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Executive summary

In this report we discuss newly established optimal control methods that béghdssible can
didates for future HD-MPC algorithms. First, a sensitivity-driven distriduteodel predictiv

control approach is presented for linear continuous systems. Sexgedegralization of multipl
shooting is introduced for the model predictive control of nonlinear coatisttime systems. Th
convergence properties of the proposed methods are also discussed.
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Chapter 1

Synopsis of the report

In this report we present two different novel algorithms that might beiptescandidates for future
general HD-MPC algorithms.

First, a sensitivity-driven model predictive control (S-DMPC) apptoia introduced. The method
implements a cooperative control scheme. The coupled linear subsystemsio@ate their Jaco-
bians and dual variables to each other, while every local objective iadedeby linear correction
terms that correspond to other subsystems’ objective and constraietS-DiVIPC method can cope
with equality constraints as well as coupled inequality constraints and localbyr loo#vergence can
be achieved. Extension to the nonlinear case is straightforward andiéssabfuture investigation.
While optimality of the distributed method can be proven for convex problemmsecgence of the
method depends on the decomposition of the problem, which defines a tiontrate. This rate can
be quantified in a conservative way for linear quadratic problems. Amsixte of the algorithm is
proposed to improve the convergence properties or even enforgergence of the iterative method.
A simple hot-start algorithm is proposed to be implemented in the moving-horizoelmoedictive
control. This hot start-algorithm enables an almost optimal initialization of the optiomarol prob-
lem on the new horizon, such that only a low number of iterations is requireglieeve optimal
control performance. The method is validated in a simulated case study fooritrel of a nonlinear
chemical process.

Second, a generalized multiple shooting algorithm is presented. This appso@ilored for the
solution of large-scale nonlinear systems composed by multiple subsystemsvétpthe control
scheme is centralized, the integration of subsystems takes place in a pasdllehf The continuous
coupling between the subsystems are discretized by using a polynomiajerfidies orthogonal basis.
By this finite dimensional representation multiple shooting can be extended tatbesgace as well.
All the integrations with respect to shooting intervals in time and with respectlisystems may
be carried out simultaneously and independently providing modularity andairability. The gap
between shooting intervals both in space and time are closed by introducisigaints in the central-
ized optimization problem. Moreover, this optimal control problem has the abilitppe with both
L1 andL, penalties as cost functions. The optimization problem incorporates lotalestd control
input inequalities as well. On the top level we have to solve a large-scale eanfimogram (NLP)
with sparse equality constraints. This may be carried out by a standarergid quadratic program-
ming (SQP) method, where the subproblems are solved by a sparse QP Galvexperiments show
that integration of the subsystems in the framework of generalized multipldistdakes less time
than the average time per system needed to integrate the whole system wibonnpasition. The
convergence rate of an SQP method, depending on how the Lagrasgamle approximated, is
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at least locally superlinear. In order to decrease the time needed byaimiegto solve differential
equations and calculate sensitivities, one can use an inexact SQP metktioaligh, this might be
economical in terms of integration time, but the solution of the NLP might take lpsgere with
inexact derivatives an SQP method has only locally linear convergence.

Page 4/15




HD-MPC ICT-223854 Algorithms with guaranteed convergence ad with intelligent hot-starting

Chapter 2

Distributed Model Predictive Control of
Linear Continuous-Time Systems

This chapter discusses the results published in [4]. A new sensitivitgrariistributed model-
predictive control (S-DMPC) method is introduced, which is based ornvelmistributed optimiza-
tion algorithm, relying on a coordination mechanism. Coordination and therefarall optimality
is achieved by means of a linear approximation of the objective functionsighboring controllers
within the objective function of each local controller. As for most of the disted optimization
methods, an iterative solution of the distributed optimal control problems isreeuAn analysis of
the method with respect to its convergence properties is also discussetestitting DMPC method
is applied to a simulated chemical process to illustrate its capabilities.

2.1 Problem formulation

We consider a systeinconsisting ofN linear time-invariant subsystenas.

N
Xi(t) = ZA]Xj(t)JrBiJUj(t), %(0) = X0, (2.1)
=
Vi€ {1,...,N}.

t denotes timex(t) = (xy(t),...,xn(t))%, with x;(t) € R™, is the state vector with initial condition
Xo = (X 0,...,Xn0) andu(t) = (ui(t),...,un(t)) is the aggregated input vector, whesét) € R is
the local input vector of subsystem. A= [Ajjli jef1,...ny, With Aj € R™*™i | refers to the system

matrix, andB = [Bjj}; je(1...n}, With Bij € R™*™i, denotes the input matrix.

La,...,b) is used as a shorthand fia' ,...,b"|T.
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DMPC aims at the solution of the optimal control problem for the overall sy&igire.

N
muin D= i;qu (X, Uy) (2.2a)
1
St =3 /xiTQixi SUTRudt, i=1,...,N (2.2b)
to
X=Ax+Bu, X(tp)=Xo, (2.2c)
0<D(x,u) +e, (2.2d)

on a finite (receding) horizojty, t¢], with a separable (or additive), quadratic objective function, sym-
metric positive definite weighting matric€y andR;, i € {1,...,N}, with appropriate dimensions,
and with?

D= <D1, .. .,DN>, (226)
e=(e,...,en). (2.2f)

2.2 Distributed Optimization Strategy

The basis for the sensitivity-driven distributed model-predictive coptrmbposed is a new distributed
optimization method. The open-loop optimal control problem|(2.2) is trangtiiite a quadratic
programming problem (QP) in two steps :

1. The input vector functions (t) are approximated by an expansion in a complete function space
spanned by the base functiogst). B-splines provide a flexible class of bases, which includes
the piecewise constant representation used exemplarily in this work. ticybar, the input
functions are approximated by finite sumg(t) = 3, pij1 @(t), wherei refers to the subsys-
tem andj to the j-th component of the corresponding inpitt). The parameterg; ;| are
organized in parameter vectops= <pi71,...,pi7nui> with p; j comprising the parameters asso-
ciated with thej-th scalar input; j(t) of system and in the parameter vectpr= (py,..., pn)
concatenating the control vector parametrization of the overall system.

2. The state equations are solved analytically and the objective functiotharmbnstraints are
evaluated.

This transcription is straightforward to result in the quadratic progran) (QP

N
iny @ 2.3
mpln;l i(p) (2.3a)
s.t.di(p) = % T"Alp+p'B' +C', (2.3b)
ci(p)=D'Tp+E >0, (2.3c)

The distributed solution of QP (2.3) requires its decomposition and the catiatirof the resulting
subproblems, which are described for a convex nonlinear progrgangralization of QP (2.3), if this
QP is convex) in the remainder of this section. The coordination algorithia farametric nonlinear
optimization problem generalizing QP (2.3) is stated as follows:
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Algorithm 1

1. Choose feasible parameter pand an initial guess of the Lagrange paramet2f$ and set
k:=0.

2. The control parametersi“?)and Lagrange parametev\ﬁ[k], vV e {1,...,N}, are communicated
to all local controllers.

3. Solve the local optimization problems
min &; (p) (2.4a)
s.t. g(p) >0, (2.4b)

with the strictly convex objective functions

N dq)j T
=4y
J#

kTG

K 2.4c
AT (Pi—pi) (2.4c)

P = di(p) +

to obtain the local minimizersi[kﬁl] and the Lagrange muItipIierA;i[kH] ,Vie{1,...,N}. Note,
that the solution of the local optimization problems fc?ﬁa assumes that all other control
parameters are fixed at the previous iterat(—g%, 7 j £l

4. Setk=k+1and go back to 2.
5. Stop, if ¢ satisfies some convergence criterion.

Here,k refers to the iteration index, angm— and a;’ are the first-order sensitivities of the objective
function and the inequality constraints, respectlvely correspondintBystent;, j # i, with respect
to the control parameteng. c; are the constraint functions related to systEmandA j[ K are the
Lagrange multipliers at iteratidnrelated to thg-th NLP.

2.3 Convergence rate of coordination algorithm

It can be easily shown that Algorithm 1 with certain assumptions converghe tiptimal solution of
the centralized problem. Moreover, in order to improve the convergemgeegies or even enforce
convergence of the iteration, the objective function (2.4c) can be eadetiachbecome

. 1 K\T (i K
B =@+ (- p)TQ (p - p). (2.5)
with a symmetric positive definite matri®; € R™ <", If series of iteratepX! converge, it can be

shown that the rate of convergence is linear and the contraction parasegends on the system
matricesAj; and matrix D.
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AT R I P e PLiy,

p}f’jl (h+1): pi[?},l

0]

Figure 2.1: Reinitialization of parametepdor piecewise-constant input parametrization.

2.4 Hot-startin S-DMPC

In a moving horizon environment, on a new horiZoa 1, an almost optimal initialization of the
method, i.e. of the parametep’ (h+ 1) is possible by means of the old parameter gth), as
the QP change only slightly from one moving horizon to the next. The parasraténe piecewise-
constant input functions can be reinitialized as depicted in Figure 2.1pLetl =1,...,y,j, rep-
resent the parametrization of theth input functionu; ;(t) of subsystenk;, wherey j denotes the
number of parameters for input functien;(t). Then, all parameters but the first one, which has
already been applied to the plant, are reused. The last pararpeigrs i, j, describingu; j(t) are

initialized to zero. The Lagrange multipliers are initialized mqﬁ” =0, Vi € {1,...,N}, assum-
ing all inequality constraints to be inactive. In order to ensure a feasibleligati@n, well-known
methods such as the phase-l/phase-Il approach can be adapted¥tPS.

2.5 Numerical results

We consider a simulated chemical process for the alkylation of benzenepagedl in Figure 2/2
to illustrate the performance of the S-DMPC method. The mathematical modéstsoolsmaterial

Fi, A R, B F4, B Fs, B
R o Fs o F
- E Q E Q E Qs
" " N~
CSTR1 CSTR 2 CSTR 3
Fr2

Flash

Fra Separator
A, B,C,D
— -
horP = | -
|

Fg, C

Figure 2.2: Process flow diagram for alkylation of benzene.
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Figure 2.3: Convergence of the distributed method.

balances for each component and an energy balance for each thetant. In addition, the model
includes nonlinear reaction kinetics as well as a nonlinear description phtme equilibrium in the
flash separator, leading to a total of approximately 100 equations. Thiédvemare assumed to be the
manipulated variables; (t). The derivation of the model and all data are available in [4]. The goal is
to stabilize the plant at its steady-state operating point, while the nonlinear mdidelarized around
this point. The linearized model is used as the internal model of the contneliée the nonlinear
model is used to simulate the plant. The numerical convergence of the methgpkeisngentally
analyzed for a set-point change, as depicted in Figure 2.3. The diadrans the evolution of the
2-norm of p for an increasing number of iterations on a fixed horizon. In this examgpiejetgence

is achieved already after 3 iterations.
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Chapter 3

Distributed Model Predictive Control of
Nonlinear Continuous-Time Systems

In the present chapter we will summarize the idea published in [3] and alsadlinte developments.
Our main goal is to solve a reasonably large nonlinear optimal control pnolsith multiple shooting

for which the centralized solution may not be an option due to the huge compatatitort needed
to simulate the problem by integrators. In direct methods most of the computatiomstspent by

integration and the generation of sensitivities. This is the reason why wetrate on integration
and extend standard multiple shooting, while we make use of a centralizedl=ntr

3.1 Problem formulation

We are concerned with systems decomposedihtubsystems,

[XO-LeOdO20) s e

wherex! (t),uU'(t),Z (t) andy (t) denotes the i-th subsystem’s states, control inputs, coupling input and
system output, respectively. The systems are coupled by

Z(t)=Ar(t)+ % Alyl(t), (3.2)
=1
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which is a generalization of input-output connections. We would like to sokrddifowing optimal
control problem

mi /e dt+21/ AKX (), U (1), 2 (t))dt (3.3)

iet X(t) = f1(xX(t),u i(t),z'(t)) (3.4)
Y (t) =g (X (t),u(t),2(1) (3.5)

X (0) = X, (3.6)

Z(t) =Ar(t) + 3L Ay (1) (3.7)

Ce(t) = Br(t) + 31, BY (1) (3.8)
P(X(t),u(t) >0, q(elt))>0 te[0T]. (3.9)

Here (3.3) is the stage cost and a penalty ondltgvariables, (3.6) is the initial value, (3.7) is the
coupling constraint, (3.8) stores the linear combination of a global inpuakign) and the output
signals. Note that(t) might be a reference signal that must be followed by the system outputs in an
appropriate way, thus our formulation incorporates tracking problemshs kinally, (3.9) denotes
local state and input constraints and restrictiong(tp. An application that fits into this framework is
discussed later in this chapter.

3.2 Discretization and NLP formulation

An efficient way to solve this problem is multiple shooting, which divides theérobhorizon [0, T]
into smaller intervals and introduces initial values in each shooting interval, ai@éas to introduce
constraints that the propagated states at the end of each shooting imastdle equal to the initial
value of the following shooting interval. To discretiaét), we use a constant within every shooting
interval, whilex(t) is discretized by an underlying integrator, only initial values are determipékb
optimization routine. The signaigt) andy(t) are discretized in a finite dimensional space by using
polynomial approximation, i.e.

2,(t) = Fn(t) 2z p, (3.10)

whereZ (t o(t) denotes thep-th coordinate of the coupling input of theh subsystem anfn(t) is the
n-order ba5|s composed by Legendre polynomials. Sigiiglande(t) are discretized with the same

approach and this already results in an NLP over varialj)eé, z\y! e,, i=1,...,N.
min L + 3 Li(x,u,Z
S 3 | Lnlen+ 3 Lo thi )

Yn-€n

s.t. Xn+1_ (xn,un,z) n:O .,N=1
yn GI (X:’h u:’h ZI ) = O N -1 (311)
Xo Xo .

Zu 1A|JYn

aw—rn+z. M Bijyh
p' (X5, ub) >0, Qn(en) >0
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Note that generalized multiple shooting decomposes the problem not only in titresb in space.
By this, we can integrate the subsystems (i.e. evalgitée and its derivatives) totally independently,
with various approaches. This ensures high modularity and parallelizaHildyranethod. As the
optimization method proceeds, the gap between states and also polynomialsréiag.

The solution of/(3.11) might happen with a standard NLP solver, but we keegtin mind that the
dimension of this problem is large, thus relatively small number of iterations éreadd, while the
structure should be exploited. This is the reason why we choose a $iefjgeadratic programming
(SQP) method. The linearization of (3/11) ends up in a quadratic progrhith \was sparsity pattern
shown in Figure 3.1. This feature might be exploited by a sparse QP sbh&state-of-the-art sparse

0 presss
Y
N\
AN
200} .1;\
N
400} .li\
N
[ 1A
600 \
n .

800 ‘i\\ 1
E1010e] N, -ii\—
N
1200:.:'3\. L RN

N AN
1400} A N

0 500 1000 1500
nz = 40077

Figure 3.1: Sparsity pattern of equality conditions of a quadratic progresm@in generalized mul-
tiple shooting

QP solvers are already able to cope with large-scale problems, so weawmelydhmake sure to carry
out minimal number of SQP iterations (i.e. number of linearizations and QP sdyutiOptimization
theory can provide us a result how fast this might be, which we discuss fioltbwing section.

3.3 Convergence rate of generalized multiple shooting

The number of SQP iterations is crucial in terms of the applicability of our &gbr.olf the proposed
method is applied in Model Predictive Control (MPC), the time available fortewlwof an optimal
control problem is strictly limited and hence we have expectation of fasiecgence.

Our method is capable of fulfilling the demand mentioned above. First we defiioh type of
convergence rates we are interested in. We assumeythat0 and saya, converges

e sublinearly ifay = O(;%), a € [0, ],
e linearly if ax = O(aX),a € [0, 1],

e superlinearly if limsup_,,, % =0,
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o quadratically ifa, = O(a?),a € [0,1].

Depending on the type of objective function the convergence rate ahethiod may be determined
by applying SQP theory [2]. If we have a general nonlinear objectivetfon the Hessian of the
Lagrangian (i.e the second order term of the QPs) can be approximatddityy an inexpensive
BFGS update, which results in locally superlinear convergence. Inofdesast-squares objective (i.e.
Gauss-Newton objective), by the use of the Jacobian we can approxmedtessian. This way we
have locally linear convergence, but at the end of the iterations quadoatiergence can be reached
if we have a perfect fit.

The convergence of the method may be even more developed by hot-statireaches. One
might want to use fast MPC techniques like initial-value embedding and real-tinagiotes [1] in
order to help the controller to recover the optimal control trajectories inafgserturbation.

3.4 Numerical results

The proposed method was implemented to control a hydro power plant ige®/B.2), which is
composed by a river and three lakes. The river is divided into 6 reashih terminate with dams
equipped with turbines for power production. We regard every reaggther with the following dam
as a separate subsystem (R1 + D1, R2 + D2, R3 +D3, R4 +D4 , R5 +D53DR§. Lakes L1 and
L2 are connected by a duct (U1 ) and lake L1 is connected to the riveudtywith a turbine (T1) and
a duct with a turbine and a pump (C1). Lakes L1 and L2 form together with@land T1 another
subsystem. Lake L3 is connected to the river by a duct with a turbine (i@ aaluct with a turbine
and a pump (C2). L3, C2 and T2 compose the last subsystem. The hywleo plant is composed
of 8 subsystems, and it has in total 249 states, 14 inputs, 18 coupling imgLit8aoupling outputs.

Figure 3.2: Scheme of a hydro power plant controlled by generalized mugtipleting

An optimal control problem of the above problem was solved with 48 shodrtitegvals, alto-
gether 24 hours of control horizon on a desktop computer with 16 cdifesL; cost penalizes the
deviation between the produced power and the power referencei(s88Y; thel, cost corresponds
to the change of water levels from a set point, while respecting all local @tateontrol input con-
straints. The power reference was tracked with a maximum of 1.71E-4 Y%veedaror as a result of
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Figure 3.3: The power reference (cont. line) and the produced panesses) above and the relative
error of the tracking below on the whole control horizon of 24 hours.

21 SQP iterations. This optimization approach took altogether 34 minutes Stdsettle also give a
lower bound to the runtime of standard multiple shooting. The integration of téevglgstem on the
48 shooting intervals would take 27 minutes 10 seconds, thus to solve an optimtia! problem we
would need at least 9 hours 30 minutes and 32 seconds, which is a cabdtifference in runtime.
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