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Executive summary

In this report we address and solve different sorts of robust optimal control problems. First, we
introduce an approach to uncertain nonlinear systems, where the uncertainty enters the dynamics
in an affine fashion. If this holds, one may eliminate the classical min-max structure from the
robust dynamic optimization problem.
Second, we discuss a novel technique to provide robust linear controllaws to general nonlinear
dynamic systems.
Third, we address a robust controller design problem for distributed linear systems using duality
of linear programming.
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Chapter 1

Synopsis of the report

In this report we are concerned with robust optimal control problems. InChapter 2 and Chapter 3 we
discuss different solution methods to the general problem

min
x,u

f0(x,u) (1.1)

s.t. fi(x,u) ≤ 0 i = 1, . . . ,nf (1.2)

g j(x,u, p) = 0 j = 1, . . . ,nx, (1.3)

wherex, u andp denote the states, controls and uncertain parameters of the underlying optimal control
problem, respectively. We define the worst-case scenario by introducing a multi-level optimization
problem. In this framework two players, the robust controller and the uncertainty, compete with each
other. The adverse player (uncertainty) wants to violate the constraints, while respecting the system
dynamics

φi(u) :=





maxx,p fi(x,u)
s.t. g(x,u, p) = 0

‖p− p‖ ≤ 1



 . (1.4)

The controller wants to respect the constraints by choosing anu such that

min
u

φ0(u) (1.5)

s.t. φi(u) ≤ 0 i = 1, . . . ,nf . (1.6)

In Chapter 2 we propose an algorithm to solve a special case of (1.4) thatis

φi(u) :=





maxx,p fi(x,u)
s.t. A(u)x+B(u)p+b(u) = 0

‖p− p‖ ≤ 1



 , i = 1, . . . ,nf , (1.7)

wherep corresponds to the nominal control case. Note that the uncertainty entersthe dynamic system
in an affine manner. In such cases the linearization ofg(.) is exact, which results in numerically
tractable dynamic optimization problem and allows for a more conservative controller.

In Chapter 3 we present techniques to solve robust optimal control problems for nonlinear dynamic
systems in a conservative approximation. Here, we assume that the nonlinear dynamic system is
affected by a time-varying uncertainty whose L-infinity norm is known to be bounded. By employing
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specialized explicit upper estimates for the nonlinear terms in the dynamics we propose a strategy
to design a linear control law which guarantees that given constraints on the states and controls are
robustly satisfied when running the system in closed- loop mode. Finally, the mathematical techniques
are illustrated by applying them to a tutorial example.

In Chapter 4 a decentralized robust control scheme is considered. We formulate a robust feasibility
problem for the design of a reference governor to provide set-points for the lower- level control in a
two-layer hierarchical system. We regard the linear state-space model

x(k+1) = Ax(k)+Br(k)+Gd(k) (1.8)

z(k) = Cx(k) (1.9)

with the set-point deviationr(k) and disturbance perturbationd(k) and system outputz(k). Using
linear programming duality, solutions to the robust feasibility problem (i.e. both necessary and suffi-
cient conditions for the existence of an admissible reference) are given. Three cases are considered:
1) Fixed reference; 2) feedforward management; and 3) affine feedback management. The computa-
tionally efficient results can be implemented in supervisory control in SCADA networks.
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Chapter 2

Robust nonlinear optimal control of
dynamic systems with affine uncertainties

In this chapter we are interested in the robust optimization of open-loop controlled uncertain systems
that are linear in the uncertain states and disturbances but possibly nonlinear in the remaining states
and the control input. Here, the main challenge is to robustly regard inequalitystate constraints. For
this aim we start by introducing Lyapunov differential equations as a well-known tool [16, 5, 12, 13, 4]
to compute variance-covariance matrix functions. We include results from [8] without proofs.

2.1 Uncertain linear time-varying systems

Let us consider a linear time-varying system with a differential state vectorx : R → R
nx that is excited

by a disturbance functionw : R → R
nw:

ẋ(t) = A(t)x(t)+B(t)w(t)
y(t) = C(t)x(t)
x(0) = B0w0

(2.1)

with t ∈ T andT := [0,T] ⊂ R, whereT is the length of the time horizon. Here, we assume that
the coefficientsA : T → R

nx×nx, B : T → R
nx×nw, andC : T → R

ny×nx are square-integrable functions
on the finite intervalT. In addition,y : T → R

ny is called the output function whilew0 ∈ R
nw0 is an

uncertainty affecting the initial state via the matrixB0 ∈ R
nx×nw0 . At this point, it is worth to mention

that we will later also regard a time dependent functionv to be optimized which might enterA,B,
andC in a possibly nonlinear way, but for the moment we suppress this dependence onv to achieve a
convenient notation.

The fundamental solutionG : T×T → R
nx×nx of (2.1) is the unique solution of the initial value

problem:

∂G(t,τ)

∂ t
= A(t)G(t,τ) with G(τ,τ) = I (2.2)

for all t,τ ∈ T. Using this notation, we can write the output functiony in the form [19]

y(t) = H0
t w0 +

∫ T

0
Ht(τ)w(τ)dτ (2.3)
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with the Green’s or impulse response functionHt : T → R
ny×nw being defined by

∀t,τ ∈ T : Ht(τ) :=

{

C(t)G(t,τ)B(τ) if τ ≤ t
0 otherwise

(2.4)

andH0
t := C(t)G(t,0)B0. Obviously, the differential equation (2.2) for the fundamental solutionG is

completely independent of the matrix functionsB andC. In order to describe the dependence of the
state on the disturbanceω := (w0,w(·)), we make use of Lyapunov differential equations of the form

Ṗ(t) = A(t)P(t)+P(t)A(t)T +B(t)B(t)T

P(0) = B0BT
0

. (2.5)

The state of this differential equation is a matrix valued functionP : T → R
nx×nx. Note thatP propa-

gates the following important information [12, 13, 4]: if the disturbancew entering the system (2.1)
is a Gaussian white noise process with

E{w(t)} = 0 and
E{wi(t1)w j(t2)T} = Σ(t1)δ (t2− t1)δi, j

for all t, t1, t2 ∈ T and for alli, j ∈ {1, ..,nw} while the uncertain valuew0 is Gaussian distributed with
variance-covariance matrixI ∈ R

nx×nx thenP(t) is the variance-covariance matrix of the statex(t) for
all timest ∈ T. Consequently, the variance-covariance matrix of the outputy is at each timet ∈ T

given byC(t)P(t)C(t)T .

2.2 Inequality constrained Lyapunov differential equations

As almost all systems in the real-world are subject to inequality constraints we like to discuss the
linear system (2.1) in combination with output constraints of the form

∀t ∈ T,∀i ∈ {1, ...,ny} : yi(t) ≤ di(t) . (2.6)

The functiond : T→R
ny is assumed to be continuous with strictly positive components. Furthermore,

Ci(t) denotes thei-th row vector ofC(t). For all theoretical purposes in this section, we will assume
di(t) = 1 by rescaling the rowsCi(t) for all componentsi ∈ I := {1, ...,ny}. In this case, all constraints
have the simple formyi(t) ≤ 1.

Now, we suggest to consider a corresponding constrained Lyapunovdifferential equation for the
matrix valued functionP defined by

Ṗ(t) = A(t)P(t)+P(t)A(t)T +B(t)B(t)T

0 ≥ Ci(t)P(t)Ci(t)T −1

P(0) = B0BT
0 .

(2.7)

The aim of this section is to discuss a worst case interpretation of the constrained Lyapunov sys-
tem (2.7) based on the assumption that the disturbanceω := (w0,w(·)) is a bounded but unknown
function. For this aim, we consider the Hilbert spaceL2 of all square-integrable functions fromT to
R

nw. Moreover, we define an inner product〈· | ·〉W : W×W → R in the spaceW := R
nw0 ×L2 and the

correspondingW-norm‖ · ‖W : W → R by

〈ω1 | ω2〉W := wT
0,1w0,2 +

∫ T

0
w1(τ)Tw2(τ)dτ and

‖ω1‖W :=
√

〈ω1,ω1〉W (2.8)
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for all ω1,ω2 ∈W andω j = (w0, j ,w j(·)) for j ∈ {1,2}.
In the next step, we define the ballB ⊆W by

B := {ω ∈ L2 | ‖ω‖W ≤ 1} .

The worst case interpretation of the constrained Lyapunov differentialequation can now be stated as
follows:

Theorem 2.2.1 The constraints of the form yi(t) ≤ 1 are satisfied for all times t∈ T, all components
i ∈ I, and all disturbancesω ∈ B if and only if the constrained Lyapunov differential equation(2.7)
admits a feasible solution P.

Remark:

• Provided thatw is a unit-bandwidth white noise process, whilew0 is a Gaussian distributed
random variable with variance-covariance matrixI, we have

∀t ∈ R , i ∈ I :

Probability{yi(t) > 1} <
∫ ∞

1
1√
2π e−

1
2z2

dz.

if and only if the constrained Lyapunov differential equation (2.7) admits a feasible solutionP.
This stochastic single chance interpretation can directly be seen by making use of the fact that
we haveE

{

yi(t)2
}

= Ci(t)P(t)Ci(t)T in this case.

Let us transfer the results from the previous section to uncertain optimal control problems of the form

min
x(·),v(·),T

J[v(·),T]

s.t.

∀t ∈ T : ẋ(t) = A(v(t))x(t)+B(v(t))w(t)

+r(v(t))

∀t ∈ T : 0 ≥ C(v(t))x(t)−d(v(t))

x(0) = r0(v(0))+B0w0 ,

v ∈ V

. (2.9)

Here,v : R → R
nv is the nonlinear behavior of the system. This behavior is assumed to lie in a given

setV ⊂ L2 of measurable functions on the time intervalT. In the context of optimal control problems,
V has typically the form

V =



















v : T → R
nv

∣

∣

∣

∣

∣

∣

∣

∣

∣

∀t ∈ T :

0 = F(t, v̇,v)
0 = G(v(0),v(T)) = 0
0 ≥ H(v(t))



















. (2.10)

Note that this setV can for example in a trivial case contain a constant parameter which could be
formulated as

Vexample= {v : T → R
nv : v̇ = 0} ,
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or piecewise constant controls, or non-trivial implicit differential algebraic equations etc.. However,
V should not depend onω - otherwise, the system is in general not affine in the uncertainty.

In our formulation, the objective functionalJ is assumed to be independent ofx.1 The coefficients
A, B, C, d are now regarded as functions inv. Moreover, we have introduced a continuous reference
functionr : R

nv → R
nx, which can, analogous to the nominal initial valuer0 : R

nv → R
nx, also depend

on the behaviourv. To formulate the robust counterpart formulation of the above optimization problem
we follow the classical approach [3], i.e. we consider the optimization problem

min
v(·),T

J[v(·),T]

s.t.

∀t ∈ T : 0 ≥ ymax( t ; v(·),T)−d(v(t))

v ∈ V

, (2.11)

whereymax
i ( t ; v(·),T) is for eacht ∈ T and eachi ∈ I defined to be the optimal value of the sub-

maximization problem

max
x(·),w0,w(·)

Ci(v(t))x(t)

s.t.

∀τ ∈ [0, t] : ẋ(τ) = A(v(τ))x(τ)+B(v(τ))w(τ)

+r(v(τ))

x(0) = r0(v(0))+B0w0

ω ∈ B

.

One of the key results is that the robust counterpart problem (2.11) can, as a direct consequence of
Theorem 2.2.1, equivalently be written as

min
xr (·),P(·),v(·),T

J[v(·),T]

s.t.

∀t ∈ T : ẋr(t) = A(v(t))xr(t)+ r(v(t))

xr(0) = r0(v(0))

∀t ∈ T : Ṗ(t) = A(v(t))P(t)+P(t)A(v(t))T

+B(v(t))B(v(t))T

P(0) = B0BT
0

∀t ∈ T,

∀i ∈ I : 0 ≥ Ci(v(t))xr(t)−di(v(t))

+
√

Ci(v(t))P(t)Ci(v(t))T

v ∈ V

. (2.12)

Note that in this robust counterpart formulation,xr denotes the reference state trajectory, which would
be obtained forω = 0.

1Note that an affine dependence ofJ onx can always be eliminated by an introduction of slack parameters.
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An interesting point about this robust counterpart formulation is that we regard an infinite di-
mensional disturbance, represented byω ∈W, while there is also an infinite dimensional number of
constraints robustly satisfied as the linear path constraints have to be satisfied for all t in the time
interval T. Note that this is a main advantage in comparison to other existing robust counterpart
formulations for optimal control problems, which have been proposed in [6, 17].

Finally, we note that optimal control problems which are affine in the uncertainty can often be
found in practice. Even if a problem is not in this form, we might be in one of thefollowing situations:

• If we consider a nonlinear dynamic system, the system can at least for smalldisturbances be
robustified in a linear approximation as proposed in [17, 6]. In this case, the reference trajectory
is the solution of the nonlinear dynamic system forω = 0, which can be optimized, too. In
this case, we do not have many guarantees for larger disturbances butfor sufficiently small
disturbances the linear approximation is valid.

• If we have a linear system of the form

ẋ(t) =
∼
A(t)x(t)+B(t)w(t)+D(t)u(t)+ r(t)

with a control functionu we might be interested in a linear feedback law of the formu(t) :=
uref(t)+K(t)x(t), whereK(t) is a matrix function that should be optimized in such a way that
the constraints are robustly satisfied. Now, we can summarize the componentsof K in a vector
valued functionv := vec(K). If we define

A(v(t)) :=
∼
A(t)+D(t)K(t)

we can obviously transfer the above robust counterpart formulation. Note that this approach
can also take linear control constraints into account. In addition, it can be generalized for the
case that a linear estimator gain together with a linear feedback gain should beoptimized in a
robust way.

2.3 Optimal control of a crane

To illustrate the applicability and potential of the robust counterpart formulation (2.12), we consider a
crane, which should carry a massm from a given point to a given target region (cf. Figure 2.1): If the
crane’s cable with lengthL is very long with respect to the horizontal excitationLsin(φ) of the mass,
which is affected by an unknown forceF , it is an easy exercise to show that the dynamics of the angle
of the line of the crane can be described by the following differential equation:

d
dt

(

φ(t)
φ̇(t)

)

= A(t)

(

φ(t)
φ̇(t)

)

+B(t)F(t)+ r(t) (2.13)

with

A(t) :=

(

0 1

− g
L(t) −

(

b+2L̇(t)
L(t)

)

)

, B(t) :=

(

0
1

mL(t)

)

and r(t) :=

(

0
− ẍ

L − L̇ẋ
L2

)
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Figure 2.1: A sketch of the crane.

Here, the crane is only considered in a planeR
2, in which the mounting point of the cable is at the

time t located at the position(x(t),0)T ∈ R
2 while the mass has the position(x(t)+ L(t)sin(φ(t)),

−L(t)cos(φ(t)))T ∈ R
2. In this notation,g = 9.81 m

s2 is the gravitational constant andb = 0.1 1
s a

friction coefficient. Note that the above model is only valid for small excitationsφ where the dynamics
can be linearized in the statesφ andφ̇ .

The external forceF , acting at the mass in horizontal direction, is assumed to be unknown in our
example. The optimal control problem we would like to solve now, assumes thatwe have the control
u :=

(

ẍ, L̈
)

as a degree of freedom to bring the mass as fast as possible from a given point into a
desired target region. More precisely, we define the feasible behaviour

v :=
(

zT
, uT)T

:=
(

x,L, ẋ, L̇,uT)T ∈ V

of the dynamic system by

V :=



























v : [0,T] → R
n6

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∀t ∈ [0,T] :

ż(t) = (ẋ(t), L̇(t),u(t)T)T

z(0) = z0

z(T) = zT

vmin ≥ v(t) ≥ vmax



























,

where we use the following values for our example

z0 :=
(

0m, 100m, 0
m
s

, 0
m
s

)T

zT :=
(

40m, 100m, 0
m
s

, 0
m
s

)T

vmin :=
(

−10m, 50m, −20
m
s

, −20
m
s

,−0.3
m
s2 ,−1

m
s2

)T

vmax :=
(

50m, 102m, 20
m
s

, 20
m
s

,0.3
m
s2 ,1

m
s2

)T
.
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We are first interested in the following minimum time optimal control problem for the case that we
have no disturbances, i.e. forF = 0:

min
x(·),v(·),p,T

T

s.t.

∀t ∈ [0,T] : d
dt x(t) = A(v(t))x(t)+ r(v(t))

∀t ∈ [0,T] : φmin ≤ φ(t) ≤ φmax

x(0) = x0

xtarget≤ x(T) ≤ xtarget

v∈ V

, (2.14)

where we chose the following numerical values:

x0 :=

(

0 rad, 0
rad
s

)T

xtarget :=

(

−0.042 rad, −0.013
rad
s

)T

(2.15)

xtarget :=

(

0.042 rad, 0.013
rad
s

)T

φmax := −φmin := 0.05rad.

Now, we use the dynamic optimal control package ACADO [1] to solve the above problem by using
a piecewise constant control parametrization in combination with an SQP method.The corresponding
locally optimal solution, that was obtained with this method, is shown in Figure 2.2. Note that the
optimal result for the angleφ , the positionx, and the cable lengthL are shown. The path constraints
for φ are not active in this optimal solution but note that the target constraintφ(T) ≤ 0.042rad is
active.

The corresponding value for the minimum time is

T = 23.33s. (2.16)

Note that it is optimal to reduce the cable length during the movement of the crane.

2.4 Robust optimal control of a crane

In this section we discuss the solution of the robust counterpart optimal control problem which is
associated with the problem (2.14). For this aim, we choosem= 600kg and assume that the uncertain
forceF is bounded by

‖F(·)‖2
L2

≤ 1200N2s . (2.17)

We use the optimization software ACADO again to solve also the robustified optimalcontrol
problem taking the Lyapunov equation for the state variances into account.Here, we assume that all
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Figure 2.2: A locally optimal result of the optimal control problem (2.14).
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Figure 2.3: A locally optimal result for the robust counterpart problem (2.12) associated with the
optimal control problem (2.14).
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states are at the timet = 0 exactly known, while the path constraints onφ as well as the target region
constraints should be satisfied for all forcesF that are bounded by (2.12). A corresponding robust and
locally optimal solution is shown in Figure 2.3. The optimal value for the timeT is now larger:

T = 24.56s (2.18)

as we need to satisfy more conservative constraints. To visualize that the robustified constraints were
active at the optimal solution, which is shown in Figure 2.3, the functions

φ := φ(t)+ γ
√

Var(φ(t)) and φ := φ(t)− γ
√

Var(φ(t)) (2.19)

are plotted as dotted lines. Note that the lower bound of the form

φ(t)−
√

Pφ ,φ (t) ≥−0.05rad

is at active at a certain timet ∈ T while the target constraint

φ(T)+
√

Pφ ,φ (T) ≤ 0.042rad

is also active.
We have presented methods to design and optimize the stability and robustness of nonlinear dy-

namic systems with affine uncertainties taking inequality state constraints into account. After re-
viewing existing concepts for the robustification of linear systems we concentrated on an extension
of Lyapunov differential equations for systems with state constraints. We have summarized the in-
terpretation of such constrained Lyapunov differential equations in Theorem 2.2.1 together with the
associated remarks showing the equivalence between

• the existence of a feasible solution of the constrained Lyapunov differential equation,

• the exact robustness of the underlying constrained linear dynamic systemwith respect toL2-
bounded disturbances,

• and the stochastic single chance constraint interpretation for the case of awhite noise distur-
bance.

Furthermore, we transferred the constrained Lyapunov differential equations for special optimal con-
trol problems that are linear in the state and the uncertainty while the remaining behaviour can possibly
enter in a nonlinear way. In order to demonstrate the applicability of the presented results, we have
tested our method for a simple crane model. After a discussion of a time optimal trajectory for this
crane we have presented a robustified solution taking inequality state constraints into account.
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Chapter 3

Robust design of linear control laws for
constrained nonlinear dynamic systems

In this chapter we propose a computationally tractable way of solving robustnonlinear optimal control
design problems for time varying uncertainties in a conservative approximation. For this aim, we need
to assume that an explicit estimate of the nonlinear terms in the right-hand side function f is given.
We demonstrate for a tutorial problem how such an explicit estimate can be constructed illustrating
that the results in this discussion are not only of theoretical nature but canalso be applied in practice.
The results we include from [10] are given without proofs.

3.1 Robust nonlinear optimal control problems

In this section we introduce uncertain optimal control problems for dynamic systems of the form

ẋ(t) = F(x(t),u(t),w(t)) , x(0) = 0 ,

wherex : [0,T] → R
nx denotes the states,u : [0,T] → R

nu the control inputs, andw : [0,T] → R
nw

an unknown time-varying input which can influence the nonlinear right-hand side functionF : R
nx ×

R
nu ×R

nw → R
nx. Throughout this chapter, we assume that our only knowledge about theuncertainty

w is that it is contained in an uncertainty setΩ∞ which is defined as

Ω∞ := {w(·) | for all τ ∈ [0,T] : ‖w(τ)‖∞ ≤ 1 } .

In words,Ω∞ contains the uncertaintiesw(·) whose L-infinity norm is bounded by 1.
In this chapter, we are interested in designing a feedback law in order to compensate the un-

certaintiesw. Here, we constraint ourselves to the case that the feedback law is linear, i.e. we set
u(t) := K(t)x(t) with K : [0,T] → R

nu×nx denoting the feedback gain. Now, the dynamics of the
closed loop system can be summarized as

ẋ(t) = f (x(t),K(t),w(t)) := F(x(t),K(t)x(t),w(t)) .

Moreover, we assume that we havef (0,K,0) = 0 for all K ∈ R
nu×nx, i.e. we assume thatxref(t) = 0

is the steady state which we would like to track. The uncertain optimal gain designproblem of our
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interest can now be stated as

min
x(·),K(·)

Φ[K(·) ]

subject to ˙x(τ) = f (x(τ),K(τ),w(τ))

x(0) = 0

Ci(K(τ))x(τ) ≤ di for all τ ∈ Ti

(3.1)

with i ∈ {1, . . . ,m}. The constraints are assumed to be linear with a given matrixC : R
nu×nx → R

m×nx

and a given vectord∈R
m. The setsTi ⊆ [0,T] denote the set of times for which the constraints should

be satisfied. Here, we can e.g. useTi = [0,T] if we want to formulate a path constraint orTi = {T} if
we are interested in a terminal constraint. Note that the above formulation includes the possibility of
formulating both state and control bounds as the controlsu(t) = K(t)x(t) are linear inx.

Our aim is now to solve the above optimal control problem guaranteeing that the constraints
are satisfied for all possible uncertaintiesw ∈ Ω∞. Thus, we are interested in the following robust
counterpart problem:

min
u(·)

Φ[u(·)] subject toVi [ t, u(·) ] ≤ di for all t ∈ Ti .

Here, the robust counterpart functionalV is defined component-wise by

Vi [ t, K(·) ] := max
x(·),w(·)

Ci(K(t))x(t)

s.t.

for all τ ∈ [0, t] :
ẋ(τ) = f (x(τ),K(τ),w(τ))
x(0) = 0
w(·) ∈ Ω∞ .

(3.2)

Note that the above problem is difficult to solve as it has a bi-level or min-max structure. For the
case thatf is linear inx andw, the lower-level maximization problem can be regarded as a convex
problem asΩ∞ is a convex set. This lower-level convex case has in a similar context beendiscussed
in [8, 9] where Lyapunov differential equations have been employed in order to reformulate the min-
max problem into a standard optimal control problem.

However, for the case thatf is nonlinear, the problem is much harder to solve as local maxima
in the lower level problem can not be excluded. Our aim is to develop a conservative approximation
strategy to over-estimate the functionsVi planning to solve the robust counterpart problem approxi-
mately but with guarantees. For this aim, we will have to go one step back within thenext section
where we start with an analysis of linear dynamic systems. Later, we will come back to a discussion
of the more difficult nonlinear problem.

3.2 Linear dynamic systems with time varying uncertainty

In this section, we introduce the basic concept of robust optimization for linear dynamic systems with
infinite dimensional uncertainties. We are interested in a dynamic system of the form

ẋ(t) = A(t)x(t)+B(t)w(t) with x(0) = 0 . (3.3)

Here,x : R → R
nx denotes the state whilew : R → R

nw is assumed to be a time varying uncertainty.
Moreover,A : R → R

nx×nx andB : R → R
nx×nw are assumed to be given (Lebesgue-) integrable func-

tions.
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As outlined in the previous section, we are interested in computing the maximum excitationV(t)
of the system at a given timet in a given directionc∈ R

nx :

V(t) := max
x(·),w(·)

cTx(t)

s.t.

for all τ ∈ [0, t] :
ẋ(τ) = A(τ)x(τ)+B(τ)w(τ)
x(0) = 0
w(·) ∈ Ω∞ .

(3.4)

The above maximization problem can be regarded as an infinite dimensional linear program which is
convex as the setΩ∞ is convex. Following the ideas from [3] we suggest to analyze the dual ofthe
above maximization problem in order to computeV via a minimization problem.

In order to construct the dual problem, we need a time varying multiplierλ : [0,T] → R
nw to

account for the constraints of the formwi(τ)2 ≤ 1 which have to be satisfied for all timesτ and
all indicesi ∈ {1, . . . ,nw}. Moreover, we express the state functionx of the linear dynamic system
explicitly as

x(t) =
∫ t

0
Ht(τ)w(τ)dτ , (3.5)

with the impulse response functionHt(·) := G(t, ·)B(·). Here,G : R×R → R
nx×nx denotes the fun-

damental solution of the linear differential equation (3.3), which is defined asthe solution of the
following differential equation:

∂G(t,τ)

∂ t
= A(t)G(t,τ) with G(τ,τ) = 1 (3.6)

for all t,τ ∈ R.
Now, the dual problem for the functionV can be written as

V(t) = inf
λ (·)>0

max
w(·)

cT
(
∫ t

0 Ht(τ)w(τ)dτ
)

−∑nw
i=1

∫ t
0 λi(τ)

(

wi(τ)2−1
)

dτ

= inf
Λ(·)≻0

∫ t
0

cTHt(τ)Λ(τ)−1Ht(τ)Tc
4 dτ

+
∫ t

0 Tr [Λ(τ) ] dτ .

Here, we use the short hand
Λ(τ) := diag(λ (τ)) ∈ D

nw
++

to denote the diagonal matrix valued function whose entries are the components of the multiplier
functionλ .

The following Theorem provides a non-relaxed reformulation of the above dual problem such that
the associated value functionV can be computed more conveniently.
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Theorem 3.2.1 The function V, which is defined to be the optimal value of the optimization prob-
lem(3.4), can equivalently be expressed as

V(t) = inf
P(·),θ(·),R(·)∈D

nw
++

√

1−θ(τ)
√

cTP(t)c

s.t.















































Ṗ(τ) = A(τ)P(τ)+P(τ)A(τ)T

+Tr [R(τ) ] P(τ)

+B(τ)R−1(τ)B(τ)T

P(0) = 0

θ̇(τ) = −Tr [R(τ) ] θ(τ)

θ(0) = 1

(3.7)

with P : [0,T] → R
nx×nx andθ : [0,T] → [0,1] being auxiliary states.

The main reason why we are interested in the above theorem is that it allows usto guarantee that the
reachable states are independent of the choice ofw within an ellipsoidal tube. Let us formulate this
result in form of the following corollary:

Corollary 3.2.2 Let R: [0,T] → D
nw
++ be any given diagonal and positive matrix valued function and

P(t) as well asθ(t) the associated Lyapunov states defined by(3.7). If we define the matrix

Q(t) := (1−θ(t))P(t)

as well as the ellipsoidal set

E (Q(t)) :=
{

Q(t)
1
2 v | vTv ≤ 1

}

, (3.8)

then we have for all times t∈ [0,T] the set inclusion
{

∫ t

0
Ht(τ)w(τ)dτ | w(·) ∈ Ω∞

}

⊆ E (Q(t)) .

Summarizing the above results, the matrixQ(t) can at each timet be interpreted as the coefficients of
an outer ellipsoidE (Q(t)) which contains the set of reachable states at the timet under the assumption
that the functionw is contained inΩ∞. In addition, we know from Theorem 3.2.1 that there exists
for every directionc ∈ R

nx and every timet ∈ [0,T] a functionR : [0,T] → cl(Dnw
++) such that the

associated outer ellipsoidE (Q(t)) touches the set of reachable states in this given directionc at time
t.

3.3 A conservative approximation strategy for nonlinear robust optimal
control problems

In this section, we come back to the discussion of robust counterpart problems for nonlinear dynamic
systems. Here, we are interested in a conservative approximation strategy. Unfortunately, we have
to require suitable assumptions on the functionf in order to develop such a strategy. We propose to
employ the following assumption:
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Assumption 3.3.1 We assume that the right-hand side function f is differentiable and that there exists
for each component fi of the function f an explicit non-linearity estimate li : R

nu×nx ×R
nx×nx → R+

with

| fi(x,K,w)−Aix−Biw| ≤ l i(K,Q) (3.9)

for all x ∈ E (Q) and for all w with‖w‖∞ ≤ 1 as well as all possible choices of K and Q� 0. Here,

we have used the short hands Ai := ∂ fi(0,K,0)
∂x and Bi := ∂ fi(0,K,0)

∂w .

From a mathematical point of view, the above assumption does not add a main restriction as we
do not even require Lipschitz-continuity of the Jacobian off . However, in practice, it might of course
be hard to find suitable functionsl i which satisfy the above property. Nevertheless, once we find such
an upper estimate, tractable conservative reformulations of the original non-convex min-max optimal
control problem can be found. This is the aim of this section. In order to motivate how we can find
such functionsl i , we consider a simple example:

Example 3.3.2 Let the function component fi be convex quadratic in x but linear in w, i.e. we have

| fi(x,K,w)−Aix−Biw| = xTSi(K)x

for some positive semi-definite matrix Si(K). In this case, we can employ the function

l i(K,Q) := Tr(Si(K)Q)

in order to satisfy the above assumption. A less conservative choice would be

l i(K,Q) := λmax( Q
1
2 Si(K)Q

1
2 )

which would involve a computation of a maximum eigenvalue.

Now, we define the matrix valued function

B̂ : R
nu×nx ×R

nx×nx → R
nx×nx → R

nx×(nw+nx)

as

B̂(K,Q) =

(

∂ fi(0,K,0)

∂w
, diag( l(K,Q))

)

. (3.10)

Theorem 3.3.3 For anyR̂ : [0,T] → D
(nw+nx)×(nw+nx)
++ and any K(·) regard the solution of the differ-

ential equation

Ṗ(τ) = A(K(τ))P(τ)+P(τ)A(K(τ))T

+Tr
[

R̂(τ)
]

P(τ)

+B̂(K(τ),Q(τ))R̂−1(τ)B̂(K(τ),Q(τ))T

P(0) = 0

θ̇(τ) = −Tr
[

R̂(τ)
]

θ(τ)

θ(0) = 1
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with Q(τ) := [1−θ(τ)] P(τ). Then for all t∈ [0,T] we have the conservative upper bound

Vi [ t, K(·) ] ≤
√

Ci(K(t))Q(t)Ci(K(t))T (3.11)

on the worst case functionals Vi which have been defined in(3.2). Here, we use the notation A(K) :=
∂ fi(0,K,0)

∂x .

3.4 A small tutorial example

Let us demonstrate the applicability of the results by formulating a control design problem for a
nonlinear inverted pendulum. The dynamic model is given by

ẋ = F(x,K,w) =

(

x2

g
L sin(x1)+ u

L cos(x1)+ w
mL2

)

. (3.12)

Here,g is the gravitational constant whilem is the mass,L the length, andx1 the excitation angle
of the pendulum. Note that ˙x1 = x2 is denoting the associated angular velocity. Moreover,u is the
controllable acceleration of the joint of the pendulum which can be moved in horizontal direction. For
x = 0, u = 0 andw = 0 the pendulum has an unstable steady state. Thus, we will need a feedback
control to stabilize the inverted pendulum at this point. Note that there is an uncertain torquew acting
at the pendulum.

The right-hand side functionf for the closed loop system takes the form

f (x,K,w) =

(

x2

g
L sin(x1)+ Kx

L cos(x1)+ w
mL2

)

(3.13)

where we employ the linear feedback gainK ∈ R
1×2 to be optimized. It is possible to show that the

function

l(K,Q) =

(

0
g
L r1(Q)+ r2(Q)

L

√

KQKT

)

(3.14)

with
r1(Q) :=

∣

∣

∣

√

Q1,1−sin(
√

Q1,1)
∣

∣

∣

and
r2(Q) :=

∣

∣

∣
1−cos(

√

Q1,1)
∣

∣

∣

is an upper bound function satisfying the condition (3.9) within Assumption 3.3.1for all K ∈ R
1×2

and allQ ∈ R
2×2 with

√
Q11 ≤ π

2 . Note that the above upper estimatel is locally quite tight in the
sense that we have at least

l(u,Q) ≤ O( ‖Q‖ 3
2 ) .

However, there are also other estimates possible. In the following, we assume that the uncertain torque
satisfiesw∈ Ω∞. We are interested in minimizing theL2 norm of the feedback and estimator gains,
i.e.

∫ T
0 ‖K(t)‖2

F dt, while guaranteeing that path constraints of the form

−d ≤ x1(t) ≤ d
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Figure 3.1: A closed-loop simulation of the statex1 for the torquew(t) = 1Nm. The dotted line at
d = π

8 is a conservative upper bound on the worst-case excitation ofx1.

are satisfied in closed loop mode for all possible uncertaintiesw∈ Ω∞ and for all timest ∈ [0,T].
Using Theorem 3.3.3 we can formulate this gain design problem as

inf
P(·),Q(·),θ(·),K(·),R̂(·)∈D

3
++

∫ T

0
‖K(τ)‖2

F dτ

s.t.



















































































for all τ ∈ [0,T] :

d ≥
√

Q11(τ)

Ṗ(τ) = A(K(τ))P(τ)+P(τ)A(K(τ))T

+Tr
[

R̂(τ)
]

P(τ)

+B̂(K(τ),Q(τ))R̂−1(τ)B̂(K(τ),Q(τ))T

Q(τ) = P(τ) [1−θ(τ)]

P(0) = 0

θ̇(τ) = −Tr
[

R̂(τ)
]

θ(τ)

θ(0) = 1 .

Note that the above optimization problem is a standard optimal control problem which can be solved
with existing nonlinear optimal control software. Any feasible solution of this problem yields a feed-
back and an estimator gain which guarantees that the path constraints of the form−d ≤ x1(t) ≤ d are
robustly satisfied for all possible uncertaintiesw∈ Ω∞ when running the nonlinear system in closed
loop mode. Note that control bounds of the form−v≤ v≤ v could be imposed in an analogous way
asv is linear inx.

In this chapter, the softwareACADO Toolkit (c.f. [11]) has been employed in order to solve
the above optimal control problem with

L = 1m , m= 1kg , g = 9,81
m

22 ,

T = 5s, and d =
π
8

.
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Figure 3.1 shows the statex1 in a worst-case simulation of the closed-loop system using the optimized
feedback gainK. Here, the worst case uncertaintyw(t) = 1Nm has been found by local maximization.
It is guaranteed thatx1 satisfies the constraints of the form−d ≤ x1(t) ≤ d independent of the choice
of w but this theoretical result does not state how conservative the result might be. However, the
constant uncertaintyw(t) = 1Nm turns out to be a local maximizer ofx1 for which

max
t∈[0,5]

x1(t) ≈ 0.33 ≥ 1
1.19

π
8

is satisfied. Thus, we can state that in this application the level of conservatism was less than 19%.
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Chapter 4

A robustly feasible management problem

In this chapter, we consider a robust feasibility problem for the design ofa reference governor: As-
sume that on the lower level of the two-layer hierarchical control (see Fig. 4.1), a linear feedback
controller has already been designed to stabilize the system and to guarantee the output of the linear
plantz to track the referencer. On the upper level, a reference governor has to be designed to provide
a feasible referencer such that for all disturbancesd ∈ D , the outputz belongs to the safe setZ ;
whereD represents the set of possible disturbances whileZ represents the safety constraints for the
operation of the system. Three cases are discussed: 1) the referenceis fixed; 2) feedforward manage-
ment; and 3) affine feedback management. We will show that the resulting necessary and sufficient
conditions are affine in the control variables and can be checked in a computationally efficient manner
using standard Linear Programming (LP) solvers. Hence, the results canbe implemented in super-
visory control in SCADA networks, where the computation load is always a problem being focused
on.

−

r

r (d,z)

z
K

d

P

∀ d ∈ D

z∈ Z Reference Governor

Controlled Plant

?

Figure 4.1: Hierarchical control configuration

4.1 Linear state-space model

For clarity, in the remainder of this chapter, the description of the researchproblem is based on the
control of open water networks (which can be seen as a large-scale system composed of many in-
terconnected pools). The discrete lower-level controlled plant is represented in the state-space form
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as
x(k+1) = Ax(k)+Br(k)+Gd(k), (4.1)

with the set-point deviationr(k) and the disturbance perturbationd(k). The observation equation is

z(k) = Cx(k), (4.2)

with the water-level deviationz(k). We define the control and disturbance vectors up to (and exclud-
ing) timek by r := (r(0), . . . , r(k−1))T andd := (d(0), . . . ,d(k−1))T . Note that for a system com-
posed ofN subsystems,r(l) := (r1(l), . . . , rN(l))T , andd(l) := (d1(l), . . . ,dN(l))T for l = 0, . . . ,k−1;
where the water-level set-point and the disturbance in pooli is denoted byr i anddi , respectively.

Assume that the system is initially at steady-state, which isx(0) = 0, and hencez(0) = 0. Up to
timek, the system output can be expressed as

z = Br +Gd, (4.3)

wherez := (z(1), . . . ,z(k))T with z(l) := (z1(l), . . . ,zN(l))T , B andG being lower-triangular, Toeplitz
matrices with thel -th row given by

(

CAl−1B, . . . ,CB,0, . . . ,0
)

and
(

CAl−1G, . . . ,CG,0, . . . ,0
)

respec-
tively.

Remark 1 Most water-level set-points in the practical channel control are calculated from historic
data, which can be seen as the nominal set-points to be filtered in Bemporad’s reference governor
construction [2]. In our discussion, we omitted the nominal set-points in Fig. 4.1 and define r(k) as
the set-point deviation at time k. Hence the assumption of the system initial state, i.e. x(0) = 0, is
reasonable.

4.2 Admissible sets and the robust feasibility problem

We consider the situation in which the reference vectorr and the disturbance vectord in (4.3) are
unknown but bounded, i.e. we requirer ∈ R andd ∈ D , whereR andD are known, bounded sets
that define the set of admissible management and disturbance trajectories upto timek.

Remark 2 In the control of open water channelsd contains water demands from farmers. Although
these demands are normally scheduled, there exists uncertainty in these disturbances (e.g. starting
and stopping time of the water off-takes or the flow needed). This motivates the requirement ofd ∈D ,
whereD defines the largest water-demand deviation at the downstream ends of pools. The definition
of such a set is based on historic data and the environmental consideration, e.g. weather forecasts.
Similarly, the requirement ofr ∈ R is motivated by admissible water-levels in the pools (correspond-
ing to 1) water capacity to satisfy water demands, and 2) channel safety, e.g. no water spillage over
the banks of the channel).

Here we describe the set of admissible reference trajectories by a polytopic model:

R := {r : ‖r i‖∞ ≤ σi}

=







r :
[

Ik×k
−Ik×k

]

[

r i(0)

...
r i(k−1)

]

≤
[σi

...
σi

]

(2k×1)







(4.4)

= {r : RΠr ≤ σ} , (4.5)
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whereR = diag{R, . . . ,R} with R= [I ,−I ]T (I being thekN×kN identity matrix),σ =
[

σT
1 , . . . ,σT

N

]T

with σ i ∈ R
2k×1
+ for i = 1, . . . ,N, σ i = [σi , . . . ,σi ]

T . Moreover,Π ∈ {0,1}(k×N)×(k×N) is a mapping,
stacking the variables in an appropriate way:

Π =





































1 0 0 . . . 0
...

1 0 0 . . . 0
0 1 0 . . . 0

...
0 1 0 . . . 0

...
0 0 . . . 0 1

...
0 0 . . . 0 1





































.

Similarly, the set of admissible disturbances is modeled by

D := {d : DΠd ≤ π} , (4.6)

whereD = diag{D, . . . ,D} with D = [I ,−I ]T , π =
[

πT
1 , . . . ,πT

N

]T
with π i ∈ R

2k×1
+ for i = 1, . . . ,N,

π i = [πi , . . . ,πi ]
T .

Define the output feasible setZ as the set of all admissible output trajectories up to timek:

Z := {z : ZΠz≤ τ} , (4.7)

whereZ = diag{Z, . . . ,Z} with Z = [I ,−I ]T , τ =
[

τT
1 , . . . ,τT

N

]T
with τ i ∈ R

2k×1
+ for i = 1, . . . ,N,

τ i = [τi , . . . ,τi ]
T .

Definition 4.2.1 (Robustly feasible management) An admissible referencer ∈ R is robustly feasible
if and only if for every admissible disturbance trajectoryd ∈ D the output trajectory of system (4.3)
remains admissible, that isz∈ Z .

Correspondingly, we have the following formulation of the robust feasibilityproblem.

Problem 4.2.2 (Robust feasibility problem) Find necessary and sufficient conditions forthe existence
of a robust feasible reference trajectory for system (4.3) with sets of admissible reference, disturbance
and output trajectories defined by (4.5), (4.6), (4.7) respectively.

Therefore, the problem is to find if there existsr ∈ R such that for alld ∈ D , z = Br +Gd ∈ Z .

4.3 Solutions to the robust feasibility problem

We first present the following lemma as the basis for the results in this section.

Lemma 4.3.1 Given a vectorv and a scalarδ , the conditionvTd ≤ δ for everyd ∈ D is satisfied if
and only if there exists aλ such that the following conditions are satisfied:

λ ≥ 0,

(DΠ)T λ = v,

λ Tπ ≤ δ .

Next, we consider three cases for the robust feasibility problem.
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4.3.1 The case when the reference is fixed

For the case when the reference in the lower-level system is fixed, i.e. nodeviation of the reference,
setr = 0 in (4.3). Then Problem 4.2.2 reduces to checking whether

∀d ∈ D , z = Gd ∈ Z (4.8)

By applying Lemma 4.3.1 row-wise to conditionZΠz = ZΠGd ≤ τ, it follows that

Corollary 4.3.2 Condition (4.8) holds if and only if there existsM = (Mi j ) such that

Mi j ≥ 0, (4.9)

(DΠ)T M = GT (ZΠ)T
, (4.10)

MTπ ≤ τ. (4.11)

4.3.2 Feedforward management

We then check for the case of feedforward management: Letr be variable and the robust feasibility
problem is to findr such that

r ∈ R and∀d ∈ D , z = Br +Gd ∈ Z (4.12)

Again, applying Lemma 4.3.1 row-wise to conditionZΠz = ZΠ(Br +Gd) ≤ τ, it follows that

Corollary 4.3.3 Condition (4.12) holds if and only if there existsM = (Mi j ) andr such that

Mi j ≥ 0, (4.13)

RΠr ≤ σ , (4.14)

(DΠ)T M = GT (ZΠ)T
, (4.15)

MTπ +ZΠBr ≤ τ. (4.16)

Note the conditions (4.9)-(4.11) for the case of fixed-reference and the conditions (4.13)-(4.16) for the
case of feedforward management can be checked using Linear Programming.

4.3.3 Affine feedback management

To consider the case of affine feedback management, we assume the disturbance trajectoryd is mea-
sured and the management trajectoryr is an affine function ofd. In particular,

r (d) = w+Ld . (4.17)

In order to impose that the reference is an affine function ofpastdisturbances, we imposeL to be a
block lower-triangular matrix.

Remark 3 This type of control parametrizations has been used in robust MPC (see[7]). In [7], the
authors show that control parameterization (4.17) is equivalent to the onewhere the control is affine
function of past states.

In this case, the robust feasibility problem is to findw and a block lower-triangularL such that

∀d ∈ D , w+Ld ∈ R, z = B(w+Ld)+Gd ∈ Z . (4.18)

This problem can be investigated in two steps:
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Figure 4.2: Decentralized control of an open water channel

1. The admissibility of the functionr (d) = w + Ld ∈ R (L block lower-triangular) for every
d ∈ D . According to the previous development, this is guaranteed by the following necessary
and sufficient condition:

∃ N = (Ni j ), ∃ w, ∃ L block lower-triangular, s.t.

Ni j ≥ 0, (4.19)

(DΠ)T N = LT (RΠ)T
, (4.20)

NTπ +RΠw ≤ σ . (4.21)

The proof of the aboveiff condition follows the same lines as the proof of Corollary 4.3.3.

2. For fixedw andL , the admissibility of outputz is such thatB(w+Ld)+ Gd ∈ Z for every
d ∈ D . Such a constraint is guaranteed by the following necessary and sufficient condition:∃
M = (Mi j ) s.t.

Mi j ≥ 0, (4.22)

(DΠ)T M = (BL +G)T (ZΠ)T
, (4.23)

MTπ +ZΠBw ≤ τ. (4.24)

Again, the proof of the aboveiff condition follows the same lines as the proof of Corollary
4.3.3.

Hence, we have the following theorem for the robust feasibility problem.

Theorem 4.3.4 Condition (4.18) holds if and only if there existsM = (Mi j ), N = (Ni j ), w, and block
lower-triangularL such that conditions (4.19) - (4.24) are satisfied.

Since the conditions (4.19) - (4.24) are affine inequalities in the decision variablesM , N, w, L , they
can be checked using linear programming.

4.4 Case studies

In open water channel control, an important control objective is setpointregulation of the water-
levels in the pools, which enables flow demand at the (often gravity-powered) offtake points to be

Page 28/33



HD-MPC ICT-223854 Optimisation methods for robust distributed MPC

met without over-supplying [18]. When the number of pools to be controlledis large and the gates
widely dispersed, it is natural to employ a decentralized control structure,see Fig. 4.2. The flow into
pooli , denoted byui , equals the flow supplied by the upstream pool,vi−1. Note thatui is actually the
control action taken by controllerKi to regulate the water-levelyi to a relevant setpointr i , in the face
of disturbances associated with variations of the uncontrolled offtake loaddi .

In practice, channel capacity is limited. Moreover, the time delay for water to travel from the
upstream end to the downstream end of the pool limits the closed-loop bandwidth, which dampens
the performance. Hence, the starting and ending of offtakes (di) induce transients (i.e. the water-level
drops and rises from its setpoint). Such a transient response propagates to upstream pools as regulators
take corrective actions [14]. Hence, the open water channel management objectives can be expressed
in terms of constraints on the water-levels in each pool: upper bounds avoidwater spillage over the
banks of the channel; and lower bounds ensure a minimal channel capacity to supply water. In robust
reference management, the setpoints are adjusted, which ensures that thewater-level constraints are
satisfied, in the face of transients associated with load changes within certainconstraints.

4.4.1 Plant model

Following [15], the evolution of the water-levels in a channel ofN pools with decentralized control
can be described by the following continuous state-space model:

ẋ(t) = Ãx(t)+ B̃r(t)+ G̃d(t)

y(t) = C̃x(t),

whereÃ=







Ã1 Ãp1

Ã2 Ãp2

... ...
ÃN






, B̃= diag

(

B̃r1, . . . , B̃rN

)

, G̃= diag
(

B̃d1, . . . , B̃dN

)

, andC̃= diag
(

C̃1, . . . ,C̃N
)

with Ãi =









0 cin,i −cin,i 0

0 −2
td,i

4
td,i

0
−κi
ρi

0 0 1
−κi (ρi−φi )

φi ρ2
i

0 0 −1
ρi









, Ãpi =

[−cout,i
0
0
0

]

, B̃di =

[−cout,i
0
0
0

]

, B̃r i =







0
0
κi
ρi

κi (ρi−φi )

φi ρ2
i






, C̃i = [1 0 0 0], where

cin,i andcout,i are discharge coefficients, functions of the pool surface area and the gate width; andtd,i

is the internal time delay that the water takes to travel from the upstream end to the downstream end
of a pool;1 κi , ρi and φi are parameters of the decentralized feedback controllerKi , which is a PI
compensator with a low-pass filter. Note that the interconnection between neighboring (controlled)
poolsvi = ui+1 is expressed in the off-diagonal entries ofÃ (i.e. Ãpi ). To build the prediction model,
a discrete-time state-space model of the form (4.1-4.2) is employed. This canbe obtained by directly
converting the continuous model through a zero-order hold. The samplingintervalTs should be small
enough to capture the whole relevant dynamics of the system. In the case studies in Section 4.4.2, the
sampling time is set to 5 minutes.

4.4.2 Simulation results

The robust reference governing approach is applied to two pools (i.e. Campbells and Schifferlies) of
the East Goulburn Main (EGM) Channel, Victoria, Australia. The parameters of controlled pools are
given in Table 4.1. The steady-state water-levels of the two pools are 1.5 and 1.56 m, respectively. The

1A first-order Pad́e approximation is used to represent the transportation time delaytd,i . This is reasonable in the
modeling since the feedback controllerKi involves a low-pass filter such that high-frequency resonance (caused by the time
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Pool cin,i cout,i τi

1 0.055 0.036 5 min
2 0.017 0.026 6 min

Controller κi φi ρi

1 0.74 71.83 8.52
2 1.19 141.27 16.75

Table 4.1: Parameters of (controlled) pools

Case
Maximum Maximum Maximum
disturbance reference water-level
deviation deviation deviation

π1 π2 σ1 σ2 τ1 τ2
(Ml/day) (m) (m)

Fixed
7 6 0 0 0.10 0.06

reference
Feedforward

11 7 0.08 0.05 0.10 0.06
management

Feedback
50 35 0.08 0.05 0.10 0.06

management

Table 4.2: Parameters describing admissible disturbance, reference andwater-level trajectories

prediction horizon is 480 steps (of 5 minutes), which corresponds to a forecast of 40 hours. Following
the procedure outlined in Section 4.1, the matricesB andG in (4.3) are constructed. The polytope
Z that models the admissible output trajectories for the two pools is set as:τ1 andτ2 are constant
vectors with entries 0.1 m and 0.06 m, respectively. These requirements impose the constraint that the
water-level deviations must remain within±0.1 m (in pool1) and±0.06 m (in pool2) throughout the
time horizon. We solve the robust feasibility problem for the following cases:1) without reference
deviation, 2) feedforward management, and 3) feedback management. So, we check for each of the
three cases by equations (4.9-4.11), (4.13-4.16), and (4.19-4.24), respectively, for the existence of a
robustly feasible solution.

For the case of feedforward and of disturbance feedback management, the polytopeR that models
the admissible reference trajectories for the two pools is set as:σ1 andσ2 are constant vectors with
entries 0.08 m and 0.05 m, respectively. These requirements impose the constraint that the water-level
setpoint deviations must remain within±0.08 m (in pool1) and±0.05 m (in pool2) throughout the
time horizon. The polytopeD that models the set of admissible disturbance trajectories is defined
by settingπ1 andπ2 as constant vectors with entriesπ1 andπ2, respectively. Starting from smallπ1

andπ2, the setD is systematically increased until the conditions for existence of the robustly feasible
solution are no longer feasible.2 For the three cases, the maximum values ofπ1 andπ2 for which these
conditions remain feasible are listed in Table 4.2. We see that for the case without reference variation
and for the case of feedforward management, the admissible set of disturbance trajectories is much
smaller than for the case of feedback management, which is within expectation.

In order to test the performance of the feedback management, the disturbance trajectory is set as
shown in Fig. 4.3; note that the largest disturbance deviations (in pool1 and pool2) correspond to the

delay) is dampened.
2The bisection method has been used for the selection ofπ1 andπ2. Note that in the simulation, priority was given to

π2, considering the propagation of the system transients in the upstream direction [14].
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maximum admissible disturbances listed in Table 4.2. For comparison, the response of the lower-level
system with the original references (the thick dash-dotted lines) is also given (see the thin dash-dotted
lines in Fig. 4.4). The upper bound and lower bound constraints on the water-levels are violated at
some time instants (around 275 min and around 1500 min) in the prediction horizon. In contrast, under
the calculated references (the thick solid lines), the dynamics of the system iswithin the water-level
constraints (see thin solid lines in Fig. 4.4).
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Figure 4.3: Off-take disturbances in pool1 and pool2
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Figure 4.4: Reference governing for feedback case with constraint on off-take demand; pool1 and
pool2

This section has discussed the formulation of a robust feasibility problem for the design of ref-
erence governors in a two-layer hierarchical control. The constraintson the admissible set of dis-
turbance, reference, and output trajectories are incorporated in the formulation of the robust gover-
nor. Necessary and sufficient conditions that are affine in the decisionvariables are given. Using LP
solvers, these conditions can be checked efficiently. The proposed reference governor design approach
can be applied in supervisory control in SCADA networks.
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