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Executive Summary

This report presents three coordination mechanisms for distributed MPC n&itihbor-to-
neighbor communications, i.e. there is no need for a global coordinator.

In the first case, a dual-decomposition scheme based on Fenchel’s dualitployed to solve th
centralized optimization problem in a distributed way. The distributed method is@hblehieve
the optimal solution as if it were obtained using a corresponding centraligedtam. In order to
deal with the slow convergence rate, which is a standard issue of de@hgesition approache
we also introduce an improved algorithm that uses heterogeneous stepogiether with warm
starting, and that can still be implemented using local communications.

The second approach is based on a new sensitivity-driven coordindtiee Quadratic Progra
(QP) resulting for the optimal control problem of the MPC is solved in a digeidbway. In eac
local QP, sensitivity information of neighboring subsystems is included. Byrbkans, the meth
provides optimality as a centralized solution. In contrast to dual-decompoapimmaches, th
method can provide fast convergence, provided a proper decompasitiiven.

Finally, the third approach is based on a non-iterative scheme with neigdio@ighbor commu
nication among the subsystems where partial (local) structural informaticeeded. The mai
rationale behind that approach is to transmit among the neighbors the fefeirence trajectorie
and to interpret the difference between these trajectories and the tre@®wésturbances to
rejected by a proper robust MPC method. Therefore it is not negefssarach subsystem to kno
the dynamical models governing the trajectories of the other subsystemseatndrttmission o
information is limited.

Page 4/60



http://www.ict-hd-mpc.eu

HD-MPC ICT-223854 Coordination mechanismsi

Chapter 1

Synopsis of the report

1.1 Introduction

Hierarchical and distributed model predictive control relies strongly erhtararchical or distributed
optimization method (see the reports of WP 4 for the related research results) particular on the
coordination mechanisms used. The coordination mechanism defines hdiffeéhent controllers in
the hierarchical or distributed control topology interact by communicatiooperation or coordina-
tion.

This report presents three coordination mechanisms for single layer distfimodel predictive
control developed in the HD-MPC project:

1. Adistributed coordination scheme based on Fenchel’s duality,
2. adistributed coordination scheme based on a sensitivity-drivenioatioth, and
3. acoordination scheme with low communication requirements based on MBGsinethods.

The notion of these coordination mechanisms differs in many ways. In theviolicthree sections,
the idea of the methods is briefly explained. Then, this chapter containsagjenaclusions on the
new coordination mechanisms for DMPC. Full descriptions of the reseasthts can be found in
Chapters 2 — 4.

1.2 An iterative scheme for distributed model predictive control wsing
Fenchel’s duality

In (see also Chapter 2), we present a cooperative distributed Bfp€oach using neighbor-
to-neighbor communications only, i.e. there is no need for a global cododin€onsidering the
MPC problem of interacting discrete-time linear subsystems, a dual-decitimpesheme based on
Fenchel’s duality is employed to solve the centralized optimization problem in #&disa way. The
distributed method is able to achieve the optimal solution as if it were obtained aisiogespond-
ing centralized algorithm. The method is further improved to achieve fasteemmsnce speed. We
also demonstrate the application of our methods in a simulated water networ&l gootslem, and
discussed the open issues of the proposed scheme.

Consider a plant consisting bf dynamically coupled LTI subsystems. The dynamics of each sub-

system are assumed linear and to be influenced directly by aryal number of other subsystems.
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The centralized MPC problem, naméé), can be cast in a compact form as

min x'Hx (1.1)
X
st a'x=b, 1=1...ng

ax<b, |=neg+1,....s

whereH is a block-diagonal and positive definite mati$x: Neq+ Nineq-

1.2.1 Solution approach
Han'’s parallel method for convex programs

Problem(<?) can be solved using Han'’s parallel algorithm [2], which is a method to decsenihe
Fenchel’'s dual problem [3] of a convex optimization problem. Han’s me#isséntially uses iterative
projection of the dual variables onto the local constraint sets, this helisngpthe computation
into s parallel subproblems, whereis the number of constraints. However, it requireglabal
update schemand the parallel problems operate with the full-sized decision vector. Imptérmgen
the scheme in a DMPC system, where the goal is to reduce the size of localtatioms and to rely
on local communication between subsystems only, is not straightforwardm@in approach is to
exploit the structure of the proble?), resulting in a distributed algorithm that does not require
global communications.

Distributed version of Han’s method for the MPC problem

The main idea behind the distributed version of Han's method is illustrated inéSigud.(a) and
1.1(b), with a simple system consisting of 4 subsystems and the coupling matrighthas how
subsystems are coupled via their variables (boxes on the same row indieataridbles that are
coupled in one constraint). In Han’s method using global variables, gystdm has to communicate
with all other subsystems in order to compute the updates of the global vari&alethe distributed
version of Han’s method, each subsysteanly communicates with the other subsystems of which
the variables are necessary for computing the updates of its local variablethe subsystems in its
neighborhood.

1.2.2 Main results

In [1], we show that both the proposed distributed algorithm and the otibima’s method generate
the same updates. This allows us to implement a DMPC scheme using the distrilpoteithra,
which only need neighbor-to-neighbor communications. We also showehsibility, and stability
properties of the DMPC scheme are achieved upon convergence ofrti®ieat every time step.

One typical drawback of dual decomposition-based approaches idoiliecsnvergence rate,
which is also a valid issue of Han’s method and the distributed variation. ler @aoduse this al-
gorithm in MPC, we need to speed up the convergence of the iteration sprtfidém(?) can be
solved within each sampling period. We present an improved distributeidverisHan’s method that
employs warm-starting and acceleration using heterogeneous steptsizdfciency is demonstrated
in the example of irrigation canal control, which is described in detail in Cin&pte

To conclude, we summarize open issues of using Han’s method and otiledaesiomposition
methods for MPC, including the topics of distributed formulation, convergeate, primal feasibility,
and stability of MPC. These issues are used to recommend future red@autions.

Page 6/60




HD-MPC ICT-223854 Coordination mechanismsi

mim i | imiimi

Y

P o Ea R & k\ \\ \\

1 2 3 4_ 1 2 3 4_
(@) (b)

Figure 1.1: lllustration of communication links with (a) the centralized coordinateysion and (b)
the distributed coordination version of Han'’s algorithm for an exampleb&siem problem. In (a),
an update for a global variable requires t#& @ubsystem to communicate with all the others. In (b),
the 29 subsystem only cares about its local variable, therefore it should onfynunicate with the
15t subsystem.

1.3 Sensitivity-driven coordination

The idea of sensitivity-driven coordination has first been studied im[#je context of nonlinear op-
timal control, where the method has been applied to control a four-tante1syBue to the promising
results, we have continued research on this method as reported in [[§]andhe context of linear
quadratic constrained optimal control.

The main idea is to transcribe the continuous-time (see [5]) or discrete-tirmg@peoptimal
control problem into constrained parametric optimization problem. For gegmretalems, this results
in an NLP

N
min i;bi(p)? (1.2)
s.t.ci(p) >0, Wi, (2.3)

with objective function® = TN ; ®;(p) and the set of constraint functioogp), Vi. Here,p defines
the parameters of the NLP, which are divided ihtasubvectorsp;, andi indicates the subsystem.
For the linear quadratic optimal control problem a QP is derived. The Qi (eneral, the NLP) is
then solved in a distributed manner. The subproblems are coordinated thyvsensitivities of the
objective function and the constraint function. Hence, the decomposégarits in the set of NLPs

[5]

min > (p) (1.4)
s.t.ci(p) >0, (1.5)
with objective functions
oo+ |3 20 aRTIG] gy (1.6)
i — ™ 4 dpl oK J apl oK [ (A .
J#
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which are solved iteratively. Under certain assumptions, the solution ofgtréodted algorithm will
converge to solution of the original optimization problem [5, 6].
The sensitivity-driven coordination-mechanism has been assessedenal case studies, e.g.

e a simulated nonlinear distributed chemical plant for the alkylation of benZgne |

e a real implementation of Johansson’s quadruple tank benchmark [7tetHeas been com-
pared to a set of other predictive controllers [8], and

e an synthetic unstable process [6].

Exemplarily, the results of the last contribution can be found in Chapter 8.r@sulting distributed
model predictive control scheme is referred to as sensitivity-drivarilmised MPC (or S-DMPC for
short). S-DMPC is an optimal controller, i.e. it reproduces the same tragxtas an centralized
MPC. The main challenges of future work are to guarantee stability ancgevce of the proposed
scheme, as suggested in [5].

1.4 Distributed non-cooperative MPC

A new state feedback distributed control algorithm, based on model predactntrol (MPC), is here
proposed: Distributed Predictive Control (henceforth called DPC)I[95 based on a non iterative
scheme with neighbor-to-neighbor (i.e., partially connected) communicationgathe subsystems
where partial (local) structural information are needed, and is deegliréusto the robust state feed-
back MPC approach first introduced in [10].
The main rationale behind DPC is to transmit among the neighbors the futurenedetrajectories
and to interpret the difference between these trajectories and the tra@ewksturbances to be re-
jected by a proper robust MPC method. Therefore in DPC it is not negefs each subsystem to
know the dynamical models governing the trajectories of the other subsyatelrtbe transmission
of information is limited; moreover joint constraints between the subsystems beultcluded, so
that DPC can also be used for control of independent systems with cougdimstraints. Finally,
convergence results can be established.

An off-line design phase must be carried out in order to apply the DPCitilgo
1) Define a decentralized control law (i.e., the auxiliary control law) whatkhe same time, (a) stabi-
lizes the local subsystems when neglecting the interconnections, (b) stwliikzeverall large scale
system, (c) has a Lyapunov function which basically corresponds taghtgd sum of local Lya-
punov functions. The above-mentioned issues can be addressedusingper of well-established
results, worked out in the past in the field of decentralized control. Fdarios, one can rely on
milestone results ooonnective stability11], vector Lyapunov functions and the so-called “weighted
sum approach” for proving connective stability [12]. More recenthpbtems (a) and (b) have been
successfully addressed in [13], where a small gain condition for lszcgke (nonlinear) systems has
been derived.
2) Set the stage and final cost functions.
3) Define the proper sets to constrain the state and input trajectories atihgsretic considerations.
4) For each subsystei=1,...,M, define an initial reference state trajectory.

Once the cost functions and the constraining sets are properly defieadinimization problems
to be solved on-line correspond to low-order MPC problems, defining $odesystem’s inputs. Note
that the reference trajectory, for each subsystem, is incrementally define
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Concluding, DPC enjoys the following properties:
Classes of distributed systemsDPC has been designed for controlling a wide class of large scale
systems. Specifically, it can be used for dynamically coupled subsystesmglleas for subsystems
with coupled constraints on the state variables.
Local knowledge. Each subsystem is required to know and store only the model governimty-the
namics of its local state variables, and how the outputs of the neighborisgstaims influence them.
Information transmission. DPC requires neighbor-to-neighbor communication among subsystems.
Furthermore, the data transmitted to each subsystem correspond only aiubefthe local refer-
ence state variabl-steps ahead (which isra dimensional variable). Finally, information must be
transmitted and received with non-iterative communication protocol i.e, oitbana sampling time,
and no negotiation is required among subsystems.
Scalability. The DPC algorithm is scalable: as the number of subsystems grows (whilestance,
the average number of neighbors for each subsystem remains caontarntformation required to
be stored, processed and transmitted by each subsystem not linked ®awtlsailpsystems remains
constant.
Guaranteed properties. The convergence of the overall system controlled with DPC is guaranteed
under suitable assumptions, and both local and global constraints on sthiepat variables are
handled.

1.5 General conclusions

We have introduced three coordination methods for distributed MPC, wtaddlldased on neighbor-
to-neighbor communication. While the scheme based on Fenchel’s duality esdrikitivity-based
coordination reproduce the optimality of a centralized controller, the nopearative DPC scheme
features low-communication requirements and does not rely on an iteratitwe gblution, which
may be advantageous. While S-DMPC features fast convergenoerfiespextensions are necessary,
e.g. to guarantee closed-loop stability. For DMPC on Fenchel’s dualitgdspleconvergence could
be improved, however there is still a desire to speed up convergernthefmnore, there is a desire to
implement less conservative stability property than the zero-terminal comistfhe non-cooperative
DPC approach provides some conservatism for a caused by its rodsisimgroach. However, as a
consequence DPC features several advantages over the otherescfaad also compared to many
others in literature), i.e. it is a non-iterative approach, and only locatnmdtion is required for each
controller. However, there are also still important issues to solve in futerep provide appropriate
sets for the control errors in order to measure the uncertainties of tiptirmpuariables.
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Chapter 2

An iterative scheme for distributed model
predictive control using Fenchel’s duality

This chapter is based on a paper that has been accepted for publicatie Journal of Process
Control, Special Issue for Hierarchical and Distributed Model Pradic@iontrol, with particular cita-
tion: M.D. Doan, et al., An iterative scheme for distributed model predicthrerol using Fenchel’'s
duality, J. Process Control (2011), doi: 10.101/j.jprocont.2010.12.009.

2.1 Introduction

Nowadays, Model Predictive Control (MPC) is widely used for contrgliimdustrial processes [14],
and it also has been studied thoroughly by the scientific community [15, L6BMPC can naturally
handle operational constraints and, moreover, it is designed for multi+imylti-output systems, both
of which contributed to the popularity of MPC. Another advantage of MPCadsittrelies on opti-
mization techniques to solve the control problem. Hence, improvements in optimitetioniques
can help to broaden the applications of MPC for more complex problems.

When considering a control problem for a large-scale networkedmy(siech as complex manu-
facturing or infrastructure processes), using MPC in a centralizéibiasnay be considered imprac-
tical and unsuitable due to the computational burden and the requiremdonbaf gommunications
across the network. It is also inflexible against changes of networktsteuand the limitation of
information exchange between different authorities who might be in coaofrallocal subsystem.
In order to deal with these limitations, Distributed MPC (DMPC) has been geapor control of
such large-scale systems, by decomposing the overall system into sneiswibs| [18, 19]. The
subsystems then employ distinct MPC controllers that only solve local cqmoblems, use local
information from neighboring subsystems, and collaborate to achievellglaltzactive solutions.

DMPC is an emerging topic for scientific research. The open issues ofhéke recently been
discussed in [20, 21]. Several DMPC methods were proposed fereliff problem setups. For sys-
tems with decoupled dynamics, a DMPC scheme for multiple vehicles with coueflioctions was
proposed in [22], utilizing predicted trajectories of the neighbors in eabkystem’s optimization.
A DMPC scheme with a sufficient stability test for dynamically decoupled systesmsspresented in
[23], in which each subsystem optimizes also over the behaviors of itshwighln [24], Richards
and How proposed a robust DMPC method for decoupled systems wittedotgnstraints, based on
constraint tightening and a serial solution approach. For systems wittecbdynamics and decou-
pled constraints, a DMPC scheme has been developed in [25] basedonbadlgorithm that deals
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with the primal problem, using a convex combination of new and old solutionf26ln the neigh-
boring subsystem states are treated as bounded contracting distgrlmarmteach subsystem solves a
min-max problem. A partitioning-based algorithm was proposed in [27, 28] sufficient conditions
for the a posteriori stability analysis. In [29], Li et al. proposed an rtigm with stability conditions

in which subproblems are solved in parallel in order to get a Nash equilibritemeral DMPC al-
gorithms based on decomposing of the global optimization problems weresgpo[30, 31, 32].
Other recent work on applications of DMPC is reported in [33, 34, 35].

In this paper, we present a decomposition scheme based on Han'slpaedhied [36, 2], aiming
to solve the centralized optimization problem of MPC in a distributed way. Thisoaph results in
two distributed algorithms that are applicable to DMPC of large-scale indugtdaesses. The main
ideas of our algorithms are to find a distributed update method that is equitalelan’s method
(which relies on global communications), and to improve the convergeresl s the algorithm [37].
We will demonstrate the application of our methods in a simulated water netwottocproblem.
The open issues of the proposed scheme will be discussed to formulaterkegaarch directions.

The paper is organized as follows. The MPC problem is formulated andnitierlying opti-
mization problem is stated in Section 2.2. In Section 2.3, we summarize Hanlkeparathod for
convex programs [2] as the starting point for our approach. In Se2tfrwe present two distributed
MPC schemes that exploit the structure of the optimization problem for locahzmications. The
first DMPC scheme uses a distributed iterative algorithm that we prove tgieagent to Han’s
algorithm. As a consequence of this equivalence, the proposed DMiREnscachieves the global
optimum upon convergence and thus inherits feasibility and stability propémniesits centralized
MPC counterpart. The second DMPC scheme is an improved algorithm thaticespesed up the con-
vergence of the distributed approach. In Section 2.5, we illustrate the afipliof the new DMPC
schemes in an example system involving irrigation canals. In Section 2.6, eesslithe open issues
of Han’s method and other dual decomposition techniques for DMPC thavatetilirections for
future research. Section 2.7 concludes the paper.

2.2 MPC problem formulation

2.2.1 Subsystems and their neighborhood

Consider a plant consisting & dynamically coupled subsystems. The dynamics of each subsystem
are assumed linear and to be influenced directly by orggnallnumber of other subsystems. More-
over, each subsysteirs assumed to have local linear coupled constraints involving only variables
from a small number of other subsystems.

Based on the couplings, we define the ‘neighborhood’ of subsyistdemoted as/#", as the set
includingi and the indices of subsystems that have either a direct dynamical coupbngpastraint
coupling with subsystem
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2.2.2 Coupled subsystem model

We assume that each subsystem can be represented by a discrete-teméintieeénvariant model of
the form':

Xe1= 3 Al +Bld, 2.1)
je

wherex, € R" andu, € R™ are the states and control inputs of ik subsystem at time stdp
respectively.
2.2.3 Linear coupled constraints

Each subsysternis assumed to have local linear coupled constraints involving only variatifies w
its neighborhood/#"'. Within one prediction period, all constraints that subsysteninvolved in can
be written in the following form

Z) DX +E ul = ceq (2.2)
JG/V'
Z DX +EJul < Gineq (2.3)
je1 k=0
in which N is the prediction horizongeq andcineq are column vectors, aria ” IS'kj, and Ifl'(j are

matrices with appropriate dimensions.

2.2.4 First MPC problem

We will formulate the centralized MPC problem for systems of the form (2.ihgus terminal point
constraint approach that imposes constraints to zero out all terminal. stateter the conditions
that a feasible solution of the centralized MPC problem exists, and that thewith zero states
and inputs is in the relative interior of the constraint set, this MPC schemeesnfaasibility and
stability, as shown in [16] and [38]. However, the algorithm proposedisyghper will also work
with any other centralized MPC approach that does not require a ternumlqonstraint, provided
that the subsystems have local stabilizing terminal controllers. We will fuaisgrme without loss of
generality that the initial time is zero.

The optimization variable of the centralized MPC problem is constructed asledtaector of
predicted subsystem control inpwatsd states over the prediction horizon:

x=[(u) o (W) ()T ()
() e )T () AT (2.9)

Recall thatn' andm' denote the numbers of states and inputs of subsystefie number of
optimization variables for the centralized problem is thus:

Mo Mo
Ny = Ni;m' + Ni;n' (2.5)

1This system description is chosen for simplicity of exposition and our faaarlecan be easily extended to consider
output signals with appropriate observability assumptions.
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The cost function of the centralized MPC problem is assumed to be dedamdeonvex quadratic:

M N-1

=3 5 () R+ (Rer) Q) (2.6)

with positive definite weight&;, Q;. This cost function can be rewritten using the decision variable
as

J=x"Hx (2.7)
in which the HessiaH is an appropriate block-diagonal, positive definite matrix.

Remark 2.2.1 The positive definiteness assumption gra@d R and the choice of the centralized
variable as described if2.4) without eliminating state variables will help to compute the inverse of
the Hessian easily, by allowing simple inversion of each block on the diagbtiee Hessian.

The centralized MPC problem, naméd?), is defined as: the minimization of 1_2.6), subject
to (2.1) fori=1,....M,k=0,...,N—1, (2.2) and[(2.3) foi = 1,...,M, as well asxy = 0 for
i=1,... M.

We can rewrite problemi??) in a compact form as

min x"HXx (2.8)
st ax=b, 1=1...negq
a’x<b, |=neqt+1,....s

With S = nNgq+ Nineq. The algorithms to be described in the next sections will focus on how to solve
this optimization problem.

2.3 Han'’s parallel method for convex programs

Han's algorithm [2] is a method to decompose the Fenchel’'s dual problemAgnchel’s duality
theorem aims at minimizing a differend€x) — g(x), wheref is a convex function andis a concave
function. A special case of this problem is minimizifigover a constraint s&t, whereg is a penalty
function for violating the constraint. In Han’s problem, the Gés the intersection of local constraint
sets, and the dual variables are iteratively projected onto the local amstets. As a consequence,
the sum of the dual variables converges to the minimizer of the Fenchel'pahidem [2]. In this
section, we summarize the main elements of Han’s parallel method, followediimpkfied version
for the case of definite quadratic programming.

2.3.1 Han’s algorithm for general convex problems

The class of optimization problems tackled by Han’s algorithm is the following:
min - q(x) (2.9)
st. xXeC2Cin---NGCq
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whereCy, --- ,Cs are closed convex sets aBd# @, and whereg(x) is uniformly convex and differ-
entiable oriR"™.

A problem of type[(2.9) can be solved by Han's algorithm. In the followingatgm we will
describe Han’s method, which is an iterative procedure. Wgasdteration counter of the algorithm,
and the superscrigp) for variables that are computed at iteration

Algorithm 2.3.1 Han'’s algorithm for convex programs

Let a be a sufficiently large numbzand defingy® =y = ... =y = 0, with y(0,y ¢

R™1=1,...,s,andx@ = Og* (y\?) with q* being the conjugate functiéwf q. For p=1,2,..., we
perform the following computations:

1) Forl=1,...,s, findz® that solves

min %Hz+ay|(p_l)—x(p*1)uz (2.10)
sit. ze(C
2) Assign
yP =yP Y4 (1/a) (zfp)—x(p’l)) (2.11)
3) Sety® =y 4.4y
4) Compute
x(P) — g (yuo)) (2.12)

In [2], Han and Lou also showed that Algorithm 2.3.1 converges to theagloptimum if the
conditions oy andC mentioned after (2.9) are satisfied.

Remark 2.3.2 Han’s method essentially solves the dual problen{2$), so thaty(P converges to
the solution of the Fenchel’s dual problem:

min (9" (y) - 0*(y/0)) (2.13)

in whichd(x|C) is the indicator function, which is 0 ¥ € C ande otherwise. The conjugate function
of 3(x|C) is 5*(Y|C) = sup.cY'x. According to Fenchel's duality theorem [3], the minimum of
the convex problem (k) — g(x), where f is a convex function dR™ and g is a concave function
on R™, equals the maximum of the concave probléityg— f*(y), or equivalently the minimum of
f*(y) —g*(y). In this situation f= q and g= 8. A valuey(P achieved when Algorithm 2.3.1 converges
is an optimizer 0f(2.13) hencex(P) = Og* (yP)) is the solution of(2.9)

2A function q(x) is uniformly convex (or strongly convex) on a s®if there is a constanp > 0 such that for any
X1, X2 € Sand for anyA € (0,1):

QAXL+ (1= A)X2) < Aq(x1) + (1—A)a(Xz) — PA (1= A)[[x1 — X2

3q is a design parameter that has to be sufficiently large. Withs/p Han’s method will converge [2]. For positive
definite QPs we can choopeas one half of the smallest eigenvalue of the Hessian matrix.

4The conjugate function of a functiom(x), x € R™ is defined by:q*(y) = SUBcpn (yTx—q(x)). The conjugate
functiong* is always convex [39].
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2.3.2 Han'’s algorithm for definite quadratic programs

In case the optimization problem has a positive definite cost function and loestraints as in
(2.9), the optimization problem (2.10) and the derivative of conjugatetifum¢2.12) have analytical
solutions, and then Han’s method becomes simpler. In the following we shawth@analytical
solutions 0of/(2.10) and (2.12) can be obtained when applying Algorithm &3 problem (2.8).

Remark 2.3.3 The result of simplifying Han’s method in this section is slightly different from the
original one described in [2], so as to correct the minor mistakes wedanithat paper.

As in (2.9), each constraimte C; is implicitly expressed by a scalar linear equality or inequality
constraint. Sa (2.10) takes one of the following two forms:

o1 (P-1) _ o (p-1);2
min  Z|z+ay, — x| (2.14)
st. az=h
or
o1 (P-1) _ (-1
min  Z|z+ay, —x(P= B (2.15)
st. az<hb

Let us first consider (2.15):

o Ifaf (x(p‘l) — ayl(pfl)) < by, thenz” = x(P-1 — ay(P~Y is the solution of (2.15). Substitut-
ing thiszl(p) into (2.11), leads to the following updateyq(f’):

yiP =yP Y+ (1/a) (x“"l) —ayP - x(p‘1>>

=yP =0 (2.16)

o If af (x(pfl) — ayl(p_1>) > by, then the constraint is active. The optimization problem (2.15)
aims to find the point in the half-spaggz < by that minimizes its distance to the poii?—) —
ory,(p_l) (which is outside that half-space). The solution is the projection of the ptint) —

oryl(p_l) on the hyperplana z = by, which is given by the following formula:

T (x(P—D —b
P —xip Y qyfpry - AT ) b (2.17)

a a

Substituting thiz'® into (2.11), leads to:

T ((p=1) _ ~y(P—DY\
(p) (p—1)+£ (ayl(pl) e (X ay, ) blal)
a

Y

=Y ala

a (xPV—ay” ") -
_ aa a (2.18)
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Then definingy” = a (x(pfl) — ayl(p_l)) — by yields

a (2.19)

If we define
yl(p) max{a/ < -1 _ ayl(p_l))—b|,0} (2.20)

then we can use the update formula (2.19) for both cases.
Similarly, for the minimization under equality constraint (2.14), we define

P _ gt ( p-1) _ ayfp—ﬂ)_bl (2.21)

and the update formula (2.19) gives the result of (2.11).
Now we consider step 4) of Algorithim 2.3.1. As shown in [39], the function = x"Hx with H
being a positive definite matrix, is uniformly convex Bf and has the conjugate function:

1
a'(y)=5y"H™y (2.22)
= Og'(y)=H"1y (2.23)

Consequently, in Han's algorithm for the definite quadratic program,(2.B) not necessary to
computez(P, andy(P) can be eliminated using (2.19). We are now ready to describe the simplified
Han'’s algorithm for problem (2.8), with the choice= s/p (cf. footnote 3).

Algorithm 2.3.4 Han'’s algorithm for definite quadratic programs

Foreachl=1,... s, compute

C = a;,Tla. H g (2.24)
Initialize yio) = y(o = 0andx(© =0. For p=1,2,..., perform the following computations:
1) For each | corresponding to an equality constraint(L,. . ., Neg), compute/|<p) =a/x(P~ 4
yl(pfl) —b.
For each | corresponding to an inequality constraint(heq+1,...,Ss), computeyl(p) = max{a1Tx(p‘l) +
yl(pfl) —by,0};
2) Set

B _ ) 225
I;yf o (2.25)

Note that Han’s method splits up the computation iatparallel subproblems, whereis the
number of constraints. However, although Algorithm 2.3.4 is simpler than igmal form in Al-
gorithm 2.3.1, it still requires global update schemand the parallel problems still operate with the
full-sized decision vector. Implementing the scheme in a DMPC system, whegedhés to reduce
the size of local computations and to rely on local communication betweenstabss/only, is not
straightforward. In the following section, we will exploit the structure of pineblem [(2.8), resulting
in a distributed algorithm that does not require global communications.
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2.4 Distributed version of Han’s method for the MPC problem

2.4.1 Distributed version of Han’s method with common stepige

The main idea behind the distributed version of Han’s method is illustrated indsigud (a) and
2.1(b), with a simple system consisting of 4 subsystems and the coupling matrighthas how
subsystems are coupled via their variables (boxes on the same row indieataritibles that are
coupled in one constraint). In Han's method using global variables, systdm has to communicate
with all other subsystems in order to compute the updates of the global vari&oethe distributed
version of Han's method, each subsystieanly communicates with the other subsystems of which
the variables are necessary for computing the updates of its local variablethe subsystems in its

neighborhood /.
V’“‘m——f\ ..... T
LI HEN NN
(W e
L CHE NNININ

(@) (b)

Figure 2.1: lllustration of communication links with (a) the centralized coordinateysion and (b)
the distributed coordination version of Han'’s algorithm for an examplebyatem problem. In (a),
an update for a global variable requires ti#& @ubsystem to communicate with all the others. In (b),
the 29 subsystem only cares about its local variable, therefore it should onfynzinicate with the
15t subsystem.

For the algorithm presented in this section, we Mskcal controllers attached td subsystems.
Each controller then computeﬁ(p) with regards to a small set of constraints indexed &y;, where
L; is a set of indicesof several constraints that involve subsysie@ubsequently, it performs a local
update for its own variables, such that the parallel local update schenteewitjuivalent to the global
update scheme in Algorithm 2.3.4.

Initialization of the algorithm

Store invariant parameters
The parameten is chosen as in Algorithin 2.3.4 and stored in the memory of all local controllers.
We also computs invariant values; as in (2.24), in which eact) corresponds to one constraint
of (2.8). Note thaH is block-diagonalH ! can be computed easily by inverting each blockdof
and has the same block structure-asHenceg, is as sparse as the correspondingWe can see that
¢ can be computed locally by a local controller with a priori knowledge of thrarpatera; and the
weighting blocks on the diagonal bf that correspond to the non-zero elementg, of

5The choice otL; will be described in the next section.
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We assume that each local controlid&nows its local dynamics, and the input and state weights
of its neighbors in the cost function. Then each local controli@n compute the values associated
with its dynamic equality constraints.

Assign responsibility of each local controller

Each local controller is in charge of updating the variables of its subsyd#armeover, we also
assign to each local controller the responsibility of updasiogneintermediate variables that relate to
several equality or inequality constraints in which its subsystem’s statesuisiappear. The control
designer has to assign each of #®zalar constraints to one of thélocal controller§ such that the
following requirements are satisfied:

e Each constraint is taken care of by one and only one local controllen(@r a coupled con-
straint, there will be only one controller that is responsible).

e Alocal controller can only be in charge of constraints that involve its owialites.

Let L; denote the set of indicdsthat local controlleii is in charge of. We also defing. ,: as
the set of indice$ corresponding to the constraints that are taken care of by subsysteby any
neighbor ofi:

Lyi= J L (2.26)
jeni

If a local controlleri is in charge of the constraints indexed lbg L;, then it computes locally
¢ using (2.24) and exchanges these values with its neighbors. Then eatltdotrolleri stores
{ci}ieL ,, inits memory throughout the optimization process.

Iterative procedure

The distributed algorithm consists of an iterative procedure running width sampling interval. At
each iteration, four steps are executed: two steps are communicationgb&aah local controller
and its direct neighbors, and two are computation steps that are perftroadlgt by the controllers
in parallel. Since feasibility is only guaranteed upon convergence ofsHdgorithm, we assume that
the sampling time used is large enough such that the algorithm can converge avighsampling
interval. This assumption will be used in Proposition 2.4.7, and its restrictigemitl be discussed in
Section 2.6.

In this algorithm descriptiorp is used to denote the iteration step. Values of variables obtained at
iterationp are denoted with superscrifp).

Definition 2.4.1 (Index matrix of subsystems)In order to present the algorithm compactly, we in-
troduce the index matrix of subsystems: each subsystem i is assigrpdii@ sliagonal matrix
J' e R™™ with an entry on the diagonal beinyyif it corresponds to the position of a variable
of subsystem i in the vectar and0 otherwise. In short}' is a selection matrix such that the multi-
plication 3'x only retains the variablesi. .., ul_;,X;,...,x of subsystem i in its nonzero entries.

6Note thats, the total number of constraints, is often much larger tian
"Note that this partitioning is not unique and has to be created according twedorre that is performed in the initial-
ization phase.
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From Definition 2.4.1 it follows that:
M .
J =1 (2.27)
2,

Definition 2.4.2 (Self-image)We denote withx(Pll ¢ R™ the vector that has the same sizexas
containing ..., Ui P xP (i.e. the values of i's variables computed at iteration p) at
the right positions, and zeros for the other entries. This vector is callecelhinsage of(P) made by
subsystem i.

Using the index matrix notation, the relation betweé@hl' andx( is:
x(PI = 5ix(P) (2.28)

Definition 2.4.3 (Neighborhood image)Extending the concept of self-image, we denote xRk

the neighborhood image of subsystem i made ftoAt step p of the iteration, subsystem i constructs
x(P)¥" by putting the values of its neighbors’ variables and its own variables intoigfe positions,
and filling in zeros for the remaining slotsxf The neighborhood imagéP*" satisfies the following
relations:

x(PIA z x(P)] (2.29)
jen

KPIA — ( 3 31>x<m (2.30)
jeANi

By definition, we also have the following relation between the self-image anddigdborhood
image made by the same subsystem:

(Pl — iy (P)]A (2.31)

Using the notation described above, we now describe the subtasksdhatagdroller will use in
the distributed algorithm.

e Communications with the neighbors

Each controllei communicates only with its neighbojs= .4 to get updated values of their
variables and sends its updated variables to them. The data that eacstanidgsansmits to

its neighborj € .4 consists of the self-imagePl and the intermediate variable;{f),l e L,
which are maintained locally by subsystém

e Update intermediate variablesy

When the local controllerupdatesy corresponding to each constrairg L; under its respon-
sibility, it computes in the following manner:

— If constraintl is an equality constraint € {1,...,neq}), then

YP = gl x(P-DIr ey (2.32)
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— If constraintl is an inequality constraint € {neq+1,...,s}), then
yl(p) — maX{aITX(Pfl)\t/Vi + yl(p—l) o b|,0} (233)

e Update main variables

Local controlleri uses allyl<p> values that it has (by communications and those computed by

itself) to compute an ‘assumed neighborhood ima@ s‘u/raned Note thaméggﬁeohas the same
structure as the neighborhood imaxf/@ V"". However, it is not the exact update of the

neighborhood image. Indeedg‘;)s‘lﬁ;dis used only for constructing the new self-image by

selecting the variables of subsystem xéﬁ!;ﬁ'ea
. i :/Vi
x(Pl— Jlxgz?s‘umed (2.34)
which containsuio’(p) UURTOL R L

e Check the local termination criteria

For each local controller, there are local termination criteria. The loaaltation criteria also
aim to keep a subsystem informed when other subsystems terminate. Hesw®méhset of
local termination criteria is satisfied, the termination criteria for all subsysteenalso satis-
fied. Each controller checks the local termination criteria using local commitimis only .
When all local controllers have converged, the algorithm stops and takdowtrol actions are
implemented.

In the following, we will describe the new method using the distributed algorithm.

Algorithm 2.4.4 Distributed algorithm for definite quadratic programs

© _ O,XL’(O) =0,Vi,k=0,...,N—1 (this meanx9l = 0, Vi, implying

- . i
Initialize with p= 0, u, 1=

x0 =), andyl(o) =0l=1,...,s
Next, for p=1,2,..., the following steps are executed:
1) Communications to get the updated main variables

Each controller i gets updated values®?P~b!i from its neighbors g .41, where only non-zero
elements need to be transmitted

Then controller i constructs theeighborhood imag)e(p‘l)‘”i using formula(2.29)
2) Update intermediate variableg in parallel

Each local controller i updateg for each le L, using(2.32)or (2.33)
3) Communications to get the updated intermediate variables

Each local controller i getsyl(p),l € L ,i that are updated by controllers in the neighborhood of
i.

8Checking the termination criteria in a distributed fashion requires a deditegérischeme, several schemes were
described in [40, Chapter 8].

9Sincex(P-Vli only has a few non-zero elements, which a@@fl) . ,u',\"(le),x'l‘(pfl), . ,x',\’,(p&), only these values
need to be transmitted by controlieio reduce communications.
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4) Update main variables in parallel

Each local controller i computes assumed neighborhood imagkx:

Then controller i constructs the neself-image using(2.34)

X

P
assumed

Z yl<p>c|

IELJ/i

5) Check the local termination criteria in parallel

(2.35)

Each local controller checks the local termination criteria. If local terntina criteria are
satisfied, the algorithm stops, otherwise go to step 1) to start a new iteration.

p—p+l1

controller 7

<P-Dli

v

\J

A

x@P=1lj

controller j € N

controller i updates v:
WP = af x @DV 4 AP0y, L€ Lyl < neg
,Yl(p) — max{alTx(p_l)Wz —+ %(pq) —b,0}, €€ Li £ > neg

'

controller 4

'

<PV

assumed

x(@i —

controller ¢ computes:

= EZELNL 'YIEP)C/Z
Fing@IN?

assumed

'

controller i checks local
termination criteria

algorithm converges?

'

ve,L € L;

\J

A

’Yﬂ,é S L]‘

controller j € N

A

controller j € N

Figure 2.2: Computation and communication flow-chart of contraller each iteration of Algo-
rithm[2.4.4. Controller only needs to communicate with its neighjas /.

In Algorithm[2.4.4, the activities of one local controller can be demonstratetidgiagram in
Figure 2.2. The diagram clearly shows that in the distributed algorithm, eaahdontrolleri only
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communicates with its neighboise .4, enabling implementation of the method in a distributed
setting. The properties of the distributed algorithm will be discussed in thenviopsubsections.

Proof of equivalence to Han’s algorithm using a global update schem

In Algorithm[2.3.4, at step 2), the centralized variak{@ is updated via a global update scheme.
In Algorithm[2.4.4, by the local update scheme we obta®' for i = 1,...,M. The equivalence of
these two algorithms is stated in the following proposition:

Proposition 2.4.5 Applying Algorithms 2.3/4 and 2.4.4 to the same prob{8r8) with the same pa-
rametera, at any iteration p, the following statements hold:

a) " are the same in Algorithms 2.3.4 and 2/4.4, for ali {1,...,s}.

b) x(P) = gM x(Pli in whichx(P) is calculated in Algorithm 2.3.4 whilgPli i =1 ....M are
calculated in Algorithm 2.4.4.

Hence, Algorithm 2.3.4 and Algoritim 2.4.4 are equivalent.

Proof: The proposition will be proved by induction.

Itis clear that properties a) and b) hold foe= 0.

Now consider iteratiorp, and assume that the properties a) and b) hold for all iterations before
iterationp.

First, we prove property a). For ahyandi such that € L;, we have:

M
aITx(pfl) — a.|T Z jjx(pil)lj (236)
=1

:d( z Fix(P=Dli 4 z 3ix(pl)|j>
g

jeni

Due to the definition ofieighborhooda subsystem outsidé’' does not have any coupled constraints
with subsysteni. Thereforea 5 ;. 4 3'x(P~YIi = 0, which - in combination witH (2.29) - leads to:

aITX(p—l) _ aIT Z Fix(P=DIi — a{TX(p—l)IL/Vi (2.37)
jeNi

Equation |(2.37) then guarantees tlpéﬁ) computed at step 1) of Algorithm 2.3.4 and at step 2) of
Algorithm|2.4.4 are the same.

Now consider property b), where the main argument is the following: Thee sset ofyl(p) and

¢ are used for updatinigs variables inxgzﬁjr’/n;d(at step 4 of Algorithm 2.414) and x/P) (at step 2
of Algorithm[2.3.4). Thus each vector of local updat@ll, which contains values dfs variables

selected fronx'?l""_ is a part of the centralized updaté.

More specifically, we can express the formulaxt?!l computed in Algorithm 2.4.4 as

R
€L i

C ol A 5 P
= $xPI =573 e (2.38)
iZl i; le i |
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Note that in the following equationg(P) refers to the update of the decision variable computed
by (2.25) in Algorithm 2.3.4, which we can express as

M M S

P 5 5P = § 45 (P)

X _§Jx —EJ ya (2.39)
i= i= IZ:L !

in which the first equality is due to the relation (2.27), the second equalityris f2a25).
Recall that; has the same structureasand ifl € L ,i thena andc; do not have any non-zero
values at the positions associated with variables of subsyist€nerefore

. s . .
A Z yl(p)cl — 7 ( yl(p)cl + z V|(p)0|> — 7 Z yl(p)cl (240)
I=1

Izl i lel i lel i

This equality shows that (2.39) and (2.38) are equivalent, thus provangdhality in property b):
x(P) = gM, x(PIIT, O

The equivalence of Algorithms 2.3.4 and 2/4.4 implies that problem (2.8) cawoliged using
Algorithm[2.4.4. This allows us to implement a DMPC scheme using Algorithm 2.4.4 tiest ot
need global communications.

Properties of the distributed MPC controller

Convergence, feasibility, and stability properties of the DMPC scheme udgayithm are
established by the following propositions:

Proposition 2.4.6 Assume that%?) has a feasible solution. Then Algorithm 2.4.4 asymptotically
converges to the centralized solution(aP) at each sampling step.

Proof: In [2] it is shown that Han's method is guaranteed to converge to the tizattaolution
of the convex quadratic program (2.8) under the conditionsghatis uniformly convex and differ-
entiable onR™ and (2.8) has a feasible solution. Due to the positive definitene®s afidR;, and
the assumption th&t??) has a feasible solution, such conditions hold for the quadratic problein (2.8
Moreover, Algorithm 2.4.4 is equivalent to Han’s method for the proble®)(Hence, the distributed
scheme in Algorithm 2.4.4 converges to the centralized solution of (2.8), vidiitle same a6%?).
0

Proposition 2.4.7 Assume that at every sampling step, Algorithm 2.4.4 asymptotically casverg
Then the DMPC scheme is recursively feasible and stable.

Proof: By letting Algorithm[2.4.4 converge at every sampling step, the centralizeti@olof
(22) is obtained. Recursive feasibility and stability is guaranteed as a comssxjoé centralized
MPC with a terminal point constraint, as shown in [16] and [38]. O

It is also worth to address the conservativeness of the MPC formulatiog te terminal point
constraintxy = 0, which would reduce the domain of attraction of MPC. However, this issoetis
related to Han’s method. In fact, the distributed Han’s method is able to haptiteization prob-
lems of other MPC formulations, given that the cost function has a spatgs#ing structure. Note
that finding other MPC formulations with a sparse coupling structure is rengbtforward, we will
discuss this problem in Section 2.6.
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2.4.2 Distributed version of Han’s method with scaled stepize

A disadvantage of Han's method (and its distributed version) is the sloweogence rate, due to the
fact that it is essentially a projection method to solve the dual problem of. (R48yeover, Han’s
(distributed) method uses zeros as the initial guess, which prevents waatimgsof the algorithm by
choosing an initial guess that is close to the optimizer. Therefore, we needdidy the method to
achieve a better convergence rate.

In this section, we present two modifications of the distributed version oEhiaethod:

e Scaling of the step sizes related to dual variables by using heterogemefmughe update of
eachl-th dual variable instead of the sarmmdor all dual variables.

e Use of nonzero initial guesses, which allows taking the current MPC solatidhe start for the
next sample step.

Note that the modified distributed algorithm is then not equivalent to the ceetladigorithm
anymore. There is no convergence proof for the modified distributeditgoyet; this will be
discussed in Section 2.6.

In order to implement the above modifications, the improved distributed verslaaros method
is initialized similarly to the distributed algorithm in Section 2!4.1, except for the fatigwproce-
dures:

1. Pre-computed invariant parameters
Each subsystelincomputes and stores the following parameters throughout the contraoheche

e ForeacH e Li: o) = (ka)lao, wherek, is the scaling vectom, acts as local step size re-
garding thd-th dual variable, and therefokg should be chosen such that the convergence
rates of alls dual variables are improved. The method to chdgswill be discussed in
Remark 2.4.9.

e Foreach €lLj: ¢ = %H*la. We can see that can be computed locally by a local

controller with a priori knowledge of the parametgrand the weighting blocks on the
diagonal ofH that correspond to the non-zero elementg of

2. MPC step

At the beginning of the MPC step, the current states of all subsystems asurad. The
sequences of predicted states and inputs generated in the previougdprEesshifted forward
one step, then we add zero states and zero inputs to the end of the shjfiedes. The new
sequences are then used as the initial guess for solving the optimizatiderpriolithe current
MPC step®. The initial guess for each subsystem can be defined locally. For stebsiy
denote the initial guess a&!. At the first MPC step, we have?ll = 0, vi.

The current state is plugged into the MPC problem, then we get an optimizatibiepr of
the form (2.8). This problem will be solved by the following modified distribuaégbrithm of
Han’s method.

10The idea of using previously predicted states and inputs for initialization ipalg@otechnique in MPC [17]. Especially
with Han's method, whose convergence rate is slow, an initial guess ttlasisto the optimal solution will be very helpful
to reduce the number of iterations.
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Algorithm 2.4.8 Improved distributed algorithm for the MPC optimization problem

Initialize with p= 0. Each subsystem i uses the initial guess@4'.
Next, for p=1,2,..., the following steps are executed:

1) See step 1 of Algorithm 2.4.4.

2) See step 2 of Algorithm 2.4.4, except that foe= A, each subsystem i computes the initial
intermediate variables By:

vV =a (X(O)w _ %HX(O)L/Vi) “by, 1Ll <neg (2.41)
Yo = max{af <X<o>w _ %HX@W) _ b|,0}, | € Li,l > neg (2.42)

3) See step 3 of Algorithm 2.4.4.

4) See step 4 of Algorithm 2.4.4 but with a different formula to update the assneighborhood
image for each i

XBLE = 5 SfPg (2.43)

assumed

5) See step 5 of Algorithm 2.4.4.

When the iterative procedure finishes, each subsystem applies thapﬁ:tsmio"(p), then waits for
the next state measurement to start a new MPC step.

Remark 2.4.9 The main improvement of Algorithm 2.4.8 over Algorithm 2.4.4 is the improwed ¢
vergence speed, which heavily depends on a good choice of the seaditag k,. We have observed
that the convergence rate of some dual variables under the resplapilba subsystem i will affect
the convergence rate of dual variables under the responsibility of itdberg in.#". Therefore the
choice of scaling vector should focus on improving the convergencetdtel variables that appear
to converge more slowly. In our case, we rely on the Hessian to find dfiageector. Specifically, for
each subsystem i, bt denote the average weight of its variables (i.e. average of entries reliatésd
states and inputs in the diagonal of the Hessian). We then choose the sfaaljzmg(ko,)| =1/h;, for
all'l € L. We also multiply the scaling vectog kvith a factor8 € (0,1) for enlarging the step sizes
of all dual variables. In the first MPC step, we start tuning with- 1 and gradually reducé until it
causes the algorithm to diverge, then we stop and choose the snthiash that the algorithm still
converges.

The choice of the scaling vector depends on the structure of the cendrafizienization problem,
thus we only need to choose it once in the first MPC step. Then for the R&xsképs, we can re-use
the same scaling vector.

The efficiency of Algorithm 2.4/8 will be demonstrated in the example of irrigatamal control,
which is presented in the next section.

11The intermediate variables are constructed following the formulas]({2@)) with replacing the comman by a;

for eachl € {1,...,s}, where we implicitly usg/”) = 1y(© vl ¢ {1,...,s} andy® = Hx(©. Also note that sincey only

involves neighboring subsystems aHdis block-diagonal, the computatiaﬂ (x<0) — %Hx@) only uses values from
neighboring subsystems, similarly to the argument for (2.37).
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2.5 Application of Han’s method for distributed MPC in canal systems

2.5.1 The example canal system

The novel DMPC approach is applicable to a wide range of large-scstiersg which could be mod-
eled in the LTI form as described in Section 2.2. In this section, we demtmdsaapplication in
an example control problem, where the objective is to regulate the waterifiavsystem of irriga-
tion canals. Irrigation canals are large-scale systems, consisting of ntargcitng components, and
spanning vast geographical areas. For the most efficient and@afation of these canals, maintain-
ing the levels of the water flows close to pre-specified reference valeesdsl, both under normal
operating conditions as well as in extreme situations. Manipulation of the waves fh irrigation
canals is typically done using devices such as pumps and gates.

The example irrigation canal to be considered is a 4-reach canal systluastmated in Figure 2.3.
In this system, water flows from an upstream reservoir through theesachder the control of 4 gates
and a pump at the end of the canal system that discharges water.

The control design is based on the master-slave control paradigm, in thieichaster controllers
compute the flows through the gates, while each slave controller uses thedat@l actuators to
guarantee the flow set by the master controller [41]. We will use the new®Method to design the
master controllers.

gate 1

upstream

reservoir reach 1

reach 4

Figure 2.3: The example canal system

2.5.2 Modeling the canal

The canal system is divided into 4 subsystems, each of which corméspma reach and also includes
the local controller at the upstream gate of the reach. Theubsystem has one more controller,
corresponding to the pump at its downstream end.

We use a simplified model for each subsystem as illustrated in Figure 2.4, emabbain the
overall model by connecting the subsystem models. A subsystem is appteky modeled by a
reservoir with upstream in-flow and downstream out-flow.
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The discrete-time model of reacls represented by:

i i Ts i
I<+1 - i(: E [(Qin)k_ (Qout) k] (2.44)

where superscriptrepresents the subsystem index, subs&rigfor the time indexJs is the sampling
time, his the downstream water level of the readhis the water surface (i.e. the volume of reservoir
=h-As), Qinh andQqy; are the in-flow and the out-flow of the canal which are measured at theeaps
and downstream ends, respectively. Denote the flow pag8iggte byq', and the flow passing the
pump byp*. Due to the mass conservation law, we h&ig, = Q"1 = ¢+%, fori = 1,2,3, and
qut - p4-

Q in Q out

N . 7N

S

Figure 2.4: Model of a reach

In order to derive local dynamics, we choose input and state vectsighsf/sten as

X = i
4 =123
U)o

The dynamics of each subsystem can be represented by a discrete-tizae, tiline-invariant
model of the form[(2.1) with the state-space matrices:

Al= 1, i=1..4 Al=0, i#j

B'= Ty/A, , =123 B"=[Ty/A —Ty/Al]
BiH) = _Ty/Al |, i=12; B¥*=[ -T/A 0]
Bil=0, i=123, jé&{ii+1}.

2.5.3 Simulation results

DMPC methods are applied to the regulation problem of the simulated canahsysseribed in pre-
vious subsections using sampling tifie= 240s, with a perturbed initial state. We use the distributed
Han’s method with and without the modifications described in Sectian 2.4, andare the results.
Figure 2.5 shows the convergence of the distributed solutions to the cesdrabiution for the prob-
lem. Starting from the same initial guess in the first MPC step, i.e. all variabdesitinlized with
zeros, the distributed algorithm with modifications achieves a better comegate, allowing the
distributed optimization to converge within an acceptable number of iterations. Greslalts were
also achieved for the next MPC steps, when we simulate the closed-loopaliiPlet the distributed
solutions converge to the centralized solution at every step, with maximally ¥@@ates per step.
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+ ; . .
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Figure 2.5: Comparison of convergence rates of two distributed versfdtian’s method for the first
sampling time stepkEl)

2.6 Discussion and outlook on future research

Two distributed versions of Han’s method have been described in Sectipfiolowed by a short
demonstration of their usage in Section 2.5. Although these algorithms help to inmplétag’s
method in a distributed setting for MPC, there are still some theoretical issuesetie to be ad-
dressed.

Firstly, the proposed distributed algorithms deal with quadratic programs éttlyough many
MPC problems for linear time-invariant systems are formulated as quadragjcaons, there are other
variants that use different objective functions, and nonlinear MPQadhalgo yield more complicated
optimization problems than quadratic programs. With such problems, we migberatle to im-
plement Han’s parallel method in a distributed fashion. This issue motivategesbarch on other
decomposition methods that can handle more general problems, e.g. poolkéms with linear or
decoupled nonlinear constraints.

As noted in Section 2.4.1, the MPC formulation in this paper employs the terminatraom
xn = 0, which is a conservative approach. In case we want to use lessreatige MPC, e.g. MPC
with a terminal constraint set and a terminal controller, we need to find ast#ederminal penalty
function and local terminal constraint sets. However, to the authorskbesvledge, there is still no
distributed scheme available to construct local terminal constraint sets @dddominal controllers
(and also the terminal penalty matrix that is solution of the Riccati equation), thdreassuming them
to be completely decoupled. Therefore, although distributed Han’s meéwmoalso be applied to any
uniformly convex QP with sparse coupling structure, it requires furémsgarch on MPC formulations
that have such optimization problems.

In general, Han’s method has a slow convergence rate due to its iteraijeetpn nature, which
is inherited by Algorithm 2.4.4. Since the feasibility and stability properties atieetkupon conver-
gence of the algorithm within each sampling step, we need to speed up tleegemee of this method.
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The distributed version of Han’s method with scaling can improve the coemeegrate significantly,
as illustrated in Section 2.5. However, its proof of convergence is still lgckile observe that in
setups that are more complicated, the proposed method to choose the seelorgiees not always
work well (sometimes after several sample steps, the algorithm does n@rgeranymore). Due to
the requirement not to have global communications, it is difficult to adjustdakng vector during

the iteration to reach convergence. Therefore speeding up Han's anstiile providing a proof for

convergence is still an open issue, and we may use a coordinator aea legl of hierarchy that has
global communication capabilities to tackle this issue.

Another issue is due to the formulation of the optimization problem for MPC, ewverkeep both
inputs and states as variables of the centralized optimization problem and elinmioate the states
using the dynamic model equations. This formulation is advantageous in disttililPC because the
Hessian will then keep a block diagonal structure, and the neighbofaath subsystem will only
contains its direct neighbors (the neighborhood would be greatly exdéhde eliminate the states
in the optimization problem). However, using states as variables requirsgledng the dynamical
equations as equality constraints of the optimization problem, and the exisfesgpeatity constraints
typically requires an exact solution in order to guarantee feasibility. SiracesHnethod converges
asymptotically, we may not be able to get the exact optimal multipliers in real-timethandthe
corresponding primal iterates would not be guaranteed to be feasilgenéral, most dual decompo-
sition methods do not provide primal feasible solutions before reachingiddedtimal solutions, so
this feasibility issue also applies to other dual decompaosition methods.

In future research, we will also study dual decomposition methods thatrosite primal feasible
solutions in a finite number of iterations. In order to tackle the convex probienmtend to make use
of the subgradient schemes proposed in [42] and [43], which extenttatitional primal recovery
schemes for linear programs [44, 45]. With this approach, the standaotifpr MPC stability, which
is based on optimality, will not be obtained. Therefore, we need to probdistaf suboptimal MPC,
which can be based on the theorems proposed in [46], i.e. showing theticedof the cost function
(acting as a Lyapunov function) associated with the feasible solution. Wadinteuse the bounds
of suboptimality of the subgradient iterations to show the decreasing pyopfethe cost function.
Finding such bounds that are suitable for proving suboptimal MPC stabilityliarsopen question.

2.7 Conclusions

A decomposition approach based on Fenchel’'s duality and Han’s paretebd has been developed
in this paper, resulting in two distributed algorithms that are applicable to DMRE(ifst distributed
algorithm generates updates that are equivalent with those computedyglmb&lan’s method for
definite quadratic problems, and therefore it has the same convergepertp as Han’'s method.
Moreover, feasibility and stability of DMPC are achieved upon convergeri the iterations. The
second distributed algorithm aims to improve the convergence speed bysgsileg step sizes and
nonzero initial guess. The new methods have been applied to an exam@#&arriganal network,
demonstrating their applicability for water network and other large-scaleonkda systems. We have
also summarized open issues of using Han’s method and other dual desttompmethods for MPC,
including the topics of distributed formulation, convergence rate, primailiéity, and stability of
MPC. These issues were used to recommend future research directions.
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Chapter 3

Distributed model predictive control
driven by simultaneous derivation of
prices and resources

This chapter is part of the research accepted for publication at thelBBCIWorld Congress, Milan,
Italy, with particular citation: Holger Scheu and Wolfgang Marquardt, Diated Model-Predictive
Control Driven by Simultaneous Derivation of Prices and ResouraeseBdings of the 2011 IFAC
World Congress, Milan, Italy.

3.1 Introduction

Chemical processes, among other processes, are usually desgribdgdamic multi-input multi-

output (MIMO) models. Industrial plants are typically operated by deaéiméd control technology,
e.g. single-input single-output (SISO) PID loops, enhanced by gigoey optimal controllers. Op-
timal control methods such as linear or nonlinear model predictive com®C) have become im-
portant technologies, as they ensure an optimal operation of the plantméifieaining operational
constraints and while, in contrast to the SISO PID controllers, considégraniylIMO behavior of the
system. The industrial state of the art on model predictive control tecyadautlined in the paper
of [47].

Recently, distributed control methods have become an important area iola@sgarch. These
methods are expected to provide better computational performance [@®laced to decentralized
controllers and to remove possible communication bottlenecks. Furthernommpaced to a cen-
tralized solution, reliability and maintainability could be increased [49]. Finatyngletely new
applications are addressed requiring decentralized control [502h1A%rocess plant usually con-
sists of different subsystems, namely the process units, which exchasigeal, energy or signals
as illustrated in Figure 3.1. On a coarser scale, there are multiple plants oxEon site or in
a supply chain, which again interact also by the exchange of materiafjyeaed signals. Hence,
process plants and production sites are represented by large-spaleidsgl models composed by a
set of coupled smaller models. Similar topologies can be found e.g. in watener gystems.

These systems are either controlled by a single centralized controller greindently by de-
centralized controllers. The decentralized controllers typically neglednteeactions between the
subsystems. However, nominal stability, feasibility, optimality, reliability and maialality are de-
sired properties for the implemented control system. Distributed model predaxintrol (DMPC)
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Recycle A, B

Feed A, B

Figure 3.1: Example for a distributed process with reaction and separaiiksn u

methods are expected to contribute towards this aim as they combine the optimafigrt@s of
centralized predictive controllers and the modularity and flexibility of deeéimérd controllers. In
addition they are expected to cope with large-scale systems.

Already in the early 1970s, the basis of distributed control, and in partjalitributed optimal
control, has been established [53]. Two main decomposition methods, whitthesbasis for DMPC,
have been proposed, namely primal decomposition [54, 55] and duaingesition [56]. Various
early survey papers exist on distributed control, i.e. [57], [58], 424l [The present status of research
in the field of distributed optimal control is summarized by [20]. Differenttoalrarchitectures have
been reviewed by [21] recently.

Focus in recent research of DMPC is on linear systems. [59] consi8€) hear time-invariant
systems with output coupling and apply dual decomposition. The dual pnokleolved using a
subgradient optimization algorithm in this work. [60] propose a proximaterdmased dual decom-
position method. The aim of the method is to smooth the Lagrangian function rgsal@nsmooth
convex objective function, while the primal problems involve strongly camlgective functions. A
DMPC method based on primal decomposition, called feasible cooperatsead-bantrol, is proposed
by [61]. The full objective function is included in all controllers to ensewerdination and a feasible
solution is generated in each iteration of the method. [62] consider linearetppnse models and
formulate a DMPC formulation based on resource allocation, i.e. a primahgesition approach,
which is successfully applied to a fluid catalytic cracking process. A stnesfghe method is its fast
convergence.

Results related to nonlinear DMPC are limited. [63] propose a cooperattibdted model
predictive control method for nonlinear systems. Communication and catgels restricted to
neighboring subsystems. Lyapunov-based DMPC is proposed hylf6dider to ensure stability the
optimal control problem embedded into the DMPC includes an additional dyresquition ensuring
a decrease of a Lyapunov function. [65] proposes a distributed MRBoshend applies the method
to a system of coupled oscillators. [66] propose a stabilizing non-catiperdecentralized MPC
scheme for nonlinear discrete-time systems.

In the following, we will focus on a new sensitivity-driven distributed mogeddictive control
(S-DMPC) for discrete-time systems, which is based on a novel distribyteantc optimization
method|[4]. In order to achieve optimality for the overall process, theystisis’ objective functions
are modified using information of the whole process. The modification of thexie functions
incorporates a linearization of neighboring objective and constraictifurs in the adapted subprob-
lems. Hence, the coordination in the distributed method is based on firstsaasitivities. In this
paper we focus on linear discrete-time systems, while [5] considered aonsrtime systems. A
convergence analysis is provided for discrete-time systems. The methguliedato an unstable dis-
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tributed system to illustrate its capabilities. In the case study, fast conwergan be observed, while
computing time is reduced compared to a centralized controller.

The remainder of this paper is organized as follows: In Section 3.2, weth&aiscrete-time
optimal control problem to be solved. Section|3.3 presents the distributed predictive control
method and a convergence analysis of the method. In Section 3.4, the & bidfhod is applied to
a simulated process. Finally, we conclude the paper with a summary and avkdot®ection 3.5.

3.2 Problem formulation
We consider the distributed discrete-time linear time-invariant system

X(k+1) = Ax(k)+B u(k), x(0)=xo. (3.1a)

N denotes the number of subsystemss [Ajj]i j—1....n, the system matrix, anl = [Bj]i j—1,..n, the
input matrix. x(k) € R" is the state vector witk = (xq,...,xy)* andx(k) € R™, u(k) € RMis the
input vector withu = (ug,...,uy) anduj(k) € R™. xo = (Xq0,.-.,Xno) refers to the initial condition,
while k refers to the time index with=to + k At and sampling timét. The linear quadratic control
problem reads as

K+K-1
min> 2& (IIx(K) 13+ luCk) [) + Ix(h) I3, (3.2a)
: G
s.t.x(k+1) = Ax(k) +Bu(k), k=K,....K +K—-1, (3.2b)
X(K') =X, (3.2¢c)

without consideration of measurement noigedenotes the initial time sample of the moving hori-
zon problem formulation. The submatric®g € R"*", Rj € R™*™M andR; € R"*" are positive
definite weighting matricess - At is the prediction and control horizon witd time samples. While
inequality constraints for input variablesand state variablesare not considered in this work, the
theory presented can be extended as described in [5].

The optimal control problem for the individual subsysteimis coupled through the dynamics
as well as the objective function. For distributed control, the optimal coptaiblem [(3.2) is de-
composed intdN subproblems such that it can be solved by the corresporidiogntrollers of the
distributed MPC. Thus, the optimal control problem (3.2) is first reformdlate

N
miny & .
i i; . (3.33)
N 1
S.t.®d; = Z > (X;r Qij Xj —i—U;r T Uj), (3.3b)
=1
0=g¢ (3.3¢)
N
Ci:—IXi—i—Z (Ainj+BijUj+)(ijk/), (3.3d)
=1

Vie{l,...,N},K=012...,

1The bracketgv; ...vy) indicate[v] ...v{]T.
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with

X = (x(K+1),...,x(K+K)),
ui:(ui(k’),...,ui(k’JrK—l)),

2ij = diagQjj, ..., Qij,Rj),

Zij =diagRj,...,Rj),
Xijk/:(Ainj(k/),O,...,O),

0 Bij
Aij = A . Bij =
Aj 0 Bij

The objective function is separated such that the separable partsigimesalto the unique correspond-
ing subsystems. The coupled parts are equally assigned to both of tagpmrding subsystems, here.
The variables in the constraint functiogsare separated with respect to their indices, i.e.

N
ci=[Ai—l, Bi] (%,u)+ Yy X
=i

N

+5 (A, Byl (x,u). (3.4)
=)

J#

Zij O

We finally introducez; = (X, W), z= (z1,...,2n), Jj = [ o
ij

| oty = (A, By, ands -
[1;,0] to obtain the quadratic program (QP)

N
mzmi; D (3.5a)
1N
St = > JZlZ| 7 Zj, (3.5b)
O0=c; (3.5¢)
N N
G = (i —A)z+ Y Xijw + ) 4z, (3.5d)
=1 j=1
j#
Vie{l,...,N}.

The QP derived is coupled by the objective as well as the constrainidnac
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3.3 Distributed model predictive control

We suggest to coordinate the distributed optimal control embedded in the.§)Righg the adapted
objective functions [5]

c?d)J c9cJ

AL g (3.6)

P =P+ Z
i
which includes the local objective functiehas well as linear information of the full optimal control
problem provided by first order sensitivities. Thus, the method is edeiw as Sensitivity-Driven
Distributed Model Predictive Control (S-DMPC) for discrete-time. Thére upper indeX! refers to
thel-th iteration of the corresponding variable.
The QP|(3.5) is replaced by a set of QP with minimizer

2!l 2l

ZE'“] = argmin o (3.72)

1 1N
stLo =32 Tiz+5 57 52
=1

i
(3.7b)
0¢J ~aci| oo ]
Al z—-2'),
Z - dz| - J ( Z| )
J#l
0= (o — z.+ZX.,kr+ZM.J s (3.7¢)
J#'
Vie{l,...,N}.

QP (3.7) has the same minimizer as QP (3.5) [5]. The proof is done by comghemecessary
conditions of optimality (NCO), the so-called Karush-Kuhn-Tucker conadgidn this distributed QP
formulation prices (given by the Lagrange multiplier$ and resources (given by primal variables
2) are derived simultaneously, while for the most common approach in distiMEC, namely
optimization based on dual decomposition [56], the prices and resouecescuentially calculated on
different hierarchical layers. Furthermore, the S-DMPC presentablésto cope with non separable
cost functionsb; due to the inclusion of the corresponding sensitivities in each of the debsysost
functions.

Convergence of the iterative method is analyzed in the following. For thjzogat the NCO are
stated for the decomposed QP (3.7). First, the Lagrangian function

% = 0} (2) - Nici(2) (3.8)
is stated for each subsystenThe NCO are
04 1+1] [|
92 =0=Ziz "+ Z Fiz
J#I
z = )T (3.9)

Jsél
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and

N N

(- A2+ S X+ Y 7). (3.10)
=1 =1
J Jj#i

We define a mappind; with (z,A;) = {i(z,A), whereA = (A4,...,An) is the aggregated vector of

Lagrange multipliers. Aggregating equations (3.9) and (3.10) farraBults in the mappin(g, A ) =
{(z,A) given by

21+ U
L\ [|+1]} =Z4'%1 [)\ [q} +Z4'50 (3.11a)
—Z(Z" A1)
with
-, i ‘% [f_%]T
4= 17— 0 , (3.11b)
- _[(Fa=7) (o —a)T
1= (o — ) 0 , (3.11c)
— [0
== . 3.11d
o= | %) (3.11d)
As a result of the contraction mapping theorem [67], the method is comiime
L=]Z3"=) <1 (3.12)

The matrices are defined as follows:

g = diag( Az, - . ., INN),
7 —diag s, .., ),
T = diag( A1, - -, INN),
o = ()i j=1..N,

T = (F)ij=1...N>

Xo = (Xijk')i,j=1,...N-

An open question is a proper stopping criterion for the iterative method. ggestione of the
following three criteria: the change of the variabiese. ||Z'+Y — 211|| /|| 2!|| < &; the change of the
calculated objective functions, i.g®!+1 — oll|| /||| < £; or a fixed numbed of total iterations.
At each sampling time, the S-DMPC method needs a proper initialization of thebher#® and
A9, Here, we suggest to initialize these variables using the values of the lase itdrthe previous
sampling time, i.e.Z%|, = 2Y|,_1 andA %], = AP}, _;. Alternative initialization methods are the
subject of future work.
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Figure 3.2: lllustration of the case study: Cascaded system with feedibdattisturbances

3.4 Case study
For illustration of the method, we consider the discrete-time linear system

X(K+ 1) = A x(K) + B u(k) + D d(K)

with
[A11 0 Aol [Bo 0 07
A=|A0 | A | 0|, B=D=]0 | By | 0],
| 0 Ao Azz| 0 0 Bo |
[ 1 1 0] [ 1 1 0
Ap=1] 0 1 1], A= O 1 1],
0.125 —0.75 25] 0.008 —0.12 16
[ 1 1 0 [0 00
| —0.027 -0.27 01 10025 0 Q
Bo=[0 0 1 .

x1(K), X2(k), andxz(k) € R3 are the state vectors; (k), uz(k), andus(k) the scalar inputs, andi(k) €

R® an unknown disturbance vector. The topology of the system is depictégureR3.2. The system
consists of three cascaded subsystgém&,, and3, with a feedback representing a recycle. Hence,
there is a strong coupling between the variables of one subsystem, bakangeupling between the
different subsystems represented by the zero submatrices and the spmatrice8y. The system
considered is open-loop unstable. Its eigenvalues are depicted in Bi§ure

Table 3.1: Controller performance: Absolute performadtgg, relative performanc®,e and average
computing timet for the controllers considered.
Method  It.  ®aps  Prel [%0] t [s]
Cen. MPC - 1.94e4 - 012
Dec. MPC - 1.34e5 589 80.026
S-DMPC 1 1.95e4 0.5 80.030
S-DMPC 2 1.94e4 0 30.059
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Figure 3.3: Eigenvalues of the system considered in the case study. olithdirse indicates the
stability bound.
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Figure 3.4: State trajectories
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Figure 3.5: Input trajectories
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The optimal control problem for this case study is defined as

K+K-1

rQiun; > (X113 + u(k)[3)

s.t.x(k+1) = Axk) +Bu(k), k=K,....K+K—-1,
X(K) = X,

whereQ: diag(Qll, Q2o, Q33), R= diag(Rll, Roo, R33) with Qi=Ile R?’, i= 12,3 andR; = 100Q i =
1,2,3 andk' =0,1,...,599. The aim is to stabilize the plant at the set point. The plant is simulated
for H = 600 time samples. During the simulation, disturbardesl,, andds with

0.1, for75<k<150
di(k) = ,
0, else

0.1, for225<k <300
0, else

)

)

0.1, for375< k<450
ds(k) =
0, else

affect the system and are unknown to the controller. There is no estimatidel included in the
controllers. We assume state feedback in the case study.

We compare the distributed controller to a decentralized as well as a cemti@izioller in order
to judge its performance. While the centralized controller has full knowledghe system dynamics
and solves QP (3.5), the decentralized controller as well as the distrilarigdleer have only reduced
knowledge of the dynamics of the corresponding subsystem. Hence MREZolves the coupled
QP (3.7), while the decentralized MPC neglects all interactions and solvemtiescale QP

1
min éz,-T i z

s.t. 0= [Ai —1, Bi]z+ Xk,
Viel1,23 K=012...,

independently. For the controllers considered the control and predintioron isK = 50. For the
S-DMPC method, a fixed numbére {1,2} of iterations is chosen.

First we analyze the mappirgfor the system considered. The corresponding Lipschitz constant
L is calculated ag = 0.54 < 1 (cf. equation[(3.12)). Thus, the S-DMPC method is convergent and
applicable for the case study.

Then, each of the three MPC schemes is implemented for the case studye|Eidjshows rep-
resentative trajectories for each of the subsystems, while the cordisgdnputs are depicted in
Figure/ 3.5. The decentralized MPC is hardly able to stabilize the distributéehsydhe simulated
time horizon is not sufficient to achieve a steady-state for the closed-y@tgns using decentralized
MPC. In contrast, for the centralized MPC (which is considered as teeersfe) and the S-DMPC,
the system is stabilized at a new steady state almost immediately after eachioitheghisturbances.
Figure 3.4 and 3/5 contain the results of S-DMPC with 1. A summary on the control performance
is given in Table 3.1. It contains the absolute performance given by feetofe function

H-1

Paps= kzo (Ix(K)1IE+ Tu(k) 7).
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considering the complete simulation horizon and a relative performance

q)abs* q)abs,ref

(Drel =
cDabs,ref

where®,ps refiS the absolute performance of the reference method, i.e. the centraliz&€dWiiile
the decentralized MPC clearly is not able to compete with the centralized MP@isthibuted MPC
scheme proposed is capable to achieve almost optimal results at a veryrtdyvenof iterations. For

J =1, the loss of performance, compared to the reference solution is d&#y, Qvhile forJd = 2
optimal results can be achieved. A key requirement for this low number afites is a proper ini-
tialization of the variablez andA. Although, a simple initialization is chosen in this work, this is
very effective. In addition, Table 3.1 provides the average computing tirfer each of the meth-
ods implemented. The average computing time can be reduced for the dioethtaa well as the
distributed MPC, in particular if the different controllers use differerdogssors. Then, faF = 2
iterations, the average computing time 0.05% of SD-DMPC is reduced by 47% compared to the
average computing time= 0.112 of the centralized MPC.

3.5 Conclusions

We have adopted the concept of Sensitivity-Driven Distributed Modedietive Control (S-DMPC) to
the control of discrete-time systems. The optimal control formulation includeshagnon separable
costterms, i.e. the cost functions is non-additive. Though, the codialimaechanism can handle the
non-separable cost function. Hence, e.g. arbitrary final costsearcluded. A necessary condition
of convergence is provided to prove the applicability of the method. Codidimis possible in case
the internal coupling of each subsystem is strong compared to the couplingdn the subsystems.
The method has been successfully applied to a case study. An almost opitral sequence can
be achieved after only one iteration in this case, while a significant redusttittre computing time
compared to a centralized MPC can be observed. While we did not coasilerequality constraints
in this work, the method can be extended to consider inequality constrairttsefamputsu and the
state variables. In addition the method can be extended to accelerate convergenceetgits df
both extensions we refer to [5].

A remaining task is to explicitly consider stability of the closed-loop system, whilegrctise
study provided, stability is achieved by a sufficiently large prediction harizim addition, a ma-
jor challenge is to extend the results presented to nonlinear systems. Fimaligethod has to be
implemented for large-scale systems.

2The controllers have been implemented using the standard Matlab QPeohapr og on an Intel Core2 Quad Q6700
machine. Only one core has been assigned to Matlab.

Page 40/60




HD-MPC ICT-223854 Coordination mechanismsi

Chapter 4

Distributed non-cooperative MPC with
neighbor-to-neighbor communication

This research of this chapter has been developed by Marcello FadrRiecardo Scattolini, Diparti-
mento di Elettronica e Informazione, Politecnico di Milano, Milan, Italy and walldresented at the
2011 IFAC World Congress [9].

4.1 Introduction

The majority of results in the field of model predictive control (MPC) haverbdeveloped under the
assumption that the available data and information are gathered in single |cmadi@nocessed by a
single computer. Unfortunately, many industrial problems cannot be solvedentralized fashion,
such as those arising when dealing with large scale systems [12].

Real-world examples of large scale systems are power networks [169p8ansport networks [12,
70, 71] and hydro power plants [72, 73], which are characterizestrongly interacting and spatially
distributed subsystems, possibly with uncertainties, and which may sudferlimited computation
capabilities and transmission load. In [74] the authors call for new ideadiViiding the centralized
control synthesis problem into almost independent subproblems anoidimgowith limited computa-
tional capabilities and memory, as well as with uncertainties and perturbaliofr&] it is remarked
that another important challenge is to reduce, as much as possible, thedtifor exchange among
the subsystems, in order to satisfy technological constraints and foomémal reasons.

In the last years many distributed control structures have been deddlaged on MPC techniques.
Specifically, completely decentralized architectures [76, 77], distributeenses (see, e.g., [65,/78,
79, 25, 80, 81], just to mention some recent contributions) and coordimaietrol techniques for
independent (dynamically uncoupled) systems|[82, 83, 24, 84] harefreposed.

Focusing more specifically on distributed MPC schemes [21], they can sifidd according to the
topology of the transmission network (i.€ully connectedbr partially connectechetworks), to the
information exchange protocol needed (ir@n-iterativeor iterative algorithm$ and to the type of
cost function which is optimized (i.ecpoperativeor non-cooperativalgorithms).

For example, in [65] a non-iterative, non-cooperative distributed MR@rigue is proposed for
continuous-time systems based on neighbor-to-neighbor informationregehahere it is required
that each subsystems knows only its own dynamic subsystem and how théor@ig subsystems
states affect its dynamics. In [79] two distributed cooperative MPC algositfor continuous-time
systems are proposed, where each actuator is required to know tladl system model: specifically,
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the authors propose a non-iterative sequential (partially connectemt)thig based on previous re-
sults presented in [78], and a novel iterative fully connected one.

In [25, 80, 81] a cooperative fully connected output-feedback MRGrithm for discrete time sys-
tems is discussed, where only input constraints can be assigned anddwliekige on the system
dynamics is required to all the subsystems. Interestingly, this algorithmmgeagastability both in
its iterative and non-iterative formulation, while optimal performance (i.e.ivafgnt to the perfor-
mances provided by a centralized MPC algorithm) are attained when an idratigmission protocol
is employed.

In this work we propose a non-iterative, non-cooperative MPC alguanithere a neighbor-to-neighbor
(i.e., partially connected) communication network and partial (regional)tstialcinformation are
needed. The rationale of the proposed technique is that, at each samplingaohesubsystem sends
to its neighbor information about its future reference trajectory, andagtees that the actual tra-
jectory lies within a certain bound in the neighborhood of the reference ©hen, a robust MPC
approach inspired by [10] provides a tool for the statement of the Igtahzation problems solved
by each subsystem.

The proposed algorithm handles input and state constraints and, undeassilchptions on the ex-
istence of a suitable decentralized auxiliary control law, we prove cgeuwee of the closed loop
control system.

The highlights of the proposed approach arB:it(is not necessary for each subsystem to know
the dynamical models governing the trajectories of the other subsystemev@rothe ones of the
neighbors); if) the transmission of information is limited, in that each subsystem needs the refe
ence trajectories only of the variables of one’s neighbors which actuiédgtats dynamics (which
is normally a narrow subset of the neighbors’ variablgg)), ifs rationale is very similar to the MPC
algorithms presently employed in industry, where reference trajectoriesethitm the dynamics of
the system under control are usedj) the required transmission burden is even smaller in steady
state conditions, when no transmission would be needed even in predesroalloperturbations of
the subsystems’ trajectories, while the variables affecting the state varigblethin a given set.
Notation. We use the short-hand= (vs,...,Vs) to denote a column vector with(not necessarily
scalar) components, ..., vs. The symbokb denotes the Minkowski sum, namely= A® B if and
onlyifC={c:c=a+b, forallac A,be B}. We also denot@®M ;A =A;®---®Ay. For adiscrete-
time signals; anda,b € N, a < b, we denotés,, Sat 1, - - - , ) With S5, Finally, a continuous function
a:R; — R, is a# function iff a(0) = 0, it is strictly increasing and (s) — +o ass— +oo.

4.2 Partitioned systems
Consider a process which obeys to the linear dynamics
Xt+1 = AXt +Bu, (4.1)

wherex; € R" is the state vector ang € R™ is the input signal.

Let the system (4/1) be partitionedhlow order interconnected non overlapping subsystems, where
a generic submodel hag] € R™ as state vector, i.ex; = (xtm, . ,xt['v”) andyM, n = n. According to
this decomposition, the state transition matridgsc R™*™, ..., Aym € R™*™ of theM subsystems
are diagonal blocks of\, whereas the non-diagonal blocks Af(i.e., Ajj, with i # j) define the
coupling terms between subsystems.

The partition performed on the system induces a interconnected netwsukgfstems, which can be

naturally described by means of a directed gréph (7', &), where the nodes it are the subsystems
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and the edgéj,i) in the set&” C ¥ x ¥ models that the state gfaffects the dynamics of subsystem
i. In particular,(j,i) € & if and only if Ajj # 0. We denote as#{ the set of neighbors of subsystém
(which excludes) i.e., 4 = {j|j #1and(},i) € &}.

Furthermore, we assume that the inpytan be partitioned into a set bf input vectorsut[] €RM,
with i = 1,...,M, where we assume thaﬂ directly affects only the state of theth subsystenxt[]
This implies thatB has a block diagonal structuB=diag(By,...,Bw), whereB; € R"*™ for all

i =1,...,M. Itfinally results that thé-th subprocess obeys to the linear dynamics

Xth—A.,xt +B|Ut + Z AlJXt (4.2)
JEN

wherextm € X; C R" is the state vector ana{i] € Uj C R™ is the input vector. The sel§; andT;
are convex neighborhoods of the origin. Furthermore we dé&fireq]™, X; C R" andU = 1M, U;,

which are convex by convexity 6f; andU;j, respectively, for=1,...,M. WhenX =R" andU = R™
we say that the system is unconstrained.

Our aim is to design, for each of the subsystems, an algorithm for computingpat sequencat[']

based on the stabé'] and some information which is transmitted bth neighboring subsystems,
which guarantees closed loop asymptotic convergence of the state ofgbestale system (4.1), the
minimization of a given local cost function and constraint satisfaction. iBp@ty, we assume that

each subsystem has a reference trajeotﬂryvﬁich is transmitted to the subsystems which hiaae
neighbor, and which is incrementally defined (as better specified in the fotipmw\We also assume
that one can guarantee that, for @alt O, the real local state trajectovgp lies in a specified time-
invariant nelghborhood oél'l e, Xl — &l ¢ &, where 0c &.

Letting Wt =Y e Aj (% ( [”) thei-th system model (4.2) can be written as follows

th+1 = A +BY Zje,/ViAaJ')?tm v (4.3)

where the ternwt” c Wi = @jc 4 Aj &) represents a bounded disturbance affecting equation (4.3) and

zje/ViAijxt can be considered as a known input. Provided that, far-all,...,M, the constraint

Xl — >~<t['] € & is satisfied for alt > 0, we can cast the problem of designing a distributed MPC control
law as the problem of designing a robust control law for the subsyst&)) fdr alli=1,...,M.

To this aim, we rely on the robust MPC algorithm presented in [10] for caimgd linear systems with
bounded disturbances for the statement of the local MPC sub-probldrith(will be denoted-MPC
problems). The two main advantages of this approach are that no bandemsin-max problem is
required to be solved on-line, and that it naturally provides the referEa';ectoryﬁ] which is one

of the key points of the algorithm presented in this paper (see Section 4i8tfils).

4.3 The distributed MPC algorithm

As a preliminary step to the statement of the loecMPC problem, we define thieth subsystem
nominal model associated to equation (4.3)

%l o= AR BT AR (4.4)
The control law for the redtth subsystem (4.3) will be assigned, fortalt 0, according to
u! = o+ ke 1) (4.5)
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whereK?"is a suitable control gain. If we deflmé] xt” we obtain, from[(4.3) and (4.5)
Eﬂl = (Ai +BK) ftm +wg (4.6)

Wherewtm € W;. SinceW; is bounded, if A + BiK2"¥) is Schur, then there exists a robust positively
invariant (RPI) sek; for (4.6) such that, for alttm €z, thenetﬂrl € Z. A method for computing
polytopic, robust positively invariant, outer approximations of the minimalisbpositively invariant
set is proposed in [85]. From (4.6) it follows thatuﬁ is computed as in (4.5) for atl > t, then

fi

x| — ez, 4.7)

implies thatx| — £ € Z for all k > t.
Now write _ _ _ _
{5 = o)A+ 6 )
and define the sei; for all i =1,...,M as a set containing the origin and satisfyiggs Z; C &;.
Since, in view ofﬂ)x'] le Z for all k > t, if we also satisfy the constraint

-l (4.8)

forallk > t, thenxk XE € & forallk >t as required.
Now we are in the position to state the local mlnlmlzatlon problem for all subsystemstantt.

Given the future reference trajectoryicdnd its nelghborxk k=t,....t +N—-1, j € A U{i}, the
i-MPC problem consists in the following

o min VN Oy y) (49)

XUt Ny
subject to the dynamic constraints (4.4), the static constraints (4.7), (4.8),
fi

% € X (4.10)
al e O (4.11)

Where§§i O Zi C X and@i @ K Z; C Uj, and the terminal constraint
R e XF (4.12)

where§<§iF is thei-th nominal subsystem terminal set, whose properties will be specified inltbe/{
ing.

The cost functiorViN(it['],fJR]HN y)is

Nl g T gl il F gl
ViR (R O ) = kz_t (R 0) Vi (%) (4.13)

wherel; : R" x R™ — R, is the stage cost ang™ : R" — R is the final cost. From now on, we
assume thdt is defined in such a way thit0,0) = 0 and that there exists, for al=1,...,M, a %%
function a and a matrixR, satisfying rank[Bf R']T) = my such that;(xl,ull) > a(||(x[], Rull)||)

for all xll e R", ulll € R™. As in [10], in the stated optimization problem minimization is performed
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with respect both to the nominal system initial stét}eand to the nominal input trajectqu N-1]"

Letting the palrx[/t, tt+N e be the solution to the MPC problem|(4.9) at timé, and according

to the r_ecedlng horlzon_ paradigm, we assign the input '_[o th_e nominal sysiémna@timet, asuf/]t.
According to|(4.5), the input to the real system (4.2), at instaist

f! = 419

Furthermore, let us define "Eyt the trajectory stemming frorxi']A andu[t}“rN 1t in view of equation

(4.4). The value of the reference state varlatﬂlq;, is set to
K1y = XHN 1 (4.15)

We stress that we do not define, at each indtaamhew reference trajectox{? Tk=t+1,...,t+N,but
we append the valwé'];N to the reference trajectory which has been already defindd<fdr+ N — 1.
A definition is required to define the set of admissible initial conditis: (xgl], - ,ng]) and initial
reference trajectori é}fol], forallj=1....,M.

Definition 4.3.1 Writing x = (x¥,... xM!), we denote the feasibility regiak for all the i-MPC
problems as the set

XNi= {x:iftx) =xiforalli=1,...,M
~[1] M A[l] oM]
th{znﬂ( O:N— 11'\/'] Kon-_1)> (XO/O’ - %o/0);

(u[o:Nfl], ey u[O:Nfl]) such that(4.2), (4.7), (4.8),
(4.10)(4.12)are satisfied for all i= 1,...,M}

We also denote, for eache XN, the region of acceptable initial reference trajectories as

~ 1] ~[M e i ; .
Xy = {(X {O]N 1], X%O,]\l 1]): |fxg]:x' foralli=1,....M

thenﬂ(xo/o, ,Xg\;'o) (‘éN 1 G{x}\l_l])such that

(4.2), (4.7), (4.8), M}m)are satisfied foralli=1,...,M}

4.4 Convergence results

The following assumptions are needed to state the main results of the paper.

Assumption 4.4.1 The matrix A + B;K2"is Schur, for all i=1,...,M.

Assumption 4.4.2 Letting< 2 =diag(K2", ..., Ka"), X = M, X;, U= ™, U; andXF = M, XF,
it holds that:

() The matrixA + BK?a%is Schur;
(i) XF CXis an invariant set fok " = (A +BKaX)g;

(i) 0=K2a% e U foranyx € XF;
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(iv) forall x € XF and, for a given constamt > 0
VF (87) = VF (R) < —(1+K)I(%,0) (4.16)

whereVF (%) = M, VF (1)) andI(%,0) = 3M, 1i (%1, all).

Assumption 4.4.3 Given the setg}, whereO € & for alli = 1...,M, and the RPI sets;Zor equa-
tions(4.6), there exists a real positive constgut > 0 such that Z& %p. (0) C & foralli =1,...,M,
whereZg. (0) is a ball of radiuspe > 0 centered at the origin.

Now we are in the position to state the main result.

Theorem 1 Let Assumptions 4.4/1-4.4.3 be satisfied and jdteEa neighborhood of the origin satis-
fying E ©Z C &. Then the trajectory;, starting from any initial conditiorxo € XN, asymptotically
converges to the origin, provided that the initial reference trajectoriesrai®,, .

Proof 1 See Appendix 4.7

Notice that the fulfillment of Assumptions 4.4.1, 4/4.2 requires the design afenttalized auxiliary
control law which, at the same time, (a) stabilizes the local subsystems wikettineg the intercon-
nections, (b) stabilizes the overall large scale system, (c) has a Lyajpumction which basically
corresponds to a weighted sum of local Lyapunov functions.

The above-mentioned issues can be addressed using a number oftaldisked results, worked out
in the past in the field of decentralized control. For instance, one can mefgilestone results on
connective stability11], vector Lyapunov functions and the so-called “weighted sumaamhr” for
proving connective stability [12]. More recently, problems (a) and @)ehbeen successfully ad-
dressed in [13], where a small gain condition for large-scale (nonlirsyatems has been derived.
Similar concepts can be used to provide conditions for the validity of Assumgptb8.

4.5 Example

Consider a fourth-order system with two input variables. The dynamitiseo$ystem is described
by (4.4), where

A [All AlZ] _ [Bl 0]
A1 A’ 0 B
and
0 1 0.1 01 0
Ai1=PRAypr = [_1 2] A= —An = [ 0 0'3} ,Bi=By= L]

The following constraints are set to the input signai&.5 < u[l] <25and-4< u[z] < 4. We define,

n @13, WG = JRIR  ad W®l) = HRE  where
P, = P, =diag(1,3) and Ql = Q. =diag(0.45930.4593). Settlng Ki=Ky=[1 -2|, we verify
Assumptions 4.4/1 and 4.4.2. In the simulations, weNset4 and the reference trajectories are ini-
tialized by simulating the subsystems controlled using the auxiliary control lagrerdoupling terms
are neglected, that béK (A + B K.) xO fork=0,...,t+N—1. A choice of the setg;, E and
Wi, i = 1,2, consistent with Assumption 4.4.3, is shown in Fig. 4.1 (grey ellipsoids)ienthe black
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Figure 4.1: Setg;, E; andW;, i = 1,2, chosen in the given example. The black dotted lines represent
the real constraints exerted in the example.

dotted lines represent the real constraints exerted, for simplicity, whilengdillwve constrained opti-
mization problem$-MPC,i =1, 2.

In Fig.[4.2 the plots of the optimal input trajectories obtained with the distribute@ BlBorithm
(dMPC) are shown and compared with those obtained with a centralized MWEQ). Notably, at
timet = 0 the constraint ont“‘] is active, while it is apparent that the constraint on the real input vari-
ableutm is far from being violated. This clearly shows that the robustness argumed to define the
distributed MPC leads to a level of conservativeness in the solution of diepn which is directly
proportional to the dimension of the uncertainty sets.

In Fig.[4.3 we compare the optimal trajectories obtained with the proposedchechéh the ones
obtained using a centralized MPC controller. These results show that, ipehbiic case considered
here, the performance degradation is not significant.

4.6 Conclusions

In this paper we have proposed a novel non-iterative, non-cotiyeedistributed MPC algorithm. Un-
der mild assumptions on the existence of a suitable decentralized auxiliargldantr convergence
of the closed loop control system can be guaranteed. As it is discusmntding to this approach to
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Figure 4.2: Input trajectories. Panel A{f” (black solid line), input obtained with cMPC (grey solid
line), thresholds fori™ (black dotted lines). Panel B{™" (black solid line), thresholds fm{ﬁ (black

dotted lines). Panel GJF] (black solid line), inputs obtained with cMPC (grey solid line), thresholds
for 2 (black dotted lines). Panel Bﬁf (black solid line), thresholds fag? (black dotted lines).

distributed control, no information on other subsystem’s dynamics is requrthe subsystems, and
the data received by systdrs a subset oi[[ﬂN, only if j is a neighbor of.

Although this paper establishes the main algorithm and convergence rasudtswork has still to be
devoted to the problem of enhancing its applicability. The following issuesfgsaramount impor-
tance: (a) to give simple conditions on the system under control and taproenstructing criteria in
order to fulfill Assumptions 4.4.1-4.4.3; (b) to give criteria to chose ZetgsdE;; (C) to give criteria
for optimal choices of the initial reference trajectori%?\‘:l].

Since the proposed method strongly relies on robustness conceptifiea fomprovement to the pro-
posed scheme is envisaged, coping with uncertainties on the model of h@tataevariables of a
subsystem affect the dynamics of the neighbors.
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Figure 4.3: Controlled state variables with dMPC (black solid lines) and withCKgfeey solid lines),
>~<t['] (dotted lines) an(ztt['/}t (dashed lines). Panel A: firstelemenlx&. Panel B: second eIementxﬁ‘].

Panel C: first element 042]. Panel D: second elementxﬁ].

4.7 Appendix: Proof of Theorem 1

4.7.1 The collective problem

Define the collective vectors Xt = ()“(tm, e 7>“<t[M]),

Xt = (”m,...,f(t[w), Oy = (Ot[l},...,OI[M]), Wy = (Wt[l], .,WI[M]) andg; = (st[l],...,st[w). Furthermore,

define the matriceA* =diag(A11, .. .,Avum) andA = A — A", Collectively, write equations (4.3) and
(4.4) as

Xt41 = A" X -+ Bug —I—A)?t + Wt (417)
K1 = A*R + B + A% (4.18)

In view of (4.5),u; = O; + K@*(x; — X ), and collectively write/ (4.6) as

Eir1=(A"+ BKa“X)et + Wi (4.19)
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Since eacli-MPC problem depends upon local variables (note, in fact, that thdinguprmsxﬁ} are

fixed for allk =t,...,t + N — 1), minimizing (4.9) for alli = 1,...,M is equivalent to minimize

VN () = min  VN(&, Ojean-y) (4.20)

X, Uit +N-1)

subject to the dynamic constraints (4.18), the static constraints

M
Xt — Xt €Z = rlZi (4.21a)

M
Xk — X € E = rlEi (4.21b)
%€ X (4.21c)
U el (4.21d)

and the terminal constraint

fen € XF (4.22)

Here, the cost functiol’N is defined as

t+N-—-1
VM (%, Ot on- 1) Z | (S, 0i) +VF (Rean)
We also define

VM%) = min VN(R,Ogein-1)) (4.23)

U[I t+N-1]

subject to the dynamic constraints (4.18) and the static constraints [(4£228)-(

4.7.2 Feasibility
From definition 4.3.1, it collectively holds that

XN =" {x: if xo = x then3KXjo.n_1],%0/0, UjoN_1]

such that (4.18), (4.21) and (4.22) are satisfied
and that, for each point of the feasibility set XN

XX = {)?[O:Nfl] Dif Xg=x thenzl)’zo/o, O[O,Nfl]
such that/(4.18)| (4.21) and (4122) are satisfied

We also defin&N = xN & Z.

Assume that, at instanf x; € XN and thatk14n-1) € th. The optimal nominal input and state
sequences obtained by minimizing the collective MPC problendigyen_1j 1 = {0y, -+, Ot yn—1/t )
andXeeangt = {Xests - - Xenge ) respectively. Finally, recall that it is sBtn = Renjt-

We deflneuf‘Jr“f{l r= = K@% N and we computey i according to(4.18) fromk, N/ Where
O yn = GFYY - We obtain

caux x5 ~aux Ao
Xeens1t = ARy + BULN 4+ AR
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sinceXt N = Xi4n;1, the latter is equivalent to
Ren+1 = (A+BKA )R

Note that, in view of constraint (4.22) and Assumption 4. {Il?x el andx'X . ; 1 € XF. There-
fore, they satisfy constraints (4.21¢), (4.21d) and (4.22). Also rdumg)to Assumption 4.4/2, (4.16)
holds.

We also define the input sequence

1. i Qi fyaux
Uparenye = {0ages - O O b

and the state sequence stemming from the initial condgjogy, and the input sequUenag, ; 11,njt
ie.,

)?[t+11+N+1}/t = {)A<t+1/t7 e 7>A<t+N/t7>A<?fK1+1/t}
In view of the feasibility of the-MPC problem at time, we have thak; 1 — X1, € Z andXy; — Xk €
M, Eforallk=t+1,...,t+N—1. Note also thak; .y, — %~ = 0 € E by (4.15). Therefore, we
can conclude that the state and the input sequexcas N1t andLT[t+1t+N}/t are feasible at+ 1,
since constraints (4.21) am 22) are satisfied. This provestaaxN andX N1 € Xy, implies
thatx;,q € XN andX114n] € XXM

4.7.3 Convergence of the optimal cost function

By optimality
VNS 1) < VN Ry, Upeatenge)
where
t+N
VN (R0 Upatng ) = > | (R, Q) +V© (X?+u>l§l+1/t) (4.24)
k=t+1
where it is sefi,n = 02 N It Therefore we compute that
VN’O(f(tH/t) v (Xt/t) =1 (X, Uepe) + |(>A<t+N/t70taf)|§|/t)+
+VF (X?+U)ri1+1/t> —VF (Reangt) (4.25)

In view of (4.16)
VF (Xf‘+u>§1+1/t> =V (Reengt) 1 e, 088K 1) <
—Kl(Xt+N/t7U?+w§1/t)
and so, from((4.25), it follows that

VN’OOA(tJrl/t) < VN’OOA(t/t) - I()A(t/ta Ot/t) - KI()A(t+N/t7 U?Jruﬁj/t) (4.26)

Recall the definition of, and of matrixR;, foralli = 1,...,M, and defindk =diag(Ry,...,Ru). Then,
there exists a%5 functiona| such that(x,u) > ai(||(x,Ru)||) for all x € R", u € R™. This implies
thatl(x,u) > ai (||x||) for all x € R", u € R™. Therefore

VIO(Rey1/0) < VNO(Re) — au (% ell) — ka ([1%eonl) (4.27)
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forall % € XN and for all feasible sequenciég k=t,...,t+N—1.
Now we analyze the properties of the cost functiéi(x;) defined in[(4.20). First, note that, by
definition of%, 1, we have tha¥N*(x;) = VN9(%, ;). By optimality, we have that

VN (1) = VO (R jih1) < VVO(Riiap)
Considering| (4.27), we obtain that
V¥ (xe1) < VN (xe) = an([[Reell) — ko ([[%eenl ) (4.28)

for all x, € X and for all sequence n_1) € Xy,. This proves thafi%; ;|| — O and||%|| — O as
t — 400,

4.7.4 Convergence of the trajectories

Define a positive real numb@é in such a way that, ifiXq|| < o, k=t,...,t + N, and if || Ox|| < o,
k=t,...,t +N—1, then constraints (4.21h)-(4.22) are satisfied.

Defining a sequencg, k =t,...,t + N, stemming from the initial condition; ; = X;, whose
dynamics obeys td (4.18), and where the infiut= Uy = K&, for all k=1t,...,t + N -1,
then there exists a positive real numhir< & such that, if[|% || < & and [|%|| < & for k =
t,...,t +N—1, then|xl| < &, k=1t,...,t +N, and|[ugxl| < &, k=t,....,t +N—1. In fact,
denotingF = A* + BK2" we solve|(4.18) and we obtain that, for 1

i—1

Xerijt = F'Re+ Z)F%&)”(Hi_ -1 (4.29)
J:
and therefore B A
inll = xpl<de<e
[Rsipll < maviey nIF +3bFIA|S
Ul < KAl

Therefore, for a suitablé, if [ || < & and|[[X|| < &, k=t,...,t+N—1, are verified at time
t, then the trajectoriesy, k=t,...,t +N anduy,, k=t,...,t +N — 1 are feasible (since alsg
satisfies|(4.21a) for the feasibility of theVIPC problem at time).

Since||X; || — 0 and|[%|| — O ast — oo, there exist$ > 0 such that|% || < & and||%|| < & for
all t > t, which makes the trajectorieTﬁ/t, k=t,...,t +N, andJk/t, k=t,...,t +N—1, feasible for
allt >t. By optimality, ift >t

t+N-1
VN*(Xt) = VN’O()A(t/t) < Z I()?k/taak/t) +VF ()?t+N/t) (4.30)
k=t

Recall (4.16). Sinc&F > 0 by definition, one has that

| (Xt Uit) < 15 VE (Xin) < VF (X
sincek > 0. Therefore, from (4.30), we have that

t+N _
V() < 5 VF (i) (4.31)
k=t
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From (4.29) and (4.31), we obtain that, fortalt t, there exists a#, function such that

VI (%) < Bl (Rets Xieean-1)) (4.32)

For this it follows thatvN*(x;) — 0 ast — +oo.

Recall that,; is generated according to (4/18), stemming from the initial condijgrand inputs
Qi/r. One can write the solution to (4.18) &S 1 = Vit + %iUt, Where

Vigi = (A") e + Z)(A*)JAXHi—j—L
J:

% =[A)"1B ... B 0 .. 0

ifi=21...,N, U= (Ogp,...,0:n-1/). Note that, sincéiX; || — 0 and||X;|| — O ast — +oo, also
[Vijell — O ast — +oo forallk=t+1,...,t+N. We also denotg ; = Xy and %o = Onxnm-
Now, consider again the functionf* (x,):

t+N—-1
VN (x) = > Vi + BtV O +VF (Vesng + 2ZaUt) (4.33)
k=t

From the definition of; it follows thatl(x, ux) > ai (|| (Xk, Ruk)]|), and so

0< S tau(ll(vige + ButUr, Rl )
+VF (Vt+N/t +:@NUt) < VN*(X'[)

Since it is proved tha¥N*(x;) — 0 ast — +w, it follows that, for allk =t,...,t +N—1
oL (Il (Vigt + PV, Re) ) — 0
andVF (Vi +BnUt) — 0 ast — +oo. This implies that:
BU;+Vy — 0 (4.34)
ast — o, where
Po
BN
diagR,...,R)
andVi = (W, - Venjt; 0, -+, 0). Itis readily seen that, in view of the triangular structure of
i
BN

and since, by definition d®,i=1,...,M

([
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then rankB) = Nm SinceV; — 0 ast — 4o, from (4.34) it follows thatU; — 0 ast — +.
Thereforeli ; — 0 ast — +oo.

Finally, recall that the statg evolves according to the equation

Xt = A+B [0y + K2 (x — X 1)]
= (A+BKaUX) Xt+B(0t/t —Kauxs\(t/t)

By asymptotic convergence to zero of the nominal state and input signand(, ; respectively,
we obtain that

B (Ot/t - Ka“Xf(t/t) is an asymptotically vanishing term. Since afgo+ BK2") is Schur by Assump-
tion|4.4.2, we obtain that — 0 ast — +o0. This concludes the proof of Theorem 1.
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