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Executive summary

In this report we address and solve different sorts of robust optiorata problems. First, w
introduce an approach to uncertain nonlinear systems, where the umtyegteters the dynamic
in an affine fashion. If this holds, one may eliminate the classical min-max steufrtam the
robust dynamic optimization problem.

Second, we discuss a novel technique to provide robust linear céerslto general nonline
dynamic systems.

Third, we address a robust controller design problem for distributedrlisyggstems using duali
of linear programming.
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Chapter 1

Synopsis of the report

In this report we are concerned with robust optimal control problem€hkmpter 2 and Chapter 3 we
discuss different solution methods to the general problem

rQiun fo(X,u) (1.12)
st. filx,u) <0 i=1,...,n¢ (1.2)
gi(x,u,p)=0 j=1,...,n, (1.3)

wherex, uandp denote the states, controls and uncertain parameters of the underlyingl aptirtnal
problem, respectively. We define the worst-case scenario by intragglacmulti-level optimization
problem. In this framework two players, the robust controller and thertaing/, compete with each
other. The adverse player (uncertainty) wants to violate the constrainilg, iespecting the system
dynamics

max p fi(x,u)
@(u) = st. g(x,u,p)=01|. (1.4)
[p—pl <1

The controller wants to respect the constraints by choosingsaich that

muin @(u) (1.5)
st.@(uy<0 i=1...,n;. (1.6)

In Chapter 2 we propose an algorithm to solve a special case of (1.4$ that

maXp fi(x,u)
@(u):=| st A(u)x+B(u)p+b(u)y=01],i=1,...,ns, (1.7)
=Pl <1

wherep corresponds to the nominal control case. Note that the uncertainty #reehgnamic system
in an affine manner. In such cases the linearizatiog(of is exact, which results in numerically
tractable dynamic optimization problem and allows for a more conservativeoien

In Chapter 3 we present techniques to solve robust optimal contrdgpnsiior nonlinear dynamic
systems in a conservative approximation. Here, we assume that the nomlymeamic system is
affected by a time-varying uncertainty whose L-infinity norm is known todenoled. By employing
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specialized explicit upper estimates for the nonlinear terms in the dynamicsopeger a strategy
to design a linear control law which guarantees that given constraintseastdtes and controls are
robustly satisfied when running the system in closed- loop mode. Finally, ttiematical techniques
are illustrated by applying them to a tutorial example.

In Chapter 4 a decentralized robust control scheme is consideredrkivelate a robust feasibility
problem for the design of a reference governor to provide set-panthé lower- level control in a
two-layer hierarchical system. We regard the linear state-space model

X(k+ 1) = Ax(k) + Br(k) + Gd(k) (1.8)
z(k) = Cx(Kk) (1.9)

with the set-point deviation(k) and disturbance perturbati@iik) and system output(k). Using
linear programming duality, solutions to the robust feasibility problem (i.e. betessary and suffi-
cient conditions for the existence of an admissible reference) are.gleee cases are considered:
1) Fixed reference; 2) feedforward management; and 3) affindéadnanagement. The computa-
tionally efficient results can be implemented in supervisory control in SCAB®vaorks.
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Chapter 2

Robust nonlinear optimal control of
dynamic systems with affine uncertainties

In this chapter we are interested in the robust optimization of open-loopotiedtuncertain systems
that are linear in the uncertain states and disturbances but possibly @orifirtee remaining states
and the control input. Here, the main challenge is to robustly regard inegstatg/ constraints. For
this aim we start by introducing Lyapunov differential equations as a welixk tool [16, 5, 12, 13, 4]
to compute variance-covariance matrix functions. We include results 8pmifhout proofs.

2.1 Uncertain linear time-varying systems

Let us consider a linear time-varying system with a differential state v&ctér— R"™ that is excited
by a disturbance functiow: R — R™:

X(t) = A(t)x(t)+B(t)w(t)
yt) = C(t)x(t) (2.1)
X(O) = Bowp

witht € T andT := [0, T] C R, whereT is the length of the time horizon. Here, we assume that
the coefficientA: T — R™™ B: T — R™™, andC: T — R™*™ are square-integrable functions
on the finite intervall. In addition,y: T — R" is called the output function whilay € R™o is an
uncertainty affecting the initial state via the matly € R™*™o, At this point, it is worth to mention
that we will later also regard a time dependent functidio be optimized which might entex B,
andC in a possibly nonlinear way, but for the moment we suppress this depemdean to achieve a
convenient notation.

The fundamental solutio® : T x T — R™*™ of (2.1) is the unique solution of the initial value
problem:

oG(t, 1)
ot

forallt, T € T. Using this notation, we can write the output functipim the form [19]

=A(t)G(t, 1) with G(1,7)=1I (2.2)

y(t) = Howo + /OT He (T)w(T)dr (2.3)
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with the Green’s or impulse response functiét T — R™*™ being defined by

Ct)G(t,7)B(1) ifr<t

0 otherwise (24)

vt, 1€ T: HY(1):= {
andH? := C(t)G(t,0)B,. Obviously, the differential equation (2.2) for the fundamental soluBds
completely independent of the matrix functiodB®ndC. In order to describe the dependence of the
state on the disturbanee:= (wop,w(-)), we make use of Lyapunov differential equations of the form

P(t) = A{M)P(t)+PHAM)T +B(t)B(M)T

PO) = BoB] (2.5)

The state of this differential equation is a matrix valued funciarl — R™*™, Note thatP propa-
gates the following important information [12, 13, 4]: if the disturbancentering the system (2.1)
is a Gaussian white noise process with

E{w(t)} =0 and
E{wi(t)wj(t2)T} = Z(t1) O(t2—t1) &

forallt,t;,t, € T and for alli, j € {1,..,ny} while the uncertain valuey is Gaussian distributed with
variance-covariance matrixc R™*™ thenP(t) is the variance-covariance matrix of the state for
all timest € T. Consequently, the variance-covariance matrix of the outpsitat each time € T
given byC(t)P(t)C(t)T.

2.2 Inequality constrained Lyapunov differential equations

As almost all systems in the real-world are subject to inequality constraints eedliiscuss the
linear system (2/1) in combination with output constraints of the form

VteT,Vie{l,...,ng: V() <dt). (2.6)

The functiond : T — R" is assumed to be continuous with strictly positive components. Furthermore,
Ci(t) denotes thé-th row vector ofC(t). For all theoretical purposes in this section, we will assume
di(t) = 1 by rescaling the rowS;(t) for all components € | := {1,...,ny}. In this case, all constraints
have the simple forng (t) < 1.

Now, we suggest to consider a corresponding constrained Lyaplifierential equation for the
matrix valued functiorP defined by

Pt) = A{t)P(t)+PHAMDT+B(t)B(H)"

0 > GHPHGHT -1 2.7)

P0) = BoB{ .
The aim of this section is to discuss a worst case interpretation of the damstiayapunov sys-
tem (2.7) based on the assumption that the disturbance (wo,w(-)) is a bounded but unknown
function. For this aim, we consider the Hilbert spageof all square-integrable functions frofto

R™. Moreover, we define an inner produet -)w : W x W — R in the spac&V := R™o x L, and the
correspondingV-norm|| - ||w : W — R by

T
(W] wp)w = w$71w0_2+/0 wi(T)Two(1)dr  and

[wnlw = +/{wr,w)w (2.8)
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for all wr, w, € W andw;j = (wo j,w;(-)) for j € {1,2}.
In the next step, we define the ba#l CW by

B:={wely||wlw<1}.

The worst case interpretation of the constrained Lyapunov differeagiztion can now be stated as
follows:

Theorem 2.2.1 The constraints of the form(y) < 1 are satisfied for all times & T, all components
i €1, and all disturbancesv € Z if and only if the constrained Lyapunov differential equat{@ri)
admits a feasible solution P.

Remark:

e Provided thatw is a unit-bandwidth white noise process, whilg is a Gaussian distributed
random variable with variance-covariance maitiwe have

vteR,iel:

Probability{ yi(t) > 1} < [7° 22 dz.

1
Van®
if and only if the constrained Lyapunov differential equation (2.7) admitsagible solutior.

This stochastic single chance interpretation can directly be seen by makimg te fact that
we haveE {y;(t)?} = Ci(t)P(t)Ci(t)" in this case.

Let us transfer the results from the previous section to uncertain optimabtproblems of the form

min Jv(+), T
(min v(-),T]

S.t.
VteT: x(t) = A(v(t))x(t)+B(v(t))w(t)
+r(v(t) : (2.9)
vteT: 0 > C(v(t)
X(0) = ro(v(O
v ¢ V

Here,v: R — R™ is the nonlinear behavior of the system. This behavior is assumed to lie inra give
setV C L, of measurable functions on the time inter¥alin the context of optimal control problems,
V has typically the form

=

vt €

I

-
=
\;<-
=

V=<Sv:T—RW (2.10)

0
0
0

NVl
T
=
~—+
N—r
N—

Note that this selV can for example in a trivial case contain a constant parameter which ceuld b
formulated as
Vexamp|e: {V T — an V — O} 3
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or piecewise constant controls, or non-trivial implicit differential algebequations etc.. However,
V should not depend ow - otherwise, the system is in general not affine in the uncertainty.

In our formulation, the objective functionalis assumed to be independenidf The coefficients
A, B, C, d are now regarded as functionsvinMoreover, we have introduced a continuous reference
functionr : R™ — R™, which can, analogous to the nominal initial vahge R™ — R™, also depend
on the behaviow. To formulate the robust counterpart formulation of the above optimizatimivligm
we follow the classical approach/[3], i.e. we consider the optimization pmoble

Vrp)iﬁq Jv(-),T]

S.t.
, (2.11)

VteT: 0 > y"(t;v(), T)—d(v(t))
v € V

wherey™®(t; v(-),T) is for eacht € T and each € | defined to be the optimal value of the sub-
maximization problem

max Ci(v(t))x(t)
X(')7W07W(')
S.t.

Vreot]: x(1) = AMT))X(T)+B(v(T))w(T)

+r(v(1))
X(O) = ro(V(O)) + Bowg
w € A

One of the key results is that the robust counterpart proklem (2.11)asam direct consequence of
Theorem 2.2/1, equivalently be written as

e OPOTT WO, T)
s.t.
VteT: X(t) = A(v(t))x (t)+r(v(t))
%(0) = ro(v(0))
VteT: P) = AVt)P(t)+PH)AVT)T
+B(V(t))B(v(t))T : (2.12)
P(0) = BoB}
vteT,
Viel: 0 > G(v(t))x(t) —di(v(t))
++/Gi(v(t)) PG (v(1))T
v ¢V

Note that in this robust counterpart formulatiepndenotes the reference state trajectory, which would
be obtained forw = 0.

INote that an affine dependencelain x can always be eliminated by an introduction of slack parameters.
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An interesting point about this robust counterpart formulation is that \ardean infinite di-
mensional disturbance, representeduny W, while there is also an infinite dimensional number of
constraints robustly satisfied as the linear path constraints have to be ddbsfadl t in the time
interval T. Note that this is a main advantage in comparison to other existing robust qmamte
formulations for optimal control problems, which have been proposed it76

Finally, we note that optimal control problems which are affine in the uncéytaan often be
found in practice. Even if a problem is not in this form, we might be in one ofdhewing situations:

e If we consider a nonlinear dynamic system, the system can at least fordistatbances be
robustified in a linear approximation as proposed in[17, 6]. In this caseefhrence trajectory
is the solution of the nonlinear dynamic system éore= 0, which can be optimized, too. In
this case, we do not have many guarantees for larger disturbancés lswifficiently small
disturbances the linear approximation is valid.

¢ If we have a linear system of the form

~

X(t) = A()X(t) + BOW(t) + D(t)u(t) +r(t)

with a control functionu we might be interested in a linear feedback law of the fouty) :=
Uref(t) + K(t)X(t), whereK(t) is a matrix function that should be optimized in such a way that
the constraints are robustly satisfied. Now, we can summarize the compoh#nits a vector
valued functiornv := veqK). If we define

A(V(t)) := A(t) + D()K(t)

we can obviously transfer the above robust counterpart formulatiarte that this approach
can also take linear control constraints into account. In addition, it careberglized for the
case that a linear estimator gain together with a linear feedback gain shoojdiimézed in a

robust way.

2.3 Optimal control of a crane

To illustrate the applicability and potential of the robust counterpart formul48d 2), we consider a
crane, which should carry a massfrom a given point to a given target region (cf. Figure/2.1): If the
crane’s cable with length is very long with respect to the horizontal excitatiosin(@) of the mass,
which is affected by an unknown forég it is an easy exercise to show that the dynamics of the angle
of the line of the crane can be described by the following differential tmua

d< (t) > _ A(t)< zg; >+B(t)F(t)+r(t) (2.13)

with
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trolley x(z)

Figure 2.1: A sketch of the crane.

Here, the crane is only considered in a pl&fe in which the mounting point of the cable is at the
time t located at the positiofx(t),0)" € R? while the mass has the positigr(t) + L(t) sin(¢@(t)),
—L(t)cog@(t)))" € R?. In this notation,g = 9.813 is the gravitational constant ari= 0.1% a
friction coefficient. Note that the above model is only valid for small excitatipndere the dynamics
can be linearized in the statgsand .

The external forc&, acting at the mass in horizontal direction, is assumed to be unknown in our
example. The optimal control problem we would like to solve now, assumewthhaave the control
u:= (X, E) as a degree of freedom to bring the mass as fast as possible fromnapgive: into a
desired target region. More precisely, we define the feasible belraviou

vi= (2", uT)T = (x,L,>'(,I'_,uT)T €V
of the dynamic system by

vt e [0,T]:

2(t) = (x(),L),ut)")’
Vi={vi[0T]=R™ z0) =gz :
yay

V(t) > Vmax

AV

Vmin

where we use the following values for our example
= (om 100 o™ OT)T
ZO L ) m S ) S

m _m\T
40m 100m 0—, 0—
Vay m m sa S)

m 1@)T

V,
max 32

-
Viin 1= (—1om 50m —202, —20%,—0.3
S

m m
50m 102m 20—, 20—,0.3—
m m S Y S ) 327
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We are first interested in the following minimum time optimal control problem for #eedhat we
have no disturbances, i.e. fér= 0:

min T
X() V()R T
s.t.
Vte[0,T]: Sx(t) = A(V(t))x(t) +r(v(t))
VtE0T]: @nin < @) < Gnax . (2.14)
X(0) =Xo

where we chose the following numerical values:

-
X0 = (Orad 0T>

.

Xiarget = (—0.042 rad —0.0l3?> (2.15)
.

Rarget ‘= <o.042 rad 0.013“1“]')

@hax = —@in = 0.05rad.

Now, we use the dynamic optimal control package ACADO [1] to solve theapooblem by using
a piecewise constant control parametrization in combination with an SQP méathedorresponding
locally optimal solution, that was obtained with this method, is shown in Figure 2ate that the
optimal result for the angle, the positiorx, and the cable length are shown. The path constraints
for @ are not active in this optimal solution but note that the target constrg{iit) < 0.042rad is
active.

The corresponding value for the minimum time is

T =23.33s. (2.16)

Note that it is optimal to reduce the cable length during the movement of the crane

2.4 Robust optimal control of a crane

In this section we discuss the solution of the robust counterpart optiméaiot@moblem which is
associated with the problem (2/14). For this aim, we choose600kg and assume that the uncertain
forceF is bounded by

IF(-)[|2, < 1200N’s. (2.17)

We use the optimization software ACADO again to solve also the robustified optiomatol
problem taking the Lyapunov equation for the state variances into acddarg, we assume that all
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x [m] position of the trolley

ts]

0 T

Figure 2.2: A locally optimal result of the optimal control problem (2.14).
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length of the cable

0
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201
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0
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ts]

0

T

Figure 2.3: A locally optimal result for the robust counterpart problerhiqRassociated with the

optimal control problem (2.14).
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states are at the tinte= 0 exactly known, while the path constraints @ms well as the target region
constraints should be satisfied for all foréethat are bounded by (2.12). A corresponding robust and
locally optimal solution is shown in Figure 2.3. The optimal value for the fihis now larger:

T = 24,565 (2.18)

as we need to satisfy more conservative constraints. To visualize thattirstified constraints were
active at the optimal solution, which is shown in Figure 2.3, the functions

@:=@(t) +yy/Var(g(t)) and ¢:= @(t) — y/Var(@(t)) (2.19)

are plotted as dotted lines. Note that the lower bound of the form

o(t) - \/m > —0.05rad

is at active at a certain tintec T while the target constraint
@(T)+1/Ppp(T) < 0.042rad
is also active.

We have presented methods to design and optimize the stability and robudtnesfireear dy-
namic systems with affine uncertainties taking inequality state constraints intaraccAfter re-
viewing existing concepts for the robustification of linear systems we ctrated on an extension
of Lyapunov differential equations for systems with state constraints. &¥e summarized the in-
terpretation of such constrained Lyapunov differential equations ifEne 2.2.1 together with the
associated remarks showing the equivalence between

e the existence of a feasible solution of the constrained Lyapunov diffatequation,

e the exact robustness of the underlying constrained linear dynamic systbmespect td_,-
bounded disturbances,

e and the stochastic single chance constraint interpretation for the casetufeanoise distur-
bance.

Furthermore, we transferred the constrained Lyapunov differemfiateons for special optimal con-
trol problems that are linear in the state and the uncertainty while the remairiagiber can possibly
enter in a nonlinear way. In order to demonstrate the applicability of the miexbeesults, we have
tested our method for a simple crane model. After a discussion of a time optimatdrgjéor this
crane we have presented a robustified solution taking inequality stateaintssinto account.
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Chapter 3

Robust design of linear control laws for
constrained nonlinear dynamic systems

In this chapter we propose a computationally tractable way of solving rabuihear optimal control
design problems for time varying uncertainties in a conservative approxim&tio this aim, we need
to assume that an explicit estimate of the nonlinear terms in the right-hand sidefuh is given.
We demonstrate for a tutorial problem how such an explicit estimate can s&wcted illustrating
that the results in this discussion are not only of theoretical nature batlsaite applied in practice.
The results we include from [10] are given without proofs.

3.1 Robust nonlinear optimal control problems

In this section we introduce uncertain optimal control problems for dynamsiesys of the form

wherex : [0, T] — R™ denotes the states,: [0, T| — R™ the control inputs, andv: [0,T] — R™
an unknown time-varying input which can influence the nonlinear rightHséte functiorF : R™ x
R™ x R"™ — R™. Throughout this chapter, we assume that our only knowledge abounteetainty
w s that it is contained in an uncertainty €&t which is defined as

Qo = {w(:) [forallT€[0,T]: |W(T)||, <1} .

[
In words,Q., contains the uncertaintieg-) whose L-infinity norm is bounded by 1.

In this chapter, we are interested in designing a feedback law in ordemipertsate the un-
certaintiesw. Here, we constraint ourselves to the case that the feedback law is lieeawe set
u(t) := K(t)x(t) with K : [0,T] — R"™*™ denoting the feedback gain. Now, the dynamics of the
closed loop system can be summarized as

Moreover, we assume that we haff®,K,0) = 0 for all K € R™*™ j.e. we assume thate(t) =0
is the steady state which we would like to track. The uncertain optimal gain desigpiem of our
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interest can now be stated as

a8, ool
subject to  x(1) = f(x(1),K(1),W(T)) (3.1)
X(0) =0 |

Ci(K(1))x(1) < di forallteT;

withi € {1,...,m}. The constraints are assumed to be linear with a given matrig"*™ — RM™
and a given vectad € R™. The setd[; C [0, T] denote the set of times for which the constraints should
be satisfied. Here, we can e.g. (&e= [0, T] if we want to formulate a path constraint®y= {T } if
we are interested in a terminal constraint. Note that the above formulation ésciine possibility of
formulating both state and control bounds as the contrials= K(t)x(t) are linear inx.

Our aim is now to solve the above optimal control problem guaranteeing teatamhstraints
are satisfied for all possible uncertaintisse Q.. Thus, we are interested in the following robust
counterpart problem:

m(i)n ®[u(-)] subjecttoVi[t,u(-)] < di forallteT;.
u(-

Here, the robust counterpart functiohals defined component-wise by

MILKO)) = max  G(K()x()

forall T € [0,t] :
o XD = FX@K(D),W(1)) (3.2)
 x(0) =0
W(-) € Qo -

Note that the above problem is difficult to solve as it has a bi-level or min-rivagtare. For the
case thaff is linear inx andw, the lower-level maximization problem can be regarded as a convex
problem af,, is a convex set. This lower-level convex case has in a similar contextdiseussed

in [8,/9] where Lyapunov differential equations have been employedderdo reformulate the min-
max problem into a standard optimal control problem.

However, for the case thdtis nonlinear, the problem is much harder to solve as local maxima
in the lower level problem can not be excluded. Our aim is to develop a&oats/e approximation
strategy to over-estimate the functiovisplanning to solve the robust counterpart problem approxi-
mately but with guarantees. For this aim, we will have to go one step back withimettiesection
where we start with an analysis of linear dynamic systems. Later, we will caitletb a discussion
of the more difficult nonlinear problem.

3.2 Linear dynamic systems with time varying uncertainty

In this section, we introduce the basic concept of robust optimization farlighgnamic systems with
infinite dimensional uncertainties. We are interested in a dynamic system afrthe f

X(t) = A(t)x(t) +B(t)w(t) with x(0)=0. (3.3)

Here,x: R — R™ denotes the state while: R — R™ is assumed to be a time varying uncertainty.
Moreover,A: R — R™™ andB: R — R™*™ are assumed to be given (Lebesgue-) integrable func-
tions.
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As outlined in the previous section, we are interested in computing the maximutatiexcV (t)
of the system at a given tintén a given directiorc € R™ :

V(t) := max c'x(t)

X))
forall T € [0,t] :
o XD = ADXD) +BOW() (34)
X0 =0
W(-) € Qo .

The above maximization problem can be regarded as an infinite dimensioralpiregram which is
convex as the se,, is convex. Following the ideas from [3] we suggest to analyze the duthleof
above maximization problem in order to compwt&ia a minimization problem.

In order to construct the dual problem, we need a time varying multiplief0, T| — R™ to
account for the constraints of the fonm(17)? < 1 which have to be satisfied for all timesand
all indicesi € {1,...,ny}. Moreover, we express the state functioof the linear dynamic system
explicitly as

X(t) — /Oth(r)w(T)dr, (3.5)

with the impulse response functidfi(-) := G(t,-)B(-). Here,G: R x R — R™*™ denotes the fun-
damental solution of the linear differential equation (3.3), which is defineth@solution of the
following differential equation:

o0G(t, 1)
ot

= Alt)G(t, 1) with G(1,71)=1 (3.6)

forallt, 7 e R.
Now, the dual problem for the function can be written as

V() = Aggfo m(a_l)ch (JoHi(T)w(T)dr)
— 3 o Ai(T) (wi(T)? — 1) dr

_ |nf Ot CTH[(T)/\(T"‘.)ilH((T)TC dT

A(-)>-0
+ [sTr[A(T)] dr .

Here, we use the short hand
A(1) = diagA (1)) € D,

to denote the diagonal matrix valued function whose entries are the contparfethe multiplier
functionA.

The following Theorem provides a non-relaxed reformulation of the aldonal problem such that
the associated value functid¥hcan be computed more conveniently.
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Theorem 3.2.1 The function V, which is defined to be the optimal value of the optimization prob-
lem (3.4), can equivalently be expressed as

V() = inf /1-06(1)4/cTP(t)c
® P(-),8(-),R(-)eDM () ®

P(t) = A(T)P(1)+P(1)A(T)"
+Tr[R(1)] P(1)
+B(1)RY(1)B(1)"

st. (3.7)
PO) = O
6(1) = —Tr[R(1)]6(1)
6(0) = 1

with P: [0, T] — R™*™ and 6 : [0, T] — [0, 1] being auxiliary states.

The main reason why we are interested in the above theorem is that it allawguarantee that the
reachable states are independent of the choieewithin an ellipsoidal tube. Let us formulate this
result in form of the following corollary:

Corollary 3.2.2 LetR: [0,T] — D*_ be any given diagonal and positive matrix valued function and
P(t) as well asB(t) the associated Lyapunov states definedy). If we define the matrix

Qt) == (1-6(1))P(t)

as well as the ellipsoidal set

£QW) = {Quivivivsi}, (3.8)

then we have for all times4 [0, T] the set inclusion

{ [ rmwmer | weea. } < s@u).

Summarizing the above results, the ma@ift) can at each timebe interpreted as the coefficients of
an outer ellipsoid’(Q(t)) which contains the set of reachable states at thettumeler the assumption
that the functiorw is contained inQ.. In addition, we know from Theorem 3.2.1 that there exists
for every directionc € R™ and every time € [0,T] a functionR: [0, T] — cl(D"",) such that the
associated outer ellipsoifl(Q(t)) touches the set of reachable states in this given directairtime

t.

3.3 Aconservative approximation strategy for nonlinear robust optimal
control problems

In this section, we come back to the discussion of robust counterpétepme for nonlinear dynamic
systems. Here, we are interested in a conservative approximation stratefprtunately, we have
to require suitable assumptions on the functfoim order to develop such a strategy. We propose to
employ the following assumption:
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Assumption 3.3.1 We assume that the right-hand side function f is differentiable and that tkisis e
for each component; bf the function f an explicit non-linearity estimate R™*™ x R™*M™ — R,
with

’fi(X,K,W)—AiX—BiW| < II(KaQ) (39)
for all x € £(Q) and for all w with||w||. < 1 as well as all possible choices of K and-0. Here,

we have used the short hands.A w and B := w

From a mathematical point of view, the above assumption does not add a rsizicticn as we
do not even require Lipschitz-continuity of the Jacobiari .oflowever, in practice, it might of course
be hard to find suitable functiomswhich satisfy the above property. Nevertheless, once we find such
an upper estimate, tractable conservative reformulations of the originatamvex min-max optimal
control problem can be found. This is the aim of this section. In order tovatethow we can find
such functiong;, we consider a simple example:

Example 3.3.2 Let the function component lfe convex quadratic in x but linear in w, i.e. we have
i (%, K, W) — Ax—Biw| = x"S(K)x
for some positive semi-definite matriXks). In this case, we can employ the function
li(K,Q) == Tr(S(K)Q)
in order to satisfy the above assumption. A less conservative choice weuld b
(K, Q) = Amad Q2 S(K)Q?)

which would involve a computation of a maximum eigenvalue.

Now, we define the matrix valued function
é . ]RnuxnX > RnxxnX _ RnxxnX _ Rnxx(nw-mx)

as

B(K,Q = <‘W,diag(|(K,Q))). (3.10)

Theorem 3.3.3For anyR: [0, T] — D{™ ™™™ ang any K.) regard the solution of the differ-
ential equation

P(1) = A(K(T)P(T) +P(T)A(K(T))"

P(O) = 0
8(r) = —Tr[R(1)]6(1)
6(0) = 1
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with Q(1) := [1— 8(1)] P(1). Then for all te [0, T] we have the conservative upper bound

VLK) < /GKE) QMG (M) (3.11)

on the worst case functionals Which have been defined (8.2). Here, we use the notationK) :=
2fi(0.K.0)
ox

3.4 A small tutorial example

Let us demonstrate the applicability of the results by formulating a control gsigblem for a
nonlinear inverted pendulum. The dynamic model is given by

%= F(,K,w) = ( % ) . (3.12)

Zsin(xy) + { cos(x1) + 1z

Here, g is the gravitational constant whila is the massL the length, and; the excitation angle
of the pendulum. Note that = X, is denoting the associated angular velocity. Moreouds, the
controllable acceleration of the joint of the pendulum which can be movedindmal direction. For
x =0, u= 0 andw = 0 the pendulum has an unstable steady state. Thus, we will need a feedbac
control to stabilize the inverted pendulum at this point. Note that there is @rtanctorquev acting
at the pendulum.

The right-hand side functiof for the closed loop system takes the form

X2
f(x,K,w) = ( ) (3.13)

Esin(x1) + = cogx1) + X,

where we employ the linear feedback g&ire R*? to be optimized. It is possible to show that the
function

0
[ = )
Q ( 9r1(Q) + 22 \/KQKT ) G40
with
ri(Q) := ‘ / Q11— sin(y/ Q1,1)‘
and

r2(Q) 1= |1~ cos(y/Qua)|

is an upper bound function satisfying the condition (3.9) within Assumption 3c8.4ll K € R1*?
and allQ € R?*? with v/Q11 < 7. Note that the above upper estimatis locally quite tight in the
sense that we have at least

1(u,Q) < O(]|Q|?).

However, there are also other estimates possible. In the following, weadhkat the uncertain torque
satisfiesw € Q... We are interested in minimizing the norm of the feedback and estimator gains,
ie. foT |K(t)]|2 dt, while guaranteeing that path constraints of the form

—d < Xl(t) < d
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I

Figure 3.1: A closed-loop simulation of the statefor the torquew(t) = 1Nm. The dotted line at
d = g is a conservative upper bound on the worst-case excitatign of

are satisfied in closed loop mode for all possible uncertaintie€., and for all timeg € [0, T].
Using Theorem 3.3.3 we can formulate this gain design problem as

nf / IK (1) |2 dr
P().Q().8(), )eD3,
forallT€[0,T]:
d > /Qu(T)

P(1) = AK(T))P(T)+P(1)AKK(1))"
+Tr [R(1)] P(1)

s.t. +B(K(1),Q(1))R(1)B(K(1),Q(1))"
Q(r) = P(1)[1—-6(1)]
PO) = 0
6(r) = —Tr[R(1)] 6(1)
6(0) = 1.

Note that the above optimization problem is a standard optimal control problech wan be solved
with existing nonlinear optimal control software. Any feasible solution of thidem yields a feed-
back and an estimator gain which guarantees that the path constraintsafthed < x;(t) < d are
robustly satisfied for all possible uncertaintigs Q.. when running the nonlinear system in closed
loop mode. Note that control bounds of the fort < v <V could be imposed in an analogous way
asv is linear inx.

In this chapter, the softwaCADO Tool ki t (c.f. [11]) has been employed in order to solve
the above optimal control problem with

L:lm,m:lkg,g=9,815r2,

m
T=5 dd=—.
s, an 3
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Figure 3.1 shows the statgin a worst-case simulation of the closed-loop system using the optimized
feedback gaifk. Here, the worst case uncertaimggt) = 1 Nm has been found by local maximization.

It is guaranteed thag satisfies the constraints of the forad < x;(t) < d independent of the choice

of w but this theoretical result does not state how conservative the result beghHowever, the
constant uncertainty/(t) = 1Nm turns out to be a local maximizer xf for which

max x1(t) ~ 0.33> ———
tc[05 1(t) = 1198

is satisfied. Thus, we can state that in this application the level of consenvaéis less than 19 %.
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Chapter 4

A robustly feasible management problem

In this chapter, we consider a robust feasibility problem for the designreference governor: As-
sume that on the lower level of the two-layer hierarchical control (see4f), a linear feedback
controller has already been designed to stabilize the system and to gaarentitput of the linear
plantzto track the reference On the upper level, a reference governor has to be designed to@rovid
a feasible reference such that for all disturbancese &, the outputz belongs to the safe set’;
where? represents the set of possible disturbances wiileepresents the safety constraints for the
operation of the system. Three cases are discussed: 1) the refexfired; 2) feedforward manage-
ment; and 3) affine feedback management. We will show that the resultimgssey and sufficient
conditions are affine in the control variables and can be checked in autatiomally efficient manner
using standard Linear Programming (LP) solvers. Hence, the resulisecemplemented in super-
visory control in SCADA networks, where the computation load is alwaysohlpm being focused
on.

ze Z Xy Reference Governor ’
d
‘ i
O K P
-1z

Controlled Plant

Figure 4.1: Hierarchical control configuration

4.1 Linear state-space model

For clarity, in the remainder of this chapter, the description of the resgmotiiem is based on the
control of open water networks (which can be seen as a large-scnsgomposed of many in-
terconnected pools). The discrete lower-level controlled plant is septed in the state-space form
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as
x(k+ 1) = Ax(K) + Br(k) + Gd(k), (4.1)

with the set-point deviation(k) and the disturbance perturbatid(k). The observation equation is
z(k) = Cx(k), (4.2)

with the water-level deviatioma(k). We define the control and disturbance vectors up to (and exclud-

ing) timek by r := (r(0),...,r(k—1))" andd := (d(0),...,d(k—1))". Note that for a system com-

posed ofN subsystems;(I) := (r1(1),...,rn(1)) ", andd(l) := (di(1),...,dn(1)" forl =0,... . k—1;

where the water-level set-point and the disturbance in pisadenoted by; andd;, respectively.
Assume that the system is initially at steady-state, whict{@$ = 0, and hence(0) = 0. Up to

time k, the system output can be expressed as

z=Br+Gd, (4.3)

wherez := (z(1),...,2z(k))" with z(1) := (z(1),...,zv(1))", B andG being lower-triangular, Toeplitz
matrices with thé-th row given by(CA~1B,...,CB,0,...,0) and(CA~1G,...,CG,0,...,0) respec-
tively.

Remark 1 Most water-level set-points in the practical channel control are cal@ddrom historic
data, which can be seen as the nominal set-points to be filtered in Ben'gpogéetence governor
construction [2]. In our discussion, we omitted the nominal set-points in4ifyand define (k) as
the set-point deviation at time k. Hence the assumption of the system initialistatg0) = 0, is
reasonable.

4.2 Admissible sets and the robust feasibility problem

We consider the situation in which the reference vectand the disturbance vectdrin (4.3) are
unknown but bounded, i.e. we requirec % andd € ¥, whereZ and ¥ are known, bounded sets
that define the set of admissible management and disturbance trajectoioetsnugk.

Remark 2 In the control of open water channedscontains water demands from farmers. Although
these demands are normally scheduled, there exists uncertainty in tisasbahces (e.g. starting
and stopping time of the water off-takes or the flow needed). This motivatesjiirement ofl € &,
where 2 defines the largest water-demand deviation at the downstream endslef ffhe definition

of such a set is based on historic data and the environmental consideratg. weather forecasts.
Similarly, the requirement af € % is motivated by admissible water-levels in the pools (correspond-
ing to 1) water capacity to satisfy water demands, and 2) channel safetyy@water spillage over
the banks of the channel).

Here we describe the set of admissible reference trajectories by a polgtogdel:

Z = A{r:|rille <o}
ri(0) ai
= {r:['TE:J[ : ]SH } (4.4)
ri(k—1) i 1 (2kx1)
= {r:RMOr <o}, (4.5)
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whereR = diag{R, ..., R} with R=[I,—1]" (I being thekN x kN identity matrix),c = [07,... ,amT
with g; e R**1 fori = 1,...,N, g; = [d;,...,q]". Moreover,n € {0,1}N*&N)'is a mapping,
stacking the variables in an appropriate way:

r100 ..0 1
100 0
0 1 0 0
M= 010 0
0 0 0 1
i 00 ..01 |

Similarly, the set of admissible disturbances is modeled by

2 = {d:DNd< m}, (4.6)
whereD = diag{D,...,D} with D =[I,—I]", m= [n{,...,rrmT with 11 € R%*Y fori=1,...,N,
m=m,....n".

Define the output feasible séf as the set of all admissible output trajectories up to tkme

¥ = {z:ZNz< 1}, 4.7)
whereZ = diag{Z,....Z} with Z=[I,—I]", T = [TT,...,TL]T with 7; € R* for i = 1,...,N,
Ti = [Ti,...,Ti]T.

Definition 4.2.1 (Robustly feasible management) An admissible refererce? is robustly feasible
if and only if for every admissible disturbance trajectatye 2 the output trajectory of system (4.3)
remains admissible, that ise %.

Correspondingly, we have the following formulation of the robust feasilplibblem.

Problem 4.2.2 (Robust feasibility problem) Find necessary and sufficient conditiorthéoexistence
of a robust feasible reference trajectory for system|(4.3) with sets of aiteiseference, disturbance
and output trajectories defined by (4.5), (4.6), (4.7) respectively.

Therefore, the problem is to find if there exists % such thatforald € 2,z=Br +Gd € Z.

4.3 Solutions to the robust feasibility problem

We first present the following lemma as the basis for the results in this section.

Lemma 4.3.1 Given a vectov and a scalard, the conditiorv'd < & for everyd € & is satisfied if
and only if there exists A such that the following conditions are satisfied:

A >0,
(DMN)TA =v,
ATm<oe.

Next, we consider three cases for the robust feasibility problem.
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4.3.1 The case when the reference is fixed

For the case when the reference in the lower-level system is fixed, igeviation of the reference,
setr = 0in (4.3). Then Problem 4.2.2 reduces to checking whether

Vde 9,z=Gde & (4.8)
By applying Lemma 4.3.1 row-wise to conditi@ilz = ZMNGd < 1, it follows that
Corollary 4.3.2 Condition (4.8) holds if and only if there exi$#s = (M;;) such that

M;; >0, (4.9)
OM™M=c"(zmT, (4.10)
MTr<rT. (4.11)

4.3.2 Feedforward management

We then check for the case of feedforward managementr betvariable and the robust feasibility
problem is to find such that

rezandvde 2, z=Br+Gd € & (4.12)
Again, applying Lemma 4.3.1 row-wise to conditi@dflz = ZM (Br + Gd) < 1, it follows that
Corollary 4.3.3 Condition (4.12) holds if and only if there exidts= (M;;) andr such that

Mjj >0, (4.13)
RMr < o, (4.14)
OM™ =G"(zn)T, (4.15)
MTm+ZMNBr <T. (4.16)

Note the conditions (4.9)-(4.11) for the case of fixed-reference andahditions/(4.13)-(4.16) for the
case of feedforward management can be checked using LineaaRnogng.

4.3.3 Affine feedback management

To consider the case of affine feedback management, we assume thieadlistutrajectory is mea-
sured and the management trajectory an affine function oél. In particular,

r(d)=w+Ld. (4.17)

In order to impose that the reference is an affine functiopastdisturbances, we impodeto be a
block lower-triangular matrix.

Remark 3 This type of control parametrizations has been used in robust MPJT$edn [7], the
authors show that control parameterization (4.17) is equivalent to thendreze the control is affine
function of past states.

In this case, the robust feasibility problem is to fiwcind a block lower-trianguldr such that
Vde 2, w+lLd e Z, z=B(w+Ld)+Gd € Z. (4.18)

This problem can be investigated in two steps:
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Figure 4.2: Decentralized control of an open water channel

1. The admissibility of the functiom (d) = w+Ld € # (L block lower-triangular) for every
d € 2. According to the previous development, this is guaranteed by the follovdngssary
and sufficient condition:

IN=(N;j), 3w, 3L block lower-triangular, s.t.

Nij > 0, (4.19)
OM'N=LT(RMT, (4.20)
N+ RMw < 0. (4.21)

The proof of the abovéf condition follows the same lines as the proof of Corollary 4.3.3.

2. For fixedw andL, the admissibility of output is such thaB (w+Ld) + Gd € . for every
d € . Such a constraint is guaranteed by the following necessary andesutfitondition:

M = (Mij) s.t.
Mij >0, (4.22)
(D)™™ =BL+G6)" zmT, (4.23)
MTr+2ZMNBw < 1. (4.24)

Again, the proof of the abovif condition follows the same lines as the proof of Corollary
4.3.3.

Hence, we have the following theorem for the robust feasibility problem.

Theorem 4.3.4 Condition (4.18) holds if and only if there exists= (M;j), N = (N;j), w, and block
lower-triangularL such that conditions (4.19) - (4.24) are satisfied.

Since the conditions (4.19)I- (4.24) are affine inequalities in the decisidabi@sM, N, w, L, they
can be checked using linear programming.

4.4 Case studies

In open water channel control, an important control objective is setpemilation of the water-
levels in the pools, which enables flow demand at the (often gravity-pdyeféake points to be
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met without over-supplying [18]. When the number of pools to be contradiéarge and the gates
widely dispersed, it is natural to employ a decentralized control structeeskig. 4.2. The flow into
pool, denoted byu;, equals the flow supplied by the upstream popl;. Note thaty; is actually the
control action taken by controllég; to regulate the water-levg] to a relevant setpoing, in the face
of disturbances associated with variations of the uncontrolled offtakedjoad

In practice, channel capacity is limited. Moreover, the time delay for wateat@lifrom the
upstream end to the downstream end of the pool limits the closed-loop bahdwitich dampens
the performance. Hence, the starting and ending of offtakgm@uce transients (i.e. the water-level
drops and rises from its setpoint). Such a transient response ptepémapstream pools as regulators
take corrective actions [14]. Hence, the open water channel managehjectives can be expressed
in terms of constraints on the water-levels in each pool: upper bounds aeatéd spillage over the
banks of the channel; and lower bounds ensure a minimal channeltyapapply water. In robust
reference management, the setpoints are adjusted, which ensures thatah#vel constraints are
satisfied, in the face of transients associated with load changes within cartestmaints.

4.4.1 Plant model

Following [15], the evolution of the water-levels in a channeNopools with decentralized control
can be described by the following continuous state-space model:

X(t) = Ax(t) + Br(t) + Gd(t)
y(t) =Cx(t),

AL Ay
~ Ao Ay, ~ N x ~ ~ . = ~
whereA = ,B=diag(B;,,...,Br, ), G=diag(By,,...,Bq, ), andC=diag(Cy,...,Cn)
A
0 Cni —Cni O 0
. 0 ﬁ ﬁ 0 . —Cout, . —Cout, N ’9 N

with A; = K 9 o0 1 ,Api:[ 9 },Bdi:[ 9 ],Bri: o |,Ci=[1000], where

*K‘(g*ﬂ) -1 0 0 Ki(Piifzfﬂ)

—H= 0 0 3 @

@ P
Cin,j andcoytj are discharge coefficients, functions of the pool surface area arghte width; and

is the internal time delay that the water takes to travel from the upstream eneldowimstream end
of a pool! ki, p; and @ are parameters of the decentralized feedback contrgjlewhich is a PI
compensator with a low-pass filter. Note that the interconnection betweenbiogigg (controlled)
poolsv; = Ui, 1 is expressed in the off-diagonal entriesfofi.e. Api). To build the prediction model,
a discrete-time state-space model of the form (4.1-4.2) is employed. Thizeaastained by directly
converting the continuous model through a zero-order hold. The samptargal Ts should be small
enough to capture the whole relevant dynamics of the system. In the cd@sstuSection 4.4/2, the
sampling time is set to 5 minutes.

4.4.2 Simulation results

The robust reference governing approach is applied to two pools @mpBells and Schifferlies) of
the East Goulburn Main (EGM) Channel, Victoria, Australia. The pararsetiecontrolled pools are
givenin Table 4.1. The steady-state water-levels of the two pools ared B%6m, respectively. The

1A first-order Paé approximation is used to represent the transportation time tiglayThis is reasonable in the
modeling since the feedback controligrinvolves a low-pass filter such that high-frequency resonancedddysthe time
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Pool Cinj  Couti T
1 0.055 Q036 5min
2 0.017 Q026 6 min
Controller | K Q@ Oi
1 0.74 7183 852
2 119 14127 1675

Table 4.1: Parameters of (controlled) pools

Maximum Maximum Maximum

Case disturbance| reference | water-level
deviation deviation deviation
Il ™ (of} (op) T1 2
(Ml/day) (m) (m)
Fixed 7 6 | 0 0 |010 006
reference
Feedforward| 1, 2| 508 005 | 010 Q06
management
Feedback

50 35 0.08 005 | 0.10 006
management

Table 4.2: Parameters describing admissible disturbance, refereneasandevel trajectories

prediction horizon is 480 steps (of 5 minutes), which corresponds teeadst of 40 hours. Following
the procedure outlined in Section 4.1, the matriBeand G in (4.3) are constructed. The polytope
% that models the admissible output trajectories for the two pools is sahand 1, are constant
vectors with entries 0.1 m and 0.06 m, respectively. These requirementsaitiq@osonstraint that the
water-level deviations must remain withir0.1 m (in pool) and+0.06 m (in poo}) throughout the
time horizon. We solve the robust feasibility problem for the following cag¢svithout reference
deviation, 2) feedforward management, and 3) feedback managemente 8beck for each of the
three cases by equations (4.9-4.11), (4.13-4.16),/and|(4.19-4e2pEatively, for the existence of a
robustly feasible solution.

For the case of feedforward and of disturbance feedback manageheegpolytopeZ that models
the admissible reference trajectories for the two pools is serasnd g, are constant vectors with
entries 0.08 m and 0.05 m, respectively. These requirements impose thaitwtisat the water-level
setpoint deviations must remain withi0.08 m (in pooj) and£0.05 m (in poo}) throughout the
time horizon. The polytop&’ that models the set of admissible disturbance trajectories is defined
by settingr; and ; as constant vectors with entries and 7, respectively. Starting from smaith
andrp, the set? is systematically increased until the conditions for existence of the robuasjbfe
solution are no longer feasibfeFor the three cases, the maximum valuesaind e for which these
conditions remain feasible are listed in Table/4.2. We see that for the caseitwigfierence variation
and for the case of feedforward management, the admissible set of disterbrajectories is much
smaller than for the case of feedback management, which is within expectation.

In order to test the performance of the feedback management, the disteitoajectory is set as
shown in Fig: 4.3; note that the largest disturbance deviations (in pool poo}) correspond to the

delay) is dampened.
2The bisection method has been used for the selection ahdn. Note that in the simulation, priority was given to
®, considering the propagation of the system transients in the upstreartiotirée!].
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maximum admissible disturbances listed in Table 4.2. For comparison, the sesgfdhe lower-level
system with the original references (the thick dash-dotted lines) is also {gee the thin dash-dotted
lines in Fig/ 4.4). The upper bound and lower bound constraints on the-leseds are violated at
some time instants (around 275 min and around 1500 min) in the prediction hdrizzamtrast, under
the calculated references (the thick solid lines), the dynamics of the systeithiis the water-level

const

Offtake disturbance (ML/day)

Water level (m)

raints (see thin solid lines in Fig. 4.4).

pool1 puol2

Offtake disturbance (ML/day)

. . . . . .
200 250 300 350 400 450
time (5min)

. . . . . . . . .
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Figure 4.3: Off-take disturbances in pgaind poo}
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Figure 4.4: Reference governing for feedback case with constraioffeiake demand; pogland

pook,

This section has discussed the formulation of a robust feasibility problethdodesign of ref-
erence governors in a two-layer hierarchical control. The constramthie admissible set of dis-
turbance, reference, and output trajectories are incorporated iortimelftion of the robust gover-
nor. Necessary and sufficient conditions that are affine in the deciaitables are given. Using LP
solvers, these conditions can be checked efficiently. The propd®edmee governor design approach
can be applied in supervisory control in SCADA networks.
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