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Executive summary

In this report we discuss optimality of optimization methods applied in distributed, MR{Ch domV
not only provide an optimal solution, but also find it with a fast convergespeed. We also sho

that in a certain class of algorithms there is no other algorithm that is more efftbi@n what
we introduce here. We restrict our discussion to methods that make usdydfrst derivatives
and give an application for solving strictly convex quadratic programs withieh decompositior
scheme. The performance of the scheme is demonstrated on an energy ntiompizzblem. We
also discuss scalability and sensitivity of the scheme.
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Chapter 1

Optimality of first order methods

This section discusses first order methods and their performance eredifforoblem classes based
on [6], which discusses theoretical questions on this type of methodsopthmality conditions of

a general nonlinear program are already established in optimization tkeamn as Karush-Kuhn-
Tucker optimality conditions. The theory of the area is very well summarized, i8,[9] and is not
covered in this report. What we are more concerned with is the conveaggaeed of optimization
methods. Especially in real-time applications not only obtaining an optimal solutioeeided, but
also fast convergence speed is a demand due to the lack of time.

In the following discussion a method is considered to be first-order if it g¢e®e a sequence of
iteratesxy, wherex, = Xo + 3;Aj0f(x). First of all we make clear what kind of convergence rates
we are interested in, then introduce gradient method and Nesterov’'s ogtiatiént scheme. These
schemes are optimal in the sense that no other first order method campk€iter.

1.1 Convergence rates

In the following we define convergence rates that are interesting aungesur methods. We assume
thatr, — 0 and say converges

e sublinearly ifr, = O(& ), o € [0, ],

e linearly if ry = O(aX),a € [0, 1],

e superlinearly if imsup_,., r‘;—f =0,

e quadratically ifr, = O(azk),a € 10,1].

The sequenck, in the context of optimization is normally a distance measure from the optimal solu-
tion or optimal value. Note that sublinear convergence in practice meaes®tirslow performance,
whereas linear convergence sometimes provides decent perfornsapezlinear convergence is typ-
ically provided by Quasi-Newton methods. Quadratic performance wouttebigable, but it turns

out that with first-order methods this is not achievable, only exact Newtdhaddas this rate.
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1.2 Gradient Method

The gradient method — also known as steepest descent method — is widely &nd applied in the
area of optimization. The problem addressed is
min f(x), (1.2)

XeRN

wheref is a differentiable function. Gradient method generates iterates accaoding
Xip1 = X — 4O f (Xk),

wherety is the step size. In terms of convergence rate the step size is crucial i caapted
depending on what we know abofut
If f is convex and has Lipschitz gradieh) the optimal step size is given ly= % and

¥ ||12
_2Lxo—x|

Tl =17 < k44

(1.2)

holds, which results in sublinear convergence.f lis in addition strongly convex with convexity
parametey, then

e (N
1< (357) Po-x] 9
L 1 2k
(=<5 (257) Iro—x? (1.9

holds forvk with Q = L > 1. This means that gradient method provides linear convergence ogxconv
functions that have both lower and upper bound on the curvature.

1.3 Nesterov’s Optimal Gradient Scheme

General lower bounds both for the class of convex functions andrfmngly convex functions are
proven in [6]. Gradient method is not optimal in a sense that the uppedsanrf1.2), [1.B) and in
(@4) are not proportional to general lower bounds, which givesdiven to decrease them. Now we
assume that is convex, has Lipschitz gradient and strongly convex with convexitsirpateru > 0.
Note that this problem class contains the set of convex functions as wael@afu = 0. Nesterov’s
optimal gradient scheme proceeds as follows.

Given:xo € R", ap € (0,1), setyg + Xo,0 « £
while(no convergence)
Xir1 < Yk — 2O (yk)
Computeay. 1 from a2, ; = (1— 0i1) a2 + a1 (1.5)
Bk « ax(1-ay)

g+ a1

Yier1 ¢ X1 + Br(Xir1 — X«)
end
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Note that only one evaluation of the gradient is needed, whereas theoressts of vector opera-
tions. This slight computational overhead pays off with respect to gradiethod as the following
theoretical results show.

If fis convex and has Lipschitz gradieh) ¢hen for thek!" iterate of Nesterov’s optimal gradient
scheme holds that

f(x)—f* <L %0 — X*||2. (1.6)

4
(k+2)2
If fisin addition strongly convex with convexity parameter- 0, then

k

f(xk)—f*§L<1—\/g> [0 — X*||? (1.7)

holds. Note thaty#5; [0 — X||* < 25 I%0 — x*[|? for Vk > K, i.e. we gave a tighter upper bound

and thus to reaclii(x) — f* < € one needs to mal@(%) steps, which i:{)(%) in case of gradient
method. In Figure1]1 gradient method and Nesterov’s optimal gradiemtrecare compared in terms
of convergence speed. The optimization problem we solved here is andastithe problem that we
will define in Section 2. It can be seen that the requested tolerance fserkearlier by the optimal
method, as the supporting theory states.

60 T T
Nesterov
— — — Gradient

— = I

_ ! L
80 100 120 140 160 180 200
Iteration

Figure 1.1: Convergence of Nesterov’s optimal gradient scheme cenhparclassical gradient
method on a sparse, strictly convex QP.

In the next chapter we give an application, where this scheme is used &cmivex QPs in a
distributed setting.
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Chapter 2

Optimal Solution of Quadratic Programs

In the present chapter we investigate a dual decomposition scheme apgi&tketate optimal solu-
tions of structured quadratic programs (QP) in a distributed manner. Welialsass scalability and
sensitivity of the scheme.

2.1 Dual decomposition scheme

The basic problem that we are concerned with has the form

i 1r v Ty,
w izléxi QiXi + G X% 2.1)

st. Hx<d i=1,....m

N
_ZlAiXi =Db,

wherex; € R", Q; € ST, (ST, denotes positive definite matrix cone),c R", H; € RP*", d; € RP,
A € R9*" b e RY. Note that thef' term in the objective function only depends gn hence the
variables are not coupled via the objective function, but only througleduality constraints. Such
problems arise in distributed linear MPC. We propose an algorithm that sthlgeual problem by
using Active Set Strategy and Nesterov’s optimal gradient scheme.favewdate [(2.1) by adding the
equality constraints to the objective with Lagrange weights and by taking #ieodablem, resulting
in

N . 1 T . T T ) : T b
max Zl n?qln <2X| Q|X|+(Ci +A A')X'_/\ N . (2.2)
A=\ st Hixi <di
R(A)

Note that in this problem the parametric QP denoted?if¥ ) is a strictly convex QP in with a
fixed A and thus can be solved by Online Active Set Strategy [3], which makesf psevious matrix
factorizations and hence turns out to be very fast in practice. Morethase subproblems can be
solved simultaneously e.g. on nodes of a computer cluster. The optimizatior dui# variables
takes places by using Nesterov’s optimal gradient scheme [7] for maoth functions.
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Low-level optimization — Online Active Set Method

On the low-level we solve a set of QPs that has the form

Lo T, 3Ta)y 37D
min S Qi+ (¢ +ATA)x ~ATY (2.3)
st. Hix <d;,

with parametevA\. The solution of an inequality constrained QP might be obtained by usingeactiv
set strategy. This class of methods maintains a set of active constrairitsratidely solves the opti-
mization problem with the actual active set. The method proceeds by addimgranving constraints
and solving linear systems preserving feasibility. Online active set metipedsl sip the linear sys-
tem phase by storing and reusing the factorization matrices. Consitleahinges — coming from
the high-level —, then only the first order term of the program variesgtizelratic term remains the
same. This makes Online Active Set Strategy very efficient in practice.

High-level optimization — Nesterov’'s optimal gradient scleme

The dual problem on the high-level has the form

N
mAaxi; R(A). (2.4)

It is known that optimization in the dual space is a convex maximization probleme Hpply Nes-
terov's gradient schemg{1.5) boils down to a very simple scheme with whidkaweeach faster —
moreover optimal — convergence with a bit of overhead. The procedanetains two sequences in
the dual space.

A9 =AY oY) (2.5)
W _ 40, K=17y00 k1)
AR = A +k+2</\x A ) (2.6)

Herek is the loop variable, and a Lipschitz constant can be given by neglectingehaalities in

23).

1 N
T=L= Zlm_ax{)\i,,-\)\i,,- e AAQANL. (2.7)
=
The gradient of the dual can be given by
N
02() = 3 (A (2) b (2.8)

Using Nesterov’s optimal gradient scheme has an advantage in contcdetdaal gradient method,
namely, the iteration number that is needed to reagtiA ¥)) — 2 (A*)|| < & with an arbitrarye > 0
tolerance onl)O(%) steps are needed, WhichG}{%) in case of classical gradient. One drawback
of the present algorithm is that the optimization in the dual space has poegrgence properties,
namely has sublinear rate. This performance decreases even mouedduagiven Lipschitz con-
stant is not tight.
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2.2 Demonstration on an example

In the present section we would like to show how our dual decompositioensetperforms also
compare with gradient method applied in the dual space.

Our demonstration problem is called “net of hammocks”. A hammock is see@-a@naensional
grid of mass points connected to each other with weightless, extendible mpdessable strings. The
four corner points of a hammock have fixed height, whereas the reBear®® move. We take some
of such hammocks and connect them via the corner points, which hadehfexght, resulting in a net
of hammocks. The objective is to find the equilibrium point, i.e. to minimize the sumeosétitng
lengths and the potential energy, while all the mass points should be aboreta ground. In order
to make our QP strictly convex, we add a regularization term as well. Thégpnatan formulated in
the following way.

N—-1N-1
; 2 2
W0 33 (=X B % =X, ) 29)
N-1

gl (I = X a3+ %68 — X an13)

i
N N )
+(0,0,1)gm Xi,j+ 1%, = 1ijll2-
i;jzl i,je{I,N}
St (070, 1)X|] 2 hground (l,] S {1,,N})
(0, 07 1)Xi,j = hcorners (iaj € {17N})

HereX; ; € R® denotes the position of the mass point in thg) vertex positiong is the gravita-
tional constantmis the mass of a pointgound anNdheorners are height constants. In order to get the
form of (2.1) we introduce several hammocks and couple them via equatistraints. The optimal
configuration of a X 3 net with 4x 3 mass points is plotted in Figure 2.1(a) and ZJ1(b).

30

\-l’\-l’\-l
1 EEHEEE
d

[l

EEBES)S
i=tiE==sse

(a) (b)

Figure 2.1: Optimal configuration of ax33 net with 4x 3 hammocks. The central mass point pair of
each hammaock is touching the ground, the coupling points are marked witfr bigges.
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As a test problem, we took a 2010 net, each with 1& 10 mass points, resulting in 30000
decision variables, 1080 coupling variables in the centralized problemh @Rchad 300 decision
variables, 1480 equality constraints and 100 inequality constraints. Ne€stecheme and the classi-
cal gradient method — both with Lipschitz information — were compared, thestgriteria was
[AA]| < & (see TableZ]1).

Table 2.1: Comparison of the proposed approach with Nesterov’s sciiaingradient method. The
measurements have the formmafi ss or hh: nm ss.
(a) Runtime (b) CPU-time and iterations

o) Nesterov Gradient o Nesterov Iterations Gradient Iterations
103 0:55 02:58 102 1:05:15 949 03:34:32 3895
1074 1:55 03:59 104  2:12:45 2217 04:50:23 5190
10°° 2:52 04:56 105 3:15:29 3037 05:56:55 6485
106 3:29 05:52 10%  4:09:30 4528 07:03:58 7781

To have a comparison we solved the centralized QP with a primal-dual inpegior-solver
(OOQP) [4], which took 12.2 seconds and 12 iterations with about pfecision on a desktop com-
puter.

On this particular example our dual decomposition scheme turned out toypsleercompared
to a centralized solver.

2.3 Sensitivity of Dual Decomposition

In this section we try to clarify how our dual decomposition scheme depeniiied._ipschitz constant.
Since this basically determines the convergence speed it is very importdmdeecan appropriate
one.

There are several methods how to treat the Lipschitz constant. Oneifiysisitito neglect low-
level inequalities and give a global constant, which is never exact if fithednequalities are active.
Another possibility is to estimate it with an adaptive procedure [8]. The useai also be eliminated
by doing an extra imprecise line-search [5].

In order to see how Nesterov's scheme performs we solved an uraioestrQP with different
Lipschitz constants and fixed number of iterations (see Flgute 2.2).

From our experiments it turned out that too small Lipschitz constant makesctieme very
unstable due to very long steps. If we chobge be too large, the steps are getting short and thus in
this region the result is less accurate. Surprisingly the exact Lipschistattrdoes not give maximal
precision.

2.4 Scalability of Dual Decomposition

Scalability of an optimization method is especially important if the target problemds Iscale.
Recall that in our scheme the calculation of Lipschitz constant is given by

N
L= _zimjax{m,jui,j e AAQ AN} (2.10)
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Figure 2.2: Accuracy reached by Nesterov's scheme after 200 itesatiith different Lipschitz
guesses.

If N becomes large, so dokeswhich results in very short steps [0 (R.5). Now let us consider how the
number of iterations change if we incred$evith respect to the accuracy in the objectigg (Assume
that our subproblems have the same quadratic terms) theNL.

Firstly, suppose that is the requested absolute error. Note that often this type of error is eonsid
ered as stopping criteria. Using the upper boundid (1.6) we get

~ 4 §
NLmeo—x | <e. (2.11)

This implies that the number of iterations change with the ordw@t

Secondly, ife denotes the relative error of the objective and supposing that the obgdtf
subsystems have the same order, ¥R (1) = O(N), ande = &N then

~ 4 .
L——X—X < 2.12
holds, which implies that the number of subsystems does not affect the naiberations with
respect to relative error and has orde%f.

Page 11712




HD-MPC ICT-223854 Optimality, sensitivity, and scalability |

Bibliography

[1] D.P. BertsekasNonlinear Programming. Athena Scientific, 2nd edition, 1999.
[2] S. Boyd and L. Vandenbergh&onvex Optimization. University Press, Cambridge, 2004.

[3] H.J. Ferreau, H.G. Bock, and M. Diehl. An online active set strafegfast parametric quadratic
programming in MPC applications. Froceedings of the IFAC Workshop on Nonlinear Model
Predictive Control for Fast Systems, Grenable, pages 21-30, 2006.

[4] E.M. Gertz and S.J. Wright. Object-oriented software for quadratiggamming. ACM Trans-
actions on Mathematical Software, 29(1):58-81, 2003.

[5] C.C. Gonzaga and E.W. Karas. Optimal steepest descent algoritmmaadonstrained convex
problems: fine tuning Nesterov’s method. Technical report, Fedeligktsity of Santa Catarina,
2008.

[6] Y. Nesterov.Introductory lectures on convex optimization: a basic course, volume 87 ofApplied
Optimization. Kluwer Academic Publishers, 2003.

[7] Y. Nesterov. Smooth minimization of non-smooth functiofath. Programming, 103(1):127—
152, 2005.

[8] Y. Nesterov. Gradient methods for minimizing composite objective functie@RE Discussion
paper, 76, 2007.

[9] J. Nocedal and S.J. Wrighumerical Optimization. Springer Series in Operations Research and
Financial Engineering. Springer, 2 edition, 2006.

Page 12712




