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Executive summary

In this report we discuss optimality of optimization methods applied in distributed MPC, which do
not only provide an optimal solution, but also find it with a fast convergence speed. We also show
that in a certain class of algorithms there is no other algorithm that is more efficient than what
we introduce here. We restrict our discussion to methods that make use of only first derivatives
and give an application for solving strictly convex quadratic programs with adual decomposition
scheme. The performance of the scheme is demonstrated on an energy minimization problem. We
also discuss scalability and sensitivity of the scheme.
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Chapter 1

Optimality of first order methods

This section discusses first order methods and their performance on different problem classes based
on [6], which discusses theoretical questions on this type of methods. Theoptimality conditions of
a general nonlinear program are already established in optimization theoryknown as Karush-Kuhn-
Tucker optimality conditions. The theory of the area is very well summarized in [1, 2, 9] and is not
covered in this report. What we are more concerned with is the convergence speed of optimization
methods. Especially in real-time applications not only obtaining an optimal solution isneeded, but
also fast convergence speed is a demand due to the lack of time.

In the following discussion a method is considered to be first-order if it generates a sequence of
iteratesxk, wherexk = x0+∑i λi∇ f (xi). First of all we make clear what kind of convergence rates
we are interested in, then introduce gradient method and Nesterov’s optimalgradient scheme. These
schemes are optimal in the sense that no other first order method can perform better.

1.1 Convergence rates

In the following we define convergence rates that are interesting concerning our methods. We assume
thatrk→ 0 and sayrk converges

• sublinearly ifrk = O( 1
kα ),α ∈ [0,∞],

• linearly if rk = O(αk),α ∈ [0,1],

• superlinearly if limsupk→∞
rk+1
rk

= 0,

• quadratically ifrk = O(α2k
),α ∈ [0,1].

The sequencerk in the context of optimization is normally a distance measure from the optimal solu-
tion or optimal value. Note that sublinear convergence in practice means extremely slow performance,
whereas linear convergence sometimes provides decent performance.Superlinear convergence is typ-
ically provided by Quasi-Newton methods. Quadratic performance would bedesirable, but it turns
out that with first-order methods this is not achievable, only exact Newton method has this rate.
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1.2 Gradient Method

The gradient method – also known as steepest descent method – is widely known and applied in the
area of optimization. The problem addressed is

min
x∈Rn

f (x), (1.1)

where f is a differentiable function. Gradient method generates iterates accordingto

xk+1 = xk− tk∇ f (xk),

wheretk is the step size. In terms of convergence rate the step size is crucial and can be adapted
depending on what we know aboutf .

If f is convex and has Lipschitz gradient (L) the optimal step size is given bytk =
1
L and

f (xk)− f ∗ ≤2L‖x0− x∗‖2
k+4

(1.2)

holds, which results in sublinear convergence. Iff is in addition strongly convex with convexity
parameterµ, then

‖xk− x∗‖ ≤
(

Q−1
Q+1

)k

‖x0− x∗‖ (1.3)

f (xk)− f ∗ ≤ L
2

(
Q−1
Q+1

)2k

‖x0− x∗‖2 (1.4)

holds for∀k with Q = L
µ ≥ 1. This means that gradient method provides linear convergence on convex

functions that have both lower and upper bound on the curvature.

1.3 Nesterov’s Optimal Gradient Scheme

General lower bounds both for the class of convex functions and for strongly convex functions are
proven in [6]. Gradient method is not optimal in a sense that the upper bounds in (1.2), (1.3) and in
(1.4) are not proportional to general lower bounds, which gives freedom to decrease them. Now we
assume thatf is convex, has Lipschitz gradient and strongly convex with convexity parameterµ ≥ 0.
Note that this problem class contains the set of convex functions as well in case ofµ = 0. Nesterov’s
optimal gradient scheme proceeds as follows.

Given: x0 ∈ R
n,α0 ∈ (0,1), sety0← x0,q← µ

L
while(no convergence)

xk+1← yk− 1
L ∇ f (yk)

Computeαk+1 from α2
k+1 = (1−αk+1)α2

k +qαk+1

βk← αk(1−αk)

α2
k +αk+1

yk+1← xk+1+βk(xk+1− xk)
end

(1.5)
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Note that only one evaluation of the gradient is needed, whereas the restconsists of vector opera-
tions. This slight computational overhead pays off with respect to gradient method as the following
theoretical results show.

If f is convex and has Lipschitz gradient (L) then for thekth iterate of Nesterov’s optimal gradient
scheme holds that

f (xk)− f ∗ ≤ L
4

(k+2)2‖x0− x∗‖2. (1.6)

If f is in addition strongly convex with convexity parameterµ > 0, then

f (xk)− f ∗ ≤ L

(

1−
√

1
Q

)k

‖x0− x∗‖2 (1.7)

holds. Note that 4L
(k+2)2‖x0− x∗‖2 ≤ 2L

k+4‖x0− x∗‖2 for ∀k > K, i.e. we gave a tighter upper bound

and thus to reachf (xk)− f ∗ ≤ ε one needs to makeO( 1√
ε ) steps, which isO(1

ε ) in case of gradient
method. In Figure 1.1 gradient method and Nesterov’s optimal gradient scheme are compared in terms
of convergence speed. The optimization problem we solved here is an instance of the problem that we
will define in Section 2. It can be seen that the requested tolerance is reached earlier by the optimal
method, as the supporting theory states.
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Figure 1.1: Convergence of Nesterov’s optimal gradient scheme compared to classical gradient
method on a sparse, strictly convex QP.

In the next chapter we give an application, where this scheme is used to solve convex QPs in a
distributed setting.
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Chapter 2

Optimal Solution of Quadratic Programs

In the present chapter we investigate a dual decomposition scheme applied togenerate optimal solu-
tions of structured quadratic programs (QP) in a distributed manner. We alsodiscuss scalability and
sensitivity of the scheme.

2.1 Dual decomposition scheme

The basic problem that we are concerned with has the form

min
x1,...,xN

N

∑
i=1

1
2

xT
i Qixi + cT

i xi (2.1)

s.t. Hixi ≤ di i = 1, . . . ,m
N

∑
i=1

Aixi = b,

wherexi ∈ R
n, Qi ∈ S

n
++ (Sn

++ denotes positive definite matrix cone),ci ∈ R
n, Hi ∈ R

p×n, di ∈ R
p,

Ai ∈ R
q×n, b ∈ R

q. Note that the ith term in the objective function only depends onxi, hence the
variables are not coupled via the objective function, but only through theequality constraints. Such
problems arise in distributed linear MPC. We propose an algorithm that solvesthe dual problem by
using Active Set Strategy and Nesterov’s optimal gradient scheme. We reformulate (2.1) by adding the
equality constraints to the objective with Lagrange weights and by taking the dual problem, resulting
in

max
λ

N

∑
i=1




min

xi

(
1
2

xT
i Qixi +

(
cT

i +λ T Ai
)

xi−λ T b
N

)

s.t. Hixi ≤ di





︸ ︷︷ ︸

Pi(λ )

. (2.2)

Note that in this problem the parametric QP denoted byPi(λ ) is a strictly convex QP inxi with a
fixedλ and thus can be solved by Online Active Set Strategy [3], which makes useof previous matrix
factorizations and hence turns out to be very fast in practice. Moreover, these subproblems can be
solved simultaneously e.g. on nodes of a computer cluster. The optimization of the dual variables
takes places by using Nesterov’s optimal gradient scheme [7] for non-smooth functions.
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Low-level optimization — Online Active Set Method

On the low-level we solve a set of QPs that has the form

min
xi

1
2

xT
i Qixi +

(

cT
i + λ̂ T Ai

)

xi− λ̂ T b
N

(2.3)

s.t. Hixi ≤ di,

with parameter̂λ . The solution of an inequality constrained QP might be obtained by using active
set strategy. This class of methods maintains a set of active constraints anditeratively solves the opti-
mization problem with the actual active set. The method proceeds by adding and removing constraints
and solving linear systems preserving feasibility. Online active set methods speed up the linear sys-
tem phase by storing and reusing the factorization matrices. Consider ifλ̂ changes — coming from
the high-level —, then only the first order term of the program varies, thequadratic term remains the
same. This makes Online Active Set Strategy very efficient in practice.

High-level optimization — Nesterov’s optimal gradient scheme

The dual problem on the high-level has the form

max
λ

N

∑
i=1

Pi(λ ). (2.4)

It is known that optimization in the dual space is a convex maximization problem. Ifwe apply Nes-
terov’s gradient scheme (1.5) boils down to a very simple scheme with which wecan reach faster –
moreover optimal – convergence with a bit of overhead. The proceduremaintains two sequences in
the dual space.

λ (k)
x = λ (k−1)

y − t∇ f (λ (k−1)
y ) (2.5)

λ (k)
y = λ (k)

x +
k−1
k+2

(

λ (k)
x −λ (k−1)

x

)

(2.6)

Herek is the loop variable, and a Lipschitz constant can be given by neglecting theinequalities in
(2.3).

1
t
= L =

N

∑
i=1

max
j
{λi, j|λi, j ∈ λ (AiQ

−1
i AT

i )}. (2.7)

The gradient of the dual can be given by

∇L (λ ) =
N

∑
i=1

(Aix
∗
i (λ ))−b. (2.8)

Using Nesterov’s optimal gradient scheme has an advantage in contrast toclassical gradient method,
namely, the iteration number that is needed to reach‖L (λ (k))−L (λ ∗)‖ ≤ ε with an arbitraryε > 0
tolerance onlyO( 1√

ε ) steps are needed, which isO(1
ε ) in case of classical gradient. One drawback

of the present algorithm is that the optimization in the dual space has poor convergence properties,
namely has sublinear rate. This performance decreases even more because the given Lipschitz con-
stant is not tight.
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2.2 Demonstration on an example

In the present section we would like to show how our dual decomposition scheme performs also
compare with gradient method applied in the dual space.

Our demonstration problem is called “net of hammocks”. A hammock is seen as a2-dimensional
grid of mass points connected to each other with weightless, extendible and compressable strings. The
four corner points of a hammock have fixed height, whereas the rest arefree to move. We take some
of such hammocks and connect them via the corner points, which have fixed height, resulting in a net
of hammocks. The objective is to find the equilibrium point, i.e. to minimize the sum of the string
lengths and the potential energy, while all the mass points should be above oron the ground. In order
to make our QP strictly convex, we add a regularization term as well. The problem can formulated in
the following way.

min
X1,1,...,XN,N

N−1

∑
i=1

N−1

∑
j=1

(
‖Xi, j−Xi+1, j‖22+‖Xi, j−Xi, j+1‖22

)
+ (2.9)

N−1

∑
i=1

(
‖XN,i−XN,i+1‖22+‖Xi,N−Xi+1,N‖22

)

+(0,0,1)gm
N

∑
i=1

N

∑
j=1

Xi, j + ∑
i, j∈{1,N}

‖Xi, j− ri, j‖22.

s.t. (0,0,1)Xi, j ≥ hground (i, j ∈ {1, . . . ,N})
(0,0,1)Xi, j = hcorners (i, j ∈ {1,N})

HereXi, j ∈ R
3 denotes the position of the mass point in the(i, j) vertex position,g is the gravita-

tional constant,m is the mass of a point,hground andhcorners are height constants. In order to get the
form of (2.1) we introduce several hammocks and couple them via equality constraints. The optimal
configuration of a 3×3 net with 4×3 mass points is plotted in Figure 2.1(a) and 2.1(b).
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Figure 2.1: Optimal configuration of a 3×3 net with 4×3 hammocks. The central mass point pair of
each hammock is touching the ground, the coupling points are marked with bigger circles.
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As a test problem, we took a 10× 10 net, each with 10× 10 mass points, resulting in 30000
decision variables, 1080 coupling variables in the centralized problem. Each QP had 300 decision
variables, 1480 equality constraints and 100 inequality constraints. Nesterov’s scheme and the classi-
cal gradient method — both with Lipschitz information — were compared, the stopping criteria was
‖∆λ‖ ≤ δ (see Table 2.1).

Table 2.1: Comparison of the proposed approach with Nesterov’s schemeand gradient method. The
measurements have the form ofmm:ss or hh:mm:ss.

(a) Runtime

δ Nesterov Gradient
10−3 0:55 02:58
10−4 1:55 03:59
10−5 2:52 04:56
10−6 3:29 05:52

(b) CPU-time and iterations

δ Nesterov Iterations Gradient Iterations
10−3 1:05:15 949 03:34:32 3895
10−4 2:12:45 2217 04:50:23 5190
10−5 3:15:29 3037 05:56:55 6485
10−6 4:09:30 4528 07:03:58 7781

To have a comparison we solved the centralized QP with a primal-dual interior-point solver
(OOQP) [4], which took 12.2 seconds and 12 iterations with about 10−8 precision on a desktop com-
puter.

On this particular example our dual decomposition scheme turned out to be very slow compared
to a centralized solver.

2.3 Sensitivity of Dual Decomposition

In this section we try to clarify how our dual decomposition scheme depends on the Lipschitz constant.
Since this basically determines the convergence speed it is very important to choose an appropriate
one.

There are several methods how to treat the Lipschitz constant. One possibility is to neglect low-
level inequalities and give a global constant, which is never exact if any of the inequalities are active.
Another possibility is to estimate it with an adaptive procedure [8]. The use ofL can also be eliminated
by doing an extra imprecise line-search [5].

In order to see how Nesterov’s scheme performs we solved an unconstrained QP with different
Lipschitz constants and fixed number of iterations (see Figure 2.2).

From our experiments it turned out that too small Lipschitz constant makes thescheme very
unstable due to very long steps. If we chooseL to be too large, the steps are getting short and thus in
this region the result is less accurate. Surprisingly the exact Lipschitz constant does not give maximal
precision.

2.4 Scalability of Dual Decomposition

Scalability of an optimization method is especially important if the target problem is large scale.
Recall that in our scheme the calculation of Lipschitz constant is given by

L =
N

∑
i=1

max
j
{λi, j|λi, j ∈ λ (AiQ

−1
i AT

i )}. (2.10)
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Figure 2.2: Accuracy reached by Nesterov’s scheme after 200 iterations with different Lipschitz
guesses.

If N becomes large, so doesL, which results in very short steps in (2.5). Now let us consider how the
number of iterations change if we increaseN with respect to the accuracy in the objective (ε). Assume
that our subproblems have the same quadratic terms, thenL = NL̂.

Firstly, suppose thatε is the requested absolute error. Note that often this type of error is consid-
ered as stopping criteria. Using the upper bound in (1.6) we get

NL̂
4

(k+2)2‖x0− x∗‖ ≤ ε . (2.11)

This implies that the number of iterations change with the order of
√

N
ε .

Secondly, ifε denotes the relative error of the objective and supposing that the objectives of
subsystems have the same order, i.e.∑N

i Pi(λ ) = O(N), andε = ε̂N then

L̂
4

(k+2)2‖x0− x∗‖ ≤ ε̂ (2.12)

holds, which implies that the number of subsystems does not affect the number of iterations with
respect to relative error and has order of1√

ε .

Page 11/12



HD-MPC ICT-223854 Optimality, sensitivity, and scalability

Bibliography

[1] D.P. Bertsekas.Nonlinear Programming. Athena Scientific, 2nd edition, 1999.

[2] S. Boyd and L. Vandenberghe.Convex Optimization. University Press, Cambridge, 2004.

[3] H.J. Ferreau, H.G. Bock, and M. Diehl. An online active set strategyfor fast parametric quadratic
programming in MPC applications. InProceedings of the IFAC Workshop on Nonlinear Model
Predictive Control for Fast Systems, Grenoble, pages 21–30, 2006.

[4] E.M. Gertz and S.J. Wright. Object-oriented software for quadratic programming.ACM Trans-
actions on Mathematical Software, 29(1):58–81, 2003.

[5] C.C. Gonzaga and E.W. Karas. Optimal steepest descent algorithms for unconstrained convex
problems: fine tuning Nesterov’s method. Technical report, Federal University of Santa Catarina,
2008.

[6] Y. Nesterov.Introductory lectures on convex optimization: a basic course, volume 87 ofApplied
Optimization. Kluwer Academic Publishers, 2003.

[7] Y. Nesterov. Smooth minimization of non-smooth functions.Math. Programming, 103(1):127–
152, 2005.

[8] Y. Nesterov. Gradient methods for minimizing composite objective function. CORE Discussion
paper, 76, 2007.

[9] J. Nocedal and S.J. Wright.Numerical Optimization. Springer Series in Operations Research and
Financial Engineering. Springer, 2 edition, 2006.

Page 12/12


