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Executive Summary

This report describes the research activity in the STREP research project Hierarchical and Dis-
tributed Model Predictive Control of Large Scale Systems (HD-MPC), focusing on WP5 -
“Distributed state estimation algorithms”. Specifically, the report aims at presenting the main re-
sults available in the literature on the objects of Task 5.1 (State estimation) and Task 5.2 (Variance
estimation). The report also presents a concise review of the disturbancemodeling approaches
used in Model Predictive Control to guarantee tracking properties or to achieve viability in front
of unknown inputs and modeling uncertainties. This analysis will be used to extend the main ideas
on disturbance modeling also to distributed systems, either to achieve tracking properties, or to
design distributed MPC algorithms with guaranteed stability.
The report is organized in six chapters:

• Chapter 1 presents an introduction to the problem of distributed state estimation.A classifi-
cation of the existing algorithms is proposed in terms of the topology of the communication
network, of the amount of information transmitted among the processing units (agents) per-
forming distributed estimation and, most importantly, of the specific problem considered. In
particular, a distinction is made betweendistributed estimation, where each agent estimates
the state of the whole system, andpartition-based estimation, where each agent estimates
only part of the whole state based on its own measurements and on the information trans-
mitted by its neighborhoods, including the estimates of other system’s components. This
distinction is not always clear in the technical literature, but it has a major impact on the
algorithms to be used in the two different problems.

• Chapter 2 is devoted to present the main algorithms available in the literature for distributed
estimation. After an introductory example, the well-known observability property is conju-
gated with the information available at any node (local observability, regional observability,
i.e. the one based on the information directly collected by the agent and/or provided by its
neighborhoods, andcollective observability). A number of distributed algorithms based on
the Kalman filter and consensus algorithms are then described.

• Chapter 3 reviews the partition-based estimation algorithms proposed in the literature.
Specifically, two algorithms, coping with overlapping partitions of large-scale systems,
are described in detail; they are calleddistributed and decentralized Kalman filterand
consensus-based overlapping decentralized estimator. While for the former the commu-
nication scheme is induced by the presence of overlapping states, for the latter the topology
of the network is defined by dependencies among the states of subsystems,resulting in a
neighbor-to-neighbor communication scheme.

• The design of state estimators, based either on the Kalman filter or on the moving horizon
approach, require the knowledge, or a reliable estimate, of the noise covariance to compute
the optimal estimator gain. This is a tight requirement, in particular for what concerns the
disturbance acting on the state variables, so that some approaches to variance estimation
have been proposed in the literature. In Chapter 4, these techniques arereviewed, focus-
ing attention on two algorithms that appear to be the most reliable and efficient solutions
nowadays available to the considered problem.
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• Chapter 5 describes the main disturbance modeling assumptions used in ModelPredictive
Control (MPC) to achieve specific properties for the resulting closed-loop system. In par-
ticular, in MPC disturbances are usually included in the problem formulation asconstant
signals to obtain feedback control laws guaranteeing asymptotic zero error regulation for
constant reference signals. Alternatively, the presence of bounded disturbances is consid-
ered in the design of robust MPC laws leading to Input-to-State-Stable closed-loop systems.
Both the cases are summarized in the chapter and their use in the design of distributed con-
trol systems is discussed.

• Finally, in Chapter 6 some conclusions are drawn and some hints for future developments
on distributed state and variance estimation are reported.
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Chapter 1

Introduction to state estimation for
distributed sensing architectures

Recent advances in electronic devices with increasing computational power as well as in wireless
communication apparatuses allow for the development of sensor nodes with data processing and trans-
mission capabilities characterized by low costs, low dimensions and low power consumption. As an
example, it is possible to mention the huge research efforts at the Universityof California, Berkeley’s,
on the so-called smart dust, i.e. tiny wireless micro-electromechanical sensors which can transmit
information like air quality-related measurements, temperature, humidity, light or vibrations, see for
example [68].

Given a large number of interconnected sensors, i.e. asensor network, a big challenge still widely
open is to develop algorithms and protocols allowing the nodes of the network topossess self-
organization capabilities and to operate cooperatively, so that each nodecan carry out local com-
putations and transmit to the other nodes only the partially processed data required to achieve overall
sensing objectives.

Therefore, the advantages and challenges of sensor networks are related to the possibility to build
large-scale networks, to implement sophisticated communication protocols, to reduce the amount of
communication required to perform tasks by distributed and/or local computations and, last but not
least, to implement complex power saving modes of operation. Among the many applications of
sensor networks, it is possible to recall the following:

• Health: sensor nodes can be deployed to monitor patients.

• Environmental monitoring: prevention of forest fires, forecast pollutant distribution over re-
gions.

• Domotics: Improve quality and energy efficiency of environmental controls(air conditioning,
ventilation systems, . . . ), while allowing reconfiguration and customization, besides saving
wiring costs.

As also for the case of distributed control (see the survey paper [54]), to establish a taxonomy
could be useful to cast different estimation algorithms, which will be presented in the following,
into different classes. Different estimation methods can be classified according to the information
exchange between subsystems or nodes and according to the prior information that each sensor has
about the process model.
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A first classification can be made depending on the topology of the communication network. Two
cases can be identified:

• information is transmitted (and received) from any sensor node to all the other nodes (i.e.all-
to-all communication);

• information is received by a given sensor nodei from a given subset of the othersVi , namely
the set ofi’s neighbors (neighbor-to-neighbor communication).

The exchange of information (also denoted data delivery) among nodes can be performed accord-
ing to different protocols, which are presently under investigation (for an extensive review see [47]).
In [65], sensor networks are classified as: continuous, event-driven and observer-initiated. In contin-
uous models the nodes transmit information at a given transmission rate (whichcan be different from
the observed process sampling frequency), in event-driven models thesensors transmit information
only when a given event occurs, and in observer-initiated data models (also denoted request-reply
models) communications occur only in response to an explicit request (e.g. from the neighbors). In
this work we focus on continuous data delivery models. Two main classes ofcontinuous data ex-
change protocols can be identified, on the basis of the number of exchange events among subsystems.
Namely:

• information is transmitted (and received) by the sensor nodes only once within each sampling
time (non-iterative algorithms);

• information can be transmitted (and received) by the local regulators many times (denotedNT)
within the sampling time (iterative algorithms).

It is apparent that the amount of information available to the local regulatorswith iterative algorithms
is higher (for example, in the limit case whereNT → ∞, optimality of estimation algorithms can be,
in general, guaranteed).

As also discussed in the survey paper [56], two main classes of estimation techniques for dis-
tributed sensing schemes are presently under investigation. They are generally both referred, in the
literature, to asdistributed state-estimationalgorithms. For the sake of clarity and to avoid confusion,
we now propose a new classification, adopted throughout the report, ofthese two problems.

• The first class of algorithms has the objective to make each node of the sensor network recover
the estimate of the whole state vector. In this case, the solution relies on consensus (on mea-
surements or on state estimates) and/or sensor-fusion algorithms. The main drawbacks of such
an approach are that each node should know the dynamic model of the overall observed sys-
tem and that the estimation problem, solved by each sensor node, is a full order problem. This
problem will be denoteddistributed estimation.

• The second approach consists of estimating, for each node, a part of the global state-vector,
using information transmitted by other sensors of the network. This problem, which will be
denotedpartition-based estimation, gives rise to low-order estimation problems solved in a
decentralized way, and is particularly useful when the observed process is a large scale system.

Although they both aim at solving estimation problems for distributed sensing architectures, the math-
ematical formulations of the two mentioned issues are deeply dissimilar, and their solutions require
different mathematical methods. For these reason, they will be dealt with in different chapters (i.e.
Chapter 2 and 3, respectively).
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Chapter 2

Distributed state estimation

As discussed in the previous chapter, many theoretical and technologicalchallenges have still to be
tackled in order to fully exploit the potentialities of sensor networks. As specified in the Introduction,
one of the main issues is that of distributed state estimation, which can be described as follows.
Assume that any sensors of the network measures some variables, computes a local estimate of the
overall state of the system under monitoring and transmits to its neighbors the measured values, the
computed state estimation and the corresponding covariances. Then, the mainchallenge is to provide
a methodology which guarantees that all the sensors asymptotically reach a common reliable estimate
of the state variables, i.e. the local estimates reach aconsensus. This goal must be achieved even if
the measurements performed by any sensor are not sufficient to guarantee observability of the process
state (i.e.local observability), provided that all the sensors, if put together, guarantee such property
(i.e. collective observability). The transmission of measurements and of estimates among the sensors
must lead to the twofold advantage of enhancing the property of observability of the sensors and of
reducing the uncertainty of state estimates computed by each node.

Early works [21, 52] proposed distributed Kalman filters based on the parallelization of a central-
ized Kalman filter which do not rely on consensus algorithms, but require all-to-all communication.
Consensus algorithms for distributed state estimation based on Kalman filters have recently been pro-
posed in [15, 4, 44, 41, 60, 42, 25]. In particular, in [44, 41, 60],consensus on measurementsis used
to reduce their uncertainty and Kalman filters are applied by each agent. In [42], three algorithms
for distributed filtering are proposed. The first algorithm is similar to the one described in [41], save
for the fact that sensors exploit only partial measurements of the state vector. The second approach
relies on communicating the state estimates among neighboring agents (consensus on estimates). The
third algorithm, namediterative Kalman consensus filter, is based on the discrete-time version of a
continuous-time Kalman filter plus aconsensus stepon the state estimates, which is proved to be
stable. However, stability has not been proved for the discrete-time version of the algorithm and op-
timality of the estimates has not been addressed. Recently, convergence in mean of the local state
estimates obtained with the algorithm presented in [41] has been proved in [25], provided that the
observed process is stable, and a stability analysis of the state estimator presented in [42] is provided
in [43].
In [4] consensus on the estimates is used together with Kalman filters. The weights of the sensors’
estimates in the consensus step and the Kalman gain are optimized in order to minimize the estima-
tion error covariance. A two-step procedure is also used in [15], where the considered observed signal
is a random walk. A two-step algorithm is proposed, where filtering and consensus are performed
subsequently, and the estimation error is minimized with respect to both the observer gain and the
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consensus weights. This guarantees optimality of the solution.
Some of the methods mentioned above have been reviewed and compared in [56].

More in general, the issue of distributed sensor fusion has been widely studied in the past years,
see e.g. [13, 61]. The paper [13] provides an algorithm accounting for dynamically changing inter-
connections among sensors, unreliable communication links, and faults, where convergence of the
estimates to the true values is proved, under suitable hypothesis of “dynamical” graph connectivity,
while in [61] the authors propose a minimum variance estimator for distributed tracking of a noisy
time-varying signal.

As a simple example of a distributed state estimation problem, taken from [15], assume to haveM
sensors measuring the same temperatureT, whose dynamic evolution is

Tk+1 = Tk+wk (2.1)

wherew is a white noise, any sensori, i = 1, ...,M provides the measurement

yi
k = Tk+vi

k (2.2)

and thevi ’s are white noises with the same variance.
In order to obtain a more reliable estimate ofT, adata fusionalgorithm is required. This can trivially
rely on a centralized estimator placed in abase stationcomputing the estimate

T̂k+1 = T̂k+L(yk− T̂k) (2.3)

whereL is a gain to be suitably selected and

yk =
1
M ∑

i=1,...,M

yi
k (2.4)

Alternatively, the sensors can be arranged in a communication graph configuration. Their mea-
surements are not sent simultaneously and instantaneously to the base station; rather, each sensor
computes a local estimation̂T i

k based on its available information, i.e. its local measurements, and the
information provided by its neighborhoods. In this case, a suitable local estimator can be described
by

T̂ i
k+1 = m(T̂k)

i +L(m(yk)
i −m(T̂k)

i) (2.5)

wherem(T̂k)
i and m(yk)

i representmean(to be specified) values of estimates and measurements,
respectively, and are computed on the basis of the information exchangedby sensori with its neigh-
borhoods. In this case, it is possible to say that the estimateT̂ i depends onregional quantities, i.e.
on quantities available to sensori through its sensing capabilities and through the nodes linked to
it. The termsm(T̂k)

i andm(yk)
i are then average values computed from the regional quantities by

means ofconsensus. Increasing the number of transmissionsNT among neighboring sensors within
one sampling time, it is possible to obtain that

m(yk)
i → yk (2.6)

so that, even ifm(T̂k)
i = T̂ i

k , the local filters become “optimal”, with the performance of the centralized
filter. In view of these considerations, it is apparent that consensus is crucial to achieve an agreement
among local variables, and it is the milestone of the distributed estimation algorithms proposed so
far in the literature. In fact, all the methods available basically rely onconsensus on measurements,
consensus on estimatesor on both of them.

In the following, some prototype algorithms will be briefly presented to illustrate the main char-
acteristics of the different approaches. First of all, a formal statement of the problem will be given,
and the classical (centralized) Kalman filter will be recalled in itsinformation form.
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2.1 Statement of the problem

In order to state the distributed estimation problem more formally and in general terms, assume that
the measured system evolves according to the linear dynamics

xt+1 = Axt +wt (2.7)

where the statex and the disturbancew are constrained as follows:x∈ X⊆ R
n, w∈W⊆ R

n, where
X andW are closed and compact sets. The initial statex0 is a random variable with meanµ and
covarianceΠ0, while the covariance ofw is denoted byQ. The system is assumed to be sensed byM
nodes, with sensing models

yi
t =Cixt +vi

t , i = 1, · · · ,M (2.8)

wherevi is a white noise with covarianceRi ∈ R
pi×pi .

The communication network is described by a directed graphG = (V ,E ) whereV is the set of
vertices andE ∈ V ×V is the set of edges. Moreover,V k

i is the set of verticesν j such that there
exists a path of length at mostk from ν j to νi . Finally, associated to the graphG it is possible to define
a matrixK compatible with the graph itself, whose elements(i, j) are such thatki j ≥ 0 if (i, j) ∈ E ,
ki j = 0 otherwise, and∑M

j=1ki j = 1 for all i = 1, . . .M. Given a graph topology, the freedom allowed
in the choice of the elementski j can be fruitfully exploited to enhance the performance of the adopted
consensus algorithms. MatrixK is often used in consensus algorithms to perform averaging on the
measurements or on the estimates.
Finally, it is useful to distinguish betweenlocal, regionalandcollectivequantities. Specifically, for
the nodei, the quantityz will be denoted:

• local (indicated withzi), if related to nodei solely;

• regional (indicated withzi), if referred toV
NT

i ;

• collective (indicated withz), if referred to the whole network.

Accordingly, given the measurementsyi , yi andy, it is possible to trivially define the output transfor-
mation matricesCi (local output transformation, see (2.8)),C

i
(regional output transformation) andC

(collective output transformation). Then, it will be said that the system is

• locally observable by nodei if the pair(A,Ci) is observable;

• regionally observable by nodei if the pair(A,C
i
) is observable;

• collectively observable if the pair(A,C) is observable.

2.2 Information filter

Consider the linear system with its (collective) output described by

xt+1 = Axt +wt

yt = Cxt +vt

Let x̂k1/k2
= E[xk1/y1, . . . ,yk2] be the expected value ofxk1 given the outputs up to timek2, denote

by Πk1/k2
= E

[
(xk1 − x̂k1/k2

)(xk1 − x̂k1/k2
)T
]

its covariance and defineR = diag(R1, . . . ,RM). Then, the
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information filter evolves according to the following steps:

Predictor step

Πk/k−1 = AΠk−1/k−1AT +Q

x̂k/k−1 = Ax̂k−1/k−1

Corrector step

Πk/k = (Π−1
k/k−1+F)−1

x̂k/k = Πk/k(Π−1
k/k−1x̂k/k−1+ fk)

where

F = CTR−1C =
M

∑
i=1

CiT (Ri)−1Ci

fk = CTR−1yk =
M

∑
i=1

CiT (Ri)−1yi
k

Note that the predictor step can be performedlocally by the M sensors, while the corrector step
requires thecollective datavectory.

2.3 Distributed Kalman filter based on consensus on measurements

Starting from the centralized form of the Information Filter, in [44, 41, 60, 25] a distributed implemen-
tation has been proposed, relying on transmission and consensus operations on measurements solely.
In particular, letting ˆxi

k1/k2
be the estimate ofxk1 carried out by sensori at instantk2, and denoting by

Πi
k1/k2

= E
[
(xk1 − x̂i

k1/k2
)(xk1 − x̂i

k1/k2
)T
]

its covariance, the prediction and correction steps are modi-

fied as follows:

Predictor step

Πi
k/k−1 = AΠi

k−1/k−1AT +Q

x̂i
k/k−1 = Ax̂i

k−1/k−1

Corrector step

Πi
k/k = ((Πi

k/k−1)
−1+ F̂ i)−1

x̂i
k/k = Πi

k/k((Π
i
k/k−1)

−1x̂i
k/k−1+ f̂ i

k)

where F̂ i is the local estimate ofF = ∑M
i=1CiT (Ri)−1Ci and f̂ i

k is the local estimate of
fk = ∑M

i=1CiT (Ri)−1yi
k. These local estimates can be obtained with consensus filters on the basis

of regional measurements. However, if regional observability does nothold, the algorithm can not
give reliable results; although, for specific topologies of graphs, the distributed estimation algorithm
can be considered as a good approximation of the centralized Information Filter for a large number
of intercommunications between successive sampling times (NT ≫ 1). A stronger results has been

Page 11/35



HD-MPC ICT-223854 Distributed state and variance estimation

reported in [25], where it has been proved that for asymptotically stable systems, the local state esti-
mates produced by the distributed algorithm converge in the mean to the centralized state estimate. A
“smarter” way to use the propagation of information through the network hasbeen discussed in [4],
where the exploited rationale is to take advantage of the delayed information passing from one node
to another even whenNT = 1. This can be easily obtained by considering an augmented system where
the current state is considered together with its past values over a window of suitable length.

2.4 Distributed Kalman filter based both on consensus on measure-
ments and on consensus on estimates

An evolution of the previous distributed Kalman filters has been described in [42], where transmission
of both the local measurements and the local estimates is used to achieve consensus. The algorithm
evolves according to the following steps:

Predictor step

Πi
k/k−1 = AΠi

k−1/k−1AT +Q

x̂i
k/k−1 = Ax̂i

k−1/k−1 (2.9a)

Consensus on measurements

F̂ i = ∑
j∈V i

C j T (Rj)−1C j

f̂ i
k = ∑

j∈V i

C j T (Rj)−1y j
k (2.9b)

Corrector step+consensus on estimates

Πi
k/k = ((Πi

k/k−1)
−1+ F̂ i)−1

x̂i
k/k = Πi

k/k((Π
i
k/k−1)

−1x̂i
k/k−1+ f̂ i

k)+K i
cons ∑

j∈V i

(x̂ j
k/k−1− x̂i

k/k−1)

= x̂i
k/k−1+Πi

k/k( f̂ i
k− F̂ i x̂i

k/k−1)+K i
cons ∑

j∈V i

(x̂ j
k/k−1− x̂i

k/k−1) (2.9c)

whereK i
cons is the consensus on estimates gain. With respect to the above algorithm, two remarks are

in order. First, in [42] it has been proved that it is possible to achieve convergence of the estimates
for an analogous algorithm developed in continuous time and under the main assumption of collec-
tive observability, but no theoretical results are given for the discrete timeimplementation previously
described. Second, as discussed in [15], the algorithm does not guarantee optimality, since in case of
distributed algorithms the optimal gain does not coincide with the Kalman gain.
These issues have been explored in a recent contribution [43], wherea formal stability proof is given
and performance analysis of the algorithm are provided. Specifically, in [43], the algorithm (2.9) is de-
noted Kalman Consensus Information Filter if the consensus on measurementstep (2.9b) is performed,
and it is called Kalman Consensus Filter if consensus on measurement (2.9b)is not performed (i.e. if
F̂ i = CiT (Ri)−1Ci and if f̂ i

k = CiT (Ri)−1yi
k). For the Kalman Consensus Filter, for a specific choice

of the consensus gainK i
cons, under the assumption that the information matrix(Ci)TRiCi is positive

definite for all i andk ≥ 0, the error dynamics of the Kalman-Consensus filter is globally asymp-
totically stable. Furthermore, all estimators asymptotically reach a consensus on state estimates, i.e.
x̂1

k = · · ·= x̂M
k for k→ ∞.
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2.5 Distributed Kalman filter based on consensus on estimates with op-
timality properties

As discussed in [4, 5, 6], to guarantee optimality of the distributed Kalman filter,the Kalman gain
and the weights on the sensors’ estimates (i.e. the elementski j of the graph matrixK introduced in
the previous Chapter) should be the result of an optimization. For instance,the following algorithm is
proposed in [4]:

Local information update

x̂i,local
k/k = x̂i,reg

k/k−1+Gi(yi
k−Ci x̂i,reg

k/k−1)

Regional consensus on the estimates

x̂i,reg
k/k = ∑

j∈V i

ki j x̂
i,local
k/k

Prediction

x̂i,reg
k+1/k = Ax̂i,reg

k/k

In this algorithm, the gainsGi and the matrixK = {ki j} must be determined to minimize the steady
state estimation error covariance matrices. Unfortunately, this minimization problem is not convex,
while some bootstrap (iterative 2-step) algorithms have been proposed in [4]. In [5], an evaluation of
the performance of such algorithm applied to an ultrasound based positioning application with seven
sensor nodes is provided. In [6], the weight selection process has been analyzed yielding performance
improvements for some studied examples, and solutions to both optimization problemsinvolved in
the iterative off-line weight selection process are given in terms of closedform expressions. The
convergence properties of the presented method are still an open problem.
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Chapter 3

Partition-based state estimation

Partition-based state-estimation algorithms for large-scale systems decomposed into physically cou-
pled subsystems is of paramount importance in many engineering control problems, such as power
networks [57], transport networks [53], process control [66] and robotics [38]. Starting from the
idea to decompose a large-scale problems into small-scale ones in order to handle complexity, high
computer memory and computational load involved in the solution of centralized state-estimation
problems, many studies focused on the design of partition-based filters. The different solutions pro-
posed can be classified according to the model used by each subsystem for state-estimation purposes
and to the topology of the communication network among subsystems. Besides thecomputational
benefits of such an approach, in [58] it is highlighted that decomposition can provide insight about
the structural properties of dynamical systems, i.e. robustness of stability,optimality, controllability
and observability to structural perturbations and to uncertainties (e.g. on the models of the subsystems
and on the connections between them). Recently, there has been a revival of interest on these issues,
leading to the plug-and-play paradigm [64].

For large scale continuous-time systems, decentralized estimation schemes have been proposed
in [58] and [1], where stability conditions for the design of decentralized observers are established
using the theory developed in the framework of decentralized control in [57].
The estimation problem for large-scale systems in the discrete-time framework has received more
attention, during the years. In [22] a two-level decentralized computational structure is developed,
applied to a large-scale system consisting inM dynamically coupled subsystems with uncoupled mea-
surements. The method proposed in that paper provides optimal estimation andis designed in such a
way that each subsystem performs low-order computations. The main drawback is that the algorithm
requires all-to-all communication and it is iterative.
Later work aimed at reducing the computational complexity of centralized Kalmanfiltering by paral-
lelizing computations [21, 52]. The algorithm proposed in [21] assumes local processing capabilities
for each subsystem, but relies on a central processing unit for globaldata fusion. On the other hand,
the algorithm proposed in [52] does not require a base processing station for global data fusion. There-
fore it is denoted in [52] asfully decentralized. However, since both [21] and [52] require all-to-all
communication and assume each subsystem has full knowledge of the whole dynamics, they should
be considered as distributed estimation algorithms rather than partition-based ones.
Starting from the idea of model distribution and of local (nodal) models [10],in [37] the focus is on
the use of reduced-order and decoupled models for each subsystem. The proposed solutions, beside
neglecting coupling, exploit communication networks that are almost fully connected. Subsystems
with overlapping states have been considered in [27, 62, 66, 67]. While inthe estimation schemes in
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[66, 67] the communication scheme is induced by the presence of overlapping states (which, in princi-
ple, can lead to an all-to-all communication scheme), in [27, 62] the topology ofthe network is defined
by dependencies among the states of subsystems resulting in a neighbor-to-neighbor communication
scheme.

In the following, some partition-based algorithms will be presented. First, a general statement of the
problem (in the linear framework) is given.

3.1 Statement of the problem

Consider the autonomous discrete-time linear system

xt+1 = Axt +wt , (3.1)

wherext ∈ R
n is the state vector, whilewt represents a disturbance with varianceQ > 0. The initial

conditionx0 is a random variable with meanmx0 and covariance matrixΠΠΠ0 > 0. Measurements on
the state vector are performed according to the sensing model

yt = Cxt +vt (3.2)

wherevt ∈ R
p is a white noise with varianceR > 0.

Let system (3.1) be partitioned inM low order interconnected submodels, i.e. where a generic
submodel hasx[i]t ∈ R

ni as state vector. We say that the subsystems states are overlapping if there is
at least a component ofxt which is part of the state vector of more than one subsystem. Otherwise,
we say that the subsystems states are non-overlapping. We can denote, for all i = 1, . . . ,M, x[i]t = Tixt ,
whereTi is a linear nodal transformation matrix.
Accordingly, the state transition matricesA[1] ∈ R

n1×n1, . . . , A[M] ∈ R
nM×nM of theM subsystems are

given byA[i] =TiAT†
i , where † denotes the generalized inverse. In general,Ti is assumed for simplicity

to be a scaled orthonormal transformation. Note that, in general,∑M
i=1ni ≥ n, where the equality holds

only if the states of the subsystems are non-overlapping.
The i-th subsystem obeys to the linear dynamics

x[i]t+1 = A[i] x[i]t +u[i],xt +w[i]
t , (3.3)

wherex[i]t is the state vector,u[i],xt collects the effect of state variables of other subsystems, and the
termw[i]

t is a disturbance with varianceQ[i]. The initial conditionx[i]0 is a random variable with mean

m[i]
x0 and covariance matrixΠ[i]

0 . Note thatQ[i] > 0, R[i] > 0 andΠ[i]
0 > 0 can be obtained fromQ, R and

ΠΠΠ0. For example, in [62],Q[i], R[i] andΠ[i]
0 are diagonal blocks ofQ, R andΠΠΠ0 of appropriate size.

According to (3.2) and to the state partition, the outputs of the subsystems are given by

y[i]t =C[i] x[i]t +u[i],yt +v[i]t (3.4)

whereu[i],yt collects the effect of the state variables of other subsystems, and the termv[i]t ∈ R
pi repre-

sents white noise with variance equal toR[i].
We denote with ˆx[i]t1/t2

the estimate ofx[i]t1 performed at timet2 by subsystemi. Its error covariance

matrix is denoted withΠ[i]
t1/t2
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Remark In general, some outputs of system (3.1) can be considered as outputs ofmore than one
subsystem, i.e. ¯p= ∑m

i=1 pi ≥ p. Notice, however, that in decentralized control, each local subsystem
commonly uses local information, which reduces the amount of transmitted information between
subsystems.

The system partition induces an interconnected network of subsystems, which can be described by
a directed graphG = (V ,E ), where the nodes inV are the subsystems and the edge( j, i) in the
set E ⊆ V × V models that thej-th subsystem influences the dynamics or the output of thei-th
subsystem.

3.2 The distributed and decentralized Kalman filter

In [66, 67] and algorithm denoted distributed and decentralized Kalman filter(DDKF) is presented,
designed for overlapping partitions. Furthermore, one of the main contributions of [66] is an intriguing
discussion on sampling and partitioning of large-scale systems. For instance, the authors point out
that the main issues involved in partitioning of the overall system into subsystemsare(i) similarity
of the subsystems network to the actual plant,(ii) the computational load at each subsystem,(iii ) the
communication burden and(iv) the available computational resources. They also point out that there
is a trade-off between(ii) and(iii ) and they propose an heuristic procedure for partitioning.
As far as the DDKF algorithm is concerned, it neglects the dynamic and the output coupling terms
(denotedu[i],xt andu[i],yt in (3.3) and in (3.4), respectively), and it is composed in two steps:

• Prediction step: for all i = 1, . . . ,M

x̂[i]t+1/t = A[i]x̂[i]t/t (3.5)

Π[i]
t+1/t = A[i]Π[i]

t/t(A
[i])+Q[i] (3.6)

• Estimation step: for all i = 1, . . . ,M

x̂[i]t/t = Π[i]
t/t

[
(Π[i]

t/t−1)
−1x̂[i]t/t−1+

M

∑
j=1

(Π̃[i j ]
t/t )

†x̃[i j ]t/t

]
(3.7)

Π[i]
t/t =

[
(Π[i]

t/t−1)
−1+

M

∑
j=1

(Π̃[i j ]
t/t )

†

]−1

(3.8)

where, for subsystemi, x̃[i j ]t/t andΠ̃[i j ]
t/t are the estimate and the covariance matrix related to the

measurementy[ j]t , for j = 1, . . . ,M, and they are defined as follows

x̃[i j ]t/t = TiT
†
j ((C

[ j])T(R[ j])†C[ j])†(C[ j])T(R[ j])†y[ j]t (3.9)

Π̃[i j ]
t/t = Ti

[
TT

j ((C
[ j])T(R[ j])†C[ j])Tj

]†
TT

i (3.10)

Notice that, forj 6= i, the transmissions between subsystemj to subsystemi must be performed
only if subsystemsi and j have overlapping state variables (i.e.TiT

†
j 6= 0). Otherwise, ifTiT

†
j =

0 identically, we have that ˜x[i j ]t/t = 0 andΠ̃[i j ]
t/t = 0 and therefore such terms do not appear in

equations (3.7) and (3.8).
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3.3 A consensus based overlapping decentralized estimator

In [62, 63] an algorithm is proposed, which combines local Kalman-type estimators with a dynamic
consensus strategy. While [63] deals with continuous-time systems, [62] encompasses the case of
discrete-time systems.
Assuming that the pairs(A[i],C[i]) are detectable and that the pairs(A[i],(Q[i])

1
2 ) are stabilizable for all

i = 1, . . . ,M, the proposed method is composed by two steps: a local Kalman filter step and acon-
sensus one. While the former involves low-order computations, the consensus step requires that each
node computes and stores an estimate of the large-scale-scale system statext . Importantly however,
each node does not need to have knowledge about the whole system dynamics (3.1).
We definex̂[i]t1/t2

as the estimate of the overall system statext1 performed by thei-th subsystem at time
t2.

To perform a local Kalman filter, for alli = 1, . . . ,M the local estimator is updated according to
the equation

x̂[i]t+1/t = A[i]
(

x̂[i]t/t−1+ γi(t)L
[i]
[
y[i]t −C[i]x̂[i]t/t−1

])
(3.11)

whereL[i] is the steady-state Kalman gain given by

L[i] = Π[i](C[i])T
[
C[i]Π[i](C[i])T +R[i]

]−1

Π[i] is a solution of the algebraic Riccati equation

Π[i] = A[i]
[
Π[i]−L[i]C[i]Π[i]

]
(A[i])T +Q[i]

andγi(t) = 1 when thei-th agent receives measurementsy[i]t , and 0 otherwise (in order to account for
missing observations).

The large-scale system state estimator performed by each agent requiresthe definition of a number
of matrices on the basis of the local-system matrices:A[i] ∈R

n×n has at mostni ×ni nonzero elements
equivalent to those ofA[i], placed at suitable positions, i.e. beingx[i]t = Tixt , then A[i] = T†

i A[i]Ti .
MatricesC[i] andL [i] are pi × n andn× pi matrices, respectively, obtained fromC[i] andL[i] in the
same way asA[i] is obtained fromA[i]. From (3.11), the consensus-based Kalman-like estimator
equations, fori = 1, . . . ,M, are

x̂[i]t/t = x̂[i]t/t−1+ γi(t)L [i]
[
y[i]t −C[i]x̂[i]t/t−1

]
(3.12)

x̂[i]t+1/t =
M

∑
j=1

Ci j (t)F[ j]x̂[ j]t/t (3.13)

whereCi j (t) ∈ R
n×n, i, j = 1, . . . ,M are time varying gain matrices such thatCi j (t) = 0 if no commu-

nication between nodej and i is allowed (i.e. if( j, i) 6 ∈E ). Otherwise,Ci j (t) are diagonal matrices
with nonnegative entries. The termsCi j (t) are block elements of a consensus matrixC̃(t) = {Ci j (t)},
which must be row-stochastic, and it is compatible with the communication graphG by definition of
Ci j (t), for all i, j = 1, . . . ,M.

Stability conditions for the collective estimation error dynamicsεεε t = (x̂[1]t/t −xt , . . . , x̂
[M]
t/t −xt) are pro-

vided in [62], where an optimal procedure for choosing the matricesCi j (t) is also proposed.
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Chapter 4

Literature survey on variance estimation

Model-based control methods, such as model predictive control (MPC), have become popular choices
for solving difficult control problems. Higher performance, however,comes at a cost of greater re-
quired knowledge about the process being controlled. Expert knowledge is often required to properly
commission and maintain the regulator, to compute target calculation, and to develop state estimators
of MPC, for example. This chapter addresses the required knowledge for the project of the state es-
timator, and describes some techniques with which ordinary closed-loop datamay be used to remove
some of the information burden from the user. Consider the usual linear, time-invariant, discrete-time
model

x(k+1) = Φx(k)+Γu(k)+w(k)

y(k) = Hx(k)+e(k)

in which Φ ∈ R
n×n, Γ ∈ R

n×m, H ∈ R
p×n, andw(k) ande(k) are uncorrelated zero-mean Gaussian

noise sequences with covariancesQ andR, respectively. The sequenceu(k) is assumed to be a known
input. State estimates of the system are considered using a linear, time-invariant state estimator

x̂(k+1/k) = Φx̂(k/k)+Γu(k)

x̂(k/k) = x̂(k/k−1)+L[y(k)−Hx̂(k/k−1)]

in which L is the estimator gain, not necessarily optimal. We denote the residuals of the output equa-
tions (y(k)−Hx̂(k/k−1)) as theL-innovations when calculated using a state estimator with gainL.
In order to use the optimal filter, we need to know the covariances of the disturbances,Q,R from
which we can calculate the optimal estimator’s error covariance and the optimalKalman filter gain.
In most industrial process control applications, however, the covariances of the disturbances entering
the process are not known. To address this requirement, estimation of the covariances from open-loop
data has long been a subject in the field of adaptive filtering, and can be divided into four general
categories: Bayesian [7, 23], maximum likelihood [11, 26], covariance matching [39], and corre-
lation techniques. Bayesian and maximum likelihood methods have fallen out of favor because of
their sometimes excessive computation times. They may be well suited to a multi-model approach
as in [8]. Covariance matching is the computation of the covariances from theresiduals of the state
estimation problem. Covariance matching techniques have been shown to givebiased estimates of the
true covariances. The fourth category is correlation techniques, largely pioneered by Mehra [34, 35]
and Carew and B́elanger [9, 14]. In [40] an alternative method to the one presented in [34, 35] is
described, where necessary and sufficient conditions for uniqueness of the estimated covariances are

Page 18/35



HD-MPC ICT-223854 Distributed state and variance estimation

also given. In [40] an exhaustive comparison with the method proposed in[34] is provided, showing
cases where the latter is outperformed by the algorithm proposed in [40].
In [3] an algorithm is presented, following the analysis from [40] and generalized in [2] for systems
with correlated process and measurement noises. Two contributions can be highlighted: the general-
ization of the autocovariance least-square method to systems with correlated noise, and the interior-
point predictor-corrector algorithm for solving the symmetric semidefinite least-squares problem.
In Section 4.1 the problem of covariance estimation is formally stated, while in Sections 4.2 and 4.3
the algorithms presented in [34] and in [40], respectively, are reviewedin details.

4.1 Statement of the problem

Let us consider the process described by the autonomous system:
{

x(k+1) = Φx(k)+w(k)
y(k) = H x(k)+e(k)

(4.1)

wherex,w∈ R
n, y,e∈ R

p, andΦ ∈ R
n×n andH ∈ R

p×n.
In general the stochastic processesw ande are considered to be independent and uncorrelated white
noises with zero mean and covariance matrices:

E
[
w(k)w(k)T]= Q0 (4.2a)

E
[
e(k)e(k)T]= R0 (4.2b)

We consider these matrices to be not known a priori, while ana priori assumption is made on the
structure ofQ0 (i.e. position of the zero entries). For instance, we assume thatQ0 hasm≤ n unknown
parameters. For notation purposes, we denote:

. x̂(k1/k2) is the estimate ofx(k1) based on all the measurements up tok2, i.e.{y(1), . . . ,y(k2)};

. ε(k) = x(k)− x̂(k/k−1) indicates the 1-step state prediction error;

. v(k) = y(k)−Hx̂(k/k−1) is the innovation;

. Q̂ andR̂ the estimates ofQ0 andR0;

. Πk = E
[
ε(k)ε(k)T

]
the covariance matrix of the prediction error;

. V i
k = E

[
v(k)v(k− i)T

]
the covariance function of the innovation. For simplicity we indicate

V0
k =Vk.

Let us consider the classical structure of the Kalman filter
{

x̂(k+1/k) = Φx̂(k/k)
x̂(k/k) = x̂(k/k−1)+Lo

k(y(k)−Hx̂(k/k−1))
(4.3)

whereLo
k is the Kalman gain, whose expression will be computed in the following, in orderto mini-

mize the prediction error covariance.
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4.1.1 Optimal case

Let’s fist consider the case where the noise covariance matrices are exactly knowna priori, namely
where, lettingR̂ andQ̂ the estimates used in the filter design

R̂= R0 (4.4a)

Q̂= Q0 (4.4b)

We can compute

ε(k+1) = Φ(I −Lo
k H)ε(k)−ΦLo

k e(k)+w(k) (4.5)

Therefore
Πk+1 = Φ

(
I −Lo

k H
)

Πk
(
I −Lo

k H
)T ΦT +ΦLo

k R0(Lo
k)

TΦT +Q0

= ΦΠk ΦT +Q0+ΦLo
k (H Πk HT +R0)(Lo

k)
TΦT+

−ΦLo
k H Πk ΦT −ΦΠk HT (Lo

k)
TΦT

(4.6)

Let us define

SST = (H Πk HT +R0) (4.7)

Therefore we obtain that

Πk+1 = ΦΠk ΦT +Q0+Φ(Lo
k S−A)(Lo

k S−A)TΦT −ΦAATΦ (4.8)

whereA= ΦΠk HT (ST)−1. Minimizing Πk+1 with respect to the gainLo
k we obtain:

min
Lo

k

Πk+1 = ΦΠk ΦT +Q0−ΦΠk HT (H Πk HT +R0)−1H Πk ΦT (4.9)

with optimal gain:
Lo

k = AS−1 = Πk HT (H Πk HT +R0)−1 (4.10)

4.1.2 Suboptimal case

Thesuboptimal casecorresponds to the case where uncertain values of the variance matricesR0 and
Q0 are given, i.e.

R̂ 6= R0

Q̂ 6= Q0

In this case we might introduce two new variablesΠ̃k andΠ̂k. We denote as̃Πk the real value
assumed by the covariance matrix of the estimation error, i.e.

Π̃k = E
[
ε(k)ε(k)T] (4.11)

while Π̂k represents the estimated value of such matrix, given in (4.6), where, instead of R0 andQ0,
we use the valueŝR andQ̂. We have that

Π̃k+1 = Φ(I −Lo
k H) Π̃k (I −Lo

k H)T ΦT +ΦLo
k R0(Lo

k)
TΦT +Q0 (4.12a)

Π̂k+1 = Φ(I −Lo
k H) Π̂k (I −Lo

k H)T ΦT +ΦLo
k R̂(Lo

k)
TΦT + Q̂ (4.12b)

We can easily see from the previous equations that, whileLo
k in (4.10) minimizesΠ̂k, the real covari-

ance of the estimation error̃Πk is not minimized by formula (4.10). Furthermore it is also possible to
infer thatv(k) is a white noise process only in the optimal case (see the next Section 4.2).

Page 20/35



HD-MPC ICT-223854 Distributed state and variance estimation

4.2 Mehra’s algorithm

In [34] a method is proposed, for the unbiased estimation ofQ0 andR0, based on the analysis of
v(k) given by the application of a suboptimal Kalman filter. The main steps of the algorithm are the
following

(i) application of (4.10) (steady state formulation);

(ii) test of optimality of the Kalman filter applied at step(i);

(iii ) in case the optimality test fails, new estimates of matricesQ0 andR0 are computed.

The optimality test at step(ii) consists in verifying that the innovation sequencev(t) is white. For
details see [34]. In the next section a sketch of the algorithm proposed for the estimation ofQ0 and
R0 is provided. The author relies on two main assumptions:(I) the pair(Φ,H) is observable and(II )
the transition matrixΦ is non-singular.
From now on the steady-state formulation of the Kalman filter is applied. Therefore,V i , Π andLo

denote the asymptotic values ofV i
k, Πk andLo

k, respectively. Similarly,̂Π andΠ̃ denote the asymptotic
values ofΠ̂k andΠ̃k, respectively. Specifically,̂Π is the result of the algebraic Riccati equation

Π̂ = Φ(I −LoH)Π̂(I −LoH)TΦT +ΦLoR̂(Lo)TΦT + Q̂ (4.13)

where
Lo = Π̂HT (H Π̂HT + R̂)−1

while Π̃ is the result of the equation

Π̃ = Φ(I −LoH)Π̃(I −LoH)TΦT +ΦLoR0(Lo)TΦT +Q0 (4.14)

Schematically, the proposed method for variance estimation can be sketched as follows.

1) We will denote as̄V i the sampled estimate ofV i , which can be computed, for example, accord-
ing to the following equation

V̄ i =
1

Ndata

Ndata−i

∑
k=1

v(k)v(k+ i)T

whereNdata denotes the available number of data samples.

2) It can be shown that, in steady state,v(k) has variance equal to

V =V0 = H Π̃HT +R0 (4.15)

and covarianceV i , for i ≥ 1:

V i = H [Φ (I −LoH)]i−1 Φ
[
Π̃HT −LoV0] (4.16)

Rewriting (4.16), and replacingV i with its sampling counterpart̄V i , for all i = 0, . . . ,k, we
obtain that

V̄1 = HΦΠ̃HT −HΦLoV̄0

V̄2 = HΦ2Π̃HT −HΦLoV̄1−HΦ2LoV̄0

...
V̄k = HΦkΠ̃HT −HΦLoV̄k−1−·· ·−HΦkLoV̄0
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Therefore, one obtains that an estimateˆ̃ΠĤT of Π̃HT can be computed as

ˆ̃ΠĤT = B†




V̄1+HΦLoV̄0

V̄2+HΦLoV̄1+HΦ2LoV̄0

...
V̄k+HΦLoV̄k−1+ · · ·+HΦkLoV̄0


 (4.17)

whereB† denotes the pseudo-inverse ofB, which is defined as

B=




H
HΦ

...
HΦk−1


Φ

Under the observability assumption, and if the transition matrixΦ is non-singular, ifk is greater
than the observability index of the pair(Φ,H), then the pseudo-inverse ofB can be computed.

3) Compute a new estimatê̂R of R0 according to the equation (4.15), i.e.ˆ̂R= V̄0−H( ˆ̃ΠĤT)

4) Compute an estimate ofQ0 using the equation (4.14). One can write, from (4.14), that

Π̃ = Q0+ΦΠ̃ΦT +Ω (4.18)

where
Ω = Φ [−LoHΠ̃− Π̃HT(Lo)T +LoV̄0(Lo)T ]ΦT (4.19)

an estimate of which can be computed based on the previous steps. Iterating (4.18) one obtains
that, for allk> 1

Π̃ = ΦkΠ̃(Φk)T +
k−1

∑
j=0

Φ jΩ(Φ j)T +
k−1

∑
j=0

Φ jQ0(Φ j)T (4.20)

Pre-multiplying both sides of equation (4.20) byH and post-multiplying it by(Φ−k)THT one
obtains that, fork≥ 1

k−1

∑
j=0

HΦ jQ0(Φ j−k)THT = HΠ̃(Φ−k)THT −HΦkΠ̃HT −
k−1

∑
j=0

HΦ jΩ(Φ j−k)THT (4.21)

Note that an estimate of the right hand side of equation (4.21) is given, sinceV̄0 and ˆ̃ΠĤT have
been previously computed. After choosing a linearly independent set ofequations (4.21) (for
details see [34]), one can identify them≤ n unknown entries ofQ0.

4.3 Variance estimation with [40]

Consider a linear, time-invariant, discrete-time autonomous model (4.1). State estimates of the system
are considered using a linear, time-invariant state estimator with observer gain L

x̂(k+1|k) = Φx̂(k|k)

x̂(k|k) = x̂(k|k−1)+L [y(k)−Hx̂(k|k−1)]
(4.22)
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From (4.1) and (4.22), the prediction error evolves according to the system

ε(k+1) = Φ(I −LH)︸ ︷︷ ︸
Ā

ε(k)+
[

I −ΦL
]

︸ ︷︷ ︸
Ḡ

[
w(k)
e(k)

]

︸ ︷︷ ︸
w̄(k)

(4.23)

Then, the state-space model of theL-innovations is defined as:

ε(k+1) = Āε(k)+ Ḡw̄(k)

v(k) = Hε(k)+e(k)
(4.24)

where theL-innovation isv(k) = y(k)−Hx̂(k|k−1).
From now on, we require that the system is detectable and that the chosen observer gainL makes
equation (4.24) asymptotically stable. Namely, the basic assumptions are the following.
Assumption 1The pair(Φ,H) is detectable.
Assumption 2The matrixĀ is Schur.

In this formulation, the state and sensor noises are correlated. In fact

E[w̄(k)w̄(k)T ] =

[
Q 0
0 R

]
≡ Q̄w

E[w̄(k)v̄(k)T ] =

[
0
R

]

Furthermore, we assume that the initial estimation error is distributed with meanm0 and covariance
Π0, i.e. E[ε(0)] = m0 and var(ε0) = Π0. Propagating the estimation error we have, provided that
E[w(k)] = E[e(k)] = 0,E[εk]→ 0 ask→ ∞ and thatΠk =var(εk) evolves according to the equation

Πk+1 = ĀΠkĀ
T + ḠQ̄wḠT → Π

The algorithm proposed in [40] assumes that the time indexk is sufficiently large, such that the effect
of the initial conditions can be neglected (steady state assumption). Therefore, the error covariance
matrix Π obeys to

Π = ĀΠĀT + ḠQ̄wḠT (4.25)

Recall that the autocovarianceV i is defined as

V i = E[v(k)v(k+ i)T ]

Moreover, we define the autocovariance matrix (referred to ACM in [40]) as

R(N) =




V0 · · · VN−1

...
. ..

...
(VN−1)T · · · V0


 (4.26)

where the number of lagsN is a user-defined parameter. The ACM of theL-innovations can be
written as:

R(N) = OΠO
T +C

[
N⊕

i=1

ḠQ̄wḠT

]
C

T +Ψ

[
N⊕

j=1

R

]
+

[
N⊕

j=1

R

]
ΨT +

[
N⊕

j=1

R

]
(4.27)
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where

O =




H
HĀ

...
HĀN−1


 , C =




0 0 0 0
H 0 0 0
...

...
...

HĀN−2 · · · H 0


 , Ψ = Γ

[
N⊕

j=1

−ΦL

]

and the definitions of Kronecker sum and direct sum are used (see [12] and [55]).

Recall that a sampled estimator̄R(N) of matrixR(N) can be computed from innovation data. In
fact, a sampled (unbiased) estimate ofV i is

V̄ i =
1

Ndata− i

Ndata−i

∑
k=1

v(k)k(k+ i)

The algorithm proposed in [40] aims to “solve” equation (4.27) as a least square problem, with re-
spect to the unknown parametersQ andR (note that the variableΠ is expressed as a function ofQw,
in view of the algebraic equation (4.25)), wherēR(N) is used as an estimator ofR(N). To cast equa-
tion (4.27) as a linear regression, complex matrix transformations are involved (for details see [40]).
Finally, the following theorem is stated.

Theorem
Provided that the mentioned least squares problem has a unique solution, the noise covariance esti-
matesQ̂w andR̂n are unbiased for all sample sizes and converge asymptotically to the true covariances
as the number of data availableNdata converges to infinity.
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Chapter 5

Preliminary results on disturbance
modeling for distributed systems

In this Chapter, the use of disturbance models in MPC is briefly reviewed andsome introductory
considerations on the problem of disturbance modeling in distributed controlsystems are reported.
In the MPC literature, disturbances have been considered mainly from the following two different
points of view:

1. disturbances modeled as (piecewise) constant signals have been included in the problem formu-
lations to compute feedback control laws guaranteeing some specific properties, such as asymp-
totic zero error regulation for constant reference signals, see e.g. [36], [46] and the references
quoted there;

2. disturbances have been modeled as unknown, but bounded, signalsacting on the system state
and to be rejected by the MPC control law to guarantee some fundamental properties, such as
Input-to-State Stability (ISS) or Practical ISS (p-ISS). In this case, this problem has lead to the
development of robust MPC algorithms both in closed-loop and in open-loopform, see e.g.
[32], [50].

These two streams of research will be very concisely summarized in the following and will be
related to the problem of designing distributed MPC laws with stability and trackingproperties.

5.1 Disturbance modeling in Model Predictive Control for offset-free
tracking

In MPC, many approaches have been proposed to guarantee an offset free response for constant refer-
ence signals. The most polite and effective solution is to resort to the classical approach based on the
so-called Internal Model Principle (IMC), see [20], which consists ofaugmenting the process model
with a set of integrators fed by the tracking errors. A stabilizing regulator isthen synthesized for the
augmented system. Finally, the overall regulator is composed by the ensemble of the stabilizing one
and of the integrators, i.e. of the internal model of the reference signal. The solution based on the
IMC is very effective also to guarantee asymptotic zero error regulation for references generated by
unstable exosystems and can be used for MPC of nonlinear process models ([30]).
A criticism to IMC-based solutions applied to MPC, [36], lies in the need to enlarge the dimension of
the system state with the internal model of the exosystem. In the case of large scale systems, this can
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significantly increase the computational burden associated to the on-line solution of the dynamic op-
timization problem. For this reason, MPC solutions are often based on the computation of the control
variations with respect to the steady state value required to force the controlled outputs to the desired
constant reference value. In more formal terms, consider a system under control described by the
discrete-time linear model

x̃(k+1) = Ax̃(k)+Bũ(k)
ỹ(k) = Cx̃(k)

(5.1)

a constant referenceyo, and an equilibrium pair(x̃s, ũs) such that

x̃s = Ax̃s+Bũs

yo = Cx̃s
(5.2)

Let x(k) = x̃(k)− x̃s, u(k) = ũ(k)− ũs, y(k) = ỹ(k)− yo, and denote the model (5.1) centered at
(x̃s, ũs) by

x(k+1) = Ax(k)+Bu(k)
y(k) = Cx(k)

(5.3)

With reference to system (5.3), the MPC action is computed by minimizing at any time instantk
and with respect to present and future controlsu(k),u(k+1), ... a cost function penalizing the future
output and control variables over an (ideally infinite) future horizon, sothat an optimization problem
of the form (or similar ones):

min J =
∞

∑
i=0

y′(k+ i)Qy(k+ i)+u′(k+ i)Ru(k+ i) (5.4)

is solved, possibly subject to constraints on the future control moves and state trajectories. Finally,
according to a receding horizon strategy, the overall control action is given byũ(k) = u(k)+ ũs

It is apparent however that the above procedure does not guarantee zero steady-state error if the
original system (5.1) is subject to disturbances which are neglected in the computation of the equi-
librium (x̃s, ũs) through (5.2) or in case of modeling errors. Therefore, it is a common practice (see
e.g. [36, 46] and the references quoted there) to assume that the state and/or the output of model (5.3)
is subject to an additional disturbanced(k) with a given dynamics. The state of the corresponding
augmented system is then estimated on-line with a Kalman-type filter and the estimated value of the
disturbance is used to re-compute the steady-state pair(x̃s, ũs). The typical choice is to consider for
the disturbance an integrating dynamics, so that model (5.3) subject to disturbances takes the form

x(k+1) = Ax(k)+Bu(k)+Γd(k)+wx(k)
d(k+1) = d(k)+wd(k)
y(k) = Cx(k)+Md(k)+v(k)

(5.5)

where the matricesΓ, M are design parameters andwx, wd andv are zero-mean white noises. Once

the estimate
[

x̂′(k) d̂′(k)
]′

has been computed with a suitable observer, assuming that the future

disturbance value equals the current one, i.e.d̂(k+ i) = d̂(k) = d̂, i > 0, the new equilibrium point
(x̃s, ũs) is recomputed (whenever possible) as the solution of the following set of linear equations:

[
I −A −B

C 0

][
x̃s

ũs

]
=

[
Γ 0
M I

][
d̂
yo

]
(5.6)

The conceptual approach above described must be deeply exploited to clarify and solve a num-
ber of fundamental problems for its effective implementation. Among then, the following are of
paramount importance and have been extensively studied in the already mentioned papers [36], [46]:
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• the augmented system (5.5) must be observable, or detectable, to allow for the estimation of the
enlarged state;

• the set of linear equations (5.6) must be solvable. This is equivalent to askfor conditions on the
number of controlled and manipulated outputs and/or on the absence of plantinvariant zeros in
z= 1;

• the steady-state pair(x̃s, ũs) must satisfy the control and state constraints of the problem. If this
does not hold, feasible solutions must be computed by solving suitable least-squares problems.

A critical analysis of these points is beyond the scopes of this report, and the interested reader
is referred to [36], [46], [45]. However, a couple of remarks are worth recalling. First, additional
dynamics can be assumed to generate the disturbance, which turns out to begiven by the output of a
stable system fed by the integrators, see again [46] or [29]. This can beuseful to center the estimation
and the control design in a prescribed frequency band specified by theadditional dynamics. Second,
as suggested by [48], system (5.5) (with null disturbanceswx, wd, v), can be given the velocity form

∆x(k+1) = A∆x(k)+B∆u(k)
z(k+1) = z(k)+CA∆x(k)+CB∆u(k)
y(k) = z(k)+v(k)

(5.7)

where∆x(k) = x(k)− x(k− 1) and∆u(k) = u(k)− u(k− 1). An MPC algorithm can then be used
for system (5.7) to compute the future control increments∆u. This implicitly corresponds to plug an
integral action on the input variables, so that an IMC-type solution is obtained. This approach traces
back to early predictive control algorithms, such as Generalized Minimum Variance (GMV), see [16],
or Generalized Predictive Control (GPC), see [17], where CARIMA (Controlled AutoRegressive In-
tegrating Moving Average models) were used.

In the design of MPC algorithms for distributed systems, the disturbance modeling approach de-
scribed in this section can be easily extended to cope with the same objectives,such as the tracking
of constant references. Specifically, given a large scale system madeby a number of interacting sub-
systems, according to the previously described guidelines it is possible to design for any subsystem a
local MPC regulator guaranteeing tracking properties provided that the overall stability is achieved.
In this sense, the described methodologies for disturbance modeling do notappear to be crucial to
solve the fundamental questions related to the design of distributed control laws, such as the amount
of information transmitted among the subsystems and its use in the design of the control laws, the
required strength of the interconnections, the achievable stability properties.

5.2 Disturbance rejection and ISS stability in distributed control with
MPC

In recent years, research in MPC has been focused in the development of algorithms guaranteeing
some fundamental stability properties also in presence of model uncertainties, parameter variations,
external disturbances, see e.g. [28, 31, 51, 32, 33]. In this framework, the system under control is
usually assumed to be described by

x(k+1) = f (x(k),u(k),w(k)), k≥ t, x(t) = x̂ (5.8)
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where the disturbancew∈ Rq can model a wide number of the uncertainties above described; as such
it can be assumed to be either a state and control dependent term, i.e.

w(k) = fw(x(k),u(k)) (5.9)

where fw(·, ·) is a suitable function, or an external bounded signal, i.e.

w∈W (5.10)

whereW ⊆ Rq is a known compact set containing the origin.
The presence of the disturbancew strongly impacts on feasibility. In fact, even though at a generic

time instantk the optimization problem is feasible, the effect of the disturbance could bringthe state
outside the feasibility region in the next time instants. To deal with this problem, in thedesign of robust
Nonlinear Model Predictive Control (NMPC) algorithms a common approachconsists of considering
the a-priori worst possible effect of the future disturbances and guaranteeing that, event in this case,
feasibility is not lost. In so doing, amin-maxoptimization problem must be stated and solved, where
the maximization is associated to the effect of the disturbance over the considered prediction horizon,
while the minimization of the selected cost function must be performed with respect to the future
control actions given by the control law

u(k+ i) = uop(k+ i)+κi(x(k+ i)), i = 0, ...,N−1 (5.11)

whereuop(k+ i), i = 1, ...,N are open-loop terms to be computed through the optimization problem,
while the functionsκi(x) are closed-loop terms which can be either time-invariant and selected a-priori
or whose parameters can be optimized on-line. The algorithms proposed in theliterature for linear
and nonlinear systems can be roughly classified as follows.

• Methods where the maximization problem is solved off-line and the design parameters are
suitably modified to guarantee feasibility. In these approaches, the basic idea is to include in
the problem formulation some additional constraints on the statesx̃(k+ i), i = 1, ...,N predicted
over the considered horizon. Specifically, the predicted statex̃(k+ i) is forced to belong to a
setX̃(k+ i)⊂ X chosen so that, for any feasible disturbance sequencew(k+ j), j = 0, ..., i −1,
the real state still belongs toX. The sequence of sets̃X(k+ i), i = 1, ...,N forms a “tube” where
the predicted state is forced to remain. In addition, the auxiliary control law is usually chosen
so that the terminal setXf is a robustly positive invariant set for the corresponding closed-loop
system. Once the “tube” has been computed and the additional constraints onthe future states
have been included into the problem formulation, minimization of the selected costfunction can
be performed on-line by resorting to the Receding Horizon principle. In thecontext of MPC
for nonlinear systems, [28] describes an algorithm where only the open-loop termsuop(k+ i)
(5.11) are considered, while fixed closed-loop functionsκi(x(k+ i)) are used in [51].

• Methods where the whole min-max problem is solved on-line. In this case, the control law
(5.11) is usually made only by the parameterized state-feedback control laws κi(x). The com-
putational burden turns out to be high, but less restrictive constraints must be a-priori imposed
on the state evolution over the prediction horizon. An example of application ofthis approach
is described in [31].

Once the feasibility problem has been solved, the stability issue must be considered. In case of
persistent disturbances, it is not possible to require the asymptotic stability ofthe origin, but only
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“practical stability”, i.e. convergence of the state trajectory to a robust positively invariant set contain-
ing the origin. The size of this set obviously depends on the worst feasibledisturbance. Asymptotic
stability of the origin can however be obtained for state dependent disturbances, provided that a suit-
ableH∞-type cost function is used in the optimization problem, see e.g. [31]. Concerning stability, in
recent years it has been shown that the concept of Input to State Stability(ISS), see e.g. [59, 24], is
the most appropriate tool for the analysis and synthesis of robust NMPC algorithms, see [32], [50].

The robust MPC methods now described can be applied quite easily to the problem of design-
ing stabilizing regulators for distributed control structures. In fact, assuming that the overall system
is made by a number of interconnected local subsystems, it is possible to see the mutual influences
among subsystems as perturbation (disturbance) terms. In this perspective, it is advisable to design
a local robust MPC law for any subsystem with robustness properties withrespect to the perturbing
actions performed by the other subsystems. This approach has been already followed in [49] where
a completely decentralized and stabilizing MPC law has been designed under the main assumption
that the interconnections are sufficiently weak. The proposed method heavily relies on the seminal
results reported in [18], which provide well sounded theoretical foundations for the analysis of inter-
connected systems.
Also the distributed MPC methods relying on the exchange of information among the local subsystems
regarding the future expected input or state trajectories (see the review paper [54] and the references
therein), can be analyzed in the framework of robust MPC. In fact, it is possible to interpret the dif-
ference between the predicted and the real trajectories as disturbance terms to be suitably rejected.
In order to apply the results of robust MPC in this perspective, it is mandatory to impose that any
local subsystem’s state and control trajectory does not differ too much withrespect to the predicted
one transmitted to the neighborhoods, so that the “equivalent disturbanceterm” is guaranteed to be
bounded. This simple consideration motivates the introduction in some algorithms of additional con-
straints on the future input moves and state evolution, see for example [19] where however the MPC
problem is not explicitly based on the robustness approach.
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Chapter 6

Conclusions

The review of the literature on distributed state estimation reported in this deliverable has shown that
new and efficient algorithms are required both for thedistributed estimationand for thepartition-
based estimationproblems, as they have been defined in the Introduction. In fact, distributed algo-
rithms with guaranteed stability and convergence properties for linear and nonlinear systems are still
largely missing. Moreover, most of the available results rely on the Kalman filtering approach, which
cannot handle state and disturbance constraints, which are often to be considered in real problems.
These considerations motivate the development of new Moving Horizon Estimation (MHE) schemes,
which allow one to satisfy the two main requirements above mentioned, i.e. convergence of the es-
timates and disturbance estimation. These MHE algorithms have been already partially developed
for linear systems within the project and will be extensively described in report D5.2. Further exten-
sions will concern their extension to nonlinear systems as well as their applications to one or more
benchmarks, such as the hydro power valley, object of Work Package7.

As for distributed variance estimation, this is another topic of great interest. In fact, it is well
known that the optimality properties of Kalman filters are based on the covariances of the noises
affecting the state and measured variables. In MHE, these covariances are used to weight the terms
to be minimized over a prescribed prediction horizon, namely the state disturbance and the estimation
error over the considered time window. Many case studies have shown that a poor tuning of these
weighting parameters lead to unsatisfactory results. Future research will concern the detailed analysis
of the available algorithms in a number of significant cases as well as their extensions to the case of
distributed estimation.

Finally, the wide theme of disturbance modeling can be conjugated in differentways. First, it ap-
pears to be quite straightforward to extend the centralized approach for MPC with tracking properties
by means of proper estimation of the disturbances also to distributed control structures. On the other
hand, disturbance attenuation in robust centralized model predictive control has produced a number of
methods and results which can be exploited to design new and efficient distributed schemes where the
mutual interactions among locally controlled subsystems can be viewed as disturbances to be properly
rejected.
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