
SEVENTH FRAMEWORK PROGRAMME
THEME – ICT

[Information and Communication Technologies]

Contract Number: 223854
Project Title: Hierarchical and Distributed Model Predictive Control of Large-

Scale Systems
Project Acronym: HD-MPC

HD−MPC

Deliverable Number: D3.4.1
Deliverable Type: Report
Contractual Date of Delivery: March 1, 2010
Actual Date of Delivery: March 1, 2010
Title of Deliverable: Report of literature survey and analysis

regarding timing and delay issues
Dissemination level: Public
Workpackage contributing to the Deliverable: WP3
WP Leader: RWTH Aachen
Partners: TUD, POLIMI, RWTH, USE, UNC, SUP-

ELEC
Author(s): Daniel Limon (USE)

Jairo Espinosa, Felipe Valencia and José
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Executive Summary

This report describes the results of a literature survey regarding timing and delay issues and delay
issues in the context of hierarchical and distributed MPC. More specifically, the following topics
are considered:

• When a control system is implemented in a distributed fashion, with multiple processors
communicating over a network, both the communication delays associated with the net-
work and the computation delays associated with the processing time can degrade the sys-
tems performance. In this case, the performance of the system may depends not only on
the performance of the individual components but also on their interaction and coopera-
tion. Therefore, Chapter 1 discusses modeling and control of time-delay systems, including
stability and robustness.

• Chapter 2 focuses on communication and computational delay in MPC in the context of
networked control systems. We characterize the issues related to communication delays
and dropped network packets. Next, we discuss model-based compensation of the dynamic
effects of the network, and efficient schemes for on-line optimal controland MPC in net-
worked control systems.

• The topic of Chapter 3 is robust MPC for delayed systems. There we consider in particular
stability and prediction.
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Chapter 1

Modeling and Control of Time-delay
Systems

1.1 Introduction

When a control system is implemented in a distributed fashion, with multiple processors communicat-
ing over a network, both the communication delays associated with the network and the computation
delays associated with the processing time can degrade the system’s performance. In this case, the
performance of the system may depends not only on the performance of the individual components
but also on their interaction and cooperation. [60].

1.2 Delay Modeling

In ([2], [3]) the classical approach of delay approximation by Taylor series expansion [47] is replaced
by an the injection of a delay term (from the system state equation) into the interconnection variables.
This gives a reduced system compared with the classical approach. Eq.(1.1) shows an approximation
of the scalar linear system with delay using the Taylor expansion.

ẋ(t) = ax(t)+bx(t− τ) ∼= ẋex = Âxex(t)+ B̂S(τ)xex (1.1)

whereÂ and B̂ represent operatorsa andb for the scalar case,xex represents the Taylor coefficient
vector for the scalar functionx(t) andẋex represents the Taylor coefficient vector for the scalar function
ẋ(t), andS(τ) is the Taylor delay operational matrix. This method increases the system order as
the number of terms were taken in the Taylor series expansion, while the methodused in [2] and
[3] preserve the system order making the computational efficiency more tractable when the system
becomes a large-scale one. This approach basically take a model of the asit is shown in Eq. (1.2)
which arise from a partition of a global model intoM subsystems with interactions among them.

Xi(k+1) = AiXi(k)+BiUi(k)+CiZi(k) (1.2)

whereXi denote the state vector,Ui is the input vector, andZi (with i = 1, ...,M) are the interaction
variables. In this case,Zi is described by Eq. (1.3):

Zi =
M

∑
j=1

[Li j Xj(k)+Kxi jXj(k−dx j)+Kui jU j(k−du j)] (1.3)
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with Li j , Kxi j andKui j are the interaction gain matrices among subsystems with respect to the states,
delayed states and delayed inputs, anddx j anddu j denote the delay of the states and the inputs respec-
tively.
In [17], [19] the authors consider the delay as a positive constant. In [17], this constant is determined
by the so-called transmission time delay. As it will be seen in the next section, thisvariable is used to
determine the maximum transmission time delay allowable to guarantee the stability of the system. In
[19], the communication delay produced by the acquisition of measurements is considered different
to the delay produced by the controller when the control input is sent. This values are used to find suf-
ficient conditions for guaranteeing system stability in an input-feedforward-output-feedback-passive
nonlinear systems.
In [6], the delay is assumed as a random variable inside a defined setd ∈ D := {0,1. . . , d̄}, beingd̄
the maximum delay. Thus the model of the system is given by

x(k+1) = Ax(k)+Bu(k−d) (1.4)

Using a delay depended state-feedback control lawu = kT
d x, kd ∈ R

n, and assuming that the delayd
can be modeled by an independent and identically distributed random process or a Markov chain, the
system (1.4) can be formulated as a jumped linear system:

z(k+1) = Adz(k) (1.5)

where the augmented state vectorz(k) = [x(k)Tx(k−1)T . . .x(k− d̄)T ]T and

Ad =




A ← BkT
d → 0

I 0 · · · 0 0
0 I · · · 0 0
...

...
.. .

...
...

0 0 · · · I 0




Note that the position of the matrixBkT
d is determined by the delayd.

On the other hand, in [8] the authors consider the delay as a positive constantεi j such that

vc
i j (s) = eεi j swc

i j (s) (1.6)

wherevi j represent the interconnection input variables, andwi j the interconnection output variables.
Then the closed loop system becomes




ẋc
i (t)

wc
i (t)

zc
i (t)


=




Ac
TTi Ac

TSi Bc
Ti

Ac
STi Ac

SSi Bc
Si

Cc
Ti Cc

Si Dc
i






xc
i (t)

vc
i (t)

dc
i (t)


 (1.7)

beingzi(t) anddi(t) the performance output and the local exogenous disturbance in the standardH∞
formulation.
The approach proposed in [16] is based on the representation of the delays of the system as linear
operators with no delay, allowing to represent the system as a norm-bounded uncertainty ones. To

Page 5/41



HD-MPC ICT-223854 Literature survey and analysis regardingtiming and delay issues

model the system, consider the Ito type differential equation

dx= [Ã0x(t)+ Ã1x(t− τ(t))+B1w(t)]dt+ B̃2u(t)dt+Gx(t)dβ (t)+Hx(t− τ(t))dν(t)

dy= [C2x(t)+C̃2x(t− τ(t))+D21η(t)]dt+Fx(t)dζ (t)

z(t) = C1x(t)+D12u(t)

x(θ) = 0, ∀θ 6 0

(1.8)

wherex(t) is the state vector,w(t) is the exogenous disturbance,y(t) is the measurements vector,
η(t) is an additive measurements noise,z(t) is the objective vector,u(t) is the control input signal,
B1, B̃2, C1,C̃2, D12, D21, F, G, H, are time invariant matrices and̃A0, Ã1, B̃2 are matrices satisfying
the following norm-bounded uncertainties:

Ã0 = A0 +E0F0H̃0

Ã1 = A1 +E1F1H̃1

B̃2 = B2 +E0F0H̃2

(1.9)

where FT
i Fi 6 I , ∀i = 0,1, and beingA0, A1, B2 the matrices of the nominal system.Ei , i =

{0,1}, H̃i , i = {0,1,2} are constant matrices. In equation (1.8),τ(t) is an unknown time-delay such
that for positive scalarsh, d satisfies:

0 6 τ(t) 6 h

τ̇(t) 6 d < 1
(1.10)

andβ (t), ν(t), ζ (t) are Weiner processes.

In [36] the delays are assumed to be bounded, a priori unknown, but they must be available in real
time. In order to show this, consider the following discrete-time system:

x(k+1) = Ax(k)+Bu(k)

z(k) = Cx(k)
(1.11)

with x(k)∈R
n the system state,u(k)∈R

r the control input, andz(k)∈R
p the output. Letτmax∈N the

maximal delay considered andτmin∈ N the minimal delay. In this paper it is assumed that the system
has at each timek, a delayτk ∈T = [τmin,τmax], that is multiple of the sampling time. Therefore, the
system 1.11 can be rewritten to take into account the delays:

x(k+1) = Ax(k)+Bu(k− τk) (1.12)

Next, when the formulation is presented, the authors assume a switched system with parameterα(k)∈
Ω, where:

Ω =





α =




ατmin

...
ατmax


 ∈ R

τmax−τmin+1

∣∣∣∣∣ ∀i ∈T ,αi ∈ {0;1} ;
τmax

∑
τmin

αi = 1





(1.13)
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Hence the system has the following form:

x̃k+1 = Ã(α(k))x̃k + B̃(α(k))uk (1.14)

with α(k) the characteristic function of the delayτk in the system (1.12). This characteristic function
is defined as:

α :





N−→Ω

k 7−→ α(k) s.t ∀τ ∈T

{
ατ(k) = 1, i f τ = τk

ατ(k) = 0, i f τ 6= τk

(1.15)

This is defined in order to establish a bijection betweenα(k) andτk. In factτk can be expressed using
α(k) as follows:

τ :

{
N−→T

k 7−→ τk = ∑
i∈T

iαi(k) (1.16)

In [56] a nonlinear continuous-time system is considered as follows:

ẋ(t) = f (x(t),u(t)), x(0) = x0

x(t) ∈ X ⊆ R
n,u(t) ∈U ⊂ R

m (1.17)

whereU is assumed to be compact,X to be connected,(0,0) ∈ X×U , and f : R
n×R

m→ R
n is

locally Lipschitz continuous and such thatf (0,0) = 0. It is assumed that the system is connected to
a Nonlinear Model Predictive Controller (NMPC) through a shared network. Some assumptions are
made to solve the problem: all packages are time-stamped; a common time-frame is available for all
components either by a global clock or either by a set of synchronized clocks; the network is subject
to random but bounded delays:

τsc(t) ∈ [0,τmax
sc ] , τca(t) ∈ [0,τmax

ca ] (1.18)

whereτsc is the delay between the system and the controller (measurement), andτca is the delay be-
tween the controller and the actuator (control input).

The network is also subject to random but limited information losses; computational delays are em-
bedded onto controller-to-actuator delays; the whole state is completely available either by direct
measurement or observation.

The time-varying delays are analyzed separately. First, for time-varying measurement delays, it is
assumed that the state is available for the controller only atti + τsc, i.e. the NMPC controller has only
old information to solve the optimal control problem. However, since the previous assumptions are
verified, and an exact plant model is available, the current delayed statecan be obtained by forward
prediction. On the other hand if there exist time-varying delays between the controller and the actuator
the input consistency is lost. Then, there must be buffers at the controllerand the actuator to re-gain
the input consistency, using the worst case delayτmax

ca . In this paper, it is referred other contribution
where this artifice has been proved to be effective.
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Plant
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Figure 1.1: Assumed delays in the scheme

In [10] a linear, discrete-time system as (1.12) is considered. First it is assumed a plant delay asτc =
dT, whered ∈N

+, andT is the sampling period. In this paper it is stated that a simple state feedback
taking into account the delay is sufficient to tackle the problem. However someproblems arise:(1) the
time-delay is not perfectly known,(2) the system output is not available at everykT sampling instant
since, due to scarce data or event detection, only some data can arrive tothe controller (and delayed).
Then, in this work both sensor-to-controller (τsc(t)), and controller-to-actuator (τca(t)) time-varying
delays was considered as time-varying. In Figure (1.1) are depicted these network delays. Moreover,
they are defined as follows:

τsc(t)≤ τ̄scT, τca(t)≤ τ̄caT, τc(t)≤ τ̄cT, τ̄sc, τ̄ca, τ̄c ∈ N+ (1.19)

with the upper bar indicating the upper bound. Then the total time delay satisfiesthe next condition:

d(t) = τc(t)+ τca(t)+ τsc(t) (1.20)

furthermore it is assumed that

d(t) = dT + ε(t) = hT +αT + ε(t), (1.21)

wherehT is the delay being considered for computing the prediction scheme (h ∈ N), αT is the
delay variation (α ∈ Z) andε(t) ∈ R is a small uncertainty in the knowledge of the delay. Looking
for robustness in the time delay modeling, the delay is not anymore consideredas a function of the
sampling period but thek− th sampling instant, then:

tk+1− tk = T +ξk (1.22)
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with T the ideal sampling time andξk the uncertainty between consequent sampling instants. The
above mentioned uncertainties must be bounded as:

|ξk|< ξ̄ ≪ T, |ε(t)|< ε̄ ≪ T (1.23)

1.3 Robustness

In order to tackle robustness issues in several systems, particularly networked systems, it is necessary
to define the Maximum Allowable Delay Bound (MADB [59]) or a similar criteria [12] in order to
determine the maximum interval of stability for a given control system or control structure. In [12] a
sufficient condition for robust stability is expressed by means of a LinearMatrix Inequality (LMI) as
Eq. (1.24) shows.

[
(A0

s f)
TPA0

s f−P+ ε(δ s)2NT
1 N1 (A0

s f)
TPS1

∗ −(εIn−ST
1 PS1)

]
< 0 (1.24)

whereP andS1 are positive definite matrices,ε is a positive constant andA0
s f is a matrix of the closed-

loop representation of the system. Such a matrix corresponds to a nominal part of a delay (τ) which
in turn is partitioned in a nominal part (τ0) and an uncertain part (τ∆), beingN1 andδ s defined by:

N1(Bc,Ks f) =−Bc(K
a
s f +S2)

δ s = sup{σmax(∆Γ(τk))} ≤ max
τ∈[τmin,τmax]

‖
∫ h−τk

h−τmin

eAcλ dλ‖2
(1.25)

with S2 = [0̄ 1], andKa
s f the state-feedback matrix. The cited method present a way to compute

the maximum allowed delay and it can be used to compute the maximum allowable computer delay.
Hence, the usefulness of several control algorithms is determined in order to be used in a network
system.

In [8] the closed-loop model of the system was used to find the robustnessand stability conditions due
to occurred delays such that 06 εi j 6 ε. This analysis is based on structured singular values. Some
theorems and corollaries are presented in order to demonstrate the authorspoint of view. Finally some
related works are listed, as the proposed in [4], [30] and [35]. In [16] the introduction of the operators
given by equations (1.26, 1.27), allows to express the system (1.8) as a non-delayed one. Moreover
the system is also expressed with norm-bounded operators.

(D0g)(t)
△
= g(t− τ(t)) (1.26)

(D1g)(t)
△
=
∫ t

t−τ(t)
g(s)ds (1.27)

This allows to design a robust controller such that a cost functionJ(·) is less than zero, and derive
sufficient conditions for the stability of the system. Moreover, the formulationproposed in [16] deals
with uncertain time-delay systems.
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1.4 Stability

The stability of a control system is linked with the robustness. The MADB criteria is used in [59]
to propose a theorem expressed as a LMI to guarantee asymptotically stabilityfor any time-delayτ j

satisfying 0≤ τ j ≤ τ j .
Consider the following dynamical system:

ẋ(t) = Ax(t)+
N

∑
i=1

Aix(t−δ j)

x(t) = φ(t)

(1.28)

whereφ(.) describes the initial condition ofx(t), andt ∈ [−δ ,0], with δ the upper band ofδi . Then
the stability theorem for these systems is as follows:

Theorem 1 [26] If there exist P> 0, Q j > 0, Xj , Yj and Zj , j = 1, . . . ,N such that

[
β11 ζ Tη
ηζ −Γ

]
< 0,

[
Xj Yj

YT
j Z j

]
≥ 0, (1.29)

where,

β11 =

[
ξ11 Pζ1− γ

ζ T
1 P− γ −θ

]

ζ = [A,A1, · · · ,AN]

ζ1 = [A1, · · · ,AN]

γ = [Y1 · · · ,YN]

η = τ[Z1, · · · ,ZN]

θ = diag{Q1, · · · ,QN}

Γ = τdiag{Z1, · · · ,ZN}

ξ11 = ATP+PA+
N

∑
j=1

Yj +YT
j + τXj +Q j

Then closed-loop system with delays is asymptotically stable for any time-delayτ j satisfying0≤ τ j ≤
τ.

For positive systems the asymptotically stability is proved in a simpler way [24]. Consider the system
with multiple delays described by Eq. (1.30). The system is (internally) positive if and only ifx(t) ∈
Rn

+, x(t− τ) ∈ Rn
+ , y(t) ∈ Rp

+ for anyx0(t) ∈ Rn
+ and for all inputsu(t) ∈ Rm

+, t ≥ 0. The stability for
positive systems with multiple delays does not depend on the delays as Theorem 2 states.

ẋ(t) = A0x(t)+
q

∑
k=1

Akx(t−dk)+Bu(t),

y(t) = Cx(t)+Du(t)

(1.30)
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Theorem 2 [24] The positive system with delays (1.30) is asymptotically stable if and only ifthe
positive system without delays

ẋ = Ax, A = A0 +
q

∑
k=1

Ak (1.31)

is asymptotically stable.

The principal advantage of the Theorem 2 is the easier form to prove it compared with other stability
theorems based on Lyapunov theories.

In [17], the authors present a general framework including communication constraints, varying de-
lays and varying transmission intervals. Based on the presented framework, the authors provide a
Lyapunov-based procedure to compute bounds on the maximally allowable transmission interval and
the maximally allowable delay in order to guarantee stability of the system. In orderto show this,
consider the continuous-time system with a controller:

ẋp(t) = fp(xp, û)

yp = gp(xp)

ẋc(t) = fc(xc, ŷ)

uc = gc(xc)

(1.32)

wherexp, xc are the system and controller states respectively,û, ŷ denotes the most recent values of
the control input and the system output respectively, andu, y are the control input and the system
output respectively.

Assume that at the transmission timetsi, i = 1,2, . . . ,n, with n the number of subsystems, the con-
troller input u and/or the subsystem outputy are sampled and transmitted over the network. The
transmission times,tsi, satisfy 06 t1 < t2 < .. . < tn andδ < tsi+1− tsi < τmati, whereτmati is the max-
imum allowable transmission interval, andδ ∈ [0,τmati]. Then, at transmission timetsi, the subsystem
accessing to the network saves their values ony(tsi) or send to the communication network their values
of u(tsi). These values arrives after a transmission delayτi at the controller or actuator, depending on
if the output values are sampled or the control actions are sent.

Thus, based on the last assumptions, the authors reformulate the system model, considering the error
dynamics, the memory of the updated error, the number of transmission, the delay associated with
the transmission interval, the delay and the event allowing to each subsystem the use of the com-
munication network, as states. With the resulting model, a Lyapunov-based procedure is proposed in
order to find the maximum transmission interval and the maximum delay at which the system is stable.

Consider again the reference [36]. The stability of the closed loop systemwith time delays is guaran-
teed following the Lyapunov-Krasovskii criteria. This is done with the following theorem:

Theorem 3 Given the extended system1 defined by

x̃(k+1) = Ãτkx̃(k)+ B̃τku(k)

z(k) = C̃x̃(k)
(1.33)

1In this work is referred as the original system augmented by the delayed inputs as new states.
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it is supposed the existence of matricesG̃i ∈ R
(n+ñ)×(n+ñ), Ỹi ∈ R

r×(n+ñ), symmetric matrices̃Si ∈
R

(n+ñ)×(n+ñ), and a scalarβ , for i ∈T , such as∀(i, j) ∈T 2

M̃i j =




G̃i + G̃T
i − S̃i ⋆ ⋆ ⋆

ÃiG̃i + B̃iỸi S̃i ⋆ ⋆
C̃G̃i 0 I ⋆

R1/2Ỹi 0 0 I


> 0 (1.34)

and




β In+ñ ⋆[
In 0n×ñ

0n×ñ 0ñ

]
S̃i


> 0 (1.35)

The control law, on the form of extended state feedbackx̃(k) is given by:

u∗k(α(k), x̃(k)) = K̃(α(k))x̃(k) =

(

∑
i∈T

α(k)K̃i

)
x̃(k) (1.36)

whereK̃i = ỸiG̃
−1
i stabilizes the system, for all possible delay system{τk} and leads to the inequality:

Ĵ({u∗k} ,x0)≤ β ‖ x0 ‖
2
2 (1.37)

In this Theorem, both stability and performance arise. Note that the given upper bound is such that a
performance of the closed loop system is guaranteed under stability conditions. This upper bound is
the worst case of the cost function, that is, the maximal degradation for allpossible delay sequences.

In [56] the stability of the scheme is treated as a convergence issue. In fact, the main contribution of
this work is based in a convergence Theorem. The first part of this theorem deals with the definition of
the dynamical systems (1.17) and the kind of time-varying delays assumed. Then, it is defined some
conditions to be fulfilled in order to the following limit is given:

lim
x→∞
‖ x(t) ‖= 0 (1.38)

with x(t) the state of the system. In qualitative way, the above mentioned conditions are:

• There existx0 initial condition, a feasible controlu∗, and a bounded total delayτ such that the
statex(t) is in a subspace of the state-space, the dynamical system, and an inequality concerning
a terminal cost on the total delay time are fulfilled.

• The assumptions presented in the first Section (concerned with this paper)are satisfied.

• The system without delays is stabilizable.

• The optimal control problem is solvable for at0 ∈ π, with π as defined before.
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Stability issues are considered at the predictor and observer steps in [10]. The first one is treated as
follows: consider the existence of an error in the knowledge of the integerpart of the real delaydT.
Thus, from (1.21), the delay can be written asd = h+ α , α the delay error. Then a simple state
feedback is assumed as a control law:

uk =−Kx̄k+h (1.39)

with K ∈ Rm×n, andx̄k+h is predicted using the assumed delay without uncertainty. Robust stability
is proven for time delays under certain upper bound and even for some uncertainties in the system
matrices. On the other hand observer stability was proven taking into account both the control and
measurement delays in a non-uniform approach. Then the state is estimated using the following
structure:

xob(k+1) = Axob(k)+Bu(k−h)+LMR(ys(k− τsc)−Cxob(k)) (1.40)

whereLMR is null if there is no measurement of the outputs. Then, the gain is selected at the N
sampling as:

AN
L = ĀN

L −LMRC (1.41)

whereĀN
L is built according to the time delays.

1.5 Performance

In the selection of a suitable control structure for Networked Control Systems, some criteria must help
to select the more appropriate one. In a past Section the robustness criteria were shown. Henceforth,
the performance of the entire structure is considered. In [60] a theoretical framework is presented
which allows the effect of time delays on the mechanical performance of the system (such as speed
of response, trajectory following error, etc.) to be precisely modeled, and these models are used to
determine the optimal network architecture for the given control system.

The performance of a mechanical control system is defined by how closeis the system tracking for a
given reference trajectory. In other words, given a desired reference trajectoryr(t) for the system, the
performance is the difference between the actual system outputy(t) and the reference as Eq. (1.42)
shows. Then it is possible to define a function that quantify the performance degradation due to a
delay as Eq. (1.43), wherey∗(t) is the system output in an ideal system without delay.

P = ‖y(t)− r(t)‖ (1.42)

Φ(t) = ‖y(t)−y∗(t)‖ (1.43)

The performance degradation function (Φ) can be expanded using Taylor series and finally an expres-
sion composed of differential functions multiplied by the respective delay is obtained. Each of these
functions are called performance differential functions and they represent the performance degrada-
tion due to a unit time delay between nodesi and j.
In [36], a study of performance degradation of the networked controlsystems is made in the presence
of time-varying delays. The complete scheme is composed by two steps. First, aset of Lyapunov
functions depending on the time-varying delays, greater thanĴ({u(k),x0}) are designed. Second, the
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control law, is chosen in order to obtain the minimal element among this class of admissible Lyapunov
functions. The upper bound is given by means of the Theorem 3 of this deliverable, in which a level
of performance is guaranteed for any sequence of time-varying delays.

1.6 Control Structure Design

The design of control structures and hence the implementations requires allafore mentioned items. A
supervisory structure for Networked Control Systems based on a fuzzy controller is proposed in [37].
The fuzzy model describes the behavior of the plant (linear or non-linear) using fuzzy groups based
on linear representations of the plant and their delays as Eq. (1.44).

Type 1 rules :i f xi(k) is µi j then xNj (k+1) = A jx(k)+B0u(k) (1.44a)

Type 2 rules :i f δ (k) is νh then xDh (k+1) = Bhu(k) (1.44b)

The supervisory control law is computed with Eq. (1.45)

i f x̂i(k) is µi j then usj(k+1) =−K j x̂(k), (1.45)

where the total control action is the sum of a nominal contribution computed by pole placement
(Kx̂(k)) and the contribution of the fuzzy supervisor controller (−∑RjK j x̂(k)). Figure (1.2) helps to
understand the controller structure. The supervisory level minimize the effects of time delays due
to communications among agents in the network by considering a behavior described by the fuzzy
model.

Figure 1.2: Diagram of Supervisory Fuzzy Control System (Taken from [37])

The design of a control structure can also be based on the MADB (Section1.3) described in [59]. They
propose a set of controllers that can be switched according to the MADB of the system governed by
a local supervisor. The control actions are generated by a main controller which take into account the
system delays. This main controller also uses the control inputs generated by local controllers with
models without delays. Figure (1.3) completes the description of the control structure.
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Figure 1.3: Hierarchical Controller Structure Based on MADB (Taken from [59])

In [6], a controllerkd with u = kdx is designed such that all subsystems have a common mode, based
on the lemmas and following the methodology suggested on this paper. This allowsto translate
the delayed system to a non-delayed one. Also the control design proposed in this work allows to
minimize the second moment decay rate, that is the classic criteria of the design ofcontrol systems
for jump linear systems. However two questions arise from the work presented in this paper: how
many common modes are necessary for guarantee the minimal decay rate of thesecond moment, and
whether or not common eigenmodes are necessary and/or sufficient fora minimal second moment
decay rate.
In [36] the control structure is defined by means of the Theorem 3. With thisTheorem is guaranteed
a system performance and stability under any sequence of time-varying delays.

In [56] a predictive approach is used to tackle the time-varying delays as stated earlier. Then a state
prediction is calculated taking into account these delays:

x̄(ti + τsc+ τmax
ca ) =

∫ ti+τsc+τmax
ca

ti
f (x(τ),u(τ))dτ +x(ti) (1.46)

to solve an optimization problem to the future timetsi = ti + τsc+ τmax
ca , with ti the time-stamp associ-

ated with the measurement packet, and the other variables as stated before.

As it was mentioned, in [10] a predictor-observer structure was used to overcome the package loss
and time delays in the networked control system. These components are considered as follows:

• The nonuniform observer receives non-uniform patterns assuming data loss. Then, its work is
the reconstruction of the sent information to feed it to the controller in the desired time.

• Due to the network delay, data arrive to the observer delayed. The predictor must eliminate this
influence.
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Chapter 2

Communication and Computational
Delay in MPC

2.1 Control over networks

The feedback control basis is the calculation of the manipulable variables ofthe system based on
the knowledge of the measurement of some system variables. The designedcontrol law is typically
implemented in control systems which receive the system variables measurements provided by the
sensors, calculate the control action to regulate the controlled variables atdesired values and send
it to the actuators, which manipulate the system inputs. Traditionally control systems use dedicated
point-to-point wired communication links between a central control computer and the sensors and
actuators. This has motivated that most of the control systems has been designed under the assumption
of flawless communication links, namely, synchronized control and non-delayed measurements and
actuation.

Distributed control systems (DCS) is widely used in process control systemssince it was intro-
duces in the 70s. The control modules locally regulate the process variables while they are inter-
connected by means of a lossy and shared serial network. The price drop of ASIC chips and hence
electronic devices, has produced the development of control modules, sensors and actuators capable
to cope with smart tasks as well as to be connected to a shared network. Thishas motivated that shared
networks and networked smart sensors, actuators and controllers aremore commonly adopted in mod-
ern control systems. Among the most used serial networks, we can find Controller Area Network
(CAN), Profibus, Modbus, DeviceNet or Ethernet. These control systems are known as Networked
Control Systems (NCS).

Some of the reasons of the success of Networked Control Systems are thefollowing:

• Reduced cost of installation, reconfiguration and maintenance of the control system.

• Capability of distributed control systems.

• Flexibility of the control structure.

• Availability of sensor-actuator data

• Capability of plant management to prevent or deal with abnormal plant situations more quickly
or effectively.

• Ability to improve the efficiency and reliability of the plant operation.
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In networked control systems, sensors, actuators and controllers actsas network nodes which
transmit the data through the shared data network. Therefore, the communication network becomes in
a dynamic system inserted in the feedback control loop. This makes the analysis of networked control
systems more complex since the effect of the network in the closed loop dynamics must be taken into
account (See for instance the recent surveys [18, 58, 62] and the references there in).

This fact is particularly relevant in the case of decentralized control techniques. These are based
on different control modules which share information to achieve the suit operation of the whole plant.
The interconnected nature of this control structure is subject to the availability of shared network, and
hence it can be intrinsically considered a networked control system.

2.2 Dynamic issues of Networked Control Systems

In order to analyze and design networked control systems, the effect of the communication channels
in the control loop must be studied. These are now briefly presented:

2.2.1 Communication delay

When the information is transmitted through communication channels, the submitted information does
not arrive the receiver immediately, but there are an elapsed time since this issent and the information
is available in the receiver node. The delay time may came from different sources such as: the class of
network (the different layers that compounds the network, such as the physical layer, etc) used for the
communication, the size of the network (this is typically classified into Local AreaNetwork (LAN)
or a Wide Area Network (WAN)) , etc.

In case of tele-operation or tele-control systems the distance between the controller and plant
nodes together with the physical layer determine the delay, where the transport delay is dominant. In
case of local area networks, the network protocols, such as the medium access control (MAC), affect
to the communication delay. For instance, depending on the chosen MAC in such a way that this delay
may be constant, time-varying or even random. MAC protocols is divided into two classes: random
access and scheduling. The most often used protocol in random access networks, such as Ethernet for
instance, is the Carrier sense multiple access (CSMA). In this case the delayof this class of networks
is time-varying and random. Then, these networks are considered non-deterministic and the worst-
case transmission time of packets is unbounded. If prioritized access is considered, the delay of higher
priority packets is better conditioned.

Token passing (TP) and time division multiple access (TDMA) are usually adopted in scheduling
networks. The TP protocol is used for instance in token bus and token ring architectures while TDMA
is used in FireWire . The access to the medium in Scheduling networks is governed by an automaton
which is responsible to determine which node is allowed to transmit. Then the communication delay
is typically bounded and constant.

The communication delay can degrade the performance of control systems ifthe controller is
designed ignoring it and can even destabilize the system.

2.2.2 Dropping Network Packets

Packet dropouts happen when the data transmission fails and hence the transmitted information is lost.
Network packet drops may happen due to node failures or message collisions, namely transmission
errors in the physical layer (which is far more common in wireless than in wirednetworks) or buffer
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overflows due to congestion. In tele-control systems data dropouts may happen for instance when
packets with long transmission delays are discarded by the receiver if theyare considered as outdated.

In order to achieve a successful transmission of the data, most network protocols adopt transmission-
retry mechanisms. However, these protocols only retransmit for a limited time in order to avoid an
enlargement of the network traffic, which produces a data loss. This is particularly interesting in net-
worked control systems, where real-time data is sent, and if this is obsolete thedata is not relevant
and can be discarded.

For a networked control systems, this effect may make that the controller node does not receive
the sampled data for a period of time or what is worse, the actuator node doesnot receive the new
input to be applied to the plant. Notice that this issue can not be modeled as a communication delay
previously reported, but typically is referred as unbounded or infinite delay. Therefore, data dropouts
can potentially degrade the closed-loop dynamics more heavily than the communication delay.

2.2.3 Other issues

Although communication delays and packet dropouts are the most important effect of the network on
the control loop, there are other effects that can be considered in the networked control systems:

• Band-Limited Channels: communication network can only carry a finite amount ofpackets per
second. This imposes constraints that must be considered in the design of the networked control
systems.

• Single or multiple packet transmission: depending of the class of network used in the NCS, the
amount of data that can be sent in a packet is determined. If all the data to betransmitted can
be compressed in one packet, then single-packet transmission is used. Onthe other hand, if the
data takes more than one packet to be transmitted, then multiple-packet transmission is used. It
is clear that single-packet transmission is more reliable and the probability of data losses and the
expected communication delay is lower than in the multiple-packet case. However, multiple-
packet transmission can be used also when the sources of the data to be transmitted are several
nodes, as in the case of sensors or actuators distributed in a physical area.

• Sampling: the nodes in a networked control system are typically time-driven by built-in clocks.
The signal to be transmitted is sampled, coded and packed. Different issues such as commu-
nication delays (when they are small), decoding or multiple packet transmissionmake that the
sampling process be different to the sampling process of conventional control systems

2.3 Model-based compensation of the dynamic effects of the network

As it was mentioned before, the communication network may induce delays in the data transfer from
the sensor of the plant to the controller (s-c delay) and from the controllerto the actuator (c-a delay).
Delays may produce a reduction of closed-loop performance and even un-stability. In order to deal
with the delay, two approaches can be considered: taking into account thedelay in the design of the
controller or considering control system devices and communication protocols aimed to compensate
the delay and make the network channeltransparentfor the controller. In this section, some techniques
of the second method are reported.

The existing methods to compensate the delay are usually based on the availabilityof the following
ingredients on the networked control system:

Page 18/41



HD-MPC ICT-223854 Literature survey and analysis regardingtiming and delay issues

• Time and Event-driven buffered actuators: these are smart actuators capable to store a number
of data packets in a buffer. Moreover they have an inner clock built-in. The actuator decide
when and which control action is applied according to a prescribed logic (i.e. the output of an
automaton).

• Time-driven sensors: this samples the plant variables and periodically transmit the measurement
data.

• Time-stamped data: each signal value (namely, measurements or control actions) is transmitted
together with the time when this value has been generated. This idea, firstly proposed in [40],
plays a relevant role in the compensation techniques.

• Time-driven buffered controllers: these devices has the capability to store past measurements
and control actions in buffers. Furthermore, it has an inner clock.

• Synchronization of control devices: in order to compensate the effect of communication delays,
it is important that the times stamped into the data packets by the sender is coherent with the
time of the inner clock of the receiver. This can be achieved by synchronizing the inner clocks
of each network node, namely, sensor nodes, actuator nodes and controller nodes. Methods
to cope with the synchronization can be software, hardware or a combination of both. One
common method to synchronize two nodes consists in a node sends a message tothe other node
and this answer back with its inner time. This information can be used to calculate the time
offset. [62]. A similar method based on master-slave nodes are used in [40]. In the case of
Wide Area Networks, the synchronization of nodes is a very hard task, ifpossible.

The basic idea for the compensation of the communication delay is the well-knowntechnique of
using a predictor to forecast the current state of the plant. So, the estimatedstate is used as to calculate
de current control action as if the delay was not present. To this aim, it is assumed that the real delay
of the signal is known (assumed constant or calculated from the time-stamped data). Then, from the
available (delayed) measurement and the control actions applied to the plant,an observer or Kalman
filter, can be used to estimate the delayed state. Based on this, the current state can estimated by an
open-loop predictor.

Different approaches to the solution of this problem have been proposed according to the condi-
tions of the network (s-c delay, c-a delay or both, deterministic or random nature of the delay, data
packet losses, noises, etc). It is remarkable the difference between communication delays and packet
losses: in the case of communication delays it is assumed that every data packet sent to the actuator is
applied if it is not received too late, while in the latter case it is not apparent which is the real control
action applied to the plant. Since the forecasting of the state requires to know the sequence of inputs
applied to the plant, this sequence of control inputs must be determined or estimated by the controller
node.

A first approach to the compensation of network random delay has been proposed in [32]. This
paper states the basics of the delay compensation of both s-c and c-a delays by means of an observer
(or Kalman filter). They are assumed to vary randomly along the time but in sucha way that the sum
of both delays is a known constant. The authors highlight that the cumulated delay (this is called the
totalRound Trip Time) suffices for the calculation of the predicted control action sent to the actuator.
To this aim, the history of the plant must be stored in the controller node. Nilssonet al. propose
in [40] a similar approach where the delays are assumed to be random but with a known probability
distribution. The necessity of knowing the cumulated delay is removed by introducing the time-stamp
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technique and assuming synchronized clocks in the nodes. The Round Trip Time (RTT) is assumed
to be less than one sampling period. Stochastic control theory is used to derive the estimator and the
optimal control law.

Remarkably, Bemporad in [5] has proposed a network compensator for large, but bounded, com-
munication delays and packet dropouts. The NCS is modeled as two nodes, the plant node (with
the sensor and actuator node) and the controller node. It is assumed thatthe plant node has a smart
buffered actuator. Compensation is based on the open loop prediction andthe calculation of the se-
quence of control inputs. This is packed and sent to the plant where it is stored in the buffer. In the
case that the delay is larger than the sampling period the actuator apply the suitpredicted action stored
in the buffer. In the case of packet dropout event, the actuator apply the last control action and send an
time-stamped error code to the controller node. The controller then updates the sequence of applied
control inputs, recalculates the sequence of control actions and submit the new sequence in an error
acknowledge packet, which makes that the actuator refresh the buffer with the submitted sequence.

In the excellent survey [62], the author summarize most of the topics on NCSand presents a
compensation method for varying delays in the case of full state measurementand output measurement
under the assumption that the total delay is lower than the sampling time.

In [54], communication delays are measured and compensated by means of an open-loop adaptive
estimator based on a CARIMA model. Time-stamped data technique is adopted andthis is used to
synchronize the clocks built-in each node as proposed in [40]. Data packets with the time at each node
are transmitted from controller to actuator and to the sensor and these echo back the to the controller.
These are used to synchronize the clock based on a least-square estimation of the read delay. Also
these are used by the controller to estimate the delay controller-actuator. Thedelay sensor-controller
are directly estimated from time-stamped data. The actuator is assumed to be buffered in order to
store predicted inputs to be applied in the case that the new control action is read later than sampling
instant.

A model-based compensation for nonlinear plants has been proposed in [46] under the assump-
tion of unknown time-varying delays in the case that the synchronization between nodes may be not
possible. The problem of packet dropouts are also dealt with by the authors. In this case, the sensor
and actuator node are assumed to be a single node called plant node. The plant node has a buffer
to store the sequence of predicted inputs to be applied to the plant. The controller node has a buffer
to store the sequence of inputs successfully sent to the plant together with the current state of the
controller. This node is also equipped with a temporary buffer similar to the previous one. Based on
the time-stamped data, the sensor-controller delay is determined in the controllernode and the current
state estimated using the stored sequence of applied inputs. The future sequence of control inputs and
the future sequence of the controller state is calculated, stored in the temporary buffer and sent to the
plant together with the Round Trip Time considered for the calculation of the predictions. Once the
plant receives the data, the real RTT is calculated and it is checked if real RTT is lower to the estimated
RTT. If so, the sequence of remaining inputs is updated. If not, the whole sequence is discarded.

In order to cope with packet dropouts, Polushin and coworkers propose in [46] to add a counter
to data packet which is updated each time the control input sequence is updated. When the counter
value received from the plant differs from the value stored in the controller network, then this means
that the last data packet arrived successfully, and then the submitted sequence of inputs stored in the
temporary buffer is used to update the buffer of the applied inputs. If the value of the counter remains
the same, then the update stage is not carried out.

In [53, 20] a model-based compensation technique based on the measurement of the Round Trip
Time has been proposed. The networked control structure of the model-based compensator is different
to the previous ones, since the network compensator is located in the plant node (integrating the
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actuator node and the sensor node). In order to measure the Round TripTime, the plant send the state
of the plant in a time-stamped packet to the controller. The controller node calculates the sequence
of predicted inputs to be applied and packet the data together with the time stampedin the received
packet from the plant. When the plant receives the packet from the controller, the plant node measures
the RTT by substracting the current time to the stamped time. Notice that since the Round Trip Time is
measured in the plant node, no synchronization is required. In fact, controller node is not a time-driven
node anymore, but an event-driven node: the controller node is only devoted to calculate the future
sequence of control inputs whenever the data packet with the state of the plant is received. Clearly,
this requires an estimation of the horizon for the calculation of the predicted sequence of inputs.
The network compensator module in the plant node determines which is the inputto be applied to
the plant according to the measured RTT, that is, which is the input of the received sequence that
corresponds to the current sampling time. If the data packet from the controller arrives later than
the next sampling time, the compensator applies the corresponding input of theavailable sequence of
inputs. of synchronization.

A different procedure to compensate the effect of the network is reducing the network traffic. If
the rate of data packets to be transmitted is reduced (that is, the sampling time is enlarged), then the
delay induced by communication network can be reduced making its effect negligible. In [39] the
authors study the effect of reducing the data transmission between the sensor node and the controller
node while it is assumed that no controller-actuator delay exists. Necessary and sufficient conditions
to determine the maximum allowable transfer time which ensures closed loop stability are given. If
the state is measured this is transmitted, but if the measurements are not the whole state, then the
sensor node estimates the estate of the plant by means of an observer and this is sent. Based on the
state received, the delay is compensated by means of an open-loop estimator. Since the controller is
a continuous-time system, this considers the real state when available and the estimated state by an
open-loop model of the plant between samples.

Another method to compensate the effect of the network is based on the so-called smart sensors.
The main objective of these sensor is to transmit the measurement whenever this is necessary to
maintain closed loop performance reducing the network traffic, and hencethe delay. This topic is
thoroughly studied in the excellent survey paper [18].

2.4 Model Predictive Control for NCS

The design of controllers for networked control systems has been widelystudied, although still can
be considered an open issue. Among the different control techniques that have been proposed (see the
survey papers [62, 18] and the references there in), one of the mostwidely used is the predictive con-
trol. This choice seems natural taking into account that the most successful technique to compensate
the effect of the delay in the closed loop is by means of a predictor and calculating a future sequence
of inputs. Predictive controllers provide these future sequences as own terms of the controller.

Bemporad in [5] proposes the predictive control as a suit choice for control over unreliable net-
works with communication delays and data dropouts. The plant is assumed to belocally pre-stabilized
and the predictive control law is calculated as if the network was transparent. A network compensa-
tion method is proposed which allows to use the predictive controller. Data dropout is tackled by
maintaining the last control input which is safe since the plant is locally stabilized. An illustrative
example where a predictive reference governor is used.

In [54] a Generalized Predictive Control together with a model-based compensation technique is
used. From the synchronization methodology, the controller-actuator delay can be estimated, while
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the sensor-controller delay is read from the time-stamped data. From the delayed measurement, an
open-loop estimator based on the CARIMA model is used to calculate the state ofthe plant. An adap-
tive multivariable Generalized Predictive Control (GPC) is used to calculatethe predicted sequence
of control inputs. The whole predicted sequence of control inputs are transmitted to the buffered actu-
ator. This node reads the sequence and overwrite the old inputs. The authors propose a time-varying
prediction horizon for the GPC according to the estimated communication delay, inorder to reduce
the size of the data packet and hence the network traffic.

The works [53] and [20] propose predictive networked control techniques using a different method
for the network compensation which is based on the measurement of the Round Trip Time delay. The
compensator is located in the plant node, where the RTT is measured from thetime-stamped data. The
state of the plant is assumed to be the past sequence of applied inputs and measured outputs, which
acts as a (non-minimum) state of the plant. In the controller node is implemented a GPCwhich is
based on the plant data received from the plant node and calculates the sequence of predicted inputs
throughout a prediction horizon which is assumed to be larger than the possible communication and
calculation delay. In [20] the proposed controller has been tested by a real application of a control-lab
servo-motor system using Internet.

Millan and coworkers presents in [38] a networked predictive controllerfor communication chan-
nels with possible data dropouts or largely delayed. It is also assumed that the Round Trip Time is
negligible w.r.t the sampling time. The nodes are assumed to be time-driven and theactuator and
controller nodes are assumed to be buffered. In order to know which is the sequence of inputs suc-
cessfully applied on the plant under the eventual loss of packets, Millan proposes a protocol between
the actuator and the controller in such a way that the actuator sends an high-priority acknowledgment
packet to the controller. This is assumed to arrive successfully within the sampling interval. Then
the control action is calculated for the forecasted state to compensate the network effect. Moreover,
in order to reduce the network traffic, the controller sends the packet only when the current control
sequence differs from the buffered in a certain threshold. Under the stabilizing design of the predictive
controller, networked closed-loop stability is derived from the nominal MPCinherent robustness.

In [22], a Networked Control System based on Dynamic Matrix Control (DMC) is studied. The
authors assume a hierarchical structure where the regulatory level is located close to the plant while the
advanced control level is remote and connected to the regulatory level bymeans of a communication
network. The two nodes (plant and controller) are assumed to be synchronized and the communication
delay to be bounded by known constant. Moreover, the plant node has asmart buffered actuator that
stores the input packet and apply the input in such a way that the controller-actuator delay appears as
constant. Then, robust analysis of the DMC is studied and sufficient stability conditions are provided.

In [45], a model predictive controller for uncertain nonlinear systems controlled using communi-
cation channels with time-varying delays and packet dropouts is presented. Delays are compensated
using the Polushin’s method and reconstruction of the sequence of appliedinputs in the controller
node is achieved by implementing a successful communication acknowledgmentprotocol. The ro-
bust MPC formulation is based on nominal predictions and on the constraint tightening method to
ensure the robust constraint satisfaction [31]. The authors provide uncertainty bounds under which
the controller ensures input-to-state stability of the networked closed-loop system.

In [14, 55] an event-driven networked Model Predictive Control (MPC) for constrained nonlinear
continuous-time system is proposed. Buffered smart (time-driven and event-driven) actuator, time-
driven sensor and event-driven control nodes are considered and all of them have a synchronized
built-in clock. Communication delays are compensated by assuming known a wort-case bound of the
Round Trip Time and adding a buffer in the actuator node that acts as a variable delay in order to
make the total delay constant and equal to the worst-case delay. This allowsto the controller node
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to determine the sequence of inputs that have really applied to the plant in order to compensate the
communication delay by means of the open-loop predictor. The authors propose different methods to
deal with the case of data losses. In [14], a called prediction-consistency method is proposed. This
method assumes that the discrepancy between the sequence of inputs buffered in the controller and
the sequence of input really applied on the plant may differ within a certain quantity. If this is small
enough, closed-loop stability is ensured. In [55], the high-priority acknowledgment packet method is
considered.

2.5 Computational Delay in MPC

In the process industry, the demand for large-scale NMPC applications based on detailed dynamic
process models increases, since NMPC promises an improved production efficiency on increasingly
competitive markets with less margins. Consequently, the computational time required to solve those
large-scale dynamic optimization problems is often significant. If the solution time is not explicitly
considered in the NMPC schemes, a delay between the application of the control trajectory and the
current state information emerges. This causes a decrease in control performance. In this report, the
best control performance is defined as the optimal closed-loop control with respect to the objective
function defined in the optimization problem. For example, the optimal closed-loopcontrol is the
control that minimizes the deviation of the state trajectory from a given set-point. Note that the best
control performance is not necessarily achieved by the fastest closed-loop control, since computational
delay is considered in this work. At worst, the stability of the closed-loop system is endangered. This
can already occur if the computational delay exceeds a fraction of the basic sampling period (cf. [13]).
Hence, fast updating schemes such as explicit NMPC, Neighboring Extremal Updates, Newton-type
methods and NLP sensitivity-based controllers (cf. [61]) are applied which are based on off-line state
information, sensitivity information and disturbance rejection mechanism, respectively. In this re-
port, explicit NMPC is not further considered because it is not suitable for large-scale problems. The
computational delay for the other aforementioned schemes is small, and good control performance
is achieved for several horizons succeeding a nominal solution. However, if the deviation from the
optimal trajectory becomes too big, the optimal control problem is again solved neglecting computa-
tional delay. There are just few schemes considering the computational delay in linear MPC or NMPC
(cf. [9] and [13]). In [13], the control trajectory of the preceding horizon is implemented during the
maximal solution time, i.e. until an optimal solution for the current horizon is found. The maximal
solution time required for obtaining the optimal solution is assumed to be known. This leads to a re-
duced amount of controls which can be adjusted during optimization and thus the degrees of freedom
for the optimal control problem diminishes. The disadvantage of these schemes is, however, that the
trade-off between the increasing solution accuracy and the reduction ofdegrees of freedom for every
additional iteration made is not addressed. [1] presents a general framework that monitors the optimal
control updating period, i.e. how many additional iterations lead to the best control performance.

In section 2.6, two additional fast-updating schemes are presented, the advanced-step NMPC con-
troller by [61] and the real-time iteration scheme by [11]. Hereafter, an approach considering compu-
tational delay is described in detail (cf. [13]).

2.6 Efficient Schemes for On-line Optimal Control

Neighboring Extremal Updates ([57]): The Neighboring Extremal Updates (NEU) algorithm is an
efficient and fast scheme for on-line optimal control. The new control trajectory is obtained almost
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instantaneously for the successive horizon with negligible computational effort. This is due to the
fact that the relevant sensitivities and second-order derivatives, which are used for the NEU of the
next horizon, are already computed during the current horizon. Thus, the computation is split up into
a longer preparation phase on the current horizon and a fast updatingphase in which an extended
QP is solved after the new perturbed parametric uncertainties are available.Both the advanced-step
NMPC controller and the real-time iteration scheme are similar to the NEU algorithm because they
are also divided in a long preparation phase and a fast updating phase considering model mismatch as
an uncertainty in the initial conditions.

The advanced-step NMPC controller ([61]): Starting from a nominal control trajectory, the
advanced-step NMPC controller approximates the controls of the next horizon in a fast updating
phase via a tangential predictor containing the new initial states as uncertainties. The advanced-step
controller guarantees that the approximated control trajectory is computed based on an optimal control
trajectory. This is achieved because the approximated control vector is implemented on the successive
horizon while the controls are iterated to convergence in the preparation phase. An optimal control
trajectory is known at the end of each horizon. Hence, the assumption hasto hold that the preparation
phase is smaller or equal to the sampling time. In the next updating phase, the controls are again
determined by a tangential predictor, because the optimal solution of the last horizon is known. In this
way, the scheme yields fast updates as well as good control performance since the optimal solution is
computed for every horizon. Note that the approximated control trajectories computed by the NEU
algorithm, however, are first iterated until the optimality criteria are fulfilled andthen implemented on
the successive horizon. A drawback of the advanced-step NMPC controller is that the scheme cannot
be applied if the time needed to determine the optimal control trajectory is longer than the sampling
time.

The real-time iteration scheme ([11]): In the real-time iteration scheme, an SQP-type iteration
is performed from one horizon to the next. A tangential predictor based onthe so called Initial Value
Embedding is included in the SQP-type iteration. The parametric uncertainties are again the initial
values like for the advanced-step controller. In general, the real-time iteration scheme also resembles
the NEU algorithm and the advanced-step NMPC controller, though the approximated controls are
neither improved by further QP iterations nor iterated to convergence. On the basis of the current
approximated control vector, the next control trajectory is computed. Hence, deviations from the
optimal trajectory can arise for strong perturbations or for error propagations over many horizons.

2.7 MPC Scheme for Considering Computational Delay

An NMPC scheme considering computational delay is presented in [13]. It extends the results of [9],
which is one of few works on computational delay. The main idea of this approach is to apply the
controls which are optimized on the previous horizon during the maximum solutiontime δ c of the
optimal control problem on the current horizon. Hence, these implemented controls are no longer
available as degrees of freedom for optimization and fixed on the currenthorizon.
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The open-loop optimal control problem formulated in [13] is equivalent to

min
u j (t)

Φ(x j(t),u j(t), t j
0, t

j
f ) (2.1a)

s.t. 0 = f (ẋ j(t),x j(t),u j(t),d j(t), θ̂ , t) ∀t ∈ I j (2.1b)

y j(t) = s(x j(t),u j(t),d j(t), θ̂ , t) ∀t ∈ I j (2.1c)

x j(t j
0) = x̂ j ∀t ∈ I j (2.1d)

0≥ h(x j(t),u j(t),y j(t)) ∀t ∈ I j (2.1e)

0≥ e(x j(t j
f )) ∀t ∈ I j (2.1f)

I j =
[
t j
0, t

j
f

]
, t j = t j−1 +∆t, j = 0,1, ...J (2.1g)

Here, sampled-data NMPC is considered, i.e. the open-loop optimal controlproblem is solved at
discretized time instants. The so-called recalculation time is given byδ r

j = t j+1− t j . Hereby, the
length of the recalculation time is not fixed, but it is dependent on the discretized points in timet j+1

andt j . Two important assumptions are made. Firstly, the smallest recalculation time is larger than the
maximum solution time,δ r

min > δ c. In this way, it is ensured that an optimal solution can be found
before the next optimization starts. Note that the new optimization starts at the newrecalculation
instantt j+1 and not at the next sampling instant. Generally, the sampling time is significantly smaller
than the recalculation time. According to [13], the optimal control trajectory which is applied to the
system during the recalculation time can be approximated by a sample and hold staircase. Secondly,
the horizon lengthT j

p is assumed to be sufficiently long in order to guarantee that controls are available
also during the maximum solution time on the next horizon,T j

p > δ r
max+δ c.

In order to compute the optimized trajectory for fixed controls in the maximum solution time
δ c, the degrees of freedom of equation 2.1 are reduced. This is achievedvia adding the additional
constraint

u j(τ) = u j−1
opt (t

j−1) τ ∈
[
t j
0, t

j
0 +δ c

)
, t ∈ I j−1, (2.2)

whereu j
opt is the optimized control trajectory of horizon j. Hence, the optimal control problem is

given by

min
u j (t)

Φ(x j(t),u j(t), t j
0, t

j
f ) (2.3a)

s.t. 0 = f (ẋ j(t),x j(t),u j(t),d j(t), θ̂ , t) ∀t ∈ I j (2.3b)

y j(t) = s(x j(t),u j(t),d j(t), θ̂ , t) ∀t ∈ I j (2.3c)

x j(t j
0) = x̂ j ∀t ∈ I j (2.3d)

u j(τ) = u j−1
opt (t

j−1) τ ∈
[
t j
0, t

j
0 +δ c

)
, t ∈ I j−1 (2.3e)

0≥ h(x j(t),u j(t),y j(t)) ∀t ∈ I j (2.3f)

0≥ e(x j(t j
f )) ∀t ∈ I j , (2.3g)

where I j =
[
t j
0, t

j
f

]
, T j

p = t j
f − t j

0 and t j = t j−1 + ∆t. This system of equations yields an effective

algorithm considering computational delay in NMPC.
It shall be mentioned that [13] also established stability conditions in order to guarantee the sta-

bility of the closed-loop system.
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Chapter 3

Robust MPC for delayed systems

3.1 Introduction

Among the advantages that predictive controllers exhibit, its capability to control systems with long
dead-time is one of the most interesting [7]. The predictive nature of the controller makes that the
effect of the delay be compensated by the prediction. In effect, once thecontroller receives the delayed
measure of the system, the predicted trajectory can be calculated based on the prediction model. Hence
the predicted sequence of inputs that minimizes the cost of the predicted trajectory can be calculated
as it is done in the case that the plant does not exhibit delay.

Consider that the system exhibits a delay ofd samples, then the predicted firstd values of the
predicted trajectory do not depend on the predicted control input, but onstate of the system and the
past inputs. This implies that the cost function to minimize must only consider the predicted tracking
error fromd+1 to N. This can be interpreted as an standard MPC without delay which control input
is calculated for the predicted state for the current time. That is, the MPC fordelayed systems can be
posed as a MPC controller for the plant without delay plus a predictor in series. See [7, Section 4.9]
for a more detailed explanation of this property.

The best-known predictive controllers such as DMC, GPC, etc. incorporates the delay compensa-
tion. However, the main concern of this natural delay compensation of MPC isthe sensibility of the
approach to uncertainties in the model system as well as in the modeled delay. In order to cope with
this problem, several solutions have been proposed.

A well-known robust MPC based on the solution of an optimization problem with Linear Matrix
Inequality constraints has been proposed in [27]. In this case, it is assumed that the uncertain system
can be modeled by a Linear Difference Inclusion and it is subject to constraints. A robust receding
horizon optimal controller for the constrained uncertain system is proposed. This is also extended
to the case of uncertain systems with fixed and known delays in the input and state. To this aim,
an extended state-space model is considered, which allows to use the procedure design proposed for
systems without delays.

In [33], a predictive controller for linear systems with delays distributed in the input signals and
in the output signals is presented. Moreover, each signal may exhibit a different delay. This work is
motivated by the effect of communication channels on the signals. The authors propose a steady-state
Kalman predictor to compensate the output delay while the input delay is considered in the controller
design by means of an extended state-space formulation. Robustness of the proposed controller is
studied and filtered predictions are proposed to improve the closed-loop robustness.

In [28] a predictive control formulation for delayed continuous-time linear systems is presented.
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Closed-loop stability is derived by adding a new term to the standard cost function which penalize the
integral error of the trajectory of a terminal period of time of length equal to the delay. The authors
provide also LMI conditions for the design of the controller. This method improves a receding-horizon
controller for delayed systems proposed by the authors in [29] where a cost function without weighting
on the state is used and closed-loop stability is not ensured by construction,but it must be checked
a-posteriori.

The Kothare’s predictive control has been extended to the case of polytopic uncertain systems
with bounded time-varying delays in [23]. The proposed controller consider that input is constrained
and moreover closed-loop stability is ensured under feasibility of the optimization problem. In [21]
presents a robust MPC for input constrained linear systems with time-varying bounded delay. The
LMI-based robust MPC proposed in [27] is extended to cope with this problem thanks to a proposed
method to enclose the uncertain system in a Linear Difference Inclusion. A delay dependent predictive
control based on Kothare’s for the case of uncertain linear systems with aconstant delay has been
proposed in [51]. The authors claim that the delay-dependence of the solution allows to achieve less
conservative controllers.

Another interesting approach to the design of robust predictive controllers for delayed systems is
based on the predictor-structure of the controller. As it is demonstrated in [41, Chapter 9], predictive
controllers has the same inner structure that the dead-time compensator (DTC). Then stability and
robustness of predictive controllers in presence of delays can be studied using the theory of DTC. It
is remarkable that this approach is particularly interesting in the case of networked control systems
where the network compensators also exhibit the structure of DTC.

As shown in [43] for generalized predictive controller (GPC) and in [41] for dynamic matrix con-
troller (DMC), MPC strategies may be very sensitive to dead-time uncertainty.Moreover, robustness
can be related to MPC algorithm predictor structures used to compute the output predictions up to
the dead time. To overcome the robust tuning limitations, it was proposed a modified GPC algorithm
based on the filtered Smith predictor called SPGPC [43, 44]. Initially, the multi-input multi-output
(MIMO) SPGPC version, which was presented in [44], could be applied tocontrol open loop stable
process. Later on, it was shown in [41] that this approach can be extended to control unstable MIMO
processes using a general formulation called DTC-GPC.

In the following sections, robust MPC for delayed systems based on filtered predictions are briefly
presented. This is based on the results of the paper [50], where these ideas have been extended to the
standard stabilizing MPC with terminal conditions [34]. A more detailed expositionon this topic can
be found in [41].

3.2 Multivariable discrete model description

In this work, it is considered a MIMO process modeled by

y(k) = P(z−1)u(k)

whereu(k) ∈ R
nu×1 is the input vector,y(k) ∈ R

ny×1 is the output vector,P(z−1) is composed by
ny×nu SISO transfer functions andz−1 is the backward shift operator. Each transfer function can be
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expressed as

pi j (z
−1) = z−di j

z−1b′i j (z
−1)

ai j (z−1)

= z−di
z−1bi j (z−1)

ai(z−1)
= z−di gi j (z

−1)

wheredi j is the dead-time of the transfer function between thej-input and thei-output;di = min
j=1...nu

di j

andai(z−1) is the least common multiple ofai j (z−1) for j = 1...nu.
This representation is interesting becauseny independent auto-regressive models can be defined

as

ai(z
−1)yi(k) =

nu

∑
j=1

bi j (z
−1)u j(k−di−1)+

ei(k)
∆

(3.1)

whereei(k) is a noise signal and∆ = 1−z−1 by definition.
However, in order to use the benefits of the standard stable MPC formulationproposed in [34], a

non-minimal state-space representation can be used to derive the MPC control law.
In the proposed dead-time process formulation, it is necessary to predictthe process output after

the dead-time only. Thus, the predicted output vector is defined as

y(k+d|k) = [y1(k+d1|k) y2(k+d2|k) ... yny(k+dny|k)]
T

whered1, d2 ... dny are the effective delay of each output. If the noise is not considered atthis point,
the regressive model can be rewritten in terms of a difference equation asfollows

y(k+d|k) =−
na

∑
l=1

Al y(k+d− l)+
nb

∑
m=1

Bmu(k−m)

whereAl ∈ R
ny×ny andBm∈ R

ny×nu. It should be noticed that each regressive model has a order (nai)
in order thatna= max(nai), i = 1, ...,ny. Hence, the predicted output realigned form the states will
be

x(k+d|k) =
[
xy(k+d|k)T x∆u(k+d|k)T]T

where

xy(k+d|k) =




y(k+d|k)
y(k−1+d|k)

...
y(k−na+d|k)


 ∈ R

(na+1)ny;

x∆u(k+d|k) =




∆u(k−1)
∆u(k−2)

...
∆u(k−nb+1)


 ∈ R

(nb−1)nu.

This state partition is convenient in order to separate the predicted output states (xy) from past control
signal ones (x∆u). Finally, including the integral action to consider the disturbance model of the
CARIMA representation 3.1, the nominal state-space model becomes

x(k+1+d|k) = Ax(k+d|k)+B∆u(k),

y(k+d|k) = Cx(k+d|k) (3.2)
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with

A =

[
Ay A∆u

0 I

]
, B =

[
B∆u

I

]
, C = [Cy C∆u],

Ay =




Iny−A1 A1−A2 ... Ana−1−Ana Ana

Iny 0 ... 0 0
0 Iny ... 0 0
...

...
.. .

...
...

0 0 ... Iny 0




,

A∆u =




B2 ... Bnb−1 Bnb

0 ... 0 0
...

...
...

...
0 ... 0 0


 , B∆u =




B1

0
...
0




Cy =
[

Iny 0 ... 0
]
, C∆u =

[
0 0 ... 0

]
,

I =




0 ... 0 0
Inu ... 0 0
...

...
...

...
0 ... Inu 0


 , I =




Inu

0
...
0


 .

Observe that the matricesA andC are partitioned inA∆u, Ay, C∆u andCy. Each block can be identified
by its dimension where:

A∆u ∈ R
(na+1)ny×(nb−1)nu, Ay ∈ R

(na+1)ny×(na+1)ny,

B∆u ∈ R
(na+1)ny×nu, Cy ∈ R

ny×(na+1)ny,

C∆u ∈ R
ny×(nb−1)nu, I ∈ R

(nb−1)nu×(nb−1)nu,

I ∈ R
(nb−1)nu×nu.

3.3 State-space MPC formulation for delayed systems

Consider that the output reference (yr(k)) is constant over the prediction horizon in order that the
complete future state reference is

w(k+ i|k) =
[
wy(k+ i|k)T w∆u(k+ i|k)T]T

with

wy(k+ i|k) =[ yr(k) yr(k) ... yr(k) ]T ∈ R
(na+1)ny;

w∆u(k+ i|k) =[ 0 0 ... 0 ]T ∈ R
(nb−1)nu.

Moreover, it is considered step-like reference changes applied in steady-state in such way thatw(k+
i|k) is fixed during a sufficient large period.

The proposed MPC cost function1 is

Jk =
N+d−1

∑
i=d+1

∥∥wy(k+ i|k)−y(k+ i|k)
∥∥2

Qδ
+

N−1

∑
i=0

‖∆u(k+ i|k)‖2R

+‖w(k+N+d|k))−x(k+N+d|k)‖2P (3.3)

1Norm notation:‖·‖2X = (·)TX(·)
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whereN is the prediction and control horizon,Qδ > 0 is the error weighting,R> 0 is the control
weighting andP≥ 0 is a terminal weighting.N, Qδ andRare tuning parameters andP must be used in
order to guarantee stability. Note that, because of the process dead-time, the first point in the horizon
is d+1 [41].

The Eq. (3.3) function can be written in a vectorial form as follows

Jk = [W (k)−X (k)]TQ[W (k)−X (k)]+U (k)T
RU (k) (3.4)

whereU (k), X (k) andW (k) are

U (k) = [∆u(k|k)T ∆u(k+1|k)T ... ∆u(k+N−1|k)T ]T ,

X (k) = [x(k+d+1|k)T x(k+d+2|k)T ... x(k+d+N|k)T ]T ,

W (k) = [w(k+d+1|k)T w(k+d+2|k)T ... w(k+d+N|k)T ]T

and the augmented weightings matrices are

Q = diag(CTQδ C,CTQδ C, ...,CTQδ C,P),

R = diag(R,R, ...,R).

Now, as the predicted states and the predicted output can be directly relatedto x(k+d|k) by

X (k) = A x(k+d|k)+BU (k) (3.5)

where

A =




A
A2

...
AN


 , B =




B 0 ... 0
AB B ... 0

...
...

.. .
...

AN−1B AN−2B ... B


 ,

it is possible to rewrite Eq. (3.4) as a function ofx(k+ d|k), U (k) andX (k). In this case, by
replacing Eq. (3.5) in Eq. (3.4) it is obtained

Jk =
1
2
U (k)THU (k)+bU (k)+ f0

with

H = 2[BT
QB +R]

b =−2[W T
QB−x(k+d|k)T

A
T
QB]

f0 = [W −A x(k+d|k)]TQ[W −A x(k+d|k)].

As consequence, the optimal control signal is obtained by

∂J
∂U

= 0⇒U
∗ =−H−1bT = K [W −F ] (3.6)

where

K = [BT
QB +R]−1

B
T
Q

T

F = A x(k+d|k).
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Finally, due to the receding horizon principle, the control signal should be

∆u(k) = [ 1 1 ... 1 1︸ ︷︷ ︸
nu

|0 0 ... 0 0︸ ︷︷ ︸
(N−1)×nu

] U (k).

It is important to notice that: (i)F = A x(k+d|k) is the free response in terms of the state-space
representation and
(ii) x(k + d|k), which is composed by y(k + d|k) until
y(k−na+d|k) and∆u(k−1) until ∆u(k−nb+1), will be multiplied by the gainK A .

3.4 Nominal stability

As it is well-known in MPC if the terminal cost function is appropriately chosen, then nominal stability
is guaranteed [34]. This allows to use the filtered Smith predictor structure to computex(k+d|k) with
the aim of providing robustness to the predictive controller.

Theorem. 1 Consider the matricesA, B andC of the augmented state-space representation and the
tuning matrices R> 0 and Qδ > 0 used in Eq. 3.3. Let the gain K and the semi-positive definite
matrix P obtained such that

(A +BK)TP(A +BK)−P+KTRK+CTQδ C = 0. (3.7)

If there is a solution for this Ricatti equation in order that P is the terminal weighting used in Eq.
(3.3), then the MPC control law nominally stabilizes the system represented by(3.2).

Remark. 1 If P = CTQδ C, the proposed formulation turns into the DTCGPC presented in [41] be-
cause Jk is the same cost function as the DTCGPC one.

3.5 Prediction up tok+d and robustness

Using the previous results, it is already known that the nominal closed loop system is stable. For the
robustness analysis, it is interesting to derive a block diagram representation of the controller structure.
The predictor structure is analyzed first.

By considering thatei(k+ i|k) = 0, i > 1, it is possible to obtainy(k+ d|k) recursively from
Eq. (3.1). This approach, used in the GPC strategy, is called optimal predictor. In order to improve
robustness by filtering the predicted output, it is proposed to use a filtered Smith predictor formulation.
This predictor structure is presented in Fig. 3.1 whereFr (z) is a diagonal filter (diag[ fr i (z)], i =
1, ..,ny) andGn(z) is the nominal transfer function without the effective dead time (di). If the process
is unstable or integrative,Fr (z) should be obtained in order thatS(z) = Gn(z)− Fr (z)Pn(z) does
not have unstable poles as discussed in [41]. The stability ofS(z) is necessary to guarantee internal
stability of the predictor.

Now, to complete the block diagram, it is computed the control action as a functionof y(k+d|k)
andwy(k+d+N|k). As it was already pointed out,x(k+d|k) is composed byy(k+d|k), ....,y(k+
d−na|k) and∆u(k−1), ....,∆u(k−1−nb). As consequence, the optimal unconstrained control law
(see Eq. (3.6)) can be expressed by

∆u(k) =Lw(z−1)wy(k+d+N|k)−Lu(z
−1)∆u(k−1)

−L y(z
−1)y(k+d|k) (3.8)
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P(s)

S(z−1)

Ly(z−1)

Lu(z−1)

Lw(z−1)

Fr (z−1)
y(k)

y(t)

q(t)

u(k)

y(k+d|k)

wy(k+d+N|k)

(1−z−1)−1 ZOH

Predictor

Figure 3.1: Complete control structure diagram

or simply
u(k) = F(z−1)wy(k+d+N|k)−C(z−1)y(k+d|k)

whereF(z−1) = (1+ z−1)(I + Lu(z−1))−1Lw(z−1) andC(z−1) = (1+ z−1)(I + Lu(z−1))−1L y(z−1).
The complete control scheme in terms of transfer function is presented in Fig.3.1. An important
advantage of this formulation comes from the fact that it is possible to establisha relationship between
Fr (z) and robustness as it is going to be analyzed in the following.

3.6 Robustness analysis

The robustness filter should be used to obtain a compromise between robustness and disturbance
rejection. As presented in [44], it is possible either to perform an analytical approach or to use intuition
as usually done in industrial practice.

3.6.1 Tuning filter using an unstructured uncertainty model

In this report it is used an additive unstructured description of the uncertainty is considered in such
way that the real plantP is in a vicinity of the nominal plantPn, that is

P(z) = Pn(z)+δP(z).

In generalδP(z) can be written as [52]

δP(z) = W2(z)∆(z)W1(z), σ̄(∆(z)) < 1, ∀ω ∈ (0,π/Ts)

where for this case∆(z) is a full matrix, σ̄(X) denotes the maximum singular value ofX, Ts is the
sampling period andW1(z) andW2(z) are two stable matrix transfer function that characterize spatial
and frequency structure of the uncertainty.

The characteristic equation in the presence of uncertainty is

det[I +C(Gn +Fr W2∆(z)W1)] = 0.

Using that

det[I +C(Gn +Fr W2∆(z)W1)] =

det[(I +CGn)]det[I +(I +CGn)
−1CFr W2∆(z)W1)]
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∆(z)

M(z)

Figure 3.2: Modified plant for robustness analysis

where det[I + CGn] is the nominal characteristic equation which has stable poles only. In this case,
a new equivalent plant for robustness analysis is presented in Fig. 3.2 where M = −W1C(I +
CGn)−1Fr W2 =−W1M0Fr W2 is the equivalent plant.

Thus, assuminḡσ(∆(z)) < 1, it can be concluded that if

σ̄(M(ejω)) < 1, ∀ω ∈ [0,π/Ts],

robust stability is guaranteed [52]. It is also possible to state that

σ̄(M)≤ σ̄(M0)σ̄(Fr )σ̄(W1).σ̄(W2) (3.9)

In order words, the robustness filter must be chosen in order to verify

σ̄(Fr (e
jω))≤

1
σ̄(W1(ejω))σ̄(W2(ejω))σ̄(M0(ejω))

(3.10)

∀ω ∈ [0,π/Ts].

3.6.2 Tuning filter in industrial practice

One of the most important problems in practice is the derivation of simple rules that can be used by
operators to tune the multivariable controller. In general, it is very difficultto model the uncertainties
in industrial processes, but it is possible to increase robustness by reducing the singular value ofFr (z)
as can be verifies from Eq. (3.9). A key aspect is that the singular valueof Fr (z) is determined by the
magnitude offri (z) becauseFr is diagonal transfer function. Thus, theny SISO filters (fri (z)) can be
directly tuned as suggested in [42].

It is important to remark that this approach is useful because the robustness filter tuning parameters
can be defined to have provide an intuitive interpretation. For instance, if the process is stable, it is
possible to choose a second order low pass filter for each output in the form:

fri (z
−1) =

[
1−βi

1−βiz−1

]2

(3.11)

whereβi is the robustness tuning parameter. It can be readily verified from Eq. (3.10) that it is possible
to increase robustness by using a greater value ofβ . On the other hand, the greater is the value ofβ ,
the greater is the filtering action and the slower is the disturbance rejection response.
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3.7 Simulation Example

To illustrate the properties of the MPC with predictions based on a filtered Smith predictor, this will
be applied to the following MIMO delayed system. In this case, the nature of thedelay may be
communication delay as well as the inner delay of the plant.

G(s) =




9.02
(2.57s+1)2 e−θ11s 10.01

2s+1e−θ12s

0.495
42s+1e−θ21s 6.34

72s+1e−θ22s


 ,

Due to the random nature of the communication network, the delays are assumed to be within the
following ranges:

4.10≤ θ11≤ 4.5, 5≤ θ12≤ 6.8

5.50≤ θ21≤ 6.6, 4.3≤ θ22≤ 5.3.

and the nominal dead times were chosen to beθ11n = 4.3, θ12n = 5.9, θ21n = 6 andθ22n = 4.8. The
dead-time free model has a Right Half-Plane Zero which may cause internalstability problems. All
simulations were performed with the same weighting matricesQδ = I , R= 0.1diag[9.022,6.342] and
sampling periodTs = 0.1s.

The first simulation, presented in Fig. 3.3, is used to illustrate that the state-space DTCMPC and
the DTCGPC nominal set-point tracking performances can be similarly good.The simulation test
consist of two step changes with amplitude 100 and 10 for outputs 1 and 2 respectively. In these
simulations it was usedN = 50 (prediction horizon) andNu = 20 (control horizon) for the DTCGPC
andN = Nu = 20 for the DTCMPC. From Fig. 3.3 it can be observed that the DTCMPC andthe
DTCGPC output responses are similar despite the fact that it was used a prediction horizon more than
two times greater in the DTCGPC case. Moreover, if it is tried to useN = Nu = 20 in the DTCGPC
strategy, the output response is unstable as shown in Fig. 3.4. This unstable behavior is a typical
situation where the prediction horizon was not appropriately chosen to control a RHPZ [15].

The increase in the robustness is provided by the filterFr(z) are illustrated in Figs. 3.5 and 3.6. In
both cases, the real dead-time was set to be their maximum values (θ11r = 4.5, θ12r = 6.8, θ21r = 6.6
andθ22r = 5.3) and two input disturbancesq1(t) = [−10 0]T andq2(t) = [0 −1]T were added at 150
and 220 seconds respectively. By considering the filter presented in Eq. (3.11), the case without filter
(β1 = β2 = 0) is presented in Fig. 3.5 and the responses obtained forFr(z) with β1 = β2 = 0.9 are
shown in Fig. 3.6. The output response for the case withβ1 = β2 = 0 is unstable due to the dead-time
estimation error. On the other hand the correct tuning ofβ allows to obtain a stable behavior as shown
in Fig. 3.6.
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Figure 3.3: Output response and control signal: DTCMPC (solid) and DTCGPC (Dashed).
NDTCGPC= 50,NDTCGPC

u = 20 andNDTCMPC= 20.
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Figure 3.4: Output response and control signal: DTCMPC (solid) and DTCGPC (dashed).NDTCGPC=
20,NDTCGPC

u = 20 andNDTCMPC= 20.
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Figure 3.5: Output response and control signal for the DTCMPC withβ1 = β2 = 0: nominal case
(solid) and real case (dashed).
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Figure 3.6: Output response and control signal for the DTCMPC withβ1 = β2 = 0.9: nominal case
(solid) and real case (dashed).
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