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This report gives an overview of the optimization methods that can be agpltddrarchical an
distributed MPC. The last chapter contains some discussion and conelusioich are releva
to MPC and which suggest some possible research directions which damelstigated in th
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Chapter 1

Introduction

This report gives an overview of optimization methods for hierarchicdldistributed MPC. In this
chapter we briefly recall the model predictive control methodology afideléhe notation that we
shall use in the rest of the report.

1.1 Model predictive control

Consider a system described by the difference equation
XH,]_:(,U(Xt,Ut), t=012,... (11)

wheret represents the time and the vecters R" andu; € R™ represent the state and input, respec-
tively. Given the stage cost

gt(xtaut% (12)
the constraints
xe€2ZCR" and weZ CR™ t=0,12,..., (1.3)

and the initial conditionxyg, we consider the optimal control problem (OCP) of finding a control
sequenceu };” o, such that the cost

OOE ), 1.4
t;t(xtut) (1.4)

is minimized.

This problem is difficult to solve in general due to the fact that we havefanteanumber of vari-
ables. The MPC strategy tackles this difficulty by repetitively solving a finitezba approximation
of the original infinite horizon OCP. The method can be summarized in the folipsteps

1. Choose a prediction horizadh
2. Measure the value of the state at the current tigned denote it by;
3. Solve the optimization problem

min - ok )

Uo...‘,UN_l .
X1 =@, %) ¥t=0,....N—1 (1.5)
X €2 Vt=0,

..,N
wWe¥ Vt=0,. N-1
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4. Apply the computed value of the inpug;
5. Goto step (2).

Remark 1 The considered OCP and the corresponding MPC method here are basic. Nevertheless,
the optimization methods discussed in this report can be applied to more sophisticated MPC applica-
tions (see, e.g., the books [4, 14]).

1.2 Distributed model predictive control

Consider a networked system composedvibinterconnected subsystems, each one described by a
difference equation of the form

X =@ usje ), t=012. .. (1.6)

wh_erex{ € R™, ul € R represent the state and the input of the subsystintimet. The index set
A" contains index and all indices of the subsystems that interact with the subsyist&onsider
for example the networked system in Figure|1.1, where the arrows indi¢atadtion between the

Figure 1.1: An example of networked systems.
subsystem&, 3,,53,54. If we considerz, we have /4 = {3,4} and therefore

Xt4+l = §04(Xt3axt47 utsv Ufl)

When we consider a networked systems, the optimization problem to be solegdrg MPC
iteration has usually a particular structure which can be exploited to obtaitriaulied MPC scheme.
This will be the subject of the remainder of this report.

To simplify the exposition in the following chapters we introduce the following thata

R o1 1T T
x':[x‘oTubT... x',\,_lTu}\,_lTx',\,T} : x:{xlT... XMT} : (1.7)

Using this notation problem (1.5) can be now written in the form

mxin f(x)
s.t. h(x) =0 (1.8)
X e
where N
fX)=§ 4%, W), 1.9
(x) t;) t(% Ut) (1.9)
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the functionh(x) is obtained by stacking all the equalities constraints coming from the dynamics
X1 =¢ (x,ul;j € ) andx € Z represent all the other constraints.

Depending on the nature of the MPC problem considered, the fundtiandh and the se2” can
have some separability properties with respect to the variahlda the next chapter we will define
these separability properties and we will show how we can exploit them tinabtéistributed MPC
scheme. In particular, we will show how problem (1.8) can be decomposautain a method where
every subsystem solves a simple subproblem, possibly under the caindiofea central control unit.
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Chapter 2

Methods for distributed optimization

The literature on distributed optimization is wide, since for decades, rém=ahave studied different
techniques to solve computationally demanding problems exploiting distributeusaake! comput-
ing. In this chapter we survey the main methods to solve optimization problems fdrtheg(1.8),
which arise in the distributed MPC framework.

For illustrative convenience, let us rewrite problem (1.8)

mxin f(x)
s.t. h(x)=0 (2.1)
xeZ

To effectively distribute the computation of the solution of probIEm(Z.l) dntdio a distributed MPC
scheme we need to define the following separability propertiesx(thsed in the definitions are the
local vectors defined in (1.7)).

e The cost functiorf is separable if there exist functioffig, . .., fy such that
M . N
fx)=F% f'(x). (2.2)
2

e The constraint se” is separable if it can be written as
X =2'x...x M (2.3)
and the constraint € 2 is equivalenttod € 27 Vi=1,...,M.
e The constrainh(x) is separable if it can be written as

h(x)=0 Vi=1,...,M. (2.4)

When the optimization problem (2.1) arises from a distributed MPC problenuiliyspresents
one or more of the separability properties above. Clearly, when all treragfity properties hold,
problem|(2.1) is constituted &fl independent problems of the form

min  f/(x)
st.  h(xh)=0 (2.5)
X e
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which can be solved separately. In the reminder of this chapter we shdlatkithe methods that can
be used to solve the central problem (2.1) in a distributed manner whemibtche trivially written
asM independent problems.

In the following we will often refer to subsystems as nodes. The two terms wilided inter-
changeably.

2.1 The Jacobi and Gauss-Seidel algorithms

Consider an optimization problems whérand.2" are separable

min f(xt,...,xM)
x1,... xM o
s.t. h(x)=0 Vi=1,...,M (2.6)

xXe2t  Vvi=1,...,M

This kind of problems may not be interesting from the distributed MPC petigpesince it would
correspond to a control problem where all the subsystem dynamicsoastiaints are completely
decoupled. However, we discuss this case for completeness angédcawzauss-Seidel and Jacobi
algorithms can be used as a building block for other algorithms.

The algorithms illustrated in this section are based on the idea of iteratively ggiroblem|(2.6).
Every node computes a new value of the local variahlevhile keeping all the other variables fixed.
In each iteration, the optimization phase is followed by a broadcasting pivasee the results are
communicated to the other nodes. The two methods differ in the way the twospdnraserganized.

In the Jacobi algorithm all nodesupdates the value of simultaneously. The optimization
problem solved at each node reads

P ; 1 i—1 i i+l M
Xj,1 = arg n;iln F(Xieo - > X XX LX)

st.  hx)=0 (2.7)
xe 2

After problem[(2.7) has been solved, the variabd{gﬁ are sent to the other nodes. _
In the Gauss-Seidel algorithm (known also as block-coordinate defjgthe variables<' are
updated sequentially. The local optimization problem reads

i - 1 i—1 i i+l M
Xj 1 = arg rgln F(Xigi1s - X XX %)

st.  h(x)=0 (2.8)
xie

After solving problem/((2.8) the value af(H is sent to all the other nodes.

Remark 2 In general, the local optimization problems in the Gauss-Seidel algorithm cannot be
solved simultaneously. When a coloring scheme can be applied, however, part of the computation
can be carried out in parallel [2, Subsection 1.2.4].

More details on this methods, including a proof of convergence, canunel fio [2].

In the next section, we shall discuss decomposition methods that can ledapproblems
where there are constraints that couple two or more vector varigbl@hese kind of problems are
interesting for distributed MPC, since they occur when the subsystemscbhapted dynamics or
when different subsystems share a common resource.
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2.2 Primal decomposition — resource allocation

In this section ,we illustrate how a problem can be decomposed by resdlocagian. This method
can be applied to problems that become separable when one or more gaiahlxed. The method
will be explained by means of an example.
Consider the problem
min  f1(x1) + f2(x?)
x1,x2
st.  hitxh)=0 xte2? (2.9)
h?(x?) =0 x> e 272
alxl+b™x2<c
wherea andb are vectors of appropriate dimension ani$ a scalar. The se®” in the centralized
problem can be written for this problem & = {27! x 272} n{(x},x?)|a"x* +b"x? < c}. There-
fore, the only coupling contraint in problem (2.9) is given by the inequatitystraint. This kind of
problems can easily arise in distributed MPC when two subsystems share a liesitedlae.
To reformulate problem (2.9) in a way that allows resource allocation, weduate a variablg
to split the coupling inequality constraint into two inequalities

min fL(x1) 4+ f2(x?)

x1x2y
s.t. hix))=0 xte2?
h2(x2) = 0 X2 c 272 (2.10)
alxt <y
b'x2<c—y

Itis clear that if we fixy we obtain two decoupled subproblems

@'(y)= min  fi(x}) @*(v)= min  f2(x?)
X X
st. hi(x})=0 st h’(x?)=0 211
xte 21 x2e 2?2 @11)
a'xt<y bTx?<c—y

Problem|((2.9) is then equivalent to the master program
min - ¢*(y) + @*(y) (2.12)

This problem can be solved iteratively by choosing a valug.@nd then minimizing the functions
o' (%) and@?(y) in parallel. The update gjf can be done using a subgradient scheme

Y1 = Yk — OBk (2.13)

whereay is the step size angk is the subgradient ap' () + @?(y). Notice thatgx can be written as

gk = —AL() +A2(y) whereA X(y) andA ?(y) are Lagrange multipliers associated to the inequalities
a'x! < yandb™x? < c— yin the two subproblems defined in (2/11). (see [1, Chapter 4] or [3,8hap
5] for more information about Lagrange multipliers and their sensitivity ingtgtion). When the
master problem is solved using this scheme, the method has an interestinghacoterpretation.

At every iteration the master program allocates the resources (by chogkiand the nodes return
the prices associated with this choidet(y) andA2(y)). The iterations continue until the prices
have reached the equilibrium(y) +A2(y) = 0. In the next section, we illustrate a decomposition
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method in which this pricing scheme is reversed: the master program decidesdds whereas the
nodes allocate the resources.

An interesting fact concerning the the primal decomposition method via esaliocation is that
under suitable conditions this method can be implemented such that the cotugionsx! andx? of
the subproblems is feasible at every iteration [15, 16].

2.3 Dual decomposition — price coordination

When the cost function is separable a problem can be decomposed egplaigirangian duality. This
method is illustrated at length in [19, 7, 2]. Following the approach of theiguewsection we will
explain the method by means of an example.
Consider the problem
min  f3(xY) + f2(x?)
x1,x2
S.t. hl(Xl) =0 xte 21 (2.14)
h?(x?)=0 x2e€ 27
a'xl+b'x?=c
wherea andb are vectors of suitable dimension ani$ a scalar. In problem (2.14), the only coupling
constraint is given by the last equality. Problems of this form frequentg @ distributed MPC when
the dynamics of one subsystem depends on one or more state and igloiiegof other subsystems.
To decompose the problem, we consider the partial Lagrangian

LX) =) + 23 A (@ x +bTx? —¢) (2.15)

where we have introduced a Lagrange multiplier for the coupling constraitys The dual corre-
sponding problem, which will be referred to as the master problem, reads

max gt (A)+d*(A) —Ac (2.16)
where
g'(A)= min  fi(x})+AaTxt g’(A)= min  3(x?)+AbTx?
X X
st.  ht(x})=0 st. P(x?)=0 (2.17)
xte 21 X2 e 22

Similarly to resource allocation, price coordination also uses an iterativeithlgo The method
alternates an update af with the solution of the subproblems which can be carried out in parallel.
The update ofA can be done using a subgradient method or any other suitable method.

This decomposition method also has an interesting economic interpretatiorerititevation the
master problem decides the price associated to the coupling constrainal{ireoiA ) and the nodes
accordingly decide the value of the resourcésandx?). The iterations continue until the equilibrium
a'x' 4+ b"x? — ¢ has been reached.

Remark 3 At every iteration there is no guarantee that the primal variables are feasible. Only when
the method converged to a solution we have this guarantee.

Remark 4 Dual decomposition should be used only when strong duality hold for problem (2.14) If
thereis no strong duality, the solutions of problems (2.14)and (2.16) may not be equivalent.
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2.4 Remarks

In this chapter we introduced the basic optimization techniques that can lnétectpo designed hi-
erarchical and distributed MPC algorithms. To make this methods applicableattieufar problem

we assumed specific separability properties. However, it is important teertbtit by suitable trans-
formation, we can often rewrite the problem under consideration suclhthatew formulation has
the required properties.
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Chapter 3

Discussion and conclusions

In this chapter we discuss some important aspects that should be takercimtiotaghen designing a
distributed MPC algorithm.

3.1 Number of iterations and feasibility issues

In the previous chapter we presented some basic methods for distributedzapon. However,
we did not discuss the efficiency of this methods, which is an important tgfpen we consider
distributed MPC. In fact, MPC requires the online solution of optimization prolf1) in a limited
amount of time. This is especially important when the dynamics of the systersar&ince complete
discussion of the efficiency of the illustrated methods is out of the scopésakghort, we decided to
point out an aspect which we believe is relevant for distributed MPC.

When we decompose a centralized optimization problem, we may need a largerminitbra-
tions before convergence is achieved (the numerical examples in [13]i®ate that we may need
more than 100 iterations even for simple problems). Therefore, the time edduyrthe distributed
optimization algorithm used may be too big for the requirements dictated by MRS obkervation
suggests that instead of solving the optimization problem completely we mayrmesfoy a limited
number of iterations, if using a suboptimal solution is acceptable for our apiplic If we decide to
adopt such kind of strategy it is essential to stop the algorithm only whemthent solution is feasi-
ble for the system. In this regard, the methods illustrated in the previous cipapterm differently.

e The Jacobi and Gauss-Seidel algorithms produce feasible solutioab fioe iterations. This
is made easy by the fact the this methods can be applied when we have fingoapstraints.
However, as we already noticed coupling constraints occur in practicdistibuted MPC
applications and this fact make these methods less interesting.

e As already pointed out in section 2.2, it is possible to produce feasible swufiiw every
iterations also when we use primal decomposition [15, 16], but in genesaiktdifficult. In
fact, to obtain a feasible solution from the nodes, it is essential that the rpasidéem chooses
a feasible resource allocation.

e When dual decomposition is used, it is difficult to produce feasible solutibeach iteration.
The reason is that the satisfaction of the coupling constraints is achievbd master problem
only by choosing a suitable value of the Lagrange multipliers.
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It is interesting to notice that the scientific literature has given little attention to thg sfudethods
which produce feasible solutions at every iteration. This is probably diretiact that many applica-
tions for which distributed optimization was studied, have no hard time consteaidtene can wait
for algorithm convergence. In view of this fact, one possible resegirelstion which could be fur-
ther investigated in the HD-MPC project is the study of decomposition methot$ \ale designed
to quickly achieve feasible suboptimal solutions for distributed optimizationl@nubwith coupling
constraints.

3.2 Smoothness of the master problem

In Sections 2.2 and 2.3, we have seen that the master problem in the prindhi@rdecomposition
can be solved by a subgradient method. Although it is commonly used, tlgeasiignt method
works poorly for some problems. For this reason several techniquesheen studied to obtain a
differentiable master problem in the dual decomposition method. This methobased on the fact
that when the cost function of the primal problem is strictly convex, then ¢isé function of the
master problem is differentiable [17, 2, 18, 5, 8, 10].

3.2.1 Augmented Lagrangian Method

Consider the problem
min  f1(x}) + f2(x?)
xtx2 : (3.1)
st.  alxt+b'™x?>=c
The idea of theaugmented Lagrangian method is to add a term to the primal cost function such that
the new problem has the same minimizers and strict convexity is improved:
min  f(x1)+f2(x?)+ ¥ |aTx! +b"™x? —c||?
xtx2 : (3.2)
st.  a'xt+b'x2=c
Unfortunately, the master problem obtained by applying the dual decompotit{8.2), is not sepa-
rable inx! andx? and one must use the Jacobi or Gauss-Seidel algorithm for its solution [2]

3.2.2 Proximal minimization algorithm

Another method to obtain a differentiable master problem is adding a prox tettme st function
of the primal problem to obtain strict convexity. Consider problem| (3.1 grbximal minimization
algorithmiteratively solves the problem

2

1 2 ; 171 2/y2 v 1T oT]T
(xk+1,xk+1):argxrln)|(g1 FHOc) + F2(x + 5 [x X } —[xk xk}

(3.3)
s.t. alxl+b™x2=c

Problem|(3.3) is then solved using dual decomposition [2].

3.2.3 Proximal center algorithm

A common problem in the augmented Lagrangian method and the proximal minimizkgaitram
is that the parametes;, which strongly influences the convergence, is difficult to tune. Somesties
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to solve this problem can be found in [6, 5]. Another limitation of this methods isthey use a
gradient method which was proved to be less efficient than Nesterawsapnethod [11].

In [9,/10], Nesterov's optimal method is combined with smoothing techniquegétsby [12] to
obtain a method whose efficiency is proved to be of one order of magnigitér than methods based
on gradient updates. For a complete description of the algorithm, see [9].
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