to the linear dynamics

xt+1 = Axt +But , (4.1)

wherext ∈ R
n is the state vector andut ∈ R

m is the input signal.
Let the system (4.1) be partitioned inM low order interconnected non overlapping subsystems, where
a generic submodel hasx[i]

t ∈R
ni as state vector, i.e.,xt = (x[1]

t , . . . ,x[M]
t ) and∑M

i=1ni = n. According to
this decomposition, the state transition matricesA11∈R

n1×n1, . . . , AMM ∈R
nM×nM of theM subsystems

are diagonal blocks ofA, whereas the non-diagonal blocks ofA (i.e., Ai j , with i 6= j) define the
coupling terms between subsystems.
The partition performed on the system induces a interconnected network ofsubsystems, which can be
naturally described by means of a directed graphG = (V ,E ), where the nodes inV are the subsystems
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and the edge( j, i) in the setE ⊆ V ×V models that the state ofj affects the dynamics of subsystem
i. In particular,( j, i) ∈ E if and only if Ai j 6= 0. We denote asNi the set of neighbors of subsystemi
(which excludesi) i.e.,Ni = { j| j 6= i and( j, i) ∈ E }.

Furthermore, we assume that the inputut can be partitioned into a set ofM input vectorsu[i]
t ∈ R

mi ,
with i = 1, . . . ,M, where we assume thatu[i]

t directly affects only the state of thei-th subsystemx[i]
t .

This implies thatB has a block diagonal structureB =diag(B1, . . . ,BM), whereBi ∈ R
ni×mi for all

i = 1, . . . ,M. It finally results that thei-th subprocess obeys to the linear dynamics

x[i]
t+1 = Aii x[i]

t +Biu
[i]
t + ∑

j∈Ni

Ai j x
[ j]
t (4.2)

wherex[i]
t ∈ Xi ⊆ R

ni is the state vector andu[i]
t ∈ Ui ⊆ R

mi is the input vector. The setsXi andUi

are convex neighborhoods of the origin. Furthermore we defineX = ∏M
i=1Xi ⊆ R

n andU = ∏M
i=1Ui ,

which are convex by convexity ofXi andUi , respectively, fori = 1, . . . ,M. WhenX = R
n andU = R

m

we say that the system is unconstrained.

Our aim is to design, for each of the subsystems, an algorithm for computing an input sequenceu[i]
t

based on the statex[i]
t and some information which is transmitted byi-th neighboring subsystems,

which guarantees closed loop asymptotic convergence of the state of the large scale system (4.1), the
minimization of a given local cost function and constraint satisfaction. Specifically, we assume that
each subsystem has a reference trajectory ˜x[i]

t which is transmitted to the subsystems which havei as
neighbor, and which is incrementally defined (as better specified in the following). We also assume
that one can guarantee that, for allt ≥ 0, the real local state trajectoryx[i]

t lies in a specified time-
invariant neighborhood of ˜x[i]

t i.e,x[i]− x̃[i]
t ∈ Ei , where 0∈ Ei .

Lettingw[i]
t = ∑ j∈Ni

Ai j (x
[ j]
t − x̃[ j]

t ), thei-th system model (4.2) can be written as follows

x[i]
t+1 = Aii x[i]

t +Biu
[i]
t +∑ j∈Ni

Ai j x̃
[ j]
t +w[i]

t (4.3)

where the termw[i]
t ∈Wi =

⊕

j∈Ni
Ai j E j represents a bounded disturbance affecting equation (4.3) and

∑ j∈Ni
Ai j x̃

[ j]
t can be considered as a known input. Provided that, for alli = 1, . . . ,M, the constraint

x[i]− x̃[i]
t ∈ Ei is satisfied for allt ≥ 0, we can cast the problem of designing a distributed MPC control

law as the problem of designing a robust control law for the subsystem (4.3), for all i = 1, . . . ,M.
To this aim, we rely on the robust MPC algorithm presented in [10] for constrained linear systems with
bounded disturbances for the statement of the local MPC sub-problems (which will be denotedi-MPC
problems). The two main advantages of this approach are that no burdensome min-max problem is
required to be solved on-line, and that it naturally provides the reference trajectory ˜x[i]

t , which is one
of the key points of the algorithm presented in this paper (see Section 4.3 fordetails).

4.3 The distributed MPC algorithm

As a preliminary step to the statement of the locali-MPC problem, we define thei-th subsystem
nominal model associated to equation (4.3)

x̂[i]
t+1 = Aii x̂[i]

t +Bi û
[i]
t +∑ j∈Ni

Ai j x̃
[ j]
t (4.4)

The control law for the reali-th subsystem (4.3) will be assigned, for allt ≥ 0, according to

u[i]
t = û[i]

t +Kaux
i (x[i]

t − x̂[i]
t ) (4.5)
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whereKaux
i is a suitable control gain. If we defineε [i]

t = x[i]
t − x̂[i]

t we obtain, from (4.3) and (4.5)

ε [i]
t+1 = (Aii +BiKaux

i )ε [i]
t +w[i]

t (4.6)

wherew[i]
t ∈ Wi . SinceWi is bounded, if(Aii +BiKaux

i ) is Schur, then there exists a robust positively

invariant (RPI) setZi for (4.6) such that, for allε [i]
t ∈ Zi , thenε [i]

t+1 ∈ Zi . A method for computing
polytopic, robust positively invariant, outer approximations of the minimal robust positively invariant
set is proposed in [85]. From (4.6) it follows that, ifu[i]

k is computed as in (4.5) for allk≥ t, then

x[i]
t − x̂[i]

t ∈ Zi (4.7)

implies thatx[i]
k − x̂[i]

k ∈ Zi for all k≥ t.
Now write

x[i]
t − x̃[i]

t = (x[i]
t − x̂[i]

t )+(x̂[i]
t − x̃[i]

t )

and define the setEi for all i = 1, . . . ,M as a set containing the origin and satisfyingEi ⊕Zi ⊆ Ei .
Since, in view of (4.7),x[i]

k − x̂[i]
k ∈ Zi for all k≥ t, if we also satisfy the constraint

x̂[i]
k − x̃[i]

k ∈ Ei (4.8)

for all k≥ t, thenx[i]
k − x̃[i]

k ∈ Ei for all k≥ t as required.
Now we are in the position to state the local minimization problem for all subsystems at instantt.
Given the future reference trajectory ofi and its neighbors ˜x[ j]

k , k = t, . . . , t +N−1, j ∈ Ni ∪{i}, the
i-MPC problem consists in the following

min
x̂[i]

t ,û[i]
[t:t+N−1]

VN
i (x̂[i]

t , û[i]
[t:t+N−1]) (4.9)

subject to the dynamic constraints (4.4), the static constraints (4.7), (4.8),

x̂[i]
k ∈ X̂i (4.10)

û[i]
k ∈ Ûi (4.11)

whereX̂i ⊕Zi ⊆ Xi andÛi ⊕K Zi ⊆ Ui , and the terminal constraint

x̂[i]
t+N ∈ X̂

F
i (4.12)

whereX̂
F
i is thei-th nominal subsystem terminal set, whose properties will be specified in the follow-

ing.
The cost functionVN

i (x̂[i]
t , û[i]

[t:t+N−1]) is

VN
i (x̂[i]

t , û[i]
[t:t+N−1]) =

t+N−1

∑
k=t

l i(x̂
[i]
k , û[i]

k )+VF
i (x̂[i]

t+N) (4.13)

wherel i : R
ni ×R

mi → R+ is the stage cost andVF
i : R

ni → R+ is the final cost. From now on, we
assume thatl i is defined in such a way thatl i(0,0) = 0 and that there exists, for alli = 1, . . . ,M, aK∞
function α and a matrixRi satisfying rank([BT

i RT
i ]T) = mi such thatl i(x[i],u[i]) ≥ α(‖(x[i],Riu[i])‖)

for all x[i] ∈ R
ni , u[i] ∈ R

mi . As in [10], in the stated optimization problem minimization is performed
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with respect both to the nominal system initial state ˆx[i]
t and to the nominal input trajectory ˆu[i]

[t:t+N−1].

Letting the pair ˆx[i]
t/t , û

[i]
[t:t+N−1]/t be the solution to thei-MPC problem (4.9) at timet, and according

to the receding horizon paradigm, we assign the input to the nominal system (4.4), at timet, asû[i]
t/t .

According to (4.5), the input to the real system (4.2), at instantt, is

u[i]
t = û[i]

t/t +Kaux
i (x[i]

t − x̂[i]
t/t) (4.14)

Furthermore, let us define as ˆx[i]
k/t the trajectory stemming from ˆx[i]

t/t andû[i]
[t:t+N−1]/t , in view of equation

(4.4). The value of the reference state variable ˜x[i]
t+N is set to

x̃[i]
t+N = x̂[i]

t+N/t (4.15)

We stress that we do not define, at each instantt, a new reference trajectory ˜x[i]
k , k= t +1, . . . , t +N, but

we append the value ˜x[i]
t+N to the reference trajectory which has been already defined fork≤ t +N−1.

A definition is required to define the set of admissible initial conditionsx0 = (x[1]
0 , . . . ,x[M]

0 ) and initial

reference trajectories ˜x[ j]
[0:N−1], for all j = 1. . . ,M.

Definition 4.3.1 Writing x = (x[1], . . . ,x[M]), we denote the feasibility regionXN for all the i-MPC
problems as the set

X
N := {x : if x[i]

0 = xi for all i = 1, . . . ,M

then∃(x̃[1]
[0:N−1], . . . , x̃

[M]
[0:N−1]),(x̂

[1]
0/0, . . . , x̂

[M]
0/0),

(û[1]
[0:N−1], . . . , û

[M]
[0:N−1]) such that(4.2), (4.7), (4.8),

(4.10)-(4.12)are satisfied for all i= 1, . . . ,M}

We also denote, for eachx ∈ X
N, the region of acceptable initial reference trajectories as

X̃x := {(x̃[1]
[0:N−1], . . . , x̃

[M]
[0:N−1]) : if x[i]

0 = xi for all i = 1, . . . ,M

then∃(x̂[1]
0/0, . . . , x̂

[M]
0/0),(û

[1]
[0:N−1], . . . , û

[M]
[0:N−1]) such that

(4.2), (4.7), (4.8), (4.10)-(4.12)are satisfied for all i= 1, . . . ,M}

4.4 Convergence results

The following assumptions are needed to state the main results of the paper.

Assumption 4.4.1 The matrix Aii +BiKaux
i is Schur, for all i= 1, . . . ,M.

Assumption 4.4.2 LettingKaux=diag(Kaux
1 , . . . ,Kaux

M ), X̂ = ∏M
i=1 X̂i , Û = ∏M

i=1 Ûi andX̂
F = ∏M

i=1 X̂
F
i ,

it holds that:

(i) The matrixA +BKaux is Schur;

(ii) X̂
F ⊆ X̂ is an invariant set for̂x+ = (A +BKaux)x̂;

(iii) û = Kauxx̂ ∈ Û for any x̂ ∈ X̂
F ;
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(iv) for all x̂ ∈ X̂
F and, for a given constantκ > 0

VF (x̂+
)
−VF (x̂) ≤−(1+κ)l(x̂, û) (4.16)

whereVF(x̂) = ∑M
i=1VF

i (x̂[i]) and l(x̂, û) = ∑M
i=1 l i(x̂[i], û[i]).

Assumption 4.4.3 Given the setsEi , where0∈ Ei for all i = 1. . . ,M, and the RPI sets Zi for equa-
tions(4.6), there exists a real positive constantρ̄E > 0 such that Zi ⊕Bρ̄E(0)⊆ Ei for all i = 1, . . . ,M,
whereBρ̄E(0) is a ball of radiusρ̄E > 0 centered at the origin.

Now we are in the position to state the main result.

Theorem 1 Let Assumptions 4.4.1-4.4.3 be satisfied and let Ei be a neighborhood of the origin satis-
fying Ei ⊕Zi ⊆ Ei . Then the trajectoryxt , starting from any initial conditionx0 ∈ X

N, asymptotically
converges to the origin, provided that the initial reference trajectories arein X̃x0.

Proof 1 See Appendix 4.7

Notice that the fulfillment of Assumptions 4.4.1, 4.4.2 requires the design of a decentralized auxiliary
control law which, at the same time, (a) stabilizes the local subsystems when neglecting the intercon-
nections, (b) stabilizes the overall large scale system, (c) has a Lyapunov function which basically
corresponds to a weighted sum of local Lyapunov functions.
The above-mentioned issues can be addressed using a number of well-established results, worked out
in the past in the field of decentralized control. For instance, one can rely on milestone results on
connective stability[11], vector Lyapunov functions and the so-called “weighted sum approach” for
proving connective stability [12]. More recently, problems (a) and (b) have been successfully ad-
dressed in [13], where a small gain condition for large-scale (nonlinear) systems has been derived.
Similar concepts can be used to provide conditions for the validity of Assumption4.4.3.

4.5 Example

Consider a fourth-order system with two input variables. The dynamics ofthe system is described
by (4.4), where

A =

[
A11 A12

A21 A22

]

, B =

[
B1 0
0 B2

]

and

A11 = A22 =

[
0 1
−1 2

]

, A12 = −A21 =

[
0.1 0.1
0 0.3

]

, B1 = B2 =

[
0
1

]

The following constraints are set to the input signals:−2.5≤ u[1]
k ≤ 2.5 and−4≤ u[2]

k ≤ 4. We define,

in (4.13), l i(x̂
[i]
k , û[i]

k ) = 1
2‖x̂[i]

k ‖
2
Qi

and VF
i (x̂[i]

t+N) = 1
2‖x̂[i]

t+N‖
2
Pi

, where
P1 = P2 =diag(1,3) and Q1 = Q2 =diag(0.4593,0.4593). SettingK1 = K2 =

[
1 −2

]
, we verify

Assumptions 4.4.1 and 4.4.2. In the simulations, we setN = 4 and the reference trajectories are ini-
tialized by simulating the subsystems controlled using the auxiliary control law, where coupling terms
are neglected, that is ˜x[i]

k = (Aii + BiKi)
kx[i]

0 , for k = 0, . . . , t + N−1. A choice of the setsZi , Ei and
Wi , i = 1,2, consistent with Assumption 4.4.3, is shown in Fig. 4.1 (grey ellipsoids), where the black
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Figure 4.1: SetsZi , Ei andWi , i = 1,2, chosen in the given example. The black dotted lines represent
the real constraints exerted in the example.

dotted lines represent the real constraints exerted, for simplicity, while solving the constrained opti-
mization problemsi-MPC, i = 1,2.
In Fig. 4.2 the plots of the optimal input trajectories obtained with the distributed MPC algorithm

(dMPC) are shown and compared with those obtained with a centralized MPC (cMPC). Notably, at
time t = 0 the constraint on ˆu[1]

t is active, while it is apparent that the constraint on the real input vari-
ableu[1]

t is far from being violated. This clearly shows that the robustness argument used to define the
distributed MPC leads to a level of conservativeness in the solution of the problem which is directly
proportional to the dimension of the uncertainty sets.
In Fig. 4.3 we compare the optimal trajectories obtained with the proposed scheme with the ones

obtained using a centralized MPC controller. These results show that, in the specific case considered
here, the performance degradation is not significant.

4.6 Conclusions

In this paper we have proposed a novel non-iterative, non-cooperative distributed MPC algorithm. Un-
der mild assumptions on the existence of a suitable decentralized auxiliary control law, convergence
of the closed loop control system can be guaranteed. As it is discussed,according to this approach to
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Figure 4.2: Input trajectories. Panel A:u[1]
t (black solid line), input obtained with cMPC (grey solid

line), thresholds foru[1]
t (black dotted lines). Panel B: ˆu[1]

t (black solid line), thresholds for ˆu[1]
t/t (black

dotted lines). Panel C:u[2]
t (black solid line), inputs obtained with cMPC (grey solid line), thresholds

for u[2]
t (black dotted lines). Panel B: ˆu[2]

t/t (black solid line), thresholds for ˆu[2]
t (black dotted lines).

distributed control, no information on other subsystem’s dynamics is requiredto the subsystems, and
the data received by systemi is a subset of ˜x[ j]

t+N, only if j is a neighbor ofi.
Although this paper establishes the main algorithm and convergence results,much work has still to be
devoted to the problem of enhancing its applicability. The following issues areof paramount impor-
tance: (a) to give simple conditions on the system under control and to provide constructing criteria in
order to fulfill Assumptions 4.4.1-4.4.3; (b) to give criteria to chose setsZi andEi ; (c) to give criteria
for optimal choices of the initial reference trajectories ˜x[i]

[0:N−1].
Since the proposed method strongly relies on robustness concepts, a further improvement to the pro-
posed scheme is envisaged, coping with uncertainties on the model of how thestate variables of a
subsystem affect the dynamics of the neighbors.
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Figure 4.3: Controlled state variables with dMPC (black solid lines) and with cMPC (grey solid lines),
x̃[i]

t (dotted lines) and ˆx[i]
t/t (dashed lines). Panel A: first element ofx[1]

t . Panel B: second element ofx[1]
t .

Panel C: first element ofx[2]
t . Panel D: second element ofx[2]

t .

4.7 Appendix: Proof of Theorem 1

4.7.1 The collective problem

Define the collective vectors x̂t = (x̂[1]
t , . . . , x̂[M]

t ),

x̃t = (x̃[1]
t , . . . , x̃[M]

t ), ût = (û[1]
t , . . . , û[M]

t ), wt = (w[1]
t , . . . ,w[M]

t ) andεεε t = (ε [1]
t , . . . ,ε [M]

t ). Furthermore,
define the matricesA∗ =diag(A11, . . . ,AMM) andÃ = A −A∗. Collectively, write equations (4.3) and
(4.4) as

xt+1 = A∗xt +But + Ãx̃t +wt (4.17)

x̂t+1 = A∗x̂t +Bût + Ãx̃t (4.18)

In view of (4.5),ut = ût +Kaux(xt − x̂t), and collectively write (4.6) as

εεε t+1 = (A∗ +BKaux)εεε t +wt (4.19)
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Since eachi-MPC problem depends upon local variables (note, in fact, that the coupling termsx̃[i]
k are

fixed for allk = t, . . . , t +N−1), minimizing (4.9) for alli = 1, . . . ,M is equivalent to minimize

VN∗(xt) = min
x̂t ,û[t:t+N−1]

VN(x̂t , û[t:t+N−1]) (4.20)

subject to the dynamic constraints (4.18), the static constraints

xt − x̂t ∈ Z =
M

∏
i=1

Zi (4.21a)

x̂k− x̃k ∈ E =
M

∏
i=1

Ei (4.21b)

x̂k ∈ X̂ (4.21c)

ûk ∈ Û (4.21d)

and the terminal constraint

x̂t+N ∈ X̂
F (4.22)

Here, the cost functionVN is defined as

VN(x̂t , û[t:t+N−1]) =
t+N−1

∑
k=t

l(x̂k, ûk)+VF (x̂t+N)

We also define

VN,0(x̂t) = min
û[t:t+N−1]

VN(x̂t , û[t:t+N−1]) (4.23)

subject to the dynamic constraints (4.18) and the static constraints (4.21b)-(4.22).

4.7.2 Feasibility

From definition 4.3.1, it collectively holds that

X
N = {x : if x0 = x then∃x̃[0:N−1], x̂0/0, û[0,N−1]

such that (4.18), (4.21) and (4.22) are satisfied}

and that, for each point of the feasibility setx ∈ X
N

X̃x := {x̃[0:N−1] : if x0 = x then∃x̂0/0, û[0,N−1]

such that (4.18), (4.21) and (4.22) are satisfied}

We also definêXN = X
N ⊖Z.

Assume that, at instantt, xt ∈ X
N and thatx̃[t:t+N−1] ∈ X̃xt . The optimal nominal input and state

sequences obtained by minimizing the collective MPC problem areû[t:t+N−1]/t = {ût/t , . . . , ût+N−1/t}
andx̂[t:t+N]/t = {x̂t/t , . . . , x̂t+N/t}, respectively. Finally, recall that it is setx̃t+N = x̂t+N/t .
We defineûaux

t+N/t = Kauxx̂t+N/t and we computêxaux
t+N+1/t according to (4.18) from̂xt+N/t where

ût+N = ûaux
t+N/t . We obtain

x̂aux
t+N+1/t = A∗x̂t+N/t +Bûaux

t+N/t + Ãx̃t+N
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sincex̃t+N = x̂t+N/t , the latter is equivalent to

x̂aux
t+N+1/t = (A +BKaux)x̂t+N/t

Note that, in view of constraint (4.22) and Assumption 4.4.2,ûaux
t+N/t ∈ Û andx̂aux

t+N+1/t ∈ X̂
F . There-

fore, they satisfy constraints (4.21c), (4.21d) and (4.22). Also, according to Assumption 4.4.2, (4.16)
holds.
We also define the input sequence

ū[t+1:t+N]/t = {ût+1/t , . . . , ût+N−1/t , û
aux
t+N/t}

and the state sequence stemming from the initial conditionx̂t+1/t and the input sequencēu[t+1:t+N]/t

i.e.,
x̄[t+1:t+N+1]/t = {x̂t+1/t , . . . , x̂t+N/t , x̂

aux
t+N+1/t}

In view of the feasibility of thei-MPC problem at timet, we have thatxt+1− x̂t+1/t ∈Z andx̂k/t − x̃k ∈

∏M
i=1E for all k = t +1, . . . , t +N−1. Note also that̂xt+N/t − x̃t+N = 0∈ E by (4.15). Therefore, we

can conclude that the state and the input sequencesx̄[t+1:t+N+1]/t andū[t+1:t+N]/t are feasible att +1,
since constraints (4.21) and (4.22) are satisfied. This proves thatxt ∈ X

N andx̃[t:t+N−1] ∈ X̃xt implies
thatxt+1 ∈ X

N andx̃[t+1:t+N] ∈ X̃xt+1.

4.7.3 Convergence of the optimal cost function

By optimality
VN,0(x̂t+1/t) ≤ VN(x̂t+1/t , ū[t+1:t+N]/t)

where

VN(x̂t+1/t , ū[t+1:t+N]/t) =
t+N

∑
k=t+1

l(x̂k/t , ûk/t)+VF
(

x̂aux
t+N+1/t

)

(4.24)

where it is set̂ut+N/t = ûaux
t+N/t . Therefore we compute that

VN,0(x̂t+1/t)−VN,0(x̂t/t) ≤−l(x̂t/t , ût/t)+ l(x̂t+N/t , û
aux
t+N/t)+

+VF
(

x̂aux
t+N+1/t

)

−VF (x̂t+N/t

)
(4.25)

In view of (4.16)

VF
(

x̂aux
t+N+1/t

)

−VF
(
x̂t+N/t

)
+ l(x̂t+N/t , ûaux

t+N/t) ≤

−κ l(x̂t+N/t , ûaux
t+N/t)

and so, from (4.25), it follows that

VN,0(x̂t+1/t) ≤ VN,0(x̂t/t)− l(x̂t/t , ût/t)−κ l(x̂t+N/t , û
aux
t+N/t) (4.26)

Recall the definition ofl i and of matrixRi , for all i = 1, . . . ,M, and defineR =diag(R1, . . . ,RM). Then,
there exists aK∞ functionαL such thatl(x,u) ≥ αL(‖(x,Ru)‖) for all x ∈ R

n, u ∈ R
m. This implies

that l(x,u) ≥ αL(‖x‖) for all x ∈ R
n, u ∈ R

m. Therefore

VN,0(x̂t+1/t) ≤ VN,0(x̂t/t)−αL(‖x̂t/t‖)−καL(‖x̃t+N‖) (4.27)
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for all x̂t/t ∈ X̂
N and for all feasible sequencesx̃k, k = t, . . . , t +N−1.

Now we analyze the properties of the cost functionVN∗(xt) defined in (4.20). First, note that, by
definition of x̂t/t , we have thatVN∗(xt) = VN,0(x̂t/t). By optimality, we have that

VN∗(xt+1) = VN,0(x̂t+1/t+1) ≤ VN,0(x̂t+1/t)

Considering (4.27), we obtain that

VN∗(xt+1) ≤ VN∗(xt)−αL(‖x̂t/t‖)−καL(‖x̃t+N‖) (4.28)

for all xt ∈ X
N and for all sequences̃x[t:t+N−1] ∈ X̃xt . This proves that‖x̂t/t‖ → 0 and‖x̃t‖ → 0 as

t → +∞.

4.7.4 Convergence of the trajectories

Define a positive real numberδF in such a way that, if‖x̂k‖ < δF , k = t, . . . , t +N, and if‖ûk‖ < δF ,
k = t, . . . , t +N−1, then constraints (4.21b)-(4.22) are satisfied.
Defining a sequencēxk/t , k = t, . . . , t + N, stemming from the initial condition̄xt/t = x̂t/t , whose
dynamics obeys to (4.18), and where the inputûk = ūk/t = Kauxx̄k/t , for all k = t, . . . , t + N − 1,
then there exists a positive real numberδx < δF such that, if‖x̂t/t‖ < δx and ‖x̃k‖ < δx for k =
t, . . . , t + N− 1, then‖x̄k/t‖ < δF , k = t, . . . , t + N, and‖ūk/t‖ < δF , k = t, . . . , t + N− 1. In fact,
denotingF = A∗ +BKaux, we solve (4.18) and we obtain that, fori ≥ 1

x̄t+i/t = Fi x̂t/t +
i−1

∑
j=0

F j Ãx̃t+i− j−1 (4.29)

and therefore
‖x̄t/t‖ = ‖x̂t/t‖ < δx < δF

‖x̄t+i/t‖ < maxi=1,...,N ‖Fi +∑i−1
j=0F j Ã‖δx

‖ūk/t‖ ≤ ‖Kaux‖‖x̄k/t‖

Therefore, for a suitableδx, if ‖x̂t/t‖ < δx and‖x̃k‖ < δx, k = t, . . . , t + N− 1, are verified at time
t, then the trajectories̄xk/t , k = t, . . . , t + N andūk/t , k = t, . . . , t + N−1 are feasible (since alsôxt/t

satisfies (4.21a) for the feasibility of thei-MPC problem at timet).
Since‖x̂t/t‖ → 0 and‖x̃t‖ → 0 ast → +∞, there exists̄t > 0 such that‖x̂t/t‖ < δx and‖x̃t‖ < δx for
all t ≥ t̄, which makes the trajectories̄xk/t , k = t, . . . , t +N, andūk/t , k = t, . . . , t +N−1, feasible for
all t ≥ t̄. By optimality, if t ≥ t̄

VN∗(xt) = VN,0(x̂t/t) ≤
t+N−1

∑
k=t

l(x̄k/t , ūk/t)+VF (x̄t+N/t

)
(4.30)

Recall (4.16). SinceVF ≥ 0 by definition, one has that

l(x̄k/t , ūk/t) ≤
1

1+κ VF
(
x̄k/t

)
≤ VF

(
x̄k/t

)

sinceκ > 0. Therefore, from (4.30), we have that

VN∗(xt) ≤
t+N

∑
k=t

VF (x̄k/t

)
(4.31)
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From (4.29) and (4.31), we obtain that, for allt ≥ t̄, there exists aK∞ functionβ such that

VN∗(xt) ≤ β (‖(x̂t/t , x̃[t:t+N−1])‖) (4.32)

For this it follows thatVN∗(xt) → 0 ast → +∞.

Recall thatx̂k/t is generated according to (4.18), stemming from the initial conditionx̂t/t and inputs
ûk/t . One can write the solution to (4.18) asx̂t+i/t = vt+i/t +BiUt , where

vt+i/t = (A∗)i x̂t/t +
i−1

∑
j=0

(A∗) j Ãx̃t+i− j−1,

Bi =
[
(A∗)i−1B . . . B 0 . . . 0

]

if i = 1, . . . ,N, Ut = (ût/t , . . . , ût+N−1/t). Note that, since‖x̂t/t‖ → 0 and‖x̃t‖ → 0 ast → +∞, also
‖vk/t‖→ 0 ast → +∞ for all k = t +1, . . . , t +N. We also denotevt/t = x̂t/t andB0 = 0n×Nm.
Now, consider again the functionVN∗(xt):

VN∗(xt) =
t+N−1

∑
k=t

l(vk/t +Bk−tUt , ûk/t)+VF (vt+N/t +BNUt
)

(4.33)

From the definition ofl i it follows that l(xk,uk) ≥ αL(‖(xk,Ruk)‖), and so

0≤ ∑t+N−1
k=t αL(‖(vk/t +Bk−tUt ,Rûk/t)‖)

+VF
(
vt+N/t +BNUt

)
≤ VN∗(xt)

Since it is proved thatVN∗(xt) → 0 ast → +∞, it follows that, for allk = t, . . . , t +N−1

αL(‖(vk/t +Bk−tUt ,Rûk/t)‖) → 0

andVF
(
vt+N/t +BNUt

)
→ 0 ast → +∞. This implies that:

BUt +Vt → 0 (4.34)

ast → ∞, where

B=








B0
...

BN

diag(R, . . . ,R)








andVt = (vt/t , . . . ,vt+N/t ,0, . . . ,0). It is readily seen that, in view of the triangular structure of






B1
...

BN






and since, by definition ofRi , i = 1, . . . ,M

rank

([
B
R

])

= m
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then rank(B) = Nm. SinceVt → 0 as t → +∞, from (4.34) it follows thatUt → 0 as t → +∞.
Thereforeût/t → 0 ast → +∞.

Finally, recall that the statext evolves according to the equation

xt = A +B
[
ût/t +Kaux(xt − x̂t/t)

]

= (A +BKaux)xt +B
(
ût/t −Kauxx̂t/t

)

By asymptotic convergence to zero of the nominal state and input signalsx̂t/t and ût/t respectively,
we obtain that
B
(
ût/t −Kauxx̂t/t

)
is an asymptotically vanishing term. Since also(A +BKaux) is Schur by Assump-

tion 4.4.2, we obtain thatxt → 0 ast → +∞. This concludes the proof of Theorem 1.
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