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Executive Summary  
 
 

 

The purpose of this report is to offer a survey of the most usual approaches 
optimisation methods for MPC of uncertain large-scale systems. A deep analysis of 
existing methods has been done, reviewing the main approaches: worst-case 
scenario, stochastic approach, randomized algorithms and measurement-based 
optimization. The conclusion is that it is a complex problem that has to deal with 
several aspects such as uncertainties description, constraint satisfaction, feasibility, 
stability, computation complexity, etc. All the presented methods show advantages 
and drawbacks; therefore new contributions to the problem can be expected in the 
project. 

mailto:b.deschutter@dcsc.tudelft.nl
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1 Introduction 
 
The presence of uncertainty in the system description has been always 
recognized as a critical issue in control theory and applications. In practical 
situations, with uncertainty coming from model mismatch and process 
disturbances, it is not enough to determine numerically an optimal solution on 
the basis of a nominal model and apply it to the process to implement an 
optimization-based control strategy, such as Model Predictive Control. In 
contrast to such a nominal optimization approach, uncertainty has to be 
considered explicitly.  
 

Since the early 1980s, several approaches based on a direct characterization 
of the uncertainty into the plant have been proposed. The design objective 
hence becomes the computation of a controller that is guaranteed to perform 
satisfactorily against all possible uncertainty realizations, thus leading to a 
worst-case (or robust) solution. The purpose of this report is to offer a survey 
of the most usual approaches optimisation methods for MPC of uncertain 
large-scale systems. Standard MPC algorithms, however, do not take directly 
into account model uncertainties and disturbances. Although the feedback 
mechanism itself is able to partially compensate for them, robust control 
designs that cope with uncertainties in an explicit way are of interest in 
modern MPC theory. In this report, the implementation and architecture 
details will not be discussed deeply, as this is the scope of other reports. 
 
In the absence of measurements, a solution is sought that can take the 
uncertainty into account explicitly. The uncertainty is dealt with by considering 
several possible values for the uncertain parameters. The optimization is 
performed either by considering the „worst-case scenario‟, where the optimal 
solution sought has to minimize the objective for the most critical set of 
parameter combinations, or in an „expected sense‟, where the probabilistic 
constraints are satisfied on average.  
 
However, this typically requires solving a much more complex optimization 
problem that includes many more differential and inequality constraints than 
without uncertainty [18, 27]. The resulting solution is conservative for the 
worst-case scenario or does not guarantee to satisfy the constraints in the 
probabilistic setting, but it corresponds to the best strategy available in the 
absence of measurements. 
 
The following sections describe some of the methods that are used to solve 
the optimisation problem in control systems. 
 
 

2 Worst-case scenario 
 

Many robust MPC schemes are based on the min-max strategy originally 
proposed in [54], where the performance index due to the worst possible 
disturbance realization is minimized. In the context of robust model predictive 
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control (MPC), the problem was tackled by Campo and Morari [12]. In 
general, solving a min–max problem subject to constraints and bounded 
additive disturbances is computationally too demanding for practical 
implementation. Some approaches to overcome this complexity can be found 
in literature. Lee and Kouvaritakis proposed a linear programming approach in 
[28]. In [30], the worst case value of the objective function is bounded by 
means of a Linear Matrix Inequality (LMI). Langson et al. [27] presented a 
feedback model predictive control that maintains the trajectories in a tube. 
Min–max MPC can also be addressed by the use of multiparametric 
programming [9], [24], [32], [33];  however, as it is well known, these results 
are in general hard to apply to large scale systems. Early works deal with 
open-loop predictions and optimize a single sequence of control inputs for the 
worst possible trajectory of the uncertain variables. Further results address 
the feedback min–max problem, where the optimization is done over a 
sequence of control laws in order to take into account that more information 
about uncertain variables will be available in the future through feedback. 
 
However, despite the amount of work developed in this field, few applications 
can be found in the literature, and moreover, they usually deal with small 
scale fast systems such as in [34]. One of the main reasons is that the 
computational complexity of this class of optimization problems grows 
exponentially with the prediction horizon and the size of the process. This 
problem is even more evident in the so-called feedback min-max control 
schemes. 
 
 
 

3 Stochastic Approach 
 
Moreover, in general, it is common feeling that the control laws are too 
conservative. Stochastic MPC takes a different route to solve MPC problems 
under uncertainty. By modelling the uncertainty as an stochastic variable, the 
expected value of the cost function is minimized. As in the min-max case, 
feedback predictions are taken into account (see [43]). The stochastic view of 
the disturbance in MPC could be traced back to Clarke‟s Generalized 
Predictive Control [15]. Like in many approaches that follow the same line of 
thinking, the results are valid only in the unconstrained case. Early works in 
SMPC deal with input constraints for different classes of models, see e.g. 
[48], [3]. However, state constraints are not tackled, and efficient algorithms 
for evaluating the control law are not provided. 
 
More recently, robust MPC schemes that can be solved by Stochastic 
Programming (SP) techniques have been proposed [18, 35]. Stochastic 
Programming is a special class of mathematical programming that involves 
optimization under uncertainty (see [7], [25], [39]). Nowadays SP is becoming 
a mature theory that is successfully applied in several other application 
domains (see the survey [40]). For other contributions in control theory of SP 
techniques the reader is referred to [4], [25], [18]. From the computational 
viewpoint specific efficient algorithms for stochastic LP (Linear Programming) 
and QP (Quadratic Programming) are available in the literature (see for 
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example [7], [44], [14], [38]) and commercial solutions to SP were announced 
recently [16]. 
 
There are several applications of SP to large scale problems, in particular to 
strategic level decision-making problems such as planning for investments or 
scheduling [13], [17], [21], [41], [5]. In this class of problems the uncertainties 
associated with long-range forecasts make these decision problems very 
complex. Stochastic programming is one of the most powerful analytical tools 
to support decision-making under uncertainty. However, there are still few 
results in the control community, in particular, because of the difficulties in 
proving any kind of guaranteed closed-loop properties such as stability or 
constraint satisfaction. The fact is that the development of stochastic 
controllers with guaranteed properties is still an open field. 
 
 

4 Randomized algorithms 
 
An alternative paradigm is to assume that the plant uncertainty is 
probabilistically described so that a randomized algorithm may be used to 
obtain, normally in polynomial time, a solution that satisfies some given 
properties [47], [49]. 
 
Uncertainty randomization is now widely accepted as an effective tool in 
dealing with control problems which are computationally difficult, see e.g. [47]. 
In particular, regarding synthesis of a controller to achieve a given 
performance, two complementary approaches, sequential and non-
sequential, have been proposed in recent years. 
 
For sequential methods, the resulting iterative algorithms are based on 
stochastic gradient [10], [19], [20], [37], ellipsoid iterations [23], [36] or analytic 
centre cutting plane methods [11], see also [2] for other classes of sequential 
algorithms. Convergence properties in finite-time are in fact one of the focal 
points of these papers. Various control problems have been solved using 
these sequential randomized algorithms, including robust LQ (Linear 
Quadratic) regulators, switched systems, and uncertain Linear Matrix 
Inequalities. Sequential methods are mostly used for convex problems; they 
are very useful because, at each iteration, the computational time is usually 
affordable. However, the number of iterations may be very large and depends 
on a stopping rule. 
 
A classical approach for non-sequential methods is based upon statistical 
learning theory, see [50],   [46] and [31] for further details. In particular, the 
use of this theory for feedback design of uncertain systems has been initiated 
in [51]; subsequent work along this direction include [52], [53]. However, the 
sample size bounds derived in these papers, which guarantee that the 
obtained solution meets a given probabilistic specification, may be too 
conservative for being practically useful in a system and control context if the 
available computational resources are limited. The advantage of these 
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methods is that the problem under attention may be non-convex and can be 
solved in one-shot without any stopping rule. 
 
 

5 Measurement-based optimization  
 
Process measurements can be used to adapt the input trajectories in order to 
guarantee optimality despite the presence of uncertainty. This is typically 
done by on-line re-optimization of the dynamic optimization problem [1]. At 
each sampling time, the current states, which serve as initial conditions for the 
next optimization, are updated on the basis of process measurements. If 
necessary, the model parameters might also be updated using 
measurements. Furthermore, since all required process variables are seldom 
accessible through measurements, suitable estimation techniques are also 
necessary [29, 26].  Note that the various state and parameter updates and 
the re-optimization represent computationally involved tasks to be performed 
on-line. The solution of such problems is still a major challenge although 
significant progress has been made in recent years [6]. This approach is 
mainly used for dynamic plant optimization, typically in batch processes. 
 
 
A conceptually different way of using measurements for on-line process 
optimization has been proposed recently by Srinivasan et al. [45]. In this work, 
a decentralized control scheme is proposed to track the Necessary Conditions 
of Optimality (NCO). Therefore, this approach is referred to as NCO tracking. 
It uses the concept of a solution model, which is a model that relates the 
various elements of the manipulated inputs to the different parts of the NCO. 
It is typically obtained by dissecting the input profiles obtained off-line using 
numerical optimization of a nominal process model and interpreting them by 
visual inspection. This approach requires a highly accurate numerical 
optimization procedure that can clearly reveal the different arcs in the optimal 
solution, and experience with and physical insight into the process. Recent 
work in numerical optimization of dynamic systems has shown that it is not 
only possible to compute highly accurate optimal solutions but also to 
determine their structural properties including the number, type and sequence 
of arcs as well as the determination of active path and terminal constraints 
[42].  A recent work [22] presents a systematic and automated approach to 
generate a solution model based on recent results in numerical optimization 
of dynamic systems. This concept provides the first step toward an entirely 
automated procedure for constrained dynamic optimization of uncertain large-
scale processes. 
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6 Conclusions 
The optimisation of uncertain large-scales systems has been a field of interest 
in the last twenty years and it there are still many open issues. It is a complex 
problem that has to deal with several aspects such as uncertainties 
description, constraint satisfaction, feasibility, stability, computation 
complexity, etc. There are several approaches to tackle the problem, some of 
which have been reviewed here. All the presented methods show advantages 
and drawbacks; therefore new contributions to the problem can be expected 
in the project. 
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