
SEVENTH FRAMEWORK PROGRAMME
THEME – ICT

[Information and Communication Technologies]

Contract Number: 223854
Project Title: Hierarchical and Distributed Model Predictive Control of Large-

Scale Systems
Project Acronym: HD-MPC

HD−MPC

Deliverable Number: D4.1.3
Deliverable Type: Report
Contractual Date of Delivery: March 1, 2011
Actual Date of Delivery: March 1, 2011
Title of Deliverable: Report on new algorithms with guaran-

teed convergence to an optimum of the
global system, at a high rate of conver-
gence, and with intelligent hot-starting

Dissemination level: Public
Workpackage contributing to the Deliverable: WP4
WP Leader: Moritz Diehl
Partners: TUD, KUL, USE, UWM
Author(s): A. Kozma, H. Scheu

c© Copyright by the HD-MPC Consortium



HD-MPC ICT-223854 Algorithms with guaranteed convergence and with intelligent hot-starting

Project co-ordinator

Name: Bart De Schutter
Address: Delft Center for Systems and Control

Delft University of Technology
Mekelweg 2, 2628 Delft, The Netherlands

Phone Number: +31-15-2785113
Fax Number: +31-15-2786679

E-mail: b.deschutter@tudelft.nl

Project web site: http://www.ict-hd-mpc.eu

Executive summary

In this report we discuss newly established optimal control methods that mightbe possible can-
didates for future HD-MPC algorithms. First, a sensitivity-driven distributed model predictive
control approach is presented for linear continuous systems. Second,a generalization of multiple
shooting is introduced for the model predictive control of nonlinear continuous-time systems. The
convergence properties of the proposed methods are also discussed.
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Chapter 1

Synopsis of the report

In this report we present two different novel algorithms that might be possible candidates for future
general HD-MPC algorithms.

First, a sensitivity-driven model predictive control (S-DMPC) approach is introduced. The method
implements a cooperative control scheme. The coupled linear subsystems communicate their Jaco-
bians and dual variables to each other, while every local objective is extended by linear correction
terms that correspond to other subsystems’ objective and constraints. The S-DMPC method can cope
with equality constraints as well as coupled inequality constraints and locally linear convergence can
be achieved. Extension to the nonlinear case is straightforward and is subject of future investigation.
While optimality of the distributed method can be proven for convex problems, convergence of the
method depends on the decomposition of the problem, which defines a contraction rate. This rate can
be quantified in a conservative way for linear quadratic problems. An extension of the algorithm is
proposed to improve the convergence properties or even enforce convergence of the iterative method.
A simple hot-start algorithm is proposed to be implemented in the moving-horizon model-predictive
control. This hot start-algorithm enables an almost optimal initialization of the optimal control prob-
lem on the new horizon, such that only a low number of iterations is required toachieve optimal
control performance. The method is validated in a simulated case study for thecontrol of a nonlinear
chemical process.

Second, a generalized multiple shooting algorithm is presented. This approach is tailored for the
solution of large-scale nonlinear systems composed by multiple subsystems. However, the control
scheme is centralized, the integration of subsystems takes place in a parallel fashion. The continuous
coupling between the subsystems are discretized by using a polynomial of Legendre orthogonal basis.
By this finite dimensional representation multiple shooting can be extended to the state space as well.
All the integrations with respect to shooting intervals in time and with respect to subsystems may
be carried out simultaneously and independently providing modularity and maintainability. The gap
between shooting intervals both in space and time are closed by introducing constraints in the central-
ized optimization problem. Moreover, this optimal control problem has the ability tocope with both
L1 andL2 penalties as cost functions. The optimization problem incorporates local state and control
input inequalities as well. On the top level we have to solve a large-scale nonlinear program (NLP)
with sparse equality constraints. This may be carried out by a standard sequential quadratic program-
ming (SQP) method, where the subproblems are solved by a sparse QP solver. Our experiments show
that integration of the subsystems in the framework of generalized multiple shooting takes less time
than the average time per system needed to integrate the whole system without decomposition. The
convergence rate of an SQP method, depending on how the Lagrange Hessian is approximated, is
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at least locally superlinear. In order to decrease the time needed by integrators to solve differential
equations and calculate sensitivities, one can use an inexact SQP method. Although, this might be
economical in terms of integration time, but the solution of the NLP might take longer, since with
inexact derivatives an SQP method has only locally linear convergence.
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Chapter 2

Distributed Model Predictive Control of
Linear Continuous-Time Systems

This chapter discusses the results published in [4]. A new sensitivity-driven distributed model-
predictive control (S-DMPC) method is introduced, which is based on a novel distributed optimiza-
tion algorithm, relying on a coordination mechanism. Coordination and therefore overall optimality
is achieved by means of a linear approximation of the objective functions of neighboring controllers
within the objective function of each local controller. As for most of the distributed optimization
methods, an iterative solution of the distributed optimal control problems is required. An analysis of
the method with respect to its convergence properties is also discussed. The resulting DMPC method
is applied to a simulated chemical process to illustrate its capabilities.

2.1 Problem formulation

We consider a systemΣ consisting ofN linear time-invariant subsystemsΣi :

ẋi(t) =
N

∑
j=1

Ai j x j(t)+Bi j u j(t), xi(0) = xi,0, (2.1)

∀i ∈ {1, . . . ,N}.

t denotes time.x(t) = 〈x1(t), . . . ,xN(t)〉1, with xi(t) ∈ R
nxi , is the state vector with initial condition

x0 = 〈xi,0, . . . ,xN,0〉 andu(t) = 〈u1(t), . . . ,uN(t)〉 is the aggregated input vector, whereui(t) ∈ R
nui is

the local input vector of subsystemΣi . A = [Ai j ]i, j∈{1,...,N}, with Ai j ∈ R
nxi×nxj , refers to the system

matrix, andB = [Bi j ]i, j∈{1,...,N}, with Bi j ∈ R
nxi×nuj , denotes the input matrix.

1〈a, . . . ,b〉 is used as a shorthand for[aT , . . . ,bT ]T .
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DMPC aims at the solution of the optimal control problem for the overall systemΣ, i.e.

min
u

Φ =
N

∑
i=1

Φi(xi ,ui) (2.2a)

s.t. Φi =
1
2

t f
∫

t0

xT
i Qixi +uT

i Riui dt, i = 1, . . . ,N (2.2b)

ẋ = Ax+Bu, x(t0) = x0, (2.2c)

0≤ D〈x,u〉+e, (2.2d)

on a finite (receding) horizon[t0, t f ], with a separable (or additive), quadratic objective function, sym-
metric positive definite weighting matricesQi andRi , i ∈ {1, . . . ,N}, with appropriate dimensions,
and with2

D = 〈D1, . . . ,DN〉, (2.2e)

e= 〈e1, . . . ,eN〉. (2.2f)

2.2 Distributed Optimization Strategy

The basis for the sensitivity-driven distributed model-predictive controlproposed is a new distributed
optimization method. The open-loop optimal control problem (2.2) is transcribed into a quadratic
programming problem (QP) in two steps :

1. The input vector functionsui(t) are approximated by an expansion in a complete function space
spanned by the base functionsφl (t). B-splines provide a flexible class of bases, which includes
the piecewise constant representation used exemplarily in this work. In particular, the input
functions are approximated by finite sumsui, j(t) = ∑l pi, j,l φl (t), wherei refers to the subsys-
tem and j to the j-th component of the corresponding inputui(t). The parameterspi, j,l are
organized in parameter vectorspi = 〈pi,1, . . . , pi,nui

〉 with pi, j comprising the parameters asso-
ciated with thej-th scalar inputui, j(t) of systemi and in the parameter vectorp = 〈p1, . . . , pN〉
concatenating the control vector parametrization of the overall system.

2. The state equations are solved analytically and the objective function andthe constraints are
evaluated.

This transcription is straightforward to result in the quadratic program (QP)

min
p

N

∑
i=1

Φi(p) (2.3a)

s.t. Φi(p) =
1
2

pTAi p+ pTBi +Ci , (2.3b)

ci(p) = Di T p+Ei ≥ 0, (2.3c)

The distributed solution of QP (2.3) requires its decomposition and the coordination of the resulting
subproblems, which are described for a convex nonlinear program (ageneralization of QP (2.3), if this
QP is convex) in the remainder of this section. The coordination algorithm fora parametric nonlinear
optimization problem generalizing QP (2.3) is stated as follows:
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Algorithm 1

1. Choose feasible parameters p[0], and an initial guess of the Lagrange parametersλ [0] and set
k := 0.

2. The control parameters p[k]
i and Lagrange parametersλ [k]

i , ∀ ∈ {1, . . . ,N}, are communicated
to all local controllers.

3. Solve the local optimization problems

min
pi

Φ∗
i (p) (2.4a)

s.t. ci(p) ≥ 0, (2.4b)

with the strictly convex objective functions

Φ∗
i = Φi(p)+







N

∑
j=1
j 6=i

∂ Φ j

∂ pi

∣

∣

∣

∣

T

p[k]

−λ [k] T
j

∂ c j

∂ pi

∣

∣

∣

∣

p[k]






(pi − p[k]

i ) (2.4c)

to obtain the local minimizers p[k+1]
i and the Lagrange multipliersλ [k+1]

i , ∀i ∈ {1, . . . ,N}. Note,

that the solution of the local optimization problems for p[k+1]
i assumes that all other control

parameters are fixed at the previous iterates p[k]
j , ∀ j 6= i.

4. Set k:= k+1 and go back to 2.

5. Stop, if p[k] satisfies some convergence criterion.

Here,k refers to the iteration index, and∂ Φ j

∂ pi
and ∂ c j

∂ pi
are the first-order sensitivities of the objective

function and the inequality constraints, respectively, corresponding to subsystemΣ j , j 6= i, with respect

to the control parameterspi . c j are the constraint functions related to systemΣ j , andλ [k]
j are the

Lagrange multipliers at iterationk related to thej-th NLP.

2.3 Convergence rate of coordination algorithm

It can be easily shown that Algorithm 1 with certain assumptions converges tothe optimal solution of
the centralized problem. Moreover, in order to improve the convergence properties or even enforce
convergence of the iteration, the objective function (2.4c) can be extended to become

Φ+
i = Φ∗

i +
1
2
(pi − p[k]

i )TΩi(pi − p[k]
i ), (2.5)

with a symmetric positive definite matrixΩi ∈ R
npi×npi . If series of iteratesp[k] converge, it can be

shown that the rate of convergence is linear and the contraction parameterdepends on the system
matricesAi j and matrix D.
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Figure 2.1: Reinitialization of parametersp for piecewise-constant input parametrization.

2.4 Hot-start in S-DMPC

In a moving horizon environment, on a new horizonh+ 1, an almost optimal initialization of the
method, i.e. of the parametersp[0](h+ 1) is possible by means of the old parameter setp[I ](h), as
the QP change only slightly from one moving horizon to the next. The parameters of the piecewise-
constant input functions can be reinitialized as depicted in Figure 2.1. Letpi, j,l , l = 1, . . . ,γi, j , rep-
resent the parametrization of thej-th input functionui, j(t) of subsystemΣi , whereγi, j denotes the
number of parameters for input functionui, j(t). Then, all parameters but the first one, which has
already been applied to the plant, are reused. The last parameterspi, j,γi, j , ∀i, j, describingui, j(t) are

initialized to zero. The Lagrange multipliers are initialized withλ [0]
i = 0, ∀i ∈ {1, . . . ,N}, assum-

ing all inequality constraints to be inactive. In order to ensure a feasible initialization, well-known
methods such as the phase-I/phase-II approach can be adapted for S-DMPC.

2.5 Numerical results

We consider a simulated chemical process for the alkylation of benzene as depicted in Figure 2.2
to illustrate the performance of the S-DMPC method. The mathematical model consists of material

A, B, C, D

CSTR 1 CSTR 2 CSTR 3

CSTR 4

Q4Q5

Q1 Q2 Q3

F10, D

F1, A F2, B F4, B F6, B

F3 F5 F7

F8, C

F9

Fr

Fr1

Fr2

Flash
Separator

Figure 2.2: Process flow diagram for alkylation of benzene.
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Figure 2.3: Convergence of the distributed method.

balances for each component and an energy balance for each unit ofthe plant. In addition, the model
includes nonlinear reaction kinetics as well as a nonlinear description of thephase equilibrium in the
flash separator, leading to a total of approximately 100 equations. The heat flows are assumed to be the
manipulated variablesui(t). The derivation of the model and all data are available in [4]. The goal is
to stabilize the plant at its steady-state operating point, while the nonlinear modelis linearized around
this point. The linearized model is used as the internal model of the controller,while the nonlinear
model is used to simulate the plant. The numerical convergence of the method is experimentally
analyzed for a set-point change, as depicted in Figure 2.3. The diagramshows the evolution of the
2-norm ofp for an increasing number of iterations on a fixed horizon. In this example, convergence
is achieved already after 3 iterations.
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Chapter 3

Distributed Model Predictive Control of
Nonlinear Continuous-Time Systems

In the present chapter we will summarize the idea published in [3] and also introduce developments.
Our main goal is to solve a reasonably large nonlinear optimal control problem with multiple shooting
for which the centralized solution may not be an option due to the huge computational effort needed
to simulate the problem by integrators. In direct methods most of the computation timeis spent by
integration and the generation of sensitivities. This is the reason why we concentrate on integration
and extend standard multiple shooting, while we make use of a centralized controller.

3.1 Problem formulation

We are concerned with systems decomposed intoM subsystems,
{

ẋi(t) = f i(xi(t),ui(t),zi(t))
yi(t) = gi(xi(t),ui(t),zi(t))

i = 1, . . . ,M, (3.1)

wherexi(t),ui(t),zi(t) andyi(t) denotes the i-th subsystem’s states, control inputs, coupling input and
system output, respectively. The systems are coupled by

zi(t) = Air i(t)+
M

∑
j=1

Ai
jy

j(t), (3.2)

Page 10/15



HD-MPC ICT-223854 Algorithms with guaranteed convergence and with intelligent hot-starting

which is a generalization of input-output connections. We would like to solve the following optimal
control problem

min
x,u,z,
y,e

∫ T

0
ℓ(e(t))dt+

M

∑
i=1

∫ T

0
ℓi(xi(t),ui(t),zi(t))dt (3.3)

s.t. ẋi(t) = f i(xi(t),ui(t),zi(t)) (3.4)

yi(t) = gi(xi(t),ui(t),zi(t)) (3.5)

xi(0) = x̄i
0 (3.6)

zi(t) = Air(t)+∑M
j=1Ai

jy
j(t) (3.7)

Ce(t) = Br(t)+∑M
i=1Biyi(t) (3.8)

pi(xi(t),ui(t)) ≥ 0, q(e(t)) ≥ 0 t ∈ [0,T]. (3.9)

Here (3.3) is the stage cost and a penalty on thee(t) variables, (3.6) is the initial value, (3.7) is the
coupling constraint, (3.8) stores the linear combination of a global input signal r(t) and the output
signals. Note thatr(t) might be a reference signal that must be followed by the system outputs in an
appropriate way, thus our formulation incorporates tracking problems as well. Finally, (3.9) denotes
local state and input constraints and restrictions toe(t). An application that fits into this framework is
discussed later in this chapter.

3.2 Discretization and NLP formulation

An efficient way to solve this problem is multiple shooting, which divides the control horizon[0,T]
into smaller intervals and introduces initial values in each shooting interval, whileone has to introduce
constraints that the propagated states at the end of each shooting intervalmust be equal to the initial
value of the following shooting interval. To discretizeui(t), we use a constant within every shooting
interval, whilex(t) is discretized by an underlying integrator, only initial values are determined by the
optimization routine. The signalsz(t) andy(t) are discretized in a finite dimensional space by using
polynomial approximation, i.e.

zi
p(t) = Γn(t)

Tzi
n,p, (3.10)

wherezi
p(t) denotes thep-th coordinate of the coupling input of thei-th subsystem andΓn(t) is the

n-order basis composed by Legendre polynomials. Signalsr(t) ande(t) are discretized with the same
approach and this already results in an NLP over variablesui

n,x
i
n,z

i
nyi

n,en, i = 1, . . . ,N.

min
ui

n,x
i
n,z

i
n,

yi
n,en

N−1

∑
n=0

(

Ln(en)+
M

∑
i=1

Li
n(x

i
n,u

i
n,z

i
n)

)

s.t. xi
n+1 = F i

n(x
i
n,u

i
n,z

i
n) n = 0, . . . ,N−1

yi
n = Gi

n(x
i
n,u

i
n,z

i
n) n = 0, . . . ,N−1

xi
0 = x̄i

0

zi
n = ∑M

i=1Ai j y
j
n

en = rn +∑M
i=1Bi j y

j
n

pi(xi
n,u

i
n) ≥ 0, Qn(en) ≥ 0

(3.11)
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Note that generalized multiple shooting decomposes the problem not only in time, but also in space.
By this, we can integrate the subsystems (i.e. evaluateF i

n(·) and its derivatives) totally independently,
with various approaches. This ensures high modularity and parallelizability of our method. As the
optimization method proceeds, the gap between states and also polynomials are shrinking.

The solution of (3.11) might happen with a standard NLP solver, but we mustkeep in mind that the
dimension of this problem is large, thus relatively small number of iterations is a demand, while the
structure should be exploited. This is the reason why we choose a sequential quadratic programming
(SQP) method. The linearization of (3.11) ends up in a quadratic program, which has sparsity pattern
shown in Figure 3.1. This feature might be exploited by a sparse QP solver.The state-of-the-art sparse

0 500 1000 1500

0

200

400

600

800

1000

1200

1400

nz = 40077

Figure 3.1: Sparsity pattern of equality conditions of a quadratic program arising in generalized mul-
tiple shooting

QP solvers are already able to cope with large-scale problems, so we only have to make sure to carry
out minimal number of SQP iterations (i.e. number of linearizations and QP solutions). Optimization
theory can provide us a result how fast this might be, which we discuss in the following section.

3.3 Convergence rate of generalized multiple shooting

The number of SQP iterations is crucial in terms of the applicability of our approach. If the proposed
method is applied in Model Predictive Control (MPC), the time available for solution of an optimal
control problem is strictly limited and hence we have expectation of fast convergence.

Our method is capable of fulfilling the demand mentioned above. First we definewhich type of
convergence rates we are interested in. We assume thatak → 0 and sayak converges

• sublinearly ifak = O( 1
kα ),α ∈ [0,∞],

• linearly if ak = O(αk),α ∈ [0,1],

• superlinearly if limsupk→∞
a+1
ak

= 0,
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• quadratically ifak = O(α2k
),α ∈ [0,1].

Depending on the type of objective function the convergence rate of ourmethod may be determined
by applying SQP theory [2]. If we have a general nonlinear objective function the Hessian of the
Lagrangian (i.e the second order term of the QPs) can be approximated bydoing an inexpensive
BFGS update, which results in locally superlinear convergence. In caseof least-squares objective (i.e.
Gauss-Newton objective), by the use of the Jacobian we can approximatethe Hessian. This way we
have locally linear convergence, but at the end of the iterations quadraticconvergence can be reached
if we have a perfect fit.

The convergence of the method may be even more developed by hot-startingapproaches. One
might want to use fast MPC techniques like initial-value embedding and real-time iterations [1] in
order to help the controller to recover the optimal control trajectories in caseof perturbation.

3.4 Numerical results

The proposed method was implemented to control a hydro power plant (see Figure 3.2), which is
composed by a river and three lakes. The river is divided into 6 reaches which terminate with dams
equipped with turbines for power production. We regard every reach together with the following dam
as a separate subsystem (R1 + D1 , R2 + D2 , R3 +D3 , R4 +D4 , R5 +D5 , R6+D6 ). Lakes L1 and
L2 are connected by a duct (U1 ) and lake L1 is connected to the river byduct with a turbine (T1 ) and
a duct with a turbine and a pump (C1 ). Lakes L1 and L2 form together with U1, C1 and T1 another
subsystem. Lake L3 is connected to the river by a duct with a turbine (T2 ) and a duct with a turbine
and a pump (C2 ). L3 , C2 and T2 compose the last subsystem. The hydro power plant is composed
of 8 subsystems, and it has in total 249 states, 14 inputs, 18 coupling inputs and 18 coupling outputs.

Figure 3.2: Scheme of a hydro power plant controlled by generalized multipleshooting

An optimal control problem of the above problem was solved with 48 shootingintervals, alto-
gether 24 hours of control horizon on a desktop computer with 16 cores.The L1 cost penalizes the
deviation between the produced power and the power reference (see Fig 3.3), theL2 cost corresponds
to the change of water levels from a set point, while respecting all local stateand control input con-
straints. The power reference was tracked with a maximum of 1.71E-4 % relative error as a result of
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Figure 3.3: The power reference (cont. line) and the produced power(crosses) above and the relative
error of the tracking below on the whole control horizon of 24 hours.

21 SQP iterations. This optimization approach took altogether 34 minutes 56 seconds. We also give a
lower bound to the runtime of standard multiple shooting. The integration of the whole system on the
48 shooting intervals would take 27 minutes 10 seconds, thus to solve an optimalcontrol problem we
would need at least 9 hours 30 minutes and 32 seconds, which is a considerable difference in runtime.
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