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Executive summary

This report gives an overview of the optimization methods that can be appliedto hierarchical and
distributed MPC. The last chapter contains some discussion and conclusions, which are relevant
to MPC and which suggest some possible research directions which can beinvestigated in the
HD-MPC project.

Page 3/16

http://www.ict-hd-mpc.eu


HD-MPC ICT-223854 On-line optimization methods for hierarchical and distributed MPC

Chapter 1

Introduction

This report gives an overview of optimization methods for hierarchical and distributed MPC. In this
chapter we briefly recall the model predictive control methodology and define the notation that we
shall use in the rest of the report.

1.1 Model predictive control

Consider a system described by the difference equation

xt+1 = φ(xt ,ut), t = 0,1,2, . . . (1.1)

wheret represents the time and the vectorsxt ∈ R
n andut ∈ R

m represent the state and input, respec-
tively. Given the stage cost

ℓt(xt ,ut), (1.2)

the constraints
xt ∈ X ⊆ R

n and ut ∈ U ⊆ R
m, t = 0,1,2, . . . , (1.3)

and the initial condition ¯x0, we consider the optimal control problem (OCP) of finding a control
sequence{ut}

∞
t=0, such that the cost

∞

∑
t=0

ℓt(xt ,ut), (1.4)

is minimized.
This problem is difficult to solve in general due to the fact that we have an infinite number of vari-

ables. The MPC strategy tackles this difficulty by repetitively solving a finite horizon approximation
of the original infinite horizon OCP. The method can be summarized in the following steps

1. Choose a prediction horizonN;

2. Measure the value of the state at the current timet̄ and denote it by ¯x;

3. Solve the optimization problem

min
x0,...,xN

u0,...,uN−1

∑N
t=0ℓt(xt ,ut)

s.t. x0 = x̄
xt+1 = φ(xt ,ut) ∀t = 0, . . . ,N −1
xt ∈ X ∀t = 0, . . . ,N
ut ∈ U ∀t = 0, . . . ,N −1

(1.5)
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4. Apply the computed value of the inputu0;

5. Go to step (2).

Remark 1 The considered OCP and the corresponding MPC method here are basic. Nevertheless,
the optimization methods discussed in this report can be applied to more sophisticated MPC applica-
tions (see, e.g., the books [4, 14]).

1.2 Distributed model predictive control

Consider a networked system composed ofM interconnected subsystems, each one described by a
difference equation of the form

xi
t+1 = φ i(x j

t ,u
j
t ; j ∈ Ni), t = 0,1,2, . . . (1.6)

wherexi
t ∈ R

nxi , ui
t ∈ R

nui represent the state and the input of the subsystemi at timet. The index set
N i contains indexi and all indices of the subsystems that interact with the subsystemi. Consider
for example the networked system in Figure 1.1, where the arrows indicate interaction between the

Σ1

Σ2

Σ3
Σ4

Figure 1.1: An example of networked systems.

subsystemsΣ1,Σ2,Σ3,Σ4. If we considerΣ4 we haveN 4 = {3,4} and therefore

x4
t+1 = φ4(x3

t ,x
4
t ,u

3
t ,u

4
t ).

When we consider a networked systems, the optimization problem to be solved at every MPC
iteration has usually a particular structure which can be exploited to obtain a distributed MPC scheme.
This will be the subject of the remainder of this report.

To simplify the exposition in the following chapters we introduce the following notation:

xi =
[

xi
0

T
ui

0
T
. . . xi

N−1
T

ui
N−1

T
xi

N
T
]T

, x=
[

x1T
. . . xMT

]T
. (1.7)

Using this notation problem (1.5) can be now written in the form

min
x

f (x)

s.t. h(x) = 0
x ∈XXX

(1.8)

where

f (x) =
N

∑
t=0

ℓt(xt ,ut), (1.9)
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the functionh(x) is obtained by stacking all the equalities constraints coming from the dynamics
xi

t+1 = φ i(x j
t ,u

j
t ; j ∈ Ni) andx ∈XXX represent all the other constraints.

Depending on the nature of the MPC problem considered, the functionsf andh and the setXXX can
have some separability properties with respect to the variablesxi. In the next chapter we will define
these separability properties and we will show how we can exploit them to obtain a distributed MPC
scheme. In particular, we will show how problem (1.8) can be decomposedto obtain a method where
every subsystem solves a simple subproblem, possibly under the coordination of a central control unit.
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Chapter 2

Methods for distributed optimization

The literature on distributed optimization is wide, since for decades, researches have studied different
techniques to solve computationally demanding problems exploiting distributed andparallel comput-
ing. In this chapter we survey the main methods to solve optimization problems of theform (1.8),
which arise in the distributed MPC framework.

For illustrative convenience, let us rewrite problem (1.8)

min
x

f (x)

s.t. h(x) = 0
x ∈XXX

(2.1)

To effectively distribute the computation of the solution of problem (2.1) and obtain a distributed MPC
scheme we need to define the following separability properties (thexi used in the definitions are the
local vectors defined in (1.7)).

• The cost functionf is separable if there exist functionsf1, . . . , fM such that

f (x) =
M

∑
i=1

f i(xi). (2.2)

• The constraint setXXX is separable if it can be written as

XXX = X
1×·· ·×X

M (2.3)

and the constraintx ∈XXX is equivalent toxi ∈ X i ∀i = 1, . . . ,M.

• The constrainth(x) is separable if it can be written as

hi(xi) = 0 ∀i = 1, . . . ,M. (2.4)

When the optimization problem (2.1) arises from a distributed MPC problem it usually presents
one or more of the separability properties above. Clearly, when all the separability properties hold,
problem (2.1) is constituted ofM independent problems of the form

min
xi

f i(xi)

s.t. hi(xi) = 0
xi ∈ X i

(2.5)
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which can be solved separately. In the reminder of this chapter we shall illustrate the methods that can
be used to solve the central problem (2.1) in a distributed manner when it cannot be trivially written
asM independent problems.

In the following we will often refer to subsystems as nodes. The two terms will be used inter-
changeably.

2.1 The Jacobi and Gauss-Seidel algorithms

Consider an optimization problems whereh andX are separable

min
x1,...,xM

f (x1, . . . ,xM)

s.t. hi(xi) = 0 ∀i = 1, . . . ,M
xi ∈ X i ∀i = 1, . . . ,M

(2.6)

This kind of problems may not be interesting from the distributed MPC perspective, since it would
correspond to a control problem where all the subsystem dynamics and constraints are completely
decoupled. However, we discuss this case for completeness and because the Gauss-Seidel and Jacobi
algorithms can be used as a building block for other algorithms.

The algorithms illustrated in this section are based on the idea of iteratively solving problem (2.6).
Every node computes a new value of the local variablexi, while keeping all the other variables fixed.
In each iteration, the optimization phase is followed by a broadcasting phase,where the results are
communicated to the other nodes. The two methods differ in the way the two phases are organized.

In the Jacobi algorithm all nodesi updates the value ofxi simultaneously. The optimization
problem solved at each node reads

xi
k+1 = arg min

xi
f (x1

k , . . . ,x
i−1
k ,xi,xi+1

k . . . ,xM
k )

s.t. hi(xi) = 0
xi ∈ X i

(2.7)

After problem (2.7) has been solved, the variablesxi
k+1 are sent to the other nodes.

In the Gauss-Seidel algorithm (known also as block-coordinate descent [2]) the variablesxi are
updated sequentially. The local optimization problem reads

xi
k+1 = arg min

xi
f (x1

k+1, . . . ,x
i−1
k+1,x

i,xi+1
k . . . ,xM

k )

s.t. hi(xi) = 0
xi ∈ X i

(2.8)

After solving problem (2.8) the value ofxi
k+1 is sent to all the other nodes.

Remark 2 In general, the local optimization problems in the Gauss-Seidel algorithm cannot be
solved simultaneously. When a coloring scheme can be applied, however, part of the computation
can be carried out in parallel [2, Subsection 1.2.4].

More details on this methods, including a proof of convergence, can be found in [2].
In the next section, we shall discuss decomposition methods that can be applied to problems

where there are constraints that couple two or more vector variablesxi. These kind of problems are
interesting for distributed MPC, since they occur when the subsystems havecoupled dynamics or
when different subsystems share a common resource.
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2.2 Primal decomposition – resource allocation

In this section ,we illustrate how a problem can be decomposed by resource allocation. This method
can be applied to problems that become separable when one or more variables are fixed. The method
will be explained by means of an example.

Consider the problem
min
x1,x2

f 1(x1)+ f 2(x2)

s.t. h1(x1) = 0 x1 ∈ X 1

h2(x2) = 0 x2 ∈ X 2

aT x1 +bT x2 ≤ c

(2.9)

wherea andb are vectors of appropriate dimension andc is a scalar. The setXXX in the centralized
problem can be written for this problem asX = {X 1×X 2}∩{(x1,x2)|aT x1 + bT x2 ≤ c}. There-
fore, the only coupling contraint in problem (2.9) is given by the inequality constraint. This kind of
problems can easily arise in distributed MPC when two subsystems share a limited resource.

To reformulate problem (2.9) in a way that allows resource allocation, we introduce a variableγ
to split the coupling inequality constraint into two inequalities

min
x1,x2,γ

f 1(x1)+ f 2(x2)

s.t. h1(x1) = 0 x1 ∈ X 1

h2(x2) = 0 x2 ∈ X 2

aT x1 ≤ γ
bT x2 ≤ c− γ

(2.10)

It is clear that if we fixγ we obtain two decoupled subproblems

φ1(γ) = min
x1

f 1(x1)

s.t. h1(x1) = 0
x1 ∈ X 1

aT x1 ≤ γ

φ2(γ) = min
x2

f 2(x2)

s.t. h2(x2) = 0
x2 ∈ X 2

bT x2 ≤ c− γ

(2.11)

Problem (2.9) is then equivalent to the master program

min
γ

φ1(γ)+φ2(γ) (2.12)

This problem can be solved iteratively by choosing a value ofγk and then minimizing the functions
φ1(γk) andφ2(γk) in parallel. The update ofγk can be done using a subgradient scheme

γk+1 = γk −αkgk (2.13)

whereαk is the step size andgk is the subgradient ofφ1(γk)+φ2(γk). Notice thatgk can be written as
gk =−λ 1(γk)+λ 2(γk) whereλ 1(γk) andλ 2(γk) are Lagrange multipliers associated to the inequalities
aT x1 ≤ γ andbT x2 ≤ c−γ in the two subproblems defined in (2.11). (see [1, Chapter 4] or [3, Chapter
5] for more information about Lagrange multipliers and their sensitivity interpretation). When the
master problem is solved using this scheme, the method has an interesting economic interpretation.
At every iteration the master program allocates the resources (by choosing γk) and the nodes return
the prices associated with this choice (λ 1(γk) andλ 2(γk)). The iterations continue until the prices
have reached the equilibriumλ 1(γk)+ λ 2(γk) = 0. In the next section, we illustrate a decomposition
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method in which this pricing scheme is reversed: the master program decides the prices whereas the
nodes allocate the resources.

An interesting fact concerning the the primal decomposition method via resource allocation is that
under suitable conditions this method can be implemented such that the current solutionsx1 andx2 of
the subproblems is feasible at every iteration [15, 16].

2.3 Dual decomposition – price coordination

When the cost function is separable a problem can be decomposed exploiting Lagrangian duality. This
method is illustrated at length in [19, 7, 2]. Following the approach of the previous section we will
explain the method by means of an example.

Consider the problem
min
x1,x2

f 1(x1)+ f 2(x2)

s.t. h1(x1) = 0 x1 ∈ X 1

h2(x2) = 0 x2 ∈ X 2

aT x1 +bT x2 = c

(2.14)

wherea andb are vectors of suitable dimension andc is a scalar. In problem (2.14), the only coupling
constraint is given by the last equality. Problems of this form frequently arise in distributed MPC when
the dynamics of one subsystem depends on one or more state and input variables of other subsystems.

To decompose the problem, we consider the partial Lagrangian

L (x1,x2,λ ) = f 1(x1)+ f 2(x2)+λ (aT x1 +bT x2− c) (2.15)

where we have introduced a Lagrange multiplier for the coupling constraintsonly. The dual corre-
sponding problem, which will be referred to as the master problem, reads

max
λ

g1(λ )+g2(λ )−λc (2.16)

where

g1(λ ) = min
x1

f 1(x1)+λaT x1

s.t. h1(x1) = 0
x1 ∈ X 1

g2(λ ) = min
x2

f 2(x2)+λbT x2

s.t. h2(x2) = 0
x2 ∈ X 2

(2.17)

Similarly to resource allocation, price coordination also uses an iterative algorithm. The method
alternates an update ofλ with the solution of the subproblems which can be carried out in parallel.
The update ofλ can be done using a subgradient method or any other suitable method.

This decomposition method also has an interesting economic interpretation. At every iteration the
master problem decides the price associated to the coupling constraint (the value ofλ ) and the nodes
accordingly decide the value of the resources (x1 andx2). The iterations continue until the equilibrium
aT x1 +bT x2− c has been reached.

Remark 3 At every iteration there is no guarantee that the primal variables are feasible. Only when
the method converged to a solution we have this guarantee.

Remark 4 Dual decomposition should be used only when strong duality hold for problem (2.14). If
there is no strong duality, the solutions of problems (2.14)and (2.16)may not be equivalent.
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2.4 Remarks

In this chapter we introduced the basic optimization techniques that can be exploited to designed hi-
erarchical and distributed MPC algorithms. To make this methods applicable to a particular problem
we assumed specific separability properties. However, it is important to notice that by suitable trans-
formation, we can often rewrite the problem under consideration such thatthe new formulation has
the required properties.
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Chapter 3

Discussion and conclusions

In this chapter we discuss some important aspects that should be taken into account when designing a
distributed MPC algorithm.

3.1 Number of iterations and feasibility issues

In the previous chapter we presented some basic methods for distributed optimization. However,
we did not discuss the efficiency of this methods, which is an important aspect when we consider
distributed MPC. In fact, MPC requires the online solution of optimization problem (2.1) in a limited
amount of time. This is especially important when the dynamics of the system are fast. Since complete
discussion of the efficiency of the illustrated methods is out of the scope of this report, we decided to
point out an aspect which we believe is relevant for distributed MPC.

When we decompose a centralized optimization problem, we may need a large number of itera-
tions before convergence is achieved (the numerical examples in [13, 9]indicate that we may need
more than 100 iterations even for simple problems). Therefore, the time required by the distributed
optimization algorithm used may be too big for the requirements dictated by MPC. This observation
suggests that instead of solving the optimization problem completely we may perform only a limited
number of iterations, if using a suboptimal solution is acceptable for our application. If we decide to
adopt such kind of strategy it is essential to stop the algorithm only when the current solution is feasi-
ble for the system. In this regard, the methods illustrated in the previous chapter perform differently.

• The Jacobi and Gauss-Seidel algorithms produce feasible solutions forall the iterations. This
is made easy by the fact the this methods can be applied when we have no coupling constraints.
However, as we already noticed coupling constraints occur in practice for distributed MPC
applications and this fact make these methods less interesting.

• As already pointed out in section 2.2, it is possible to produce feasible solutions for every
iterations also when we use primal decomposition [15, 16], but in general this is difficult. In
fact, to obtain a feasible solution from the nodes, it is essential that the masterproblem chooses
a feasible resource allocation.

• When dual decomposition is used, it is difficult to produce feasible solutionsat each iteration.
The reason is that the satisfaction of the coupling constraints is achieved bythe master problem
only by choosing a suitable value of the Lagrange multipliers.
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It is interesting to notice that the scientific literature has given little attention to the study of methods
which produce feasible solutions at every iteration. This is probably due tothe fact that many applica-
tions for which distributed optimization was studied, have no hard time constraintsand one can wait
for algorithm convergence. In view of this fact, one possible researchdirection which could be fur-
ther investigated in the HD-MPC project is the study of decomposition methods which are designed
to quickly achieve feasible suboptimal solutions for distributed optimization problems with coupling
constraints.

3.2 Smoothness of the master problem

In Sections 2.2 and 2.3, we have seen that the master problem in the primal anddual decomposition
can be solved by a subgradient method. Although it is commonly used, the subgradient method
works poorly for some problems. For this reason several techniques have been studied to obtain a
differentiable master problem in the dual decomposition method. This methods arebased on the fact
that when the cost function of the primal problem is strictly convex, then the cost function of the
master problem is differentiable [17, 2, 18, 5, 8, 10].

3.2.1 Augmented Lagrangian Method

Consider the problem
min
x1,x2

f 1(x1)+ f 2(x2)

s.t. aT x1 +bT x2 = c
. (3.1)

The idea of theaugmented Lagrangian method is to add a term to the primal cost function such that
the new problem has the same minimizers and strict convexity is improved:

min
x1,x2

f 1(x1)+ f 2(x2)+ γ
2 ‖ aT x1 +bT x2− c ‖2

s.t. aT x1 +bT x2 = c
. (3.2)

Unfortunately, the master problem obtained by applying the dual decomposition to (3.2), is not sepa-
rable inx1 andx2 and one must use the Jacobi or Gauss-Seidel algorithm for its solution [2].

3.2.2 Proximal minimization algorithm

Another method to obtain a differentiable master problem is adding a prox term tothe cost function
of the primal problem to obtain strict convexity. Consider problem (3.1). The proximal minimization
algorithm iteratively solves the problem

(x1
k+1,x

2
k+1) = argmin

x1,x2
f 1(x1)+ f 2(x2

) + γ
2

∥

∥

∥

∥

[

x1T x2T
]T

−
[

x1
k

T x2
k

T
]T

∥

∥

∥

∥

2

s.t. aT x1 +bT x2 = c
. (3.3)

Problem (3.3) is then solved using dual decomposition [2].

3.2.3 Proximal center algorithm

A common problem in the augmented Lagrangian method and the proximal minimization algorithm
is that the parameterγ, which strongly influences the convergence, is difficult to tune. Some heuristics
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to solve this problem can be found in [6, 5]. Another limitation of this methods is that they use a
gradient method which was proved to be less efficient than Nesterov’s optimal method [11].

In [9, 10], Nesterov’s optimal method is combined with smoothing techniques inspired by [12] to
obtain a method whose efficiency is proved to be of one order of magnitude better than methods based
on gradient updates. For a complete description of the algorithm, see [9].
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