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Executive Summary

This report describes the research activity in the STREP researgtifierarchical and Dis-
tributed Model Predictive Control of Large Scale Systems (HD-MRC), focusing on WP5 -
“Distributed state estimation algorithms”. Specifically, the report aims at ptiagethe main re-
sults available in the literature on the objects of Task 5.1 (State estimation) dnfl.Zg¥ariance
estimation). The report also presents a concise review of the disturbzoieling approache
used in Model Predictive Control to guarantee tracking properties artti@ee viability in front
of unknown inputs and modeling uncertainties. This analysis will be used¢o@ihe main idea
on disturbance modeling also to distributed systems, either to achieve trackipertes, or tg
design distributed MPC algorithms with guaranteed stability.
The report is organized in six chapters:

1°4}

e Chapter 1 presents an introduction to the problem of distributed state estinfatitassifi-
cation of the existing algorithms is proposed in terms of the topology of the comntioni
network, of the amount of information transmitted among the processing ugést&) per
forming distributed estimation and, most importantly, of the specific problemadenesl. In
particular, a distinction is made betwedistributed estimatiorwhere each agent estimatgs
the state of the whole system, apdrtition-based estimatigrwhere each agent estimatgs
only part of the whole state based on its own measurements and on the infortnatis-
mitted by its neighborhoods, including the estimates of other system’s comporigri
distinction is not always clear in the technical literature, but it has a major ingrathe
algorithms to be used in the two different problems.

e Chapter 2 is devoted to present the main algorithms available in the literaturistfdsudted
estimation. After an introductory example, the well-known observability ptgpe conju-
gated with the information available at any notieal observability regional observability
i.e. the one based on the information directly collected by the agent andiodeddoy its
neighborhoods, ancbllective observability A number of distributed algorithms based pn
the Kalman filter and consensus algorithms are then described.

e Chapter 3 reviews the partition-based estimation algorithms proposed in theutite
Specifically, two algorithms, coping with overlapping partitions of large-scastems,
are described in detail; they are callditributed and decentralized Kalman filtend
consensus-based overlapping decentralized estimai¢hile for the former the comm
nication scheme is induced by the presence of overlapping states, fotténgHa topolog
of the network is defined by dependencies among the states of subsysteuaisng in a
neighbor-to-neighbor communication scheme.

e The design of state estimators, based either on the Kalman filter or on the maoving
approach, require the knowledge, or a reliable estimate, of the noisgarmato computs
the optimal estimator gain. This is a tight requirement, in particular for whaterosdhe
disturbance acting on the state variables, so that some approaches hce/asimatior
have been proposed in the literature. In Chapter 4, these techniqueviawged, focus-
ing attention on two algorithms that appear to be the most reliable and efficietibae
nowadays available to the considered problem.
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e Chapter 5 describes the main disturbance modeling assumptions used inRedietive
Control (MPC) to achieve specific properties for the resulting closep-fystem. In par
ticular, in MPC disturbances are usually included in the problem formulaticoastant
signals to obtain feedback control laws guaranteeing asymptotic zemoreguation for
constant reference signals. Alternatively, the presence of bournidldnces is consigf
ered in the design of robust MPC laws leading to Input-to-State-Stabledelosp systems
Both the cases are summarized in the chapter and their use in the designiloditgidtcon-
trol systems is discussed.

e Finally, in Chapter 6 some conclusions are drawn and some hints for futustopmentg
on distributed state and variance estimation are reported.
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Chapter 1

Introduction to state estimation for
distributed sensing architectures

Recent advances in electronic devices with increasing computational peweell as in wireless
communication apparatuses allow for the development of sensor nodesdgthrdcessing and trans-
mission capabilities characterized by low costs, low dimensions and low p@msumption. As an
example, itis possible to mention the huge research efforts at the Univefr§isjifornia, Berkeley's,
on the so-called smart dust, i.e. tiny wireless micro-electromechanicalrsenbech can transmit
information like air quality-related measurements, temperature, humidity, lighbaations, see for
example[[68].

Given a large number of interconnected sensors, senaor networka big challenge still widely
open is to develop algorithms and protocols allowing the nodes of the netwgrksgess self-
organization capabilities and to operate cooperatively, so that eachcandearry out local com-
putations and transmit to the other nodes only the partially processed dait@detp achieve overall
sensing objectives.

Therefore, the advantages and challenges of sensor networledaesl ito the possibility to build
large-scale networks, to implement sophisticated communication protocolsiuceréhe amount of
communication required to perform tasks by distributed and/or local compusadiad, last but not
least, to implement complex power saving modes of operation. Among the mahgasipps of
sensor networks, it is possible to recall the following:

e Health: sensor nodes can be deployed to monitor patients.

e Environmental monitoring: prevention of forest fires, forecast polluthstribution over re-
gions.

e Domoaotics: Improve quality and energy efficiency of environmental confeatsconditioning,
ventilation systems, ...), while allowing reconfiguration and customizatiosidbgs saving
wiring costs.

As also for the case of distributed control (see the survey paper, [@4dstablish a taxonomy
could be useful to cast different estimation algorithms, which will be ptesemm the following,
into different classes. Different estimation methods can be classifieddingdo the information
exchange between subsystems or nodes and according to the priaratifor that each sensor has
about the process model.
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A first classification can be made depending on the topology of the communicetizvork. Two
cases can be identified:

e information is transmitted (and received) from any sensor node to all tiee ntdes (i.eall-
to-all communicatio)y

e information is received by a given sensor nadeom a given subset of the othe¥s, namely
the set ofi’'s neighbors ileighbor-to-neighbor communicatipn

The exchange of information (also denoted data delivery) among naddseqperformed accord-
ing to different protocols, which are presently under investigation (fioexdensive review see [47]).
In [65], sensor networks are classified as: continuous, evergrdanad observer-initiated. In contin-
uous models the nodes transmit information at a given transmission rate (@emidie different from
the observed process sampling frequency), in event-driven modetetisers transmit information
only when a given event occurs, and in observer-initiated data modsts danoted request-reply
models) communications occur only in response to an explicit request @ngtfie neighbors). In
this work we focus on continuous data delivery models. Two main classesnbhuous data ex-
change protocols can be identified, on the basis of the number of exxhaegts among subsystems.
Namely:

e information is transmitted (and received) by the sensor nodes only onde wibh sampling
time (non-iterative algorithms

e information can be transmitted (and received) by the local regulators many (ttaeoted\y)
within the sampling timeiterative algorithms.

It is apparent that the amount of information available to the local reguladthusterative algorithms
is higher (for example, in the limit case whe¥g — oo, optimality of estimation algorithms can be,
in general, guaranteed).

As also discussed in the survey paper [56], two main classes of estimathorigpees for dis-
tributed sensing schemes are presently under investigation. They aly)eboth referred, in the
literature, to aslistributed state-estimaticsgorithms. For the sake of clarity and to avoid confusion,
we now propose a new classification, adopted throughout the reptings# two problems.

e The first class of algorithms has the objective to make each node of ther sexteork recover
the estimate of the whole state vector. In this case, the solution relies on snagen mea-
surements or on state estimates) and/or sensor-fusion algorithms. The avaloadks of such
an approach are that each node should know the dynamic model of tredl @iserved sys-
tem and that the estimation problem, solved by each sensor node, is a &rlpootblem. This
problem will be denotedistributed estimation

e The second approach consists of estimating, for each node, a pag glotal state-vector,
using information transmitted by other sensors of the network. This probldnchwill be
denotedpartition-based estimatigngives rise to low-order estimation problems solved in a
decentralized way, and is particularly useful when the observed $sdse@ large scale system.

Although they both aim at solving estimation problems for distributed sensihgectures, the math-
ematical formulations of the two mentioned issues are deeply dissimilar, anddhgioss require
different mathematical methods. For these reason, they will be dealt withf@medif chapters (i.e.
Chaptef 2 and]3, respectively).
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Chapter 2

Distributed state estimation

As discussed in the previous chapter, many theoretical and technologalnges have still to be
tackled in order to fully exploit the potentialities of sensor networks. Asifipdan the Introduction,
one of the main issues is that of distributed state estimation, which can be ddsaslfollows.
Assume that any sensors of the network measures some variables, compatal estimate of the
overall state of the system under monitoring and transmits to its neighbors tisein@eaalues, the
computed state estimation and the corresponding covariances. Then, thehalkinge is to provide
a methodology which guarantees that all the sensors asymptotically reacinzon reliable estimate
of the state variables, i.e. the local estimates reacbnsensusThis goal must be achieved even if
the measurements performed by any sensor are not sufficient to tpeacdservability of the process
state (i.elocal observability, provided that all the sensors, if put together, guarantee suclenpyop
(i.e. collective observability The transmission of measurements and of estimates among the sensors
must lead to the twofold advantage of enhancing the property of obdi@gwabthe sensors and of
reducing the uncertainty of state estimates computed by each node.

Early works [21[52] proposed distributed Kalman filters based on trelplzation of a central-
ized Kalman filter which do not rely on consensus algorithms, but requite-all communication.
Consensus algorithms for distributed state estimation based on Kalman filtenekantly been pro-
posed in[[15[ 4, 44, 41, 60, 42,125]. In particular,[inl[44,[41, 60hsensus on measuremeistssed
to reduce their uncertainty and Kalman filters are applied by each agerdZ]intliree algorithms
for distributed filtering are proposed. The first algorithm is similar to the @serbed in[[41], save
for the fact that sensors exploit only partial measurements of the statw.vébe second approach
relies on communicating the state estimates among neighboring agemsefisus on estimaje3he
third algorithm, namedterative Kalman consensus filtes based on the discrete-time version of a
continuous-time Kalman filter plus @onsensus stepn the state estimates, which is proved to be
stable. However, stability has not been proved for the discrete-time meskibe algorithm and op-
timality of the estimates has not been addressed. Recently, convergencarirofrtbe local state
estimates obtained with the algorithm presented_in [41] has been provied]jrpf@@ided that the
observed process is stable, and a stability analysis of the state estimaémtpdes [42] is provided
in [43].

In [4] consensus on the estimates is used together with Kalman filters. Thbtsveigthe sensors’
estimates in the consensus step and the Kalman gain are optimized in order to minareéséria-
tion error covariance. A two-step procedure is also used in [15],evinerconsidered observed signal
is arandom walk A two-step algorithm is proposed, where filtering and consensus & ped
subsequently, and the estimation error is minimized with respect to both thevebgain and the
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consensus weights. This guarantees optimality of the solution.
Some of the methods mentioned above have been reviewed and compai@id in [5

More in general, the issue of distributed sensor fusion has been widdigdtin the past years,
see e.g.[[13, 61]. The papér [13] provides an algorithm accountindyfeamically changing inter-
connections among sensors, unreliable communication links, and faultsg wiievergence of the
estimates to the true values is proved, under suitable hypothesis of “dyiiagnaggh connectivity,
while in [61)] the authors propose a minimum variance estimator for distributekitigaof a noisy
time-varying signal.

As a simple example of a distributed state estimation problem, taken[from [16iags haveM
sensors measuring the same temperakusghose dynamic evolution is

Tk = T+ Wk (2.1)
wherew is a white noise, any sensigii = 1, ..., M provides the measurement
Vi = T+ Vi (2.2)

and thev"’s are white noises with the same variance.
In order to obtain a more reliable estimatelgfa data fusiomalgorithm is required. This can trivially
rely on a centralized estimator placed ibase statiortomputing the estimate

Tirr = T+ L (T~ T) (2.3)
whereL is a gain to be suitably selected and
1 .
Y= Yk (2.4)
V2

7777

Alternatively, the sensors can be arranged in a communication graplye@aifon. Their mea-
surements are not sent simultaneously and instantaneously to the base saditier; each sensor
computes a local estimatidij based on its available information, i.e. its local measurements, and the
information provided by its neighborhoods. In this case, a suitable lotalasr can be described
by N - o

Terr = m(Ti)' +L(M(yk)' —m(Ti)") (2.5)
where m('fk)i andm(yx)' represenimean(to be specified) values of estimates and measurements,
respectively, and are computed on the basis of the information exchaggeshsoi with its neigh-
borhoods. In this case, it is possible to say that the estififatepends omegional quantities, i.e.
on quantities available to sensiothrough its sensing capabilities and through the nodes linked to
it. The termsm('IA'k)i andm(yy)' are then average values computed from the regional quantities by
means oftonsensusincreasing the number of transmissidyis among neighboring sensors within
one sampling time, it is possible to obtain that

m(yi)' — Vi (2.6)

so that, even ifn(Ty)' = 'IA'k' the local filters become “optimal”, with the performance of the centralized
filter. In view of these considerations, it is apparent that consensusdmkto achieve an agreement
among local variables, and it is the milestone of the distributed estimation algorittopssed so
far in the literature. In fact, all the methods available basically relg@msensus on measurements
consensus on estimateson both of them.

In the following, some prototype algorithms will be briefly presented to illustragerthin char-
acteristics of the different approaches. First of all, a formal statenfehegroblem will be given,
and the classical (centralized) Kalman filter will be recalled irnfsrmation form
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2.1 Statement of the problem

In order to state the distributed estimation problem more formally and in generad,tassume that
the measured system evolves according to the linear dynamics

X1 = A% + W (2.7)

where the statg and the disturbance are constrained as follows:c X C R", we W C R", where
X andW are closed and compact sets. The initial statés a random variable with megm and
covariancdlg, while the covariance ok is denoted byQ. The system is assumed to be senseiby
nodes, with sensing models

Vi=Cx+V,i=1--,M (2.8)

whereV is a white noise with covariand@ € RP*Pi,

The communication network is described by a directed gréph (7,&£) where? is the set of
vertices ands’ € ¥ x ¥ is the set of edges. Moreovef;¥ is the set of vertices; such that there
exists a path of length at mdsfrom v; to v;. Finally, associated to the graghit is possible to define

a matrixK compatible with the graph itself, whose elemefitg) are such thak;; > 0if (i, j) € &,

kij = O otherwise, an({'j\":lkij =1foralli=1,...M. Given a graph topology, the freedom allowed
in the choice of the elemenks can be fruitfully exploited to enhance the performance of the adopted
consensus algorithms. Matrkk is often used in consensus algorithms to perform averaging on the
measurements or on the estimates.

Finally, it is useful to distinguish betwedacal, regional andcollectivequantities. Specifically, for
the nodd, the quantityz will be denoted:

e local (indicated witt?), if related to nodé solely;
e regional (indicated witlz), if referred to"I/iNT;
e collective (indicated wittz), if referred to the whole network.

Accordingly, given the measurementsy andy, it is possible to trivially define the output transfor-
mation matrice€' (local output transformation, s@.@,(regional output transformation) aal
(collective output transformation). Then, it will be said that the system is

o locally observable by nodéf the pair(A,C') is observable;

e regionally observable by nodef the pair(A,éi) is observable;

e collectively observable if the pa{A, C) is observable.

2.2 Information filter

Consider the linear system with its (collective) output described by

Xe+1 = A% + W
Yt = CX + W

Let X, /k, = E[X/Y1,-- -, Yk] D€ the expected value &, given the outputs up to time, denote
by M, /i, = E[ (X — Ry ko) (X, — Ry ko) " ] its covariance and defie = diag(R*,...,RM). Then, the
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information filter evolves according to the following steps:

Predictor step
Mk 1 =AM 1k 1AT+Q
Ri/k—1 = ARe_1/k-1
Corrector step
Mgk = (M 1 +F)
Rk = MM 1Row-1 + o)

where

M
F— CTRflc — CiT(Ri)flci
5
f=CTR =3 CT(R) M
i=

Note that the predictor step can be perforniecklly by the M sensors, while the corrector step
requires thecollective datavectory.

2.3 Distributed Kalman filter based on consensus on measurements

Starting from the centralized form of the Information Filter[in/[44,[41 ] &) &distributed implemen-
tation has been proposed, relying on transmission and consensusaEeoa measurements solely.

In particular, Iettingp<{:1 Jko be the estimate ofi, carried out by sensarat instant,, and denoting by
__— . S AT _ - _ _
M, =E [(xkl R o) K = K i) ] its covariance, the prediction and correction steps are modi-

fied as follows:

Predictor step
M1 =AM 1 AT +Q
)A(L/kfl = A)q(fl/kfl
Corrector step
Mgk = (Mg ) H+FH?
R = Mo (M) ™ R 1+ )

where F' is the local estimate off = yM,C'T(R)~'C' and f} is the local estimate of

fu = yM,C'T(R)~1y,. These local estimates can be obtained with consensus filters on the basis
of regional measurements. However, if regional observability doesaidt the algorithm can not

give reliable results; although, for specific topologies of graphs, thehilited estimation algorithm

can be considered as a good approximation of the centralized Informaltienfér a large number

of intercommunications between successive sampling tilRgsst 1). A stronger results has been
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reported in[[25], where it has been proved that for asymptotically stgbterms, the local state esti-
mates produced by the distributed algorithm converge in the mean to the ceatisthte estimate. A
“smarter” way to use the propagation of information through the networlbbas discussed inl[4],
where the exploited rationale is to take advantage of the delayed informagsimgdrom one node

to another even wheldy = 1. This can be easily obtained by considering an augmented system where
the current state is considered together with its past values over a wiricdoutable length.

2.4 Distributed Kalman filter based both on consensus on measure-
ments and on consensus on estimates

An evolution of the previous distributed Kalman filters has been describd@jnihere transmission
of both the local measurements and the local estimates is used to achievestsnsehe algorithm
evolves according to the following steps:

Predictor step
k1= AM 1 AT +Q

Ref-1= PR 1k (2.9a)
Consensus on measurements
F'= 5 cT(R) '
jevi
fe="5 CT(R) 'y (2.9b)
jevi
Corrector step+consensus on estimates
M= (Mg ) T+FH

Zesic = M (M) ™ Repea + )+ Keons Zy (Ree1— K1)
jen
= R+ Mg o= F i) +Keons Y R 1~ Rene1) (2.9¢)

jen
whereKl, .is the consensus on estimates gain. With respect to the above algorithm, twksenea
in order. First, in[[42] it has been proved that it is possible to achieveergence of the estimates
for an analogous algorithm developed in continuous time and under the nsaimigon of collec-
tive observability, but no theoretical results are given for the discreteitipkmentation previously
described. Second, as discussed in [15], the algorithm does nainge@optimality, since in case of
distributed algorithms the optimal gain does not coincide with the Kalman gain.
These issues have been explored in a recent contribution [43], wtermal stability proof is given
and performance analysis of the algorithm are provided. Specificald3inthe algorithm[(219) is de-
noted Kalman Consensus Information Filter if the consensus on measusaE®.9b) is performed,
and it is called Kalman Consensus Filter if consensus on measurémenti$Zh®bperformed (i.e. if
F' =CT(R)"!C' and if f{ = C'T(R)~1y,). For the Kalman Consensus Filter, for a specific choice
of the consensus gaif.,,, under the assumption that the information mafk)"RC' is positive
definite for alli andk > 0, the error dynamics of the Kalman-Consensus filter is globally asymp-
totically stable. Furthermore, all estimators asymptotically reach a consemstate estimates, i.e.
K= =M fork — oo.
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2.5 Distributed Kalman filter based on consensus on estimates with op-
timality properties

As discussed in 4,15,/ 6], to guarantee optimality of the distributed Kalman filterKalman gain
and the weights on the sensors’ estimates (i.e. the elerkgribthe graph matrix< introduced in
the previous Chapter) should be the result of an optimization. For instéweck|lowing algorithm is

proposed in[[4]:
Local information update
olocal _ ireg i/ igireg
Rk =Rc1 G M~ CRy)
Regional consensus on the estimates

4= 3 A

jevi
Prediction

sireg agireg
Rk = PRk

In this algorithm, the gain€' and the matriX = {kij } must be determined to minimize the steady
state estimation error covariance matrices. Unfortunately, this minimization prableot convex,
while some bootstrap (iterative 2-step) algorithms have been proposé€ld in [B], an evaluation of
the performance of such algorithm applied to an ultrasound based posit@natication with seven
sensor nodes is provided. [A [6], the weight selection process easdmalyzed yielding performance
improvements for some studied examples, and solutions to both optimization prabierived in
the iterative off-line weight selection process are given in terms of clémed expressions. The
convergence properties of the presented method are still an openmroble
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Chapter 3

Partition-based state estimation

Partition-based state-estimation algorithms for large-scale systems decdnitoseghysically cou-
pled subsystems is of paramount importance in many engineering contbdéms such as power
networks [57], transport networks [53], process control [66] apbotics [38]. Starting from the
idea to decompose a large-scale problems into small-scale ones in ordedle t@amplexity, high
computer memory and computational load involved in the solution of centralizéstegtimation
problems, many studies focused on the design of partition-based filteesdifférent solutions pro-
posed can be classified according to the model used by each subsystaatid-estimation purposes
and to the topology of the communication network among subsystems. Besidesntpetational
benefits of such an approach, in][58] it is highlighted that decompositiorpaavide insight about
the structural properties of dynamical systems, i.e. robustness of stadyilityjality, controllability
and observability to structural perturbations and to uncertainties (e.geondtels of the subsystems
and on the connections between them). Recently, there has been aatinterest on these issues,
leading to the plug-and-play paradigm [64].

For large scale continuous-time systems, decentralized estimation scheradsebkavproposed
in [58] and [1], where stability conditions for the design of decentralizeskovers are established
using the theory developed in the framework of decentralized controlin [5
The estimation problem for large-scale systems in the discrete-time frameasrkebeived more
attention, during the years. 10 [22] a two-level decentralized computatsdnature is developed,
applied to a large-scale system consistinlidynamically coupled subsystems with uncoupled mea-
surements. The method proposed in that paper provides optimal estimatiendasigned in such a
way that each subsystem performs low-order computations. The maibalrkiis that the algorithm
requires all-to-all communication and it is iterative.

Later work aimed at reducing the computational complexity of centralized Kalittening by paral-
lelizing computationd[21, 52]. The algorithm proposed_in [21] assumespocaessing capabilities
for each subsystem, but relies on a central processing unit for glalbalfusion. On the other hand,
the algorithm proposed ih [52] does not require a base processingdtatigiobal data fusion. There-
fore it is denoted in[[52] afully decentralized However, since both [21] and [62] require all-to-all
communication and assume each subsystem has full knowledge of the whalaids, they should
be considered as distributed estimation algorithms rather than partition-based o

Starting from the idea of model distribution and of local (nodal) models [hqB7] the focus is on
the use of reduced-order and decoupled models for each subsystenprdposed solutions, beside
neglecting coupling, exploit communication networks that are almost fully ected. Subsystems
with overlapping states have been considered in[2/7, 62, 66, 67]. WHiteiastimation schemes in
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[66,[67] the communication scheme is induced by the presence of ovedagiptas (which, in princi-
ple, can lead to an all-to-all communication scheme), in[217, 62] the topolaidpe afetwork is defined
by dependencies among the states of subsystems resulting in a neigmedgftber communication
scheme.

In the following, some partition-based algorithms will be presented. Firsthargestatement of the
problem (in the linear framework) is given.
3.1 Statement of the problem
Consider the autonomous discrete-time linear system
Xt11 = AXt + W, (3.1)

wherex; € R" is the state vector, while; represents a disturbance with varial@@e- 0. The initial
conditionxo is a random variable with mean,, and covariance matriklp > 0. Measurements on
the state vector are performed according to the sensing model

Vit = CX¢ + (32)

wherev; € RP is a white noise with variand@ > 0.

Let system[(3]1) be partitioned M low order interconnected submodels, i.e. where a generic
submodel hax{['] € R" as state vector. We say that the subsystems states are overlapping if there is
at least a component af which is part of the state vector of more than one subsystem. Otherwise,

we say that the subsystems states are non-overlapping. We can denatig, £ 1, .. x[['] = Tixt,
whereT; is a linear nodal transformation matrix.
Accordingly, the state transition matrica8) e R, AMl ¢ Rwxw of the M subsystems are

given byAll = TAT T where t denotes the generallzed inverse. In gengialassumed for simplicity
to be a scaled orthonormal transformation. Note that, in ge@”ﬁ_biln. > n, where the equality holds
only if the states of the subsystems are non-overlapping.

Thei-th subsystem obeys to the linear dynamics

Xy = A (33)

Wherextm is the state vectou,ltm’X collects the effect of state variables of other subsystems, and the
termw” is a disturbance with varian&@!). The initial conditionx([)'] is a random variable with mean
ml and covariance matri i Note thaQll > 0,Rll >0 andl‘lg} > 0 can be obtained fro®, R and

My. For example, |n-2]Q[' andrlH are diagonal blocks dD, R andlg of appropriate size.
According to [3:2) and to the state partltlon, the outputs of the subsystemis@neoy

fi

il _ ¢l X!

Vi LY ! (3.4)

Whereut[ 1Y collects the effect of the state variables of other subsystems, and thett&rﬁpi repre-
sents white noise with variance equaR8.

We denote W|th><t’q iy the estimate okt'l] performed at timd, by subsysten. Its error covariance

matrix is denoted Wltﬂl-ltm o
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Remark In general, some outputs of systeim {3.1) can be considered as outputs@than one
subsystem, i.ep= S, pi > p. Notice, however, that in decentralized control, each local subsystem
commonly uses local information, which reduces the amount of transmittednafion between
subsystems.

The system partition induces an interconnected network of subsysternt$, @dn be described by
a directed graply = (¥,&), where the nodes it are the subsystems and the edgg) in the
set& C ¥ x ¥ models that theg-th subsystem influences the dynamics or the output ofi-the
subsystem.

3.2 The distributed and decentralized Kalman filter

In [66,[67] and algorithm denoted distributed and decentralized Kalman({MeKF) is presented,
designed for overlapping partitions. Furthermore, one of the main cotitritsof [66] is an intriguing
discussion on sampling and partitioning of large-scale systems. For instaecauthors point out
that the main issues involved in partitioning of the overall system into subsystenig similarity

of the subsystems network to the actual pl&inj,the computational load at each subsystéin) the
communication burden ar(@) the available computational resources. They also point out that there
is a trade-off betwee(ii) and(iii ) and they propose an heuristic procedure for partitioning.

As far as the DDKF algorithm is concerned, it neglects the dynamic and tipaitozoupling terms

(denotecut andut in 3.3) and in[(314), respectively), and it is composed in two steps:
e Prediction step:foralli=1,....M
Slil _ Ali]li]
R = AR (35)
Ny, = AN Al + QY (3.6)

e Estimation step:foralli=1,...,M

o] fi]
X0 = My

(M 1) R 1+Z (1)) *xt“/‘t] (3.7)

-1

. Mo

ny, = [(n{'}tl)u 1(n{'}j)*] (3.8)
J:

where, for subsystern xtIJ and I'It['/’t] are the estimate and the covariance matrix related to the

measuremeryt”, for j=1,...,M, and they are defined as follows
XtI/Jt]_ T,T((C[J'])T(R[H)TC[H)T(CU])T(R[H)Tyt[” (3.9)
. , t
nt['/lt] T [T (T (R[J])TCU])TJ.] T7 (3.10)

Notice that, forj # i, the transmissions between subsysiemsubsystennmust be performed
only if subsystemsand j have overlapping state variables (|'I'eTjJr = 0). Otherwise, iﬂ'iTjT =

0 identically, we have that'" — 0 andfi!l = 0 and therefore such terms do not appear in

Jt t/t
equations[(3]7) and (3.8).
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3.3 A consensus based overlapping decentralized estimator

In [62,63] an algorithm is proposed, which combines local Kalman-typima®rs with a dynamic
consensus strategy. While [63] deals with continuous-time systenis, [6@asses the case of
discrete-time systems.
Assuming that the pair\il,Clll) are detectable and that the paitd!, (QI1)2) are stabilizable for all
i=1...,M, the proposed method is composed by two steps: a local Kalman filter stepcamd a
sensus one. While the former involves low-order computations, the caunsstep requires that each
node computes and stores an estimate of the large-scale-scale system s$taportantly however,
each node does not need to have knowledge about the whole systamidyif3.1).
We deflnext[ ] Lt @S the estimate of the overall system statg@erformed by theé-th subsystem at time
.

To perform a local Kalman filter, for all=1,...,M the local estimator is updated according to
the equation

Ry = A (R w oLt [y ey ) (3.11)
whereLll is the steady-state Kalman gain given by
Ll = il (cliyT {Cmnm (CihT + Rm] -
il is a solution of the algebraic Riccati equation
rf — All [n[i] _ L[i]C[i]n[i]} (A[' )+ +Qll

andy(t) = 1 when the-th agent receives measuremeyﬂs and 0 otherwise (in order to account for
missing observations).

The large-scale system state estimator performed by each agent rélggideginition of a number
of matrices on the basis of the local-system matriéésic R™" has at mosh; x n; nonzero elements
equivalent to those ofll, placed at suitable positions, i.e. beiR§ = Tix;, then Al = TTAlIT,
MatricesCl! andL [ are p; x n andn x p; matrices, respectively, obtained fra@i! and LIl in the
same way ad\ll is obtained fromAll. From [3.I1), the consensus-based Kalman-like estimator
equations, for=1,...,M, are

il
X = t/t 1 H UL L0 { —clig Xt/t 1} (3.12)
,\[|
X = Z Gij () FlI) (3.13)
whereCjj (t) e R™",i,j =1,...,M are time varying gain matrices such tit(t) = 0 if no commu-

nication between nodgandi is allowed (i.e. if(j,i) £&). OtherwiseGij(t) are diagonal matrices
with nonnegative entries. The ter@g(t) are block elements of a consensus maf(ix) = {Cij (t)},
which must be row-stochastic, and it is compatible with the communication gfdphdefinition of
Cij(t), foralli,j=1,...,M.

Stability conditions for the collective estimation error dynandgcs- ()251 — Xty - .- ,f(t[%'] —X¢) are pro-
vided in [62], where an optimal procedure for choosing the matf@€s) is also proposed.
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Chapter 4

Literature survey on variance estimation

Model-based control methods, such as model predictive control (MR@& become popular choices
for solving difficult control problems. Higher performance, howewemes at a cost of greater re-
quired knowledge about the process being controlled. Expert kngeliscbften required to properly
commission and maintain the regulator, to compute target calculation, and toplstegi® estimators
of MPC, for example. This chapter addresses the required knowleddleef project of the state es-
timator, and describes some techniques with which ordinary closed-loopdgthe used to remove
some of the information burden from the user. Consider the usual lineasinimeant, discrete-time
model

X(k+1) = dx(k) + Mu(k) +w(k)
y(k) = Hx(k) +e(k)

in which® € R™", I e R™M H ¢ RP*", andw(k) ande(k) are uncorrelated zero-mean Gaussian
noise sequences with covarian€@andR, respectively. The sequenagk) is assumed to be a known
input. State estimates of the system are considered using a linear, time-ingtatarestimator

R(k+1/K) = ®R(K/K) -+ Fu(k)
R(k/K) = R(k/k— 1) + L[y(k) — HR(k/k — 1)]

in which L is the estimator gain, not necessarily optimal. We denote the residuals of the eqta-
tions {/(k) — HX(k/k — 1)) as theL-innovations when calculated using a state estimator with lgain
In order to use the optimal filter, we need to know the covariances of thelshsicesQ, R from
which we can calculate the optimal estimator’s error covariance and the opptairahn filter gain.

In most industrial process control applications, however, the cova$aof the disturbances entering
the process are not known. To address this requirement, estimation olvéréances from open-loop
data has long been a subject in the field of adaptive filtering, and carvidedlinto four general
categories: Bayesianl![7, 23], maximum likelihoad|[11] 26], covarianctemrag [39], and corre-
lation techniques. Bayesian and maximum likelihood methods have fallen oavarf hecause of
their sometimes excessive computation times. They may be well suited to a multi-nppdeaeh
as in [8]. Covariance matching is the computation of the covariances fronesituals of the state
estimation problem. Covariance matching techniques have been shown koegigd estimates of the
true covariances. The fourth category is correlation techniques)yigrgmeered by Mehrd [34, 35]
and Carew and 8anger[[9/14]. In[[40] an alternative method to the one presented iMBE4s
described, where necessary and sufficient conditions for unigaari¢he estimated covariances are
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also given. In[[4D] an exhaustive comparison with the method propod&djis provided, showing
cases where the latter is outperformed by the algorithm proposed in [40].

In [3] an algorithm is presented, following the analysis from| [40] andegalized in [2] for systems
with correlated process and measurement noises. Two contributiong ¢aghtighted: the general-
ization of the autocovariance least-square method to systems with corretédedand the interior-
point predictor-corrector algorithm for solving the symmetric semidefinite-tsqsares problem.

In Sectio 4.1l the problem of covariance estimation is formally stated, while imo8s@l.2 and 413
the algorithms presented in [34] and in[40], respectively, are reviéwddtails.

4.1 Statement of the problem

Let us consider the process described by the autonomous system:

{x(k+1) = ox(k) +w(k) @.1)

yk) = Hx(k)+elk)

wherex,w € R", y e € RP, and® € R™" andH € RP*".
In general the stochastic processeande are considered to be independent and uncorrelated white
noises with zero mean and covariance matrices:

E [w(kyw(k)"] = Q° (4.2a)
E[e(kek)] =R (4.2b)

We consider these matrices to be not known a priori, whil@ gmiori assumption is made on the
structure ofQC (i.e. position of the zero entries). For instance, we assum&thlaasm < n unknown
parameters. For notation purposes, we denote:

. X(k1/kz) is the estimate ak(k;) based on all the measurements upga.e.{y(1),...,y(k2)};
. (k) = x(k) —X(k/k — 1) indicates the 1-step state prediction error;

. V(k) = y(k) — HX(k/k — 1) is the innovation;

. Q andRthe estimates of° andR;

. My =E [e(k) (k) "] the covariance matrix of the prediction error;

.V} =E [v(k)v(k—i)T] the covariance function of the innovation. For simplicity we indicate
V2 =W

Let us consider the classical structure of the Kalman filter

{)“((k+1/k) = DRk/K)

R(k/K) = R(k/K— 1)+ LO(y(K) — HR(k/K— 1)) (4.3)

whereL} is the Kalman gain, whose expression will be computed in the following, in dodeini-
mize the prediction error covariance.
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4.1.1 Optimal case

Let’s fist consider the case where the noise covariance matrices attyds@own a priori, namely
where, lettingR andQ the estimates used in the filter design

R=R° (4.4a)
Q=¢ (4.4b)

We can compute
e(k+1)=d (I —LH) g(k) — dL e(k) +w(k) (4.5)

Therefore .
M = O —L2H) M (1 -L2H) @T + PLRO (L) T +Q°
= OM®T + QO+ PLY(HMHT +R) (L) T+ (4.6)
—OLIHM®T — dMHT (L) ToT
Let us define
SS = (HMHT +R°) 4.7)

Therefore we obtain that

My = NPT+ Q0+ B(LRS—A) (LRS- A) 0T —DAAT® (4.8)

whereA = ®MHT (ST)~L. Minimizing M1 with respect to the gaih? we obtain:
min My, = M@ +QQ—dnHT (HMHT +RY)“TH M T (4.9)
k

with optimal gain:
LP=ASt=mHT(HMNHT +RO)? (4.10)

4.1.2 Suboptimal case

The suboptimal caseorresponds to the case where uncertain values of the variance mgftiaed
QP are given, i.e.
R 4R
Q # @
In this case we might introduce two new variabfés and 1. We denote a$ly the real value
assumed by the covariance matrix of the estimation error, i.e.

N =E[e(k) e(k)T] (4.11)

while M represents the estimated value of such matrix, givelLTh (4.6), where,dreft@d and Q°,
we use the valueR andQ. We have that

M= —L2H) A (1 —LOH) T T + LR (L) T T +Q° (4.12a)
Mg =D —L2H) A (1 —LOH) T T + DLOR(LY) T + O (4.12b)
We can easily see from the previous equations that, vijiie (4.10) minimized, the real covari-

ance of the estimation errét is not minimized by formuld{4.10). Furthermore it is also possible to
infer thatv(k) is a white noise process only in the optimal case (see the next Secfion 4.2).
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4.2 Mehra’s algorithm

In [34] a method is proposed, for the unbiased estimatio@band R, based on the analysis of
v(k) given by the application of a suboptimal Kalman filter. The main steps of theitdgoare the
following

(i) application of[[4.1D) (steady state formulation);
(i) test of optimality of the Kalman filter applied at sté&p;
(iii ) in case the optimality test fails, new estimates of matr@&andR° are computed.

The optimality test at stefii ) consists in verifying that the innovation sequen(® is white. For
details see[[34]. In the next section a sketch of the algorithm proposéde@stimation of)° and
R° is provided. The author relies on two main assumptighsthe pair(®,H) is observable and!)
the transition matrixp is non-singular.

From now on the steady-state formulation of the Kalman filter is applied. Tdreraf', M andL°
denote the asymptotic values\qif, My andL?, respectively. Similarlyf1 andf1 denote the asymptotic
values off 1, andfly, respectively. Specifically] is the result of the algebraic Riccati equation

M= ®( —L°H)M(I —L°H)T®T + ®L°R(L®)T DT +Q (4.13)
where
L°=AHTHAHT +R)?
while 1 is the result of the equation
[ = (I - L°H)A(I - L°H)ToT + dL°RO(LY) T + Q° (4.14)
Schematically, the proposed method for variance estimation can be skescfodidwas.

1) We will denote ay' the sampled estimate Wf, which can be computed, for example, accord-
ing to the following equation

1 Ndata*i

S v(kv(k+i)T

Vi—
Ndata K=1

whereNy4i4 denotes the available number of data samples.
2) It can be shown that, in steady staté) has variance equal to
V=VO=HAHT+R° (4.15)
and covarianc¥', fori > 1:
VI=H[® (I -L°H)] 1o [AHT - LoVO] (4.16)
Rewriting [4.16), and replacinyg’ with its sampling counterpai’, for all i = 0,...,k, we
obtain that

Vi = HOAHT —HoLoVO B
V2 = H®HT —HOLOV?! — Hp?Lov0

VK = HOKAHT —HoLOVK L — ... — HokLovO
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Therefore, one obtains that an estimlgliébT of IHT can be computed as

Vi HoLovO

. V2 4+ HOLOV! + Hp?LoVO
=B"| .

v
Y

_ (4.17)
VK4 HOLOVKL ... 4 HOKLOVO
whereB' denotes the pseudo-inverseR)fwhich is defined as
H
Ho
HdD:k‘l

Under the observability assumption, and if the transition ma&rig non-singular, ik is greater
than the observability index of the paip,H), then the pseudo-inverse Bfcan be computed.

3) Compute a new estimakof R° according to the equatioR{4115), iR=V° — H (ﬁHT)
4) Compute an estimate P using the equatio (Z4.114). One can write, frém_(%.14), that
A=Q°+oMd’ +Q (4.18)

where L _
Q = O-LHAO-AHT(LOT 4+ LoVOLO)T] T (4.19)

an estimate of which can be computed based on the previous steps. ItéfdB)gohe obtains
that, for allk > 1

k-1 k—1
fl = o ()T + § dIQ(@)T + § dIQO()T (4.20)
% &

Pre-multiplying both sides of equatidn (4120) Hyand post-multiplying it by ®)THT one
obtains that, fok > 1

K—1 _ _ 5 . k-1 . .
ZaHCDJQO(CD”k)THT = HA@™)THT —HOKAHT - Z)HQ’JQ(‘DH)THT (4.21)
i= 1=

Note that an estimate of the right hand side of equalion{4.21) is given,\E?rm:laedlalI—A|T have
been previously computed. After choosing a linearly independent ssjuations[(4.21) (for
details se€ [34]), one can identify the< n unknown entries oQ°.

4.3 Variance estimation with [40]

Consider a linear, time-invariant, discrete-time autonomous miodél (4.1). Statates of the system
are considered using a linear, time-invariant state estimator with obserdr ga

R(k+1|k) = PR(K|K)

) ! . (4.22)
R(K|k) = R(klk— 1) + L [y(k) — HR(kk—1)]
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From [4.1) and[{4.22), the prediction error evolves according to thtersys

ew+n:¢0_uﬂam+[|—¢L}[§g] (4.23)
X %
Wi(k)

Then, the state-space model of thinnovations is defined as:

g(k+1) = Ae(k) + GW(K)
v(k) = He(K) +e(k)

where the_-innovation isv(k) = y(k) — HX(k|k — 1).

From now on, we require that the system is detectable and that the chosetvar gairL makes
equation[(4.24) asymptotically stable. Namely, the basic assumptions are thérfglio
Assumption 1The pair(®,H) is detectable.

Assumption 2The matrixAis Schur.

(4.24)

In this formulation, the state and sensor noises are correlated. In fact
oo [Q 0] _ &
BT = | § o |=a
BRI = | g
Furthermore, we assume that the initial estimation error is distributed with mgand covariance

Mo, i.e. E[e(0)] = mp and vafey) = Mo. Propagating the estimation error we have, provided that
E[w(k)] = E[e(k)] = 0, E[ek] — 0 ask — « and that'l, =var(&) evolves according to the equation

M1 = ATTAT +GQWG' — MM
The algorithm proposed in [40] assumes that the time ikdesufficiently large, such that the effect

of the initial conditions can be neglected (steady state assumption). Tiegrtfe error covariance
matrix 'l obeys to

N =AMAT +GQ.G" (4.25)
Recall that the autocovariangé is defined as
V' = Ev(k)v(k+i)T]
Moreover, we define the autocovariance matrix (referred to ACN ih)[d€)]
VA .. yN-L
Z(N) = : KPR (4.26)
(VNfl)T ... O

where the number of lag¥ is a user-defined parameter. The ACM of thnnovations can be
written as:

N
PGUG"

i=1

N

PR

=1

ZNN)=0nNo" +¢ €T +w Rl W +

PR

=1

+ (4.27)

J

N
=1
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where
H 0O 0 00
0= H_A , €= H _0 0 9 . w=r QNB—q:L
e HAYZ . H 0

and the definitions of Kronecker sum and direct sum are used (skarfd255]).

Recall that a sampled estima@r(l\_l) of matrix Z(N) can be computed from innovation data. In
fact, a sampled (unbiased) estimat&/bfs

1 Nyata—i

V! v(K)k(k+i)

- Ngata— 1 K=1
The algorithm proposed in [40] aims to “solve” equatibn (4.27) as a leastrescproblem, with re-
spect to the unknown parameté&@sandR (note that the variabll is expressed as a function Qfy,

in view of the algebraic equation (4]25)), whe#N) is used as an estimator &f(N). To cast equa-

tion (4.27) as a linear regression, complex matrix transformations are iv(flvedetails se€ [40]).
Finally, the following theorem is stated.

Theorem

Provided that the mentioned least squares problem has a unique solutiomisk covariance esti-
matesQ, andR, are unbiased for all sample sizes and converge asymptotically to the trarecmes
as the number of data availalilg;:, converges to infinity.
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Chapter 5

Preliminary results on disturbance
modeling for distributed systems

In this Chapter, the use of disturbance models in MPC is briefly reviewedsame introductory
considerations on the problem of disturbance modeling in distributed cayst@ms are reported.
In the MPC literature, disturbances have been considered mainly fronoitberihg two different
points of view:

1. disturbances modeled as (piecewise) constant signals have beeledhiclthe problem formu-
lations to compute feedback control laws guaranteeing some specifigfgepsuch as asymp-
totic zero error regulation for constant reference signals, sed &Jg 48] and the references
quoted there;

2. disturbances have been modeled as unknown, but bounded, sigtiatson the system state
and to be rejected by the MPC control law to guarantee some fundamerpalts, such as
Input-to-State Stability (ISS) or Practical ISS (p-ISS). In this case, tloislem has lead to the
development of robust MPC algorithms both in closed-loop and in openflwop, see e.g.

[32], [50].

These two streams of research will be very concisely summarized in the iiodj@and will be
related to the problem of designing distributed MPC laws with stability and tragkioyperties.

5.1 Disturbance modeling in Model Predictive Control for offset-free
tracking

In MPC, many approaches have been proposed to guarantee drireisesponse for constant refer-
ence signals. The most polite and effective solution is to resort to the @bapjroach based on the
so-called Internal Model Principle (IMC), se€e [20], which consistauagmenting the process model
with a set of integrators fed by the tracking errors. A stabilizing regulatihreis synthesized for the
augmented system. Finally, the overall regulator is composed by the ensdriidestabilizing one
and of the integrators, i.e. of the internal model of the reference sigrad. sdlution based on the
IMC is very effective also to guarantee asymptotic zero error regulativreferences generated by
unstable exosystems and can be used for MPC of nonlinear proceskf8@p.

A criticism to IMC-based solutions applied to MPC, [36], lies in the need to galtire dimension of
the system state with the internal model of the exosystem. In the case ofdalgesgstems, this can
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significantly increase the computational burden associated to the on-lin@salfithe dynamic op-
timization problem. For this reason, MPC solutions are often based on the taiiopwf the control
variations with respect to the steady state value required to force the lgeohtvatputs to the desired
constant reference value. In more formal terms, consider a systeer aodtrol described by the

discrete-time linear model
X(k+1) = AX(k)+Bu(k)

- - 51
= Cxlk &4

a constant refereng@, and an equilibrium paifXs, Us) such that
XS = AX3+ BUS (52)

yo = CX

Let x(k) = X(k) — Xs, u(k) = ti(k) — Us, y(k) = ¥(k) —y°, and denote the modé[(5.1) centered at

(Xs, Us) by
Xx(k+1) = Ax(k)+Bu(k)
y(K) = Cx(k)

With reference to systeri (5.3), the MPC action is computed by minimizing at any tstentk
and with respect to present and future contrgls), u(k+ 1), ... a cost function penalizing the future
output and control variables over an (ideally infinite) future horizorthab an optimization problem
of the form (or similar ones):

(5.3)

minJ = _i)/(k+i)Qy(k+i)+u’(k+i)Ru(k+i) (5.4)

is solved, possibly subject to constraints on the future control movestatedtgjectories. Finally,
according to a receding horizon strategy, the overall control actionéndiyu(k) = u(k) + Us

It is apparent however that the above procedure does not guarzerie steady-state error if the
original system[(5]1) is subject to disturbances which are neglected irothputation of the equi-
librium (X, Us) through [5.2) or in case of modeling errors. Therefore, it is a commactipea(see
e.g. [36/46] and the references quoted there) to assume that the stiatethe output of model(5.3)
is subject to an additional disturbandé) with a given dynamics. The state of the corresponding
augmented system is then estimated on-line with a Kalman-type filter and the estimlaiedfthe
disturbance is used to re-compute the steady-state(Xaaik). The typical choice is to consider for
the disturbance an integrating dynamics, so that madél (5.3) subject to disterbtakes the form

X(k+1) = AXK)+Bu(k)+rd(k)+wx(k)
dk+1) = d(k)+wgy(k) (5.5)
y(K) = Cx(k) +Md(k) + v(k)
where the matriceB, M are design parameters ang, wy andv are zero-mean white noises. Once
. I
the estimate{ X (k) d'(k) } has been computed with a suitable observer, assuming that the future

disturbance value equals the current one,dA(k.Jr i) = dA(k) —d, i > 0, the new equilibrium point
(Xs, Us) is recomputed (whenever possible) as the solution of the following set af leguations:

] ] 59

The conceptual approach above described must be deeply exploitkditp &nd solve a num-
ber of fundamental problems for its effective implementation. Among then,dl@nving are of
paramount importance and have been extensively studied in the alreatigmedrpapers [36]| [46]:
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e the augmented system (b.5) must be observable, or detectable, to allow éstithation of the
enlarged state;

¢ the set of linear equationis (5.6) must be solvable. This is equivalent forastnditions on the
number of controlled and manipulated outputs and/or on the absence oifpkanant zeros in
z=1;

e the steady-state pa(Xs, Us) must satisfy the control and state constraints of the problem. If this
does not hold, feasible solutions must be computed by solving suitable tpeses problems.

A critical analysis of these points is beyond the scopes of this report, aniatdrested reader
is referred to[[36],[[46],[[45]. However, a couple of remarks am@tiv recalling. First, additional
dynamics can be assumed to generate the disturbance, which turns ogfiverbby the output of a
stable system fed by the integrators, see again [46] or [29]. This casdfel to center the estimation
and the control design in a prescribed frequency band specified adtitonal dynamics. Second,
as suggested by [48], systeim (5.5) (with null disturbanggsvy, v), can be given the velocity form

Ax(k+1) = AAx(k)+BAu(k)
z(k+1) = z(k)+CAAx(k)+CBAu(k) (5.7)
yk = 2k +v(k)

whereAx(k) = x(k) — x(k— 1) andAu(k) = u(k) —u(k—1). An MPC algorithm can then be used
for system[(5.]7) to compute the future control increménts This implicitly corresponds to plug an
integral action on the input variables, so that an IMC-type solution is obtaifigid approach traces
back to early predictive control algorithms, such as Generalized Minimumanée (GMV), se€ [16],
or Generalized Predictive Control (GPC), se€ [17], where CARINGAr(trolled AutoRegressive In-
tegrating Moving Average models) were used.

In the design of MPC algorithms for distributed systems, the disturbance mgd@gproach de-
scribed in this section can be easily extended to cope with the same objestighsas the tracking
of constant references. Specifically, given a large scale systemlmadaumber of interacting sub-
systems, according to the previously described guidelines it is possiblsigmder any subsystem a
local MPC regulator guaranteeing tracking properties provided thatvielb stability is achieved.
In this sense, the described methodologies for disturbance modeling @ppear to be crucial to
solve the fundamental questions related to the design of distributed comisyldach as the amount
of information transmitted among the subsystems and its use in the design of tha s, the
required strength of the interconnections, the achievable stability prapertie

5.2 Disturbance rejection and ISS stability in distributed control with
MPC

In recent years, research in MPC has been focused in the developfregorithms guaranteeing
some fundamental stability properties also in presence of model uncertap@rasneter variations,
external disturbances, see elg./[28,[31,[51/ 32, 33]. In this frarkewwe system under control is
usually assumed to be described by

x(k+ 1) = f(x(k),u(k),w(k)), k> t, (t) =X (5.8)

Page 2735 |




|HD-MPC ICT-223854 Distributed state and variance estimatior]

where the disturbanag € RI can model a wide number of the uncertainties above described; as such
it can be assumed to be either a state and control dependent term, i.e.

(k) = fu(x(K),u(K)) (5.9)
wherefy(-,-) is a suitable function, or an external bounded signal, i.e.
weWw (5.10)

whereW C R%is a known compact set containing the origin.

The presence of the disturbangstrongly impacts on feasibility. In fact, even though at a generic
time instantk the optimization problem is feasible, the effect of the disturbance could tirengtate
outside the feasibility region in the next time instants. To deal with this problem, detign of robust
Nonlinear Model Predictive Control (NMPC) algorithms a common appreacisists of considering
the a-priori worst possible effect of the future disturbances andagteeing that, event in this case,
feasibility is not lost. In so doing, Enin-maxoptimization problem must be stated and solved, where
the maximization is associated to the effect of the disturbance over the causptediction horizon,
while the minimization of the selected cost function must be performed with regpdéiee future
control actions given by the control law

u(k+i) = Uop(K+i) + Ki(x(k+1)),i =0,...N—1 (5.11)

whereugp(k+1i),i = 1,...,N are open-loop terms to be computed through the optimization problem,
while the functionss;(x) are closed-loop terms which can be either time-invariant and selecteda-prio
or whose parameters can be optimized on-line. The algorithms proposedlitetatire for linear

and nonlinear systems can be roughly classified as follows.

e Methods where the maximization problem is solved off-line and the desigmpéges are
suitably modified to guarantee feasibility. In these approaches, the baaiiteinclude in
the problem formulation some additional constraints on the skékesi),i = 1,...,N predicted
over the considered horizon. Specifically, the predicted si@&te-i) is forced to belong to a
setX (k+i) C X chosen so that, for any feasible disturbance sequetice j),j=0,...,i— 1,
the real state still belongs %. The sequence of sefl@(k+ i),i=1,...,Nforms a “tube” where
the predicted state is forced to remain. In addition, the auxiliary control lawually chosen
so that the terminal s&¢; is a robustly positive invariant set for the corresponding closed-loop
system. Once the “tube” has been computed and the additional constrathts foiture states
have been included into the problem formulation, minimization of the selectetloasion can
be performed on-line by resorting to the Receding Horizon principle. Ircdmext of MPC
for nonlinear systems, [28] describes an algorithm where only the oogntermsugp(k+1)
(5113) are considered, while fixed closed-loop functigiig(k+i)) are used in[51].

e Methods where the whole min-max problem is solved on-line. In this case otiteot law
(5.113) is usually made only by the parameterized state-feedback conteokilgy. The com-
putational burden turns out to be high, but less restrictive constraintsbauspriori imposed
on the state evolution over the prediction horizon. An example of applicatitnioépproach
is described in[31].

Once the feasibility problem has been solved, the stability issue must be e@tsidn case of
persistent disturbances, it is not possible to require the asymptotic stabilitye afrigin, but only
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“practical stability”, i.e. convergence of the state trajectory to a robusitipely invariant set contain-
ing the origin. The size of this set obviously depends on the worst featigilerbance. Asymptotic
stability of the origin can however be obtained for state dependent disttebaprovided that a suit-
ableH-type cost function is used in the optimization problem, seele.g. [31]. Coingestability, in
recent years it has been shown that the concept of Input to State StéBify see e.gl [59, 24], is
the most appropriate tool for the analysis and synthesis of robust NNg@tams, see [32]/]50].

The robust MPC methods now described can be applied quite easily to thiemprof design-
ing stabilizing regulators for distributed control structures. In fact, mgsy that the overall system
is made by a number of interconnected local subsystems, it is possible tceseitilnal influences
among subsystems as perturbation (disturbance) terms. In this perspédtvadvisable to design
a local robust MPC law for any subsystem with robustness properties@gpect to the perturbing
actions performed by the other subsystems. This approach has besdydsbowed in [49] where
a completely decentralized and stabilizing MPC law has been designed uedeaih assumption
that the interconnections are sufficiently weak. The proposed methedyhesdies on the seminal
results reported in [18], which provide well sounded theoretical fatinds for the analysis of inter-
connected systems.

Also the distributed MPC methods relying on the exchange of information amengadal subsystems
regarding the future expected input or state trajectories (see the reamw [[b4] and the references
therein), can be analyzed in the framework of robust MPC. In fact, ibssible to interpret the dif-
ference between the predicted and the real trajectories as disturbamsetdebe suitably rejected.
In order to apply the results of robust MPC in this perspective, it is mandé&ompose that any
local subsystem'’s state and control trajectory does not differ too muchregfiect to the predicted
one transmitted to the neighborhoods, so that the “equivalent disturbemetis guaranteed to be
bounded. This simple consideration motivates the introduction in some algorifradditonal con-
straints on the future input moves and state evolution, see for example fiE9¢wowever the MPC
problem is not explicitly based on the robustness approach.
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Chapter 6

Conclusions

The review of the literature on distributed state estimation reported in this dddtechas shown that
new and efficient algorithms are required both for thstributed estimatiorand for thepartition-
based estimatioproblems, as they have been defined in the Introduction. In fact, distlilalge-
rithms with guaranteed stability and convergence properties for linear@mohear systems are still
largely missing. Moreover, most of the available results rely on the Kalmanrfgteapproach, which
cannot handle state and disturbance constraints, which are often tm&idered in real problems.
These considerations motivate the development of new Moving Horizon EstimfHE) schemes,
which allow one to satisfy the two main requirements above mentioned, i.e. gemeer of the es-
timates and disturbance estimation. These MHE algorithms have been alretdlypdeveloped
for linear systems within the project and will be extensively described iorté€pb.2. Further exten-
sions will concern their extension to nonlinear systems as well as their appiiedo one or more
benchmarks, such as the hydro power valley, object of Work Package

As for distributed variance estimation, this is another topic of great interasfact, it is well
known that the optimality properties of Kalman filters are based on the cocasanf the noises
affecting the state and measured variables. In MHE, these covariarcaseal to weight the terms
to be minimized over a prescribed prediction horizon, namely the state disteraad¢he estimation
error over the considered time window. Many case studies have showa ffweor tuning of these
weighting parameters lead to unsatisfactory results. Future researchnag#m the detailed analysis
of the available algorithms in a number of significant cases as well as thensexts to the case of
distributed estimation.

Finally, the wide theme of disturbance modeling can be conjugated in diffeegrs. First, it ap-
pears to be quite straightforward to extend the centralized approachGrWwith tracking properties
by means of proper estimation of the disturbances also to distributed canicilses. On the other
hand, disturbance attenuation in robust centralized model predictitbas produced a number of
methods and results which can be exploited to design new and efficientutisttfchemes where the
mutual interactions among locally controlled subsystems can be viewed abdristas to be properly
rejected.
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