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Executive Summary

This report describes the research activity in the Seventh Framework Programme, Theme 3 “In-
formation and Communication Technologies”, STREP research projectHierarchical and Dis-
tributed Model Predictive Control of Large Scale Systems- HD-MPC, focusing on WP5 -
“Distributed state estimation algorithms”. Specifically, the report aims at presenting the main re-
sults achieved in Task 5.1 (State estimation) and Task 5.2 (Variance estimation).
The report is organized in four chapters:

• Chapter 1 presents a synopsis of the report, summarizes the content of thefollowing chapters
and, for each one of them, highlights the main results achieved.

• Chapter 2 first introduces the problem of distributed state estimation, i.e. the problem of
estimating the state of the system by means of a network of sensors which can exchange
information according to a given topology. Then, the problem is formally stated and a
solution based on the use of Moving Horizon Estimators is proposed. The properties of
the approach, in terms of convergence of the state estimates, are presented and a simulation
example is shown to illustrate the potentials of the method.

• Chapter 3 describes some extensions of the distributed MHE algorithm presented in the pre-
vious chapter. Specifically, it is highlighted how the performance of the stateestimation
scheme depends upon various observability properties of the system, andthe main conver-
gence results are extended to consider different communication protocols. A discussion on
how these protocols impact on the quality of the estimates is finally reported.

• Chapter 4 extends some results already sketched in Deliverable D5.1 concerning the analysis
of the methods reported in the literature for the estimation of the noise variancesaffecting
the system. The methods are critically compared and tested in a number of significant
simulation examples. Some ideas for further improvements are also reported and discussed.
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Chapter 1

Synopsis of the report

1.1 Synopsis of Chapter 2

In Chapter 2, the problem of distributed state estimation is formulated and solvedby resorting to the
Moving Horizon Estimation (MHE) technique. In order to properly define theproblem, consider sen-
sor networks composed by a set of electronic devices, with sensing and computational capabilities,
which coordinate their activity through a communication network. Sensor networks can be employed
in a wide range of applications, such as monitoring, exploration, surveillance or to track targets over
specific regions; their diffusion is partly due to the recent developments in wireless communications
and to the availability of low cost devices. Despite the recent developments in this field, many chal-
lenging problems have still to be tackled in order to fully exploit the potentialities ofsensor networks.
Among the open problems, their use for distributed state estimation is of paramount importance.
The problem can be described as follows. Assume that each sensor of the network measures some
variables, computes a local estimate of the overall state of the system under monitoring, and transmits
to the sensors connected to it both the measured values and the computed stateestimate. Then, the
main challenge is to provide a methodology which guarantees that all the sensors asymptotically reach
a common reliable estimate of the state variables, i.e. the local estimates reach aconsensus. This goal
must be achieved even if the measurements performed by any sensor are not sufficient to guaran-
tee observability of the process state (i.e.,local observability), provided that all the sensors, if put
together, guarantee such property (i.e.,collective observability). The transmission of measurements
and of estimates among the sensors must lead to the twofold advantage of enhancing the property of
observability of the sensors and of reducing the uncertainty of state estimates computed by each node,
respectively. In the literature, many consensus algorithms for distributed state estimation based on
Kalman filters have recently been proposed; however, stability has not been proved for the discrete-
time versions of these algorithms and optimality of the estimates has not been addressed. In general,
the issue of distributed sensor fusion has been widely studied in the past years, while other studies
focused on the design of decentralized Kalman filters based on system decomposition. Different so-
lutions can be classified according to the model used by each subsystem for state-estimation purposes
and the topology of the communication network among subsystems. However, none of the proposed
solutions can handle constraints either on the state variables or on the disturbances affecting the state
dynamics.
In Chapter 2 a novel MHE distributed algorithm is proposed. This approach has many advantages;
first of all, the observer displays optimality properties, since a suitable minimization problem must
be solved on-line at each time instant. Furthermore, it is proven that, under weak observability con-
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ditions, convergence of the state estimates is guaranteed in a deterministic framework. Finally, con-
straints on the noise and on the state are taken into account, as it is common in receding horizon
approaches in control and estimation.

The main assumptions of the developed method are the following:

• the system under investigation is described by a discrete time linear model affected by distur-
bances acting on the state and on the output measurements;

• the availableM sensing nodes are connected by a directed graph with known structure and
can exchange information (measurements and local state estimates) according to this graph
structure.

Accordingly, it is possible to distinguish betweenlocal, regionalandcollectivequantities. Specif-
ically, for any node, a quantity (for example a set of measurements) is:

• local, if related to the node solely;

• regional, if referred to the node and its neighborhoods;

• collective, if referred to the whole network.

This leads to different definitions of observability, namely the system is:

• locally observable by any node if it is observable with respect to its local measurements;

• regionally observable by any node if it is observable with respect to its regional measurements;

• collectively observable if it is observable with respect to all its measurements.

The DMHE (Distributed Moving Horizon Estimation) algorithm, presented in detailsin Chapter 2,
can be sketched at follows. At each time instant, every node:

• receives from its neighbors their measurements, state estimates and the corresponding covari-
ances;

• computes a weighted average estimate of the state and of the corresponding covariance accord-
ing to the graph topology;

• determines the new estimate of the state and of the state disturbance over a slidingwindow
according to the Moving Horizon Estimation approach.

The proposed approach guarantees convergence of the DMHE observer under weak assumptions, in
particular a given matrix (function of the system and of the algorithm parameters) is required to be
Schur. This matrix collectively identifies the dynamics of the regionally unobservable modes of the
sensors’ estimation errors and it is easily computable. A necessary condition on the transmission
graph guaranteeing that the eigenvalues of this matrix can be assigned at will is also reported. More
specifically, each isolated strongly connected subgraph of the network (where the term isolated de-
notes the fact that no node of such a subnetwork has neighbors belonging to other subnetworks) must
be collectively observable. Finally, conditions guaranteeing that the covariances of the computed es-
timates remain bounded are given.
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The DMHE algorithm can be coupled with the state feedback distributed ModelPredictive Control al-
gorithms developed in the other workpackages, and in particular in WP3, to produce output feedback
methods to be used in most practical cases, where the knowledge of the stateis usually unavailable.

The chapter is structured as follows. After an initial review of the relevantliterature, in Section 2.2
the observed dynamical system is introduced together with the structure of the sensor network, and
the observability properties are defined. In Section 2.3 the distributed state estimation algorithm is
described in detail. In Section 2.4 the convergence properties of the algorithm are investigated, and in
Section 2.5 it is discussed how to select the design parameters in order to guarantee the applicability
of the main results. Finally, in Section 2.6 a simulation example is presented. For thesake of clarity,
the proofs are reported in Section 2.7.

1.2 Synopsis of Chapter 3

In Chapter 3 the results presented in Chapter 2 are extended to incorporate a number of significant
practical considerations. Specifically, the main results of Chapter 2 are derived by considering dif-
ferent communication protocols, and it is discussed how these protocols impact on the quality of the
estimates.
Assuming that the measurements taken by a sensor at timet are instantaneously transmitted to its ad-
jacent (with reference to the network topology) neighboring agents, andlettingNT ≥ 1 be the number
of transmissions between two sensors within a sampling interval, two types of data communication
protocols are considered:

P1) For NT ≥ 1, at timet each sensor collects the sets of measurements taken from all other sensors
that are connected to it by a path of length less than or equal toNT .

P2) For NT = 1 and a sliding windowN ≥ 1 used in the DMHE algorithm, at timet each sensori
collects the sets of measurement from the other sensors which can transmit data to it within a
frame ofN steps, i.e. sensors that are connected by a path of length less than or equal toN.

Protocol P2 is schematically illustrated in Figure 1.1. Note also that the protocols can be combined
to obtain a more complex information transmission scheme. However, for simplicity,in Chapter 3 the
two cases P1 and P2 have been addressed independently. The main results shown in this chapter can
be summarized as follows.

A) In the case of communication protocol P1 the fundamental property of regional observability can
be enhanced by increasing the numberNT of data transmissions between agents within a sampling
interval. This produces two accompanying effects.

1) If all the isolated strongly connected subgraphs are collectively observable, there exists a
threshold value forNT (sayN̄t) such that regional observability is satisfied by all the sensors
for NT ≥ N̄T .

2) It enhances the stability properties of the estimation algorithm (in terms of eigenvalues location
of a properly defined dynamic matrix).

B) As for protocol P2, it is shown how to enhance regional observability and the stability propertyof
the estimation algorithm by increasing the estimation horizonN.
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A B

C

Figure 1.1: Illustration of the communication protocol P2 for N = 2.

The chapter is structured as follows. In Section 3.1 the definition of different communication protocols
is introduced and an analysis on how they affect the definition of regionalobservability is carried
out. In Section 3.2 we highlight the main implications on the distributed state estimation algorithm
when different transmission protocols are introduced. Finally, in Section 3.3, it is shown how the
parameters of the communication protocols can be properly tuned, so as to enhance the performance
of the estimation scheme.

1.3 Synopsis of Chapter 4

It is well known that, in Kalman filtering, the knowledge of the covariancesQw andRv of the noises
affecting the state equation and the output measurements, respectively, is strictly required. In fact, the
performance of the estimator can significantly deteriorate when the algorithm isfed with wrong values
of these matrices. However, in many practical cases,Qw andRv are not a-priori known and quite often
they are used as tuning parameters. The same knowledge is required in the MHE approach, i.e. the
one used in the developments described in the previous chapters, whereQw andRv are weighting
terms to be used in the performance index to be minimized, together with the (time-varying) matrix
Π weighting the state error at the beginning of the considered time window.
For these reasons, there is practical interest in the estimation of the noise variances, and for the solution
of this problem many methods have been proposed in the literature (see also the preliminary results
reported in Deliverable D5.1). Among them, two appear to be the most interesting and promising
ones. The first, which can be viewed as a seminal contribution in the field, is due to Mehra and traces
back to the early ’70s (see [32, 33]), while the second one has been recently developed (see [35], [1]).
In order to compare their performance, these methods have been implementedand tested in a number
of significant cases.

We denote byNt the number of data sets used to assess the mean and variance of each covariance
estimation method, and bŷQi , andR̂i the estimates ofQw, andRv respectively, obtained with the data
generated in testi. In order to test the quality of the covariance matrix estimation performances,the
following indices are used:
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• The Root Mean Square (RMS) error,

RMSq = 2

√

1
Nt

Nt

∑
i=1

‖Qw− Q̂i‖2
2, RMSr = 2

√

1
Nt

Nt

∑
i=1

‖Rv− R̂i‖2
2

• The mean of the∞-norm of errors (MIE),

MIEq =
1
Nt

Nt

∑
i=1

‖Qw− Q̂i‖∞, MIEr =
1
Nt

Nt

∑
i=1

‖Rv− R̂i‖∞

Three different test cases are studied in Chapter 4, two of which have been taken from the literature,
while the third corresponds to the linearized model of a single reach of the hydro-power valley, which
is one of the main benchmarks of the HD-MPC project. In all the cases, the results achieved have
shown that the more recent methods proposed in [35] and [1] outperform the basic Mehra’s algo-
rithm ([32, 33]). However, all these algorithms require a very large dataset to achieve reasonable
performance, so that the problem of properly tuning the MHE (and Kalman filters) remains a critical
practical problem.

In order to have a quick overview of the main results, one of the considered test cases refers to a
linear discrete time model with statex∈ R5, disturbancew∈ R3, and outputy∈ R2. Denoting byNd

the number of samples in the data set used for the estimation of the covariance matrices, the results
obtained are summarized in the following tables:

Table 1.1: Mehra’s algorithm

Nd ‖RMSq‖ ‖RMSr‖ ‖MIEq‖ ‖MIEr‖
103 3.8078 4.2695 3.0682 3.4597
104 1.0694 1.2339 0.8821 1.0353
105 0.3597 0.4002 0.2981 0.3297

Table 1.2: ALS algorithm ([1])

Nd ‖RMSq‖ ‖RMSr‖ ‖MIEq‖ ‖MIEr‖
103 1.6399 1.0288 1.3323 0.8369
104 0.7965 0.4961 0.6546 0.4092
105 0.3118 0.1942 0.2464 0.1533

It is apparent that acceptable performances can be obtained only with a very large data set, which
turns out to be a very restrictive condition for a practical implementation of themethods. For this
reason, it is believed that different tuning knobs that are easy to use would be required to make the
MHE algorithms practically useful in industrial applications.
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Chapter 2

Distributed Moving Horizon Estimation
for linear systems

In this chapter, the problem of distributed state estimation is formally posed and asolution is proposed
with the MHE approach. The content of this chapter is based on the paper [20].

2.1 Literature review

The problem of distributed state estimation with sensor networks has been widely discussed in the
literature. Consensus algorithms for distributed state estimation based on Kalmanfilters have recently
been proposed in [16, 6, 39, 37, 50, 38, 29]. In particular, in [39, 37, 50], consensus on measure-
mentsis used to reduce their uncertainty and Kalman filters are applied by each agent. In [38], three
algorithms for distributed filtering are proposed. The first algorithm is similar tothe one described
in [37], save for the fact that sensors exploit only partial measurementsof the state vector. The sec-
ond approach relies on communicating the state estimates among neighboring agents (consensus on
estimates). The third algorithm, namediterative Kalman consensus filter, is based on the discrete-
time version of a continuous-time Kalman filter plus aconsensus stepon the state estimates, which is
proved to be stable. However, stability has not been proved for the discrete-time version of the algo-
rithm and optimality of the estimates has not been addressed. Recently, convergence in mean of the
local state estimates obtained with the algorithm presented in [37] has been proved in [29], provided
that the observed process is stable.
In [6] consensus on the estimates is used together with Kalman filters. The weights of the sensors’
estimates in the consensus step and the Kalman gain are optimized in order to minimize the estima-
tion error covariance. A two-step procedure is also used in [16], where the considered observed signal
is a random walk. A two-step algorithm is proposed, where filtering and consensus are performed
subsequently, and the estimation error is minimized with respect to both the observer gain and the
consensus weights. This guarantees optimality of the solution.

More in general, the issue of distributed sensor fusion has been widely studied in the past years
e.g., [14, 51]. The paper [14] provides an algorithm accounting for dynamically changing inter-
connections among sensors, unreliable communication links, and faults, where convergence of the
estimates to the true values is proved, under suitable hypothesis of “dynamical” graph connectivity,
while in [51] the authors propose a minimum variance estimator for distributed tracking of a noisy
time-varying signal.

Other studies focused on the design of decentralized Kalman filters based on system decomposi-
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tion. Different solutions can be classified according to the model used by each subsystem for state-
estimation purposes and the topology of the communication network among subsystems. Early works,
e.g. [23], [41] require all-to-all communication and assume each subsystem has full knowledge of the
whole dynamics. Subsystems with overlapping states are also studied,e.g. in [31], where a fully
decentralized scheme is presented.

Notation. In and 000ν×µ denote then×n identity matrix and theν × µ matrix of zero elements,
respectively. Given a setS , |S | denotes its cardinality. The notation‖z‖2

S stands forzTSz, whereS
is a symmetric positive-semidefinite matrix. The symbol⊗ denotes the Kronecker product, and1M

is theM-dimensional column vector whose entries are all equal to 1. The matrix diag(η1, . . . ,ηs) is
block-diagonal with blocksηi . Finally, we use the short-handv = (v1, . . . ,vs) to denote a column
vector withs (not necessarily scalar) components.

2.2 System and sensor network

We assume that the observed process obeys to the linear dynamics

xt+1 = Axt +wt , (2.1)

wherext ∈ X ⊆ R
n is the state vector and the termwt ∈ W ⊆ R

n represents a white noise with co-
variance equal toQ. We assume that the setsX andW are convex and contain the origin. The initial
conditionx0 ∈ X is a random variable with meanµ and covarianceΠ0. The pair(A,

√
Q) is stabiliz-

able. Measurements on the state vector are performed byM sensors, according to the sensing model
(in general different from sensor to sensor)

yi
t = Ci xt +vi

t , i = 1, ...,M (2.2)

where the termvi
t ∈ R

pi represents white noise with covariance equal toRi .
The communication network among sensors is described by the directed graphG = (V ,E ), where

the nodes inV = {1,2, . . . ,M} represent the sensors and the edge( j, i) in the setE ⊆ V ×V models
that sensorj can transmit information to sensori. We assume(i, i) ∈ E , ∀i ∈ V . We denote withV k

i
the set ofk-th order neighbors to nodei, i.e., V k

i = { j ∈ V : there is a path of length at mostk from
j to i in G }. We will also use the shorthandVi = V 1

i and we denote asMi the number of nodesj
satisfying(i, j) ∈ E .
We introduce now the definition ofisolatedsubgraph. If the graphG is not strongly connected (i.e.,
it is reducible), one can partitionG into l nonempty irreducible subgraphsGi = (Ni ,Ai), i = 1, . . . , l
(see e.g. [18]). If, for allp∈ Ni , q∈ Vp implies thatq∈ Ni we say thatGi is isolated. Remark that if
G is strongly connected, it is also isolated.

We associate to the graphG the stochastic matrixK ∈ R
M×M, with entries

ki j ≥ 0 if ( j, i) ∈ E (2.3a)

ki j = 0 otherwise (2.3b)
M

∑
j=1

ki j = 1, ∀i = 1, ...,M (2.3c)

Any matrixK with entries satisfying (2.3) is said to be compatible withG . Given a graphG , there are
many degrees of freedom for the choice ofK, which will be exploited to guarantee the convergence
of the state estimator described in the following and/or to reduce the uncertaintyof the estimates.

Page 11/68



HD-MPC ICT-223854 Methods for distributed state and covariance estimation

It is assumed that, at a generic time instantt, sensori collects the measurements produced by itself
and its neighboring sensors. Moreover, each sensor transmits and receives information once within a
sampling interval. This means that measurements available to nodei arey j

t , with j ∈ Vi .
Three types of quantities can be distinguished:local, regional, andcollective. Specifically, a quantity
is local (with respect to sensori) when it is related to the nodei solely. A quantity isregional (with
respect to sensori) if it is related to the nodes inVi . Finally, a quantity iscollective, if it is related to
the whole network. For the sake of clarity, we use different notations forlocal, regional and collective
variables. Namely, given a variablez, zi represents its local version, ¯zi is its regional counterpart, and
z the collective one. For instance, we refer toyi

t in (2.2) as local measurement. On the other hand, if
Vi = { j i1, ..., j ivi

}, the regional measurement of nodei is given by

ȳi
t = C̄i xt + v̄i

t (2.4)

whereȳi
t = (y

j i1
t , . . . ,y

j ivi
t ), C̄i = [(C j i1)T . . . (C j ivi )T ]T , andv̄i

t = (v
j i1
t , . . . ,v

j ivi
t ). The dimension of vectors

ȳi
t and v̄i

t , and the number of rows of matrix̄Ci is p̄i = ∑vi
k=1 p j ik

. Furthermore, we denote bȳRi , the

covariance matrix related to the regional noise ¯vi
t on sensori, i.e., R̄i =diag(Rj i1

, . . . ,Rj ivi
).

According to the adopted terminology, three different observability notionscan be introduced.

Definition 1 The system islocally observableby sensor i (sensor i is locally observable) if the pair
(A,Ci) is observable. The system isregionally observableby sensor i (sensor i is regionally observ-
able) if the pair(A,C̄i) is observable. The system iscollectively observableif the pair (A,C∗) is
observable, whereC∗ = [(C1)T . . . (CM)T ]T . �

Notice that, for a given sensori, local observability implies regional observability, and regional
observability of any sensor implies collective observability, while all oppositeimplications are false.
We partition the setV into the subsetsVO = { j ∈ V : (A,C̄ j) is an observable pair}, VNO = { j ∈ V :
(A,C̄ j) is an unobservable pair}.

Given a single sensor model (2.1)-(2.2), thei-th sensor regional observability matrix̄O i
n is

Ō
i
n =

[
(C̄i)T (C̄iA)T . . . (C̄iAn−1)T

]T
(2.5)

Let P̄i
NO be the orthogonal projection matrix on ker(Ō i

n), that is the regionally unobservable subspace.
Similarly, let P̄i

O be the orthogonal projection on the regional observability subspace ker(Ō i
n)

⊥. Next,
we recall howP̄i

O and P̄i
NO can be computed. Letr i =rank(Ō i

n) and denote withξr i+1, . . . , ξn an
orthonormal basis of ker(Ō i

n). Let alsoξ1, . . . , ξr i be an orthonormal basis of ker(Ō i
n)

⊥ and define the
orthonormal and non-singular matrix̄T i = [ξ i

1, ...,ξ i
n]. Defining the matrices̄Si

O andS̄i
NO as

S̄i
O =

[
Ir i

0(n−r i)×r i

]

, S̄i
NO =

[
0r i×(n−r i)

In−r i

]

,

we have P̄i
O = T̄ iS̄i

O(S̄i
O)T(T̄ i)−1 and P̄i

NO = T̄ iS̄i
NO(S̄i

NO)T(T̄ i)−1. Furthermore, defining
T = diag(T̄1, . . . , T̄M), SO = diag

(
S̄1

O, . . . , S̄M
O

)
, andSNO = diag

(
S̄1

NO, . . . , S̄M
NO

)
, the collective pro-

jection matrices arePO = TSOST
OT−1 andPNO = TSNOST

NOT−1. Note thatS̄i
NO is empty when the

system is regionally observable by sensori. In this case we assume thatP̄i
NO = 000n×n.

2.3 The distributed estimation algorithm

Our aim is to design, for a generic sensori ∈ V , an algorithm for computing an estimate of the system
state based on regional measurements ¯yi

t and further pieces of information provided by sensorsj ∈ Vi .
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The proposed solution relies on MHE, in view of its capability to handle state andnoise constraints.
More specifically, we propose a Distributed MHE (DMHE) scheme where each sensor solves a MHE
problem.

2.3.1 The local minimization problem

For a given estimation horizonN ≥ 1, each nodei ∈ V at timet determines the estimates ˆxi andŵi of
x andw, respectively, by solving the constrained minimization problem (MHE-i)

Θ∗i
t = min

x̂i
t−N,{ŵi

k}t−1
k=t−N

Ji(t −N, t, x̂i
t−N, ŵi , ˆ̄vi ,Γi

t−N) (2.6)

under the constraints

x̂i
k+1 = Ax̂i

k + ŵi
k , k = t −N, . . . , t (2.7a)

ȳi
k = C̄i x̂i

k + ˆ̄vi
k (2.7b)

ŵi
k ∈ W (2.7c)

x̂i
k ∈ X (2.7d)

The local cost functionJi is given by

Ji(t −N, t, x̂i
t−N, ŵi , ˆ̄vi ,Γi

t−N) = 1
2 ∑t

k=t−N ‖ ˆ̄vi
k‖2

R̄−1
i

+

+1
2 ∑t−1

k=t−N ‖ŵi
k‖2

Q−1 +Γi
t−N(x̂i

t−N; ˆ̄xi
t−N/t−1)

(2.8)

We denote with ˆxi
t−N/t and with{ŵi

k/t}
t−1
k=t−N the optimizers to (2.6) and with ˆxi

k/t , k = t −N, ..., t

the local state sequence stemming from ˆxi
t−N/t and{ŵi

k/t}
t−1
k=t−N. Furthermore

ˆ̄xi
t−N/t−1 =

M

∑
j=1

ki j x̂
j
t−N/t−1 (2.9)

denotes the weighted average state estimates produced by sensorsj ∈ V i . In (2.8), the function
Γi

t−N(x̂i
t−N; ˆ̄xi

t−N/t−1) is the so calledinitial penalty, defined as follows

Γi
t−N(x̂i

t−N; ˆ̄xi
t−N/t−1)=

1
2
‖x̂i

t−N − ˆ̄xi
t−N/t−1‖2

(Πi
t−N/t−1)

−1+Θ∗i
t−1 (2.10)

whereΘ∗i
t−1 is the optimal cost defined in (2.6) and the positive-definite symmetric weighting matrix

Πi
t−N/t−1 appearing in (2.10) plays the role of a covariance matrix whose choice will be discussed in

details in the next paragraphs. The termΘ∗i
t−1 is a constant in (2.10) and could be neglected when

solving (2.6). However, since it plays a major role in establishing the main convergence properties of
DMHE, it is here maintained for clarity of presentation.

Note that, in view of the definition ofki j in (2.3), Γi(·) depends only upon regional quantities
and, since also the cost (2.8) and the constraints (2.7) depend only uponregional variables, the overall
estimation scheme is decentralized. Finally, notice thatΓi(·) embodies aconsensus-on-estimatesterm,
in the sense that it penalizes deviations of ˆxi

t−N/t−1 from ˆ̄xi
t−N/t−1. Consensus, besides increasing

accuracy of the local estimates, is fundamental to guarantee convergence of the state estimates to the
state of the observed system even if regional observability does not hold. In other words, it allows
sensori to reconstruct components of the state that cannot be estimated by thei-th regional model.
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2.3.2 The collective minimization problem

The local estimation problems (2.6)-(2.10) can be given a collective form more suitable for the fol-
lowing developments. To this end, letJ be the collective cost function given by

J(·) =
M

∑
i=1

Ji(t −N, t, x̂i
t−N, ŵi , ˆ̄vi ,Γi

t−N) (2.11)

Define the collective vectorŝxt =
(
x̂1

t , . . . , x̂
M
t

)
, ˆ̄vt =

(
ˆ̄v1
t , . . . , ˆ̄vM

t

)
, ŵt =

(
ŵ1

t , . . . , ŵ
M
t

)
, the quantities

ΘΘΘ∗
t−1 = ∑M

i=1 Θ∗i
t−1, K = K⊗ In,

ΠΠΠt1/t2 = diag
(

Π1
t1/t2

, . . . ,ΠM
t1/t2

)

(2.12)

and the collective initial penalty

ΓΓΓt−N(x̂t−N; x̂t−N/t−1) = ΓΓΓo
t−N(x̂t−N/t ; x̂t−N/t−1)+ΘΘΘ∗

t−1 (2.13)

where ΓΓΓo
t−N(x̂t−N/t ; x̂t−N/t−1) = 1

2‖x̂t−N − Kx̂t−N/t−1‖2
ΠΠΠ−1

t−N/t−1
. Then, using the matrices

R̄ = diag
(
R̄1, . . . , R̄M

)
, Q = diag(Q, . . . ,Q)∈ R

nM×nM, the collective cost functionJ(·) can be rewrit-
ten as

J(t −N, t, x̂t−N, ŵ, ˆ̄v,ΓΓΓt−N) = 1
2 ∑t

k=t−N ‖ ˆ̄vk‖2
R̄−1+

+1
2 ∑t−1

k=t−N ‖ŵk‖2
Q−1 +ΓΓΓt−N(x̂t−N; x̂t−N/t−1)

(2.14)

DefiningA =diag(A, ...,A) ∈ R
nM×nM andC̄ =diag(C̄1, ...,C̄M), also the constraints (2.7) can be

written in the following collective form

x̂k+1 = A x̂k + ŵk , k = t −N, . . . , t (2.15a)

ȳk = C̄ x̂k + ˆ̄vk (2.15b)

ŵk ∈ W
M (2.15c)

x̂k ∈ X
M (2.15d)

It is important to note that solving the problem

Θ∗
t = min

x̂t−N,{ŵk}t−1
k=t−N

{
J(t −N, t, x̂t−N, ŵ, ˆ̄v,ΓΓΓt−N) subject to (2.15)

}
(2.16)

is equivalent to solve theMHE-i problems (2.6), in the sense that ˆxi
t−N/t ,{ŵi

k/t}
t−1
k=t−N is a solution

to (2.6) if and only ifx̂t−N/t ,{ŵk/t}t−1
k=t−N is a solution to (2.16), wherêwk/t = (ŵ1

k/t , . . . , ŵ
M
k/t).

Let t1 verify t −N ≤ t1 ≤ t. We define thetransit costof a generic statez ∈ R
nM, computed at

instantt as

ΞΞΞt1/t(z) = min
x̂t−N,{ŵk}t−1

k=t−N

{
J(t −N, t, x̂t−N, ŵ, ˆ̄v,ΓΓΓt−N)

subject to (2.15) and̂xt1 = z} (2.17)

As discussed in [22],ΞΞΞt1/t(z) provides a measure of the likelihood thatx̂t1 is equal toz given the data
ȳk, k = t −N, . . . , t and the prior likelihoodΓΓΓt−N(·) onxt−N. Specifically, the lowerΞΞΞt1/t(z), the more
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likely the equalityx̂t1 = z. The priorΓΓΓt−N(·) can be interpreted as an approximation ofΞΞΞt−N/t−1(·).
The key condition involving these two terms, that will be fundamental for proving convergence of
DMHE (see Section 2.7.2), is that, for allz∈ X

ΓΓΓt−N(1M ⊗z; x̂t−N/t−1) ≤ ΞΞΞt−N/t−1(1M ⊗z) (2.18)

Equation (2.18) is similar to the assumption (C2) in [45] for centralized MHE. However, in (2.18),
the transit cost instead of the arrival cost appears. In factΞΞΞt−N/t−1 is a smoothing term, since it takes
into account data up to timet, in order to enforce consensus (in [44] this approach is calledsmoothing
update).

An explicit formula for a lower bound toΞΞΞt−N/t−1(z) (which coincides withΞΞΞt−N/t−1(z) for un-
constrained estimation problems, see the proof of Lemma 1 in Section 2.7.2) is given by a quadratic
cost function, i.e.

ΞΞΞt−N/t−1(z) ≥
1
2
‖z− x̂t−N/t−1‖2

(Π̃ΠΠt−N/t−1)
−1 +ΘΘΘ∗

t−1 (2.19)

for a suitable choice of̃ΠΠΠt−N/t−1. The computation of̃ΠΠΠt−N/t−1, and a procedure for updating the
matrix ΠΠΠt−N/t−1 in (2.13) satisfying (2.18) are given in the next section.

2.3.3 Update of the weighting matrices

As remarked in the previous section, the first step for updating matricesΠi
t−N/t−1, is to compute

Π̃ΠΠt−N/t−1 in (2.19), with the following diagonal structure

Π̃ΠΠt−N/t−1 = diag
(

Π̃1
t−N/t−1, . . . ,Π̃

M
t−N/t−1

)

(2.20)

where the update of̃Πi
t−N/t−1 is carried out by the sensori, based on regional pieces of information.

For this reason, this step is denotedregional weights update. Specifically, the matrix̃Πi
t−N/t−1, i ∈ V ,

is given by one iteration of the difference Riccati equation associated to a Kalman filter for the system
{

xt−N = Axt−N−1 +wt−N−1

z̄i
t−N = Ō i

Nxt−N +V̄ i
t−N

where matrixŌ i
N is defined in (2.5). If we define

C
i
N =








0 0 . . . 0
C̄i 0 . . . 0
...

...
...

...
C̄iAN−2 C̄iAN−3 . . . C̄i







∈ R

p̄iN×n(N−1) (2.21)

R̄i
N = diag

(
R̄i , . . . , R̄i) ∈ R

p̄iN×p̄iN (2.22)

QN−1 = diag(Q, . . . ,Q) ∈ R
n(N−1)×n(N−1) (2.23)

Cov[wt ] = Q (2.24)

Cov[V̄ i
t ] = R̄∗i

N = R̄i
N +C

i
NQN−1(C

i
N)T (2.25)

and set the covariance of the estimate ˆxi
t−N−1 as

Π∗i
t−N−1/t−2 = ((Πi

t−N−1/t−2)
−1 +(C̄i)T(R̄i)−1C̄i)−1 (2.26)
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the resulting Riccati recursion is given by

Π̃i
t−N/t−1 =R

i
(

Π∗i
t−N−1/t−2;Q, R̄∗i

N

)

(2.27)

=AΠ∗i
t−N−1/t−2AT +Q−AΠ∗i

t−N−1/t−2(Ō
i
N)T×

×
(

Ō
i
NΠ∗i

t−N−1/t−2(Ō
i
N)T + R̄∗i

N

)−1
Ō

i
NΠ∗i

t−N−1/t−2AT

Once the matrices̃Πi
t−N/t−1 have been computed, we perform aconsensus weights update, in order

to compute the matricesΠi
t−N/t−1 appearing in (2.10), which must satisfy the fundamental inequal-

ity (2.18). As stated in Lemma 1 in Section 2.7.2, (2.18) is verified ifΠΠΠt−N/t−1 fulfills the Linear
Matrix Inequality (LMI)

ΠΠΠt−N/t−1 ≥ KΠ̃ΠΠt−N/t−1KT (2.28)

The LMI (2.28) deserves a few comments. In order to make the initial penaltyΓΓΓt−N(·) a good ap-
proximation of the transit costΞΞΞt−N/t−1(·), one would require the matrixΠΠΠt−N/t−1 to be “as close as
possible” toKΠ̃ΠΠt−N/t−1KT . Therefore, in our case, one would make the matrixΠΠΠt−N/t−1 “as small as
possible”, subject to the constraint (2.28). A way for achieving this is to solve the LMI problem

min
(
trace(ΠΠΠt−N/t−1)

)
, subject to (2.28), (2.29)

whereΠΠΠt−N/t−1 has the block-diagonal structure (2.12). Notice that (2.29) could be solved by each
sensor since, similarly to the formula for updating covariances in Kalman filtering, the computation of
Πi

t−N/t−1 does not depend upon the collected measurements. However, problem (2.29) has a central-
ized flavor. This limitation is severe since, for instance, the LMI (2.28) has size n×M which implies
that the computational burden for solving (2.29) scales with the number of sensors, hence hampering
the application of DMHE to large networks. The next proposition provides away to circumvent this
problem.

Proposition 1 The matricesΠi
t−N/t−1 which satisfy,∀i ∈ V

Πi
t−N/t−1 ≥

M

∑
j=1

M jk
2
i j Π̃

j
t−N/t−1 (2.30)

also satisfy the LMI(2.28).

Proof 1 See Section 2.7.1.

Notice that, in the solution provided by Proposition 1, each node computesΠi
t−N/t−1 solely on the

basis ofΠ̃ j
t−N/t−1, provided by its neighbors,j ∈ Vi . In view of this, the LMI (2.28) can be solved in

a decentralized fashion by setting

Πi
t−N/t−1 =

M

∑
j=1

M jk
2
i j Π̃

j
t−N/t−1 (2.31)
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2.3.4 DMHE algorithm

In the following we sketch the steps that have to be carried out, in practice, inorder to apply the
proposed DMHE algorithm.

• Initialization: att = 0 all nodes store the matrixΠ0 and the estimate ˆx0/0 = µ of x0, whereµ is
given. Recall thatΠ0 is the covariance matrix related to the initial conditionx0

• if 1 ≤ t ≤N, the estimation horizonN is reduced tõN = t and nodei ∈V performs the following
steps

– computeΠi
t−Ñ/t−1

= Πi
0/t−1 from Π0 according to (2.31), for alli ∈ V ,

– solve the problemMHE-i, with initial penalty

Γi
t−Ñ =

1
2
‖x̂i

0− ˆ̄xi
0/t−1‖2

(Πi
0/t−1)

−1

• if t > N, at each time instant, every nodei ∈ V ,

– computesΠi
t−N/t−1 from ΠΠΠt−N−1/t−2 according to (2.26), (2.27) and (2.31),

– solves the problemMHE-i, with initial penalty

Γi
t−N =

1
2
‖x̂i

t−N − ˆ̄xi
t−N/t−1‖2

(Πi
t−N/t−1)

−1

2.4 Convergence properties of DMHE

The main purpose of this section is to extend the convergence results of [44] for centralized MHE to
the proposed DMHE scheme.

Definition 2 Let Σ be system(2.1)with w= 0 and denote by xΣ(t,x0) the state reached byΣ at time t
starting from initial condition x0. Assume that the trajectory xΣ(t,x0) is feasible,i.e.,xΣ(t,x0) ∈ X for

all t. DMHE is convergentif ‖x̂i
t/t −xΣ(t,x0)‖ t→∞−→ 0 for all i ∈ V . �

Note that, as in [44], convergence is defined assuming that the model generating the data is noiseless,
but the possible presence of noise is taken into account in the state estimation algorithm. Now, defining
the collective vectorxΣ(t,x0) = 1M ⊗xΣ(t,x0) andεεεk/t = x̂k/t −xΣ(k,x0), the following result can be
stated.

Theorem 1 If: (i) matricesΠi
t−N/t−1 are computed according to(2.26), (2.27)and(2.28), (ii) Πi

t−N/t−1

are bounded for all t, and for all i∈ V , (iii ) N ≥ n−1 and N≥ 1, then

a) there exists an asymptotically vanishing sequenceαt (i.e., ‖αt‖ t→∞−→ 0) such that the dynamics
of the state estimation error provided by the DMHE scheme is given by

εεε t−N/t = Φεεε t−N−1/t−1 +αt (2.32)

whereΦ = PNOKAPNO;

b) if (iv) Φ is Schur, then DMHE is convergent.
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Proof 2 See Section 2.7.2.

In Section 2.5 we will provide a method to choose a matrixK compatible withG such that condi-
tions(ii) and(iv) of Theorem 1 are satisfied.

We highlight that Condition(iv) does not require the asymptotic stability of system (2.1). More-
over, Theorem 1 does not hinge on observability properties. In fact, convergence of the estimation
error can be achieved even if a weaker detectability property is satisfied,i.e. if matrix Φ inherits only
stable eigenvalues ofA. However, it is of interest to determine conditions guaranteeing that the matrix
Φ does not inherit any (non-zero) eigenvalue ofA. The reason is twofold. First, this is tantamount to
requiring that the unobservable dynamics of all regional systems are affected by the communication
network. Second, the study is a preliminary step towards the goal of choosing K and, when possible,
the network topology, in order to assign the eigenvalues ofΦ at will. Let λ i

A andvi
A be the eigen-

values and the eigenvectors ofA, respectively, withi = 1, ...,n. Then, the eigenvalues ofA areλ i
A

(i = 1, . . . ,n), each one with multiplicityM. Moreover, denoting byej , j = 1, ...,M the canonical
basis vectors ofRM, the eigenspace related toλ i

A is span(e1⊗vi
A, ...,eM ⊗vi

A). In view of the previous
discussion, we want to investigate the following property.

Property 1 If λi is a non-zero eigenvalue of A, for allx ∈span(e1⊗vi
A, ...,eM ⊗vi

A), λ i
A andx are not

an eigenvalue/eigenvector pair forΦ. �

Conditions guaranteeing that Property 1 holds are given in the following Theorem, which is illustrated
in Figure 2.1.

Theorem 2 Consider a partition ofG into the irreducible subgraphsGi = (Ni ,Ai), i = 1, . . . , l. If for
all the isolated strongly connected subgraphsGi it holds

⋂

j∈Ni

ker(Ō j
n) = 0 (2.33)

then Property 1 is verified.

Proof 3 See Section 2.7.3.

In the case of strongly connected graphs we have the following result.

Corollary 1 If G is strongly connected and the system is collectively observable, then Property 1 is
verified.

Proof 4 See Section 2.7.3.

As a trivial case, assume that all sensors are regionally observable and arranged in a strongly connected
graphG . This yieldsPNO = Φ = 000nM×nM and convergence of DMHE follows from Theorem 1.
Moreover, Property 1 trivially holds.

2.5 Selection of the design parameter K

The key assumption of Theorem 1 that the sequence{Πt−N/t−1}∞
t=0 is bounded is not a-priori guar-

anteed by formula (2.31). However, under weak assumptions, boundedness of{Πt−N/t−1}∞
t=0 can be

enforced by properly choosing the entrieski j , ∀(i, j) ∈ E of K. Interestingly, we will also prove that
the proposed choice ofK results in assigning all the eigenvalues ofΦ equal to zero, that guarantees
convergence of DMHE and Property 1.
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1G

2G
3G

2

31

4

5

Figure 2.1: The graph is decomposed into three connected subgraphsG1, G2 andG3. Notice that
the node 2 ofG2 is a neighbor to node 3 ofG3. Therefore, graphG3 is not isolated. Analogously,
the subgraphG2 is not isolated, while the subgraphG1 is isolated. Condition (2.33) states that
collective observability is required for the subgraphG1, i.e., the pair(A,C∗

G1
) is observable, where

C∗
G1

= [(C1)T (C4)T (C5)T ]T .

Theorem 3 If VO is non-empty and, for all i∈ VNO, there exists k> 0 such thatV k
i
⋂

VO 6= /0, then
there exists K, compatible withG , such that matricesΠi

t−N/t−1 (i = 1, . . . ,M), resulting from(2.27)
and (2.31)are bounded for all i∈ V .

Proof 5 See Section 2.7.4.

The assumption of Theorem 3 that, for each node inVNO, there exists an incoming directed path
stemming from a node inVO requires that at least one sensor is regionally observable. This condition,
although not necessary to guarantee the existence of a suitableK, allows one to identify at least a
“reference” node, which provides reliable estimates even without communication, see the proof of
Theorem 3 in Section 2.7.4. The proof of Theorem 3 is constructive and leads to the following algo-
rithm for computing the matrixK. Algorithm 1 is illustrated in Figure 2.2. Given the availability of
methods for computing paths with a computational complexity that scales polynomiallywith |V | [10],
the overall algorithm is polynomial. Moreover, ifG is complete graph, Algorithm 1 provides a method
for designing a not a-priori fixed communication network. Furthermore, Algorithm 1 implicitly pro-
vides a rule for connecting a new regionally observable/unobservable sensor to the network without
spoiling the boundedness of the sequence{Πt−N/t−1}∞

t=0.
Finally, by selectingK according to Algorithm 1, the following result holds.

Corollary 2 Under the assumption of Theorem 3, if K is selected according to Algorithm 1, thenΦ
has all the eigenvalues equal to zero.

Proof 6 See Section 2.7.5.
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Algorithm 1 Selection ofK

1) for eachi ∈ VO, setkii = 1;

2) for eachi ∈ VNO, selectkii < 1√
Miσ (i)(A)

, whereσ (i)(A)=max{|λ (i)
j (A)| : λ (i)

j (A) is an unobservable

eigenvalue for the pair(A,C̄i)};

3) for eachi ∈ VNO select a nodej ∈ VO and a path fromj to i, in such a way that each node in the
path has at most one neighbor. We denote withE ∗ the set of edges selected in this way;

4) for all edges(i, j) ∈ E ∗, chooseki j = 1−kii , while for all edges(i, j) ∈ E \E ∗, setki j = 0. �

A final remark is due. Under the assumption of Theorem 3, the choice of a matrix K is not unique
and details on the available degrees of freedom in the definition of a suitableK (see Remark 1 after
the proof of Theorem 3) can be used to reduce the conservativenessimposed by Algorithm 1. In
fact the generated matrixK is lower triangular, up to a permutation of the node indexes. However,
the same arguments of the proof of Theorem 3 can be used to show that boundedness ofΠi

t−N|t−1 is

guaranteed also by any stochastic matrixK compatible withG with: (i) the same diagonal elements
of the matrixK obtained with Algorithm 1; (ii) arbitrary (non a-priori zero) elements in the lower
triangular part; (iii) sufficiently small (non a-priori zero) elements in the upper triangular part. Details
on point (iii) are given in Remark 1 in Section 2.7.4. This choice allows for a full exploitation of the
communication links. In view of this, and the fact that connected components of the graph produced
by Algorithm 1 can be linked through arcs, one expects to increase convergence rates of the estimates
to a common value. Moreover, the presence of more links results in an increased reliability against
communication faults.

2.6 Example

We consider the fourth-order system

xt+1 =







0.9962 0.1949 0 0
−0.1949 0.3819 0 0

0 0 0 1
0 0 −1.21 1.98







xt +wt (2.34)

wherext = [x1,t x2,t x3,t x4,t ]
T . Notice that the eigenvalues of the matrixA are 0.9264, 0.4517, 0.99±

0.4795i and, since|0.99±0.4795i| > 1, the system is unstable.
Let et ∈ R

4, be white noise with covarianceQe = diag(0.0012,0.038,0.0012,0.038). In the fol-
lowing we consider two cases

A. wt = et , Q = Qe andW = R
4 (unconstrained input noise)

B. wt = |et |, Q = Qe andW = R
4
≥0 (constrained input noise)

In both cases, we setµ = [0 0 0 0]T , Π0 = 100In andN = 2 in the DMHE algorithm.
The state of (2.34) is measured byM = 4 sensors with sensing model

yi
t = [1 0 0 0]xt +vi

t if i = 1,2
yi

t = [0 0 1 0]xt +vi
t if i = 3,4

Page 20/68



HD-MPC ICT-223854 Methods for distributed state and covariance estimation

2

3

4

56

7

2

3

4

56

7

1 1

G G

Figure 2.2: The original graphG (left panel) presents two types of sensors: nodes 1 and 2 are region-
ally observable (black circles), and nodes 3-7 are regionally unobservable (white circles). Therefore,
VO = {1,2} andVNO = {3,4,5,6,7}. The graphG̃ (right panel) is defined by selecting a subset of
edges (black ones) of the original graph, according to step 2 of Algorithm 1. Below each graph we
show the corresponding matrixK.

where Var(vi
t) = Ri = 1, i = 1, . . . ,4. Sensors are connected according to the graph in Figure 2.3,

where the matrixK is also given. It is apparent that the information available, at each instant,to node
1 consists of the measurements ofx1,t andx3,t (transmitted by sensor 4). Analogously, the information
available to node 3 consists ofx1,t (transmitted by sensor 2) andx3,t . It is easy to check that the
system is regionally observable by sensors 1 and 3. On the other hand, at each time instant sensor
2 can only use two different measurements ofx1,t (produced by sensors 1 and 2). Similarly, sensor
4 can only use two different measures ofx3,t (produced by sensors 3 and 4). Therefore, the system
is not regionally observable by sensors 2 and 4. In fact,P̄2

NO =diag(0,0,1,1), P̄4
NO =diag(1,1,0,0).

The eigenvalues of the matrixΦ are 0, 0.4632, 0.2258 and 0.4950± 0.2397i. SinceΦ is Schur,
convergence of DMHE is guaranteed by Theorem 1. Moreover, sincethe graph is strongly connected
and collective observability holds, Corollary 1 guarantees that also Property 1 holds.

In Figure 2.4(a) the estimation errors produced by all sensors in the caseA are shown. It is worth
noticing that the estimates produced by sensors 2 [resp. 4], relative to statesx3,t , x4,t [resp. x1,t , x2,t ]
display big errors fort < 6. In fact, these states cannot be observed by these sensors using regional
measurements. Nonetheless, the estimation errors of all sensors asymptoticallytend to the same
values, thanks to the consensus action embodied in the DMHE scheme. The estimation errors for
case B are depicted in Figure 2.4(b). Analogously to case A, convergence of DMHE can be noticed.
Figure 2.5 depicts the evolution of the eigenvalues of matricesΠi

t/t+N−1 over time. Note that these
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34

21

Figure 2.3: Communication network and associated matrixK

matrices are the same in the cases A and B. Indeed, the update procedure described in Section 2.3.3
does not depend on the estimates and can be run off-line. Further simulationexperiments have been
performed (results not shown for space limitations), in order to assess theeffect of the variation of
the horizon lengthN on the estimation performances. As expected, the larger the horizon length,the
more accurate the results. In fact, asN increases, a larger set of data is taken into account in the
optimization problem. However, the need of increasingN for optimality reasons is conflicting with
the need of reducing as much as possible the computational load.

2.7 Proofs

2.7.1 Proof of Proposition 1

Proof 7 For all vectorsx = [xT
1 . . . xT

M]T ∈ R
nM, from (2.28)it holds that

xTΠΠΠt−N/t−1x ≥ xTKΠ̃ΠΠt−N/t−1KTx (2.35)

Notice that the j-th block ofKTx corresponds to∑M
i=1ki j xi so that, in view of(2.20), the right-hand

side of equation(2.35)can be written as

‖KTx‖2
Π̃ΠΠt−N/t−1

=
M

∑
j=1

‖
M

∑
i=1

ki j xi‖2
Π̃ j

t−N/t−1

Using the triangle inequality we obtain

∑M
j=1‖∑M

i=1ki j xi‖2
Π̃ j

t−N/t−1

≤ ∑M
j=1M j ∑M

i=1k2
i j‖xi‖2

Π̃ j
t−N/t−1

= ∑M
i=1‖xi‖2

∑M
j=1 M j k2

i j Π̃
j
t−N/t−1

which proves that matricesΠi
t−N/t−1 verifying(2.30)also verify(2.28).

2.7.2 Proof of Theorem 1

The proof of Theorem 1 uses classical results for MHE, [43, 42, 44,45] and additional results we
provide next.

Lemma 1 If (2.28)is satisfied then, for z∈ X, (2.18)is fulfilled.
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Figure 2.4: Components of the estimation error[ei
1,t ,e

i
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4,t ]

T = xt − x̂i
t/t of the different sensors.

Solid line i = 1, dotted linei = 2 , dashed linei = 3, dash-dotted linei = 4.
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Figure 2.5: Evolution of the four eigenvalues (for each sensor) of the matricesΠi
t/t+N−1, i = 1, . . . ,4.

Solid line i = 1, dotted linei = 2 , dashed linei = 3, dash-dotted linei = 4.

Proof 8 (Proof of Lemma 1) Letz = 1M ⊗z. We define the “unconstrained” transit cost as

ΞΞΞu
t−N+1/t(z) = minx̂t−N,{ŵk}t−1

k=t−N
{J(t −N, t, x̂t−N, ŵ, ˆ̄v,ΓΓΓt−N)

subject to(2.15a), (2.15b)and x̂t−N+1 = z}

that, differently fromΞΞΞt−N+1/t in (2.17), does not account for input and state constraints. Notice that

ΞΞΞu
t−N+1/t(z) =

M

∑
i=1

Ξi,u
t−N+1/t(z) (2.36)

where the unconstrained transit cost associated to sensor i is

Ξi,u
t−N+1/t(z) = min

x̂i
t−N,{ŵi

k}t−1
k=t−N

{Ji(t −N, t, x̂i
t−N, ŵi , ˆ̄vi ,Γi

t−N)

subject to(2.7a), (2.7b)andx̂i
t−N+1 = z} (2.37)

We first compute explicitlyΞi,u
t−N+1/t(z). Recalling(2.7)we can write

V̄ [t−N+1,t]
i = Ȳ[t−N+1,t]

i − Ō
i
Nx̂i

t−N+1−C
i
NW[t−N+1,t−1]

i

where matrices C i
N and Ō i

N are defined in (2.21) and (2.5), respectively,

V̄ [t−N+1,t]
i = [( ˆ̄vi

t−N+1)
T , . . . ,( ˆ̄vi

t)
T ]T , Ȳ[t−N+1,t]

i = [(ȳi
t−N+1)

T , . . . ,(ȳi
t)

T ]T , and
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W[t−N+1,t−1]
i = [(ŵi

t−N+1)
T , . . . ,(ŵi

t−1)
T ]T . We can rewrite the i-th sensor’s cost function as

2(Ji −Θ∗i
t−1) = ‖Ȳ[t−N+1,t]

i − Ō
i
Nx̂i

t−N+1−C
i
NW[t−N+1,t−1]

i ‖2
(R̄i

N)−1+

+‖W[t−N+1,t−1]
i ‖2

(QN−1)−1 +‖ŵi
t−N‖2

Q−1+ (2.38)

+‖x̂i
t−N −

M

∑
j=1

ki j x̂
j
t−N/t−1‖

2
(Πi

t−N/t−1)
−1 +‖ȳi

t−N −C̄i x̂i
t−N‖2

(R̄i)−1

︸ ︷︷ ︸

(∗)

where matricesR̄i
N and Qi

N−1 are defined in(2.22)and (2.23), respectively. Minimizing the partial
cost(∗) in (2.38)with respect tôxi

t−N gives

x̂∗i
t−N/t−1=Π∗i

t−N/t−1[(Π
i
t−N/t−1)

−1
M

∑
j=1

ki j x̂
j
t−N/t−1+(C̄i)T(R̄i)−1ȳi

t−N]

with Π∗i
t−N/t−1 as in(2.26). Therefore one has that the term(∗) in (2.38)is equal to

‖x̂i
t−N − x̂∗i

t−N/t−1‖2
(Π∗i

t−N/t−1)
−1 (2.39)

up to a constant term.
We denote with Li(·) the minimum of Ji(·) with respect to vector W[t−N+1,t−1]

i , i.e.,

Li = min
{ŵk}t−1

k=t−N+1

Ji(·) (2.40)

We compute ∂Ji(·)
∂W[t−N+1,t−1]

i

= 0. The vector W[t−N+1,t−1],opt
i which solves the minimization problem(2.40)

is

W[t−N+1,t−1],opt
i =

(
(C i

N)T(R̄i
N)−1

C
i
N +(Qi

N−1)
−1)−1×

×(C i
N)T(R̄i

N)−1
(

Ȳ[t−N+1,t]
i − Ō

i
Nx̂i

t−N+1

)

(2.41)

Replacing(2.41)into (2.38)and using(2.39)one obtains

Li = ‖Ȳ[t−N+1,t]
i − Ō i

Nx̂i
t−N+1‖2

(R̄i
N+C i

NQN−1(C
i
N)T)−1+

+‖ŵi
t−N‖2

Q−1 +‖x̂i
t−N − x̂∗i

t−N/t−1‖2
(Π∗i

t−N/t−1)
−1

up to an additive constant term. The solution of the optimization problem(2.37)can be computed
through a Kalman filter recursion with respect to the modified dynamical system

{

x̂i
t−N+1 = Ax̂i

t−N +wt−N

Ȳ[t−N+1,t]
i = Ō i

Nx̂i
t−N+1 +V̄ [t−N+1,t]

i

(2.42)

where wt has covariance equal to Q, the covariance ofV̄ [t−N+1,t]
i is R̄i

N +C i
NQN−1(C

i
N)T , andΠ∗i

t−N/t−1
in (2.26) is the uncertainty of the initial condition guess. In this way we can write the unconstrained
transit cost as follows (see [22])

Ξi,u
t−N+1/t(z) =

1
2
‖z− x̂i,u

t−N+1/t‖
2
(Π̃i

t−N+1/t)
−1 +Θ∗,i,u

t (2.43)
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wherex̂i,u
t−N+1/t minimizes the unconstrained problem, andΘ∗,i,u

t is the optimal solution of the uncon-

strained minimization problem, and̃Πi
t−N+1/t is computed as in(2.27). Remark that the regionally

unobservable subspaces of system(2.42)and system(2.1)-(2.2)coincide.
From (2.43)and (2.36)one has that

ΞΞΞu
t−N+1/t(z) =

1
2
‖z− x̂u

t−N+1/t‖2
(Π̃ΠΠt−N+1/t)

−1 +ΘΘΘ∗,u
t (2.44)

where ΘΘΘ∗,u
t = ∑M

i=1 Θ∗,i,u
t and Π̃ΠΠt−N+1/t =diag(Π̃1

t−N+1/t , ...,Π̃
M
t−N+1/t). We also define

ΘΘΘt−N+1/t(x; x̂u
t−N+1/t) = 1

2‖x− x̂u
t−N+1/t‖2

(Π̃ΠΠt−N+1/t)
−1 in such a way that

ΞΞΞu
t−N+1/t(z) = ΘΘΘt−N+1/t(z; x̂u

t−N+1/t)+ ΘΘΘ∗,u
t . Let us finally consider the case of constrained estima-

tion. Following the rationale of the proof of Lemma 4 in [44] one has that, sincez lies in the feasibility
region by assumption, one obtains(2.19). Notice that the initial penalty termΓΓΓt−N+1(·), computed as
in (2.13)in z, is

ΓΓΓt−N+1(z; x̂t−N+1/t) =
1
2
‖z−Kx̂t−N+1/t‖2

ΠΠΠ−1
t−N+1/t

+ΘΘΘ∗
t =

=
1
2
‖z− x̂t−N+1/t‖2

KT ΠΠΠ−1
t−N+1/tK

+ΘΘΘ∗
t (2.45)

where the second equality holds becauseKz = z.
Using Schur complement, the LMI(2.28)is equivalent to

[

ΠΠΠt−N/t−1 K

KT Π̃ΠΠ−1
t−N/t−1

]

≥ 0 (2.46)

and, being matricesΠΠΠt−N/t−1 andΠ̃ΠΠt−N/t−1 positive definite,(2.46)is equivalent to

KTΠΠΠ−1
t−N/t−1K ≤ Π̃ΠΠ−1

t−N/t−1 (2.47)

From (2.19)and (2.45), (2.47)implies(2.18).

Lemma 2 If (2.28)is satisfied, then

Θ∗
t ≤ ΓΓΓ0(x0;x0/0) for all t ≥ 0 (2.48)

wherex0 = [xT
0 . . . xT

0 ]T ∈ R
nM andx0/0 = 1M ⊗µ.

Proof 9 (Proof of Lemma 2) First notice that, in view of Definition 2, the sequencexΣ(t,x0) verifies
the constraints(2.15d). In view of Lemma 1, equation(2.18) holds forz = xΣ(t,x0), for all t. By
optimality, we have

Θ∗
t ≤ ΞΞΞt−N+1/t(xΣ(t −N+1,x0)), ∀t ≥ 0

Furthermore
ΞΞΞt−N+1/t(xΣ(t −N+1,x0))≤J(t −N, t,xΣ(t −N,x0),0,0,ΓΓΓt−N)

Note that, from(2.14), one hasJ(t −N, t,xΣ(t −N,x0),0,0,ΓΓΓt−N) = ΓΓΓt−N(xΣ(t −N,x0); x̂t−N/t−1)
and in view of (2.18),Θ∗

t ≤ ΞΞΞt−N/t−1(xΣ(t −N,x0)) ≤ ΓΓΓt−N−1(xΣ(t −N−1,x0); x̂t−N−1/t−2). We can
further iterate this procedure in order to prove(2.48).
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Lemma 3 Assume that(a) N ≥ n−1, with N≥ 1, (b) ∃Π̄ such thatΠi
t−N/t−1 < Π̄, for all t, for all

i ∈ V , and(c)

max
k=t−N,...,t

(‖ ˆ̄vk/t‖,‖ŵk/t‖,ΓΓΓo
t−N(x̂t−N/t ; x̂t−N/t−1))

t→∞−→ 0 (2.49)

Then the dynamics of the state estimation error provided by the DMHE scheme is given by(2.32).

Proof 10 (Proof of Lemma 3) In the noiseless case, for any sensor i∈ V at any t, the output signal
is ȳi

k = C̄ixΣ(t,x0). Similarly to Lemma 4.3 in [43],

t

∑
k=t−N

‖ ˆ̄vi
k/t‖ =

t

∑
k=t−N

‖ȳi
k−C̄i x̂i

k/t‖ ≥ (2.50)

≥
t

∑
k=t−N

(‖ȳi
k−C̄iAk−(t−N)x̂i

t−N/t‖−‖C̄iAk−(t−N)x̂i
t−N/t −C̄i x̂i

k/t‖)

The first term at the right-hand side of(2.50)is

t

∑
k=t−N

‖ȳi
k−C̄iAk−(t−N)x̂i

t−N/t‖ = ‖Ō i
N+1(xΣ(t −N,x0)− x̂i

t−N/t)‖ (2.51)

whereŌ i
N+1 is the “extended” regional observability matrix of N+1 rows defined by replacing n with

N+1 in (2.5). From (2.7), one has

x̂i
k/t = Ak−(t−N)x̂i

t−N/t +
k−(t−N)

∑
j=1

A jŵi
k− j/t

The second term at the right-hand side of(2.50)can be bounded as

∑t
k=t−N ‖C̄iAk−(t−N)x̂i

t−N/t −C̄i x̂i
k/t‖ ≤

≤ ∑t
k=t−N ‖C̄i ∑k−(t−N)

j=1 A jŵi
k− j/t‖

≤ ‖C̄i‖∑t
k=t−N ∑k−(t−N)

j=1 ‖A‖ j‖ŵi
k− j/t‖

(2.52)

By replacing equations(2.51)and (2.52)into (2.50), one obtains

‖Ō i
N+1(x̂

i
t−N/t −xΣ(t −N,x0))‖ ≤

≤
t

∑
k=t−N

‖ ˆ̄vi
k/t‖+‖C̄i‖

t

∑
k=t−N

k−(t−N)

∑
j=1

‖A‖ j‖ŵi
k− j/t‖ (2.53)

Note that the matrixŌ i
N+1 at the left-hand side of(2.53)selects the observable part of(x̂i

t−N/t −xΣ(t−
N,x0)). Therefore, from(2.49), equation(2.53)leads to

‖P0(x̂t−N/t −xΣ(t −N,x0))‖ t→∞−→ 0, (2.54)

ΓΓΓo
t−N(x̂t−N/t ; x̂t−N/t−1)

t→∞−→ 0 (2.55)

In view of assumption(b), it follows that

ΓΓΓo
t−N(x̂t−N/t ; x̂t−N/t−1) ≥ ‖x̂t−N/t −xΣ(t −N,x0)‖diag(Π̄−1,...,Π̄−1)

Page 27/68



HD-MPC ICT-223854 Methods for distributed state and covariance estimation

Hence, from(2.55)

‖x̂t−N/t −xΣ(t −N,x0)‖ t→∞−→ 0 (2.56)

Note that, for k= t −N, ..., t −1

x̂k+1/t = Ax̂k/t + ŵk/t (2.57)

and that, in view of(2.49), one hasŵk/t → 0 as t→ ∞. Therefore one also has

x̂k+1/t −Ax̂k/t → 0 as t→ ∞ (2.58)

From now on, we introduce, for simplicity of notation, termsα j
t to indicate asymptotically van-

ishing variables,i.e., ‖α j
t ‖

t→∞−→ 0, for all j ∈ V . Formulae(2.54), (2.56)and (2.57)are equivalent to

POx̂t−N/t = POxΣ(t −N,x0)+α1
t (2.59a)

x̂t−N/t = Kx̂t−N/t−1 +α2
t (2.59b)

x̂t−N+1/t = A x̂t−N/t +α3
t (2.59c)

Recall that, by definition,PO +PNO = I. Therefore,

x̂t−N/t = POx̂t−N/t +PNOx̂t−N/t (2.60)

In (2.60), we replace termsPOx̂t−N/t andPNOx̂t−N/t according to(2.59a)and (2.59b), premultiplied
byPNO, respectively, we get

x̂t−N/t = POxΣ(t −N,x0)+PNOKx̂t−N/t−1 +α4
t (2.61)

SincePO +PNO = I, we writePOxΣ(t −N,x0) = xΣ(t −N,x0)−PNOxΣ(t −N,x0), and obtain

x̂t−N/t −xΣ(t −N,x0) = PNO(Kx̂t−N/t−1−xΣ(t −N,x0))+α4
t (2.62)

First recall that, sinceK is stochastic andxΣ(t−N,x0) = 1M ⊗xΣ(t−N,x0), KxΣ(t−N,x0) = xΣ(t−
N,x0). Then notice thatxΣ(t −N,x0) = AxΣ(t −N−1,x0). From (2.59c)one obtains

εεε t−N/t = PNOKA εεε t−N−1/t−1 +α5
t

= PNOKA (PNO+PO)εεε t−N/t +α5
t (2.63)

Equation(2.59a)implies that the termPOεεε t−N/t is asymptotically vanishing and equation(2.32)fol-
lows from(2.63).

Proof 11 (Proof of Theorem 1) By direct calculation, for all t≥ 0 one has

Θ∗
t −Θ∗

t−1 = 1
2 ∑t

k=t−N ‖ ˆ̄vk/t‖2
R̄−1 + 1

2 ∑t−1
k=t−N ‖ŵk/t‖2

Q−1+

ΓΓΓo
t−N(x̂t−N/t ; x̂t−N/t−1)

Furthermore,(2.48)follows from Lemma 2 and(2.28). Therefore it follows that12 ∑t
k=t−N ‖ ˆ̄vk/t‖2

R̄−1 +
1
2 ∑t−1

k=t−N ‖ŵk/t‖2
Q−1 + ΓΓΓo

t−N(x̂t−N/t ; x̂t−N/t−1)
t→∞−→ 0 and hence(2.49) holds. This, in turn, implies

(using Lemma 3) that the dynamics of state estimation error provided by theDMHE scheme is given
by (2.32).

Furthermore, from(2.32), convergence of the error to zero is guaranteed ifΦ is Schur.
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2.7.3 Proof of Theorem 2 and Corollary 1

Proof 12 (Proof of Theorem 2) If the graphG is not strongly connected it can be partitioned into
k irreducible subgraphsG ∗

1 , G ∗
2 , ..., G ∗

k of cardinality m1, ..., mk, and∑k
i=1 mi = M. Without loss of

generality, (i.e. by permuting sensor indexes) the matrix K can be brought in a block lower triangular
form (with k square diagonal blocks K11,...Kkk, of dimensions m1, ..., mk, respectively).

Notice that the block Kii is stochastic if and only if Ki j = 0 for j < i. In this case, the nodes of
the subgraphG ∗

i have no neighbors belonging to other subgraphs andG ∗
i is isolated. Moreover, if a

subgraphG ∗
i is isolated, the block Kii is stochastic and it has a single Frobenius eigenvalue equal to 1.

On the other hand, if a graphG ∗
i is not isolated, Kii is irreducible but not stochastic (specifically, the

sum of the entries of at least a row is smaller than1) and its Frobenius eigenvalue has absolute value
smaller than11. Notice that the eigenvalues of K are the eigenvalues of K11,...Kkk. So, the number of
eigenvalues of K equal to1 equals the number of isolated graphs in the network.

Note thatT−1AT = AKO =diag(A1
KO, . . . ,AM

KO) where Ai
KO is the “regional” observability Kalman

decomposition of A associated to sensor i, that is

Ai
KO =

[
Ai

O 0
Ai

21 Ai
NO

]

(2.64)

SincePNO = TSNOST
NOT−1 one has

Φ = PNOKÃ

whereÃ = TÃKOT−1, ÃKO =diag(Ã1
KO, . . . , ÃM

KO), and

Ãi
KO =

[
0 0
0 Ai

NO

]

Now we prove thatx ∈span(e1⊗ vi
A, ...,eM ⊗ vi

A) is not an eigenvector ofΦ associated to a non-
zero eigenvalueλ i

A. In general, given a vectorα ∈ R
M, with α 6= 0, one has that the eigenvectorx of

A can be written asx = α ⊗vi
A. We obtain

Ãx = diag(Ã1, . . . , ÃM)






α1vi
A

...
αMvi

A




=






α1Ã1vi
A

...
αMÃMvi

A






By construction,Ã jvi
A = λ i

Avi
A if vi

A belongs to the regionally unobservable subspace of sensor j.
OtherwiseÃ jvi

A = 0. We write, in general̃A jvi
A = fi j λ i

Avi
A, where

fi j =







1 if vi
A belongs to the regionally unobservable

subspace of sensor j
0 otherwise.

Defining fi = [ fi1, . . . , fiM ]T , we can write

Ãx = λ i
A(diag( fi)α)⊗vi

A

1This follows from the third Gershgorin theorem [53], dealing with irreducible matrices. Specifically, an eigenvalue of
an irreducible matrix (in our caseKii ), which is on the boundary of a Gershgorin circle, is located on the boundary of all
the Gershgorin circles. Since there is at least a row ofKii such that the sum of its entries is smaller than 1, 1 cannot be an
eigenvalue ofKii , and hence all the eigenvalues ofKii are strictly inside the unit circle (from the first Gershgorin theorem).
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FromK = K⊗ In we obtain

Φx = λ i
APNO(K⊗ In)

[
(diag( fi)α)⊗vi

A

]

Recall that(A⊗B)(C⊗D) = (AC)⊗ (BD) and hence

Φx = λ i
APNO(Kdiag( fi)α)⊗vi

A = λ i
A(diag( fi)Kdiag( fi)α)⊗vi

A

Finally, we obtain
Φ(α ⊗vi

A) = λ i
A(diag( fi)Kdiag( fi)α)⊗vi

A

from which it is apparent thatα ⊗ vi
A is an eigenvector ofΦ, with eigenvalueλ i

A 6= 0 if and only
if diag( fi)Kdiag( fi)α = α . Moreover, there existsα satisfying the previous equation if and only if
diag( fi)Kdiag( fi) has at least one eigenvector equal to1. This occurs if and only if fi j = 1 for all j
belonging to an isolated subgraph. This means that all the sensors of an isolated subgraph have at
least a common regionally unobservable eigenvector. Hence,x ∈span(e1⊗vi

A, ...,eM ⊗vi
A) can not be

an eigenvector ofΦ if (2.33)holds. This completes the proof.

Proof 13 (Proof of Corollary 1) Recalling Definition 1, collective observability holds if and only if
the observability matrixO∗ of the pair(A,C∗) is such that

ker(O∗) = 0 (2.65)

Notice that, up to a permutation of the rows ofO∗, we have
[
(Ō1

n)T . . . (ŌM
n )T

]T
. Therefore(2.65)

is equivalent to
⋂

i∈V

ker(Ō i
n) = 0

which is equivalent to(2.33)when the graph is strongly connected. This concludes the proof.

2.7.4 Proof of Theorem 3

To prove Theorem 3, a number of intermediate results are needed. First, we address the problem
of the stability of Riccati equations with respect to perturbations. This problem has been scarcely
explored in the literature, with the exception of [52] where stability is proved with respect to small
perturbations. In the following, we explore the issue under the lead of Theorem 4.1 in [13], and
provide global stability results.

Given a pair(A,C), and matricesQ≥ 0, R> 0 of appropriate size, consider the following Riccati
equation, affected by an exogenous perturbation term∆k

Πo
k+1 = (A−Go

kC)(Πo
k +∆k)(A−Go

kC)T +Q+Go
kR(Go

k)
T (2.66)

whereΠo
0 is the initial condition and matrixGo

k is the Kalman gain

Go
k = A(Πo

k +∆k)C
T (C(Πo

k +∆k)C
T +R

)−1
(2.67)

Assuming that the pair(A,C) is detectable and that the pair(A,
√

Q) is stabilizable, there exists a
unique solutionΠ̄ ≥ 0 of the algebraic Riccati equation associated to (2.66) with∆k = 0. In the
sequel, we will denote with

−→
X τ the sequence of matricesXk, with k = 0, . . . ,τ. In [30] the following

definition ofL -stability of system (2.66) is given.
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Definition 3 System(2.66) is L -stable from input∆k if, for a given normL , there existγ > 0 and
β > 0 such that

‖−→Π τ − Π̄‖L ≤ γ‖−→∆ τ‖L +β , ∀∆ ∈ L ,∀τ ∈ [0,∞).

From now on, we denote with‖−→X τ‖L∞ the∞-norm of the sequence‖Xt‖2, with t = 0, . . . ,τ.

Lemma 4 Given a detectable pair(A,C), system(2.66) is L∞-stable from a positive semi-definite
input ∆k ≥ 0.

Proof 14 We define a sequenceΠk (with Π0 = Πo
0) as follows

Πk+1 = (A−GC)(Πk +∆k)(A−GC)T +Q+GRGT , (2.68)

where G is an arbitrary gain such that F= A−GC is Hurwitz. Notice that G always exists, since
(A,C) is detectable. From(2.68), we obtain, for k≥ 1,

Πk+1−Πk = F(Πk−Πk−1)F
T +F(∆k−∆k−1)F

T

and hence, for i≥ 1,

Πi+1−Πi = F i(Π1−Π0)(F
T)i +

i

∑
j=1

F j(∆i+1− j −∆i− j)(F
T) j

Then, for k> 1,

Πk = Π0 +∑k−1
i=0 (Πi+1−Πi)

= ∑k−1
i=0 F i(Π1−Π0)(FT)i +Π0+

+∑k−1
i=1 ∑i

j=1F j(∆i+1− j −∆i− j)(FT) j
(2.69)

Notice that, assuming∆0 = 0 in (2.69)one has
k−1

∑
i=1

i

∑
j=1

F j(∆i+1− j −∆i− j)(F
T) j =

k−1

∑
i=1

F i∆k−i(F
T)i

and (2.69)gives

Πk =
k−1

∑
i=0

F i(Π1−Π0)(F
T)i +Π0 +

k−1

∑
i=1

F i∆k−i(F
T)i (2.70)

Let us set‖Π1−Π0‖2 = α and‖−→∆ ∞‖L∞ = δ̄ . Since F is Hurwitz, there existsµ > 0 and0< ν < 1
such that‖F i‖2 ≤ µν i . Remark that, since∆k ≥ 0, from optimality ofΠo

k [13] one has0≤ Πo
k ≤ Πk,

∀k≥ 0, and hence‖Πo
k‖2 ≤ ‖Πk‖2. Furthermore, from(2.70)

‖Πo
k‖2 ≤ ‖Πk‖2 ≤

k−1

∑
i=0

‖F i‖2
2‖Π1−Π0‖2 +‖Π0‖2+

+
k−1

∑
i=1

‖F i‖2
2‖∆k−i‖2 (2.71)

≤ αµ2
k−1

∑
i=0

ν2i +‖Π0‖2 + δ̄ µ2
k−1

∑
i=1

ν2i

≤ αµ21−ν2k

1−ν2 +‖Π0‖2 + δ̄ µ2ν21−ν2(k−1)

1−ν2

≤ αµ2 1
1−ν2 +‖Π0‖2 + µ2ν2 1

1−ν2 δ̄

The proof is concluded by applying Definition 3 withβ = αµ2 1
1−ν2 +‖Π0‖2+‖Π̄‖2 andγ = µ2ν2 1

1−ν2 .

Page 31/68



HD-MPC ICT-223854 Methods for distributed state and covariance estimation

The proof of Theorem 3 can now be completed by applying Lemma 4 and the small gain result
for interconnected systems reported in [17].

Proof 15 (Proof of Theorem 3) First we show, by applying(2.27)and (2.31), that it holds that:

Π̃i
t−N/t−1 ≤ R

i(
M

∑
j=1

M jk
2
i j Π̃

j
t−N−1/t−2;Q, R̄∗i

N) (2.72)

From (2.26), one hasΠ∗i
t−N−1/t−2 ≤ Πi

t−N−1/t−2. Then, by applying(2.27)and by optimality [13],

Π̃i
t−N/t−1=R

i
(

Π∗i
t−N−1/t−2;Q, R̄∗i

N

)

≤ R
i
(

Πi
t−N−1/t−2;Q, R̄∗i

N

)

and from(2.31)we obtain(2.72). Now, with reference to the i-th sensor characterized by the pair
(A, Ō i

N), we define the following sequence of matricesΠi
k

Πi
k+1 = R i

(

∑M
j=1M jk2

i j Π
j
k;Q, R̄∗i

N

)

(2.73)

with initial conditionΠi
0 = Π̃i

0/N−1. From optimality we obtain that̃Πi
k−N/k−1 ≤ Πi

k−N for all k ≥ N.

Therefore, in order to prove boundedness ofΠi
k−N/k−1, it is sufficient to show that the sequenceΠi

k is
bounded. This is the aim of the remainder of the proof.

If we define∆i
k = 1

Mik2
ii

∑M
j=1 j 6=i

M jk2
i j Π

j
k, (2.73)can be written as

Πi
k+1 = (A−Gi

kŌ
i
N)Mik2

ii

(
Πi

k +∆i
k

)
(A−Gi

kŌ
i
N)T+

+Q+Gi
kR̄

∗i
N(Gi

k)
T

= (
√

Mikii A−Gi
k

√
Mikii Ō

i
N)
(
Πi

k +∆i
k

)
×

×(
√

Mikii A−Gi
k

√
Mikii Ō

i
N)T +Q+Gi

kR̄
∗i
N(Gi

k)
T

(2.74)

where Gi
k is the optimal Kalman gain computed as

Gi
k = A(Πi

k +∆i
k)(Ō

i
N)T (

Ō
i
N(Πi

k +∆i
k)(Ō

i
N)T + R̄∗i

N

)−1

First we show that system(2.74) is L∞-stable. To this aim, we use Lemma 4. In order to satisfy
the assumption of Lemma 4, one must guarantee that the pairs(

√
Mikii A,

√
Mikii Ō

i
N) are detectable,

for all i ∈ V , which turns out to be a condition on the pairs(A,C̄i), and on the weights kii . First
notice that, by definition ofŌ i

N, the pair (
√

Mikii A,
√

Mikii Ō
i
N) is detectable if and only if the pair

(
√

Mikii A,
√

MikiiC̄i) is detectable. The assumption of Theorem 3 is sufficient to guarantee that,for
any regionally unobservable nodes, there exists a path stemming from a regionally observable node
i.e., for which the assumption of Lemma 4 is satisfied for any arbitrary value ofkii . In particular, in
step 1 of Algorithm 1 kii = 1 is chosen, for all i∈ VO.
On the other hand, if(A,C̄i) is not observable, the assumption of Lemma 4 can be verified if the pair
(
√

Mikii A,C̄i) is detectable. This leads to the choice of kii in step 2 of Algorithm 1.
Then, by Lemma 4,(2.74) is a finite gainL∞-stable system from input∆i

k ≥ 0, and there exist
γi > 0,βi > 0 such that

‖Πi
k− Π̄i‖2 ≤ γi‖

−→
∆ i

k‖L∞ +βi , ∀∆i
k ∈ L∞,∀k∈ [0,∞) (2.75)
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From the definition of∆i
k we get

‖Πi
k− Π̄i‖2 ≤

γi

Mik2
ii

M

∑
j=1 j 6=i

M jk
2
i j‖

−→
Π j

k‖L∞ +βi (2.76)

∀Π j
k ∈L∞, ∀k∈ [0,∞), ∀ j ∈ V i . Given(2.76), we resort to Theorem 82 in [17] for guaranteeing that

Πi
k are bounded if the matrix

Ψ = diag(
γ1

M1k2
11

, ...,
γM

MMk2
MM

)
(
K⊙Kdiag(M1, . . . ,MM)−diag(M1k2

11, ...,MMk2
MM)

)
(2.77)

is Schur. In(2.77)the symbol⊙ represents the element-wise matrix product.
To conclude the proof, we show that, under the assumptions of Theorem3, it is possible to find a

matrix K, compatible with the graph topology, such thatΨ is Schur.
First, from the graph(V ,E ), we derive a subgraphG ∗ = (V ,E ∗), by selecting edges(i, j)∈ E ∗ ⊆

E according to Algorithm 1.
By construction, the graphG ∗ is a forest [12], i.e. a graph composed by a number of mutually

disjoint trees. Moreover, the root of each tree is a regionally observable node while all other nodes
are regionally unobservable. It follows that each row of the matrix K produced by Algorithm 1 has
only one off-diagonal element that is different from zero3.

Up to a permutation of the node indexes, K is lower triangular (see, e.g. Figure 2.2). It follows
that the matrixΨ defined in(2.77)is triangular, with zero diagonal entries and hence, for any choice
of γi , I = 1, . . . ,M, Ψ is Schur. This concludes the proof.

Remark 1 The matrix K generated by Algorithm 1 is lower triangular, up to a permutation of the node
indexes. The same arguments of the above proof can be used to show,by continuity, that boundedness
of Πi

t−N|t−1 is guaranteed by any stochastic matrixK compatible with(V ,E ) with: (i) the same
diagonal elements of the matrix K; (ii) arbitrary elements in the lower triangular part; (iii) sufficiently
small elements in the upper triangular part so as to guarantee the matrixΨ defined in(2.77)is Schur.

2.7.5 Proof of Corollary 2

Proof 16 Recall that, from Algorithm 1, K is lower triangular up to a permutation of the sensor
indexes. Hence,K = K ⊗ In is a block lower triangular matrix. Recalling thatPNO andA are block
diagonal matrices,Φ = PNOKAPNO is a block lower triangular matrix as well. Accordingly, the
eigenvalues ofΦ correspond to the eigenvalues of the M diagonal blocks ofΦ, denoted asΦi , i ∈ V ,
and defined as

Φi = kii T̄
i(S̄i

NO)TS̄i
NO(T̄ i)−1AT̄ i(S̄i

NO)TS̄i
NO(T̄ i)−1

Let Ai
KO be defined as in(2.64). One has

Φi = kii T̄
i(S̄i

NO)TS̄i
NOAi

KO(S̄i
NO)TS̄i

NO(T̄ i)−1 (2.78)

2Note that, Theorem 8 in [17] can be directly applied when the constantβi in (2.75) is replaced by aK∞ function of
the initial conditions. Furthermore, Theorem 8 deals with global stability rather thanL∞-stability. However, a careful
examination of the proof reveals that Theorem 8 holds with reference toL∞- stability whenβ is constant, provided that the
gain map (represented by matrixΨ in our context) is linear. We also highlight that, although Theorem 8 is for continuous-
time systems, Proposition 15 in [17] guarantees that it holds for discrete-time systems as well.

3We also highlight that the matrixK produced by Algorithm 1 is compatible with the graph(V ,E ).
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and according to the definition of̄Si
NO, one also obtains

Ãi
KO = (S̄i

NO)TS̄i
NOAi

KO(S̄i
NO)TS̄i

NO =

[
0 0
0 Ai

NO

]

Therefore, from(2.78), Φi = T̄ i 1
kii

Ãi
KO(T̄ i)−1. It is thus clear that the non-zero eigenvalues ofΦ are

also eigenvalues of AiNO, for some i∈ VNO. If i ∈ VO, Φi = Ãi
KO = 000n×n. On the other hand, if i∈ VNO,

recall that, from step 2 of Algorithm 1, we have kii < 1√
Miσ (i)(A)

. Therefore,|λ j(Φi)| ≤ kii σ (i)(A) <
1√
Mi

< 1, for all j = 1, . . . ,n, for all i ∈ VNO. The Schureness ofΦ then follows from the Schureness of
Φi .

Finally, notice that the assumptions of Theorem 3 imply that, in all the isolated strongly con-
nected subgraphs ofG , there is at least one observable node, and hence(2.33)holds. Therefore, by
Theorem 2, Property 1 is verified. This concludes the proof.
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Chapter 3

DMHE extensions and analysis of the
impact of different communication
protocols

This chapter extends the results presented in Chapter 2 by considering different communication pro-
tocols among the agents of the sensor network. The effect of these protocols on the quality of the
estimates is also studied. The content of this chapter is based on the paper [21].

3.1 Communication protocols and models

The first assumption on the communication network is that measurements taken bya sensor at time
t are instantaneously transmitted to its first-order neighboring agents, i.e. to theagents directly con-
nected to it. Secondly, we letNT ≥ 1 be the number of transmissions between two sensors within a
sampling interval. Two types of data communication protocols can be assumed:

P1) For NT ≥ 1, at timet sensori collects the sets of measurementY i
k/t =

{

y j
k, j ∈ V

NT
i

}

, for all

k∈ [t −N, t].

P2) For NT = 1 and given N ≥ 1, at time t sensor i collects the sets of measurement

Y i
k/t =

{

y j
k, j ∈ V

t−k+1
i

}

, for all k∈ [t −N, t].

Note that, even ifG contains loops, measurements in the setsY i
k/t are considered just once. In the

case of protocol P2, the elements of the setsY i
k/t are illustrated in Figure 3.1. Note also that the

protocols can be combined to obtain a more complex information transmission scheme. However, for
simplicity, in the following the two cases P1 and P2 will be addressed independently.

We introduce now suitable notations for describing measurements available atnodei at timet with
both protocols. Let ¯yi

k/t be the vector of measurements inY i
k/t

1. We denote with ¯pi
t−k the dimension

of ȳi
k/t . Apparently, from matricesCi one can build matrices̄Ci

t−k ∈ R
pi

t−k×n such that

ȳi
k/t = C̄i

t−kxk + v̄i
k/t , t −N ≤ k≤ t (3.1)

1Note that the order in which elements ofY i
k/t are listed in ¯yi

k/t does not play any particular role.
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A B

C

Figure 3.1: Illustration of the communication protocol P2 for N = 2. The information available to
node 1 at timet consists ofY 1

k/t , k = t −2, t −1, t. The setY 1
t/t (panel A) collects the data measured

by nodes 1 and 2 at timet. The setY 1
t−1/t (panel B) contains data measured by nodes 1 and 2 at time

t −1 and data collected by node 2 at timet −1, that isY 2
t−1/t−1 =

{
y2

t−1,y
3
t−1

}
. Analogously,Y 1

t−2/t

contains (panel C) the measurementsy j
t−2, j = 1, . . . ,4.

wherev̄i
k/t collects noise samples affecting the measurements ¯yi

k/t . Note also that in case of protocol

P1, matricesC̄i
t−k are all identical.

We can now redefine aregionalquantity (with respect to sensori) as a quantity which is related
to the sensori and the nodes inV NT

i andV
t−k+1

i for protocols P1 and P2, respectively. Similarly to
Section 2.2, ¯yi

k/t in (3.1) will be referred to as a regional measurement. Furthermore, we denote by

R̄i
t−k =cov[v̄i

k/t ] ∈ R
p̄i

t−k×p̄i
t−k, the covariance matrix of the regional noise ¯vi

k/t , i.e., R̄i
t−k =diag{Rj , j ∈

V
NT

i } andR̄i
t−k =diag{Rj , j ∈ V

t−k+1
i } for protocols P1 and P2, respectively. The concept of regional

observability can also be re-defined, similarly to the previous chapter. However, besides depending
on the local observability properties of the single sensors, it is intimately linkedto the estimation
methodology adopted and to the communication graph properties. In fact, theregional models(2.1)
and (3.1) are time-varying models, since the output equation (3.1) dependsuponk, and the definition
of regional observability will refer to these kinds of models. In this context,the most suitable observ-
ability definition is that of uniform observability [45], which easily applies to time-varying systems,
as well as to nonlinear systems. For this reason, the following definitions depend upon the size of
the estimation horizon and, in particular, upon the number of output-dependent terms‖ ˆ̄vi

k‖2
(R̄i

t−k)
−1,

see (2.8) (i.e., N+1).
Given a single sensor model (2.1) and (3.1) and the considered communication protocol, thes step
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regional observability matrixŌ i
s for sensori is

Ō
i
s =








C̄i
s−1

C̄i
s−2A
...

C̄i
0As−1








(3.2)

Definition 4 The system isregionally observableby sensor i (or, equivalently, the sensor i isregion-
ally observable) on horizon N, if ker(Ō i

N+1) = 0. �

Now that the matrixŌ i
N+1 has been re-defined, the matricesP̄i

O, P̄i
NO, PO, andPNO are defined equiv-

alently as in Section 2.2.

3.2 The distributed estimation algorithm and main results

For a given estimation horizonN ≥ 1, each nodei ∈ V at timet solves the constrained minimization
problemMHE-i (2.6), under the constraints (2.7) where (2.7b) is replaced by the following one

ȳi
k/t = C̄i

t−k x̂i
k + ˆ̄vi

k (3.3)

wherek = t −N, . . . , t and the local cost functionJi is given by

Ji(t −N, t, x̂i
t−N, ŵi , ˆ̄vi ,Γi

t−N) = 1
2 ∑t

k=t−N ‖ ˆ̄vi
k‖2

(R̄i
t−k)

−1+

+1
2 ∑t−1

k=t−N ‖ŵi
k‖2

Q−1 +Γi
t−N(x̂i

t−N; ˆ̄xi(t −N/t −1))
(3.4)

We denote with ˆxi(t −N/t) and with
{

ŵi(k/t)
}t−1

k=t−N the optimizers to (2.6) and with ˆxi(k/t),

k = t −N, ..., t the local state sequence stemming from ˆxi(t −N/t) and
{

ŵi(k/t)
}t−1

k=t−N. Furthermore,
ˆ̄xi(t −N/t −1) denotes the weighted average state estimate

ˆ̄xi(t −N/t −1) =
M

∑
j=1

k∗i j x̂
j(t −N/t −1) (3.5)

wherek∗i j are the entries of the stochastic matrixK∗ compatible with the graphG ∗ induced byKNT . Of
course, the choiceK∗ = KNT is always possible. However, note that agenti can set the nonzero entries
k∗i j autonomously, as far as∑M

j=1k∗i j = 1. For instance, a possible choice isk∗i j = 1/|V NT
i |, and this

highlights that the choice of coefficientsk∗i j can be done in a distributed fashion. In (3.4), the function
Γi

t−N(x̂i
t−N; ˆ̄xi(t −N/t −1)) is theinitial penaltydefined, analogously to (2.10), as

Γi
t−N(x̂i

t−N; ˆ̄xi(t −N/t −1)) =
1
2
‖x̂i

t−N − ˆ̄xi(t −N/t −1)‖2
(Πi

t−N/t−1)
−1 +Θ∗i

t−1 (3.6)

whereΘ∗i
t−1 is the optimal cost defined in (2.6).

From now on, the proposed algorithm is equivalent to the one proposed inChapter 2. The only
further difference lies in the fact thatk∗i j andK∗ are used in (2.31) and in the definition ofΦ instead
of ki j andK. For instance, about the latter

Φ = PNOK ∗APNO

whereK ∗ = K∗⊗ In. The scalarMi is now defined as the number ofNT-th order neighbors of sensor
i. Having said this, the results presented in Section 2.4 still hold without any additional assumption or
further definition.
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3.3 Collective observability and convergence of DMHE

In this section we analyze some key implications of collective observability (seeDefinition 1). Specif-
ically, we investigate how the assumptions of Theorems 3 and 1 can be fulfilled,by properly tuning
N andNT , and provided that the assumptions of Theorem 2 are satisfied. First we consider the as-
sumptions of Theorem 3. Then, we prove thatN and NT can be chosen in such a way thatΦ is
Schur.

I) First of all, for sufficiently large values ofN andNT , the assumptions of Theorem 2 imply the
assumptions of Theorem 3. In fact, there exists a threshold valueN̄T [resp.N̄] such that, at least
one node in each isolated irreducible subgraphG j ( j = 1, . . . , l ) is observable forNT ≥ N̄T [resp.
N ≥ N̄].

II) We now study the matrixΦ. As a limit case, assume that all sensors enjoy regional observability.
This yieldsPNO = Φ = 000nM×nM and convergence of DMHE follows from Theorem 1. Consider
now the two data transmission protocols mentioned in Section 3.1.
In the case P1, regional observability can be enhanced by increasing the numberNT of data trans-
missions between agents within a sampling interval. The increase ofNT has two accompanying
effects.

1) If all the isolated strongly connected subgraphs are collectively observable, there exists a
threshold value forNT (sayN̄t) such that regional observability is satisfied by all the sensors
for NT ≥ N̄T . So, forNT ≥ N̄T one hasPNO = 000nM×nM.

2) If K∗ = KNT , the modulus of the eigenvalues of matrixΦ decrease asNT increases. In fact, the
eigenvalues ofK ∗ are equal to the eigenvalues ofKNT . SinceK is stochastic, it hasl (being
l the number of non empty irreducible subgraphs in which one can partitionG ) eigenvalues
equal to 1, andM − l eigenvalues with modulus strictly less than 1. We denote withλ j the
j-th eigenvalues ofK. The corresponding eigenvalues ofK∗ verify |λ NT

j | ≤ |λ j |, resulting in
a decrease of the eigenvalues ofΦ.

On the other hand, if the communication protocol P2 is employed, we can enhance regional
observability and the Schureness ofΦ by increasing the estimation horizonN. As a limit case,
if all the isolated strongly connected subgraphs are collectively observable, there exists a value
N̄ such that,N ≥ N̄ implies thatPNO = 000nM×nM, which guarantees thatΦ is Schur.
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Chapter 4

Covariance estimation - a critical analysis
of existing algorithms and some new ideas

Kalman filtering has been a widely used estimation technique since the ’60s. It guarantees optimal
estimation performances (in that it aims to minimize the estimation error variance) assuming that
disturbances affect the system dynamics and the system measurements.

The covariances of the noisy disturbances entering in the model and the measurements are consid-
ered as the tuning parameters of the filter. However, in many applications the true values of such noise
covariances are not known. In this scenario, the optimality of the Kalman filtercan not be guaranteed.

Hence, in order to use the optimal filter, we need to know the covariances ofthe disturbances affecting
the system, from which the optimal Kalman filter gain can be computed. In this report the problem of
estimating the noise covariances for linear, time-invariant systems is addressed.

First a statement of the problem is given. Then the state of the art is presented. Two main algo-
rithms are presented and tested on two well-known academic examples. Finally,the selected scheme
is tested on a realistic problem.

4.1 Problem statement

Consider a linear, time-invariant, discrete-time model:

xk+1 = Fxk +Buk +Gwk

zk = Hxk +vk
(4.1)

wherex∈ R
n is the system state,F ∈ R

n×n is the transition matrix,B∈ R
n×m is the control matrix,

G∈ R
n×g is the disturbance matrix,z∈ R

p is the observation vector, andH ∈ R
p×n is the observation

matrix. Note that,{uk}Nd
k=0, {wk}Nd

k=0, and{vk}Nd
k=0 are the control, the state uncertainty vector (or

process-noise), and the measurement noise sequences respectively, with Nd the size of the sequences.
The disturbancesv andw are zero-mean Gaussian white noises withRv andQw as covariance matrices,
respectively.

State estimates of the system are computed using a linear, time-invariant state estimator:

x̂k+1|k = Fx̂k|k +Buk

x̂k|k = x̂k|k−1 +L
[
zk−Hx̂k|k−1

] (4.2)
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whereL is the estimator gain, which is not necessarily the optimal gain. The residuals ofthe output
equationszk −Hx̂k|k−1 are the so-calledL-innovations, since these are calculated using a state esti-
mator with gainL. The variance estimation problem is reduced to find the true matricesQw andRv

using real data from the innovations, with the final goal of computing the optimal estimator’s error
covariance matrix and the optimal filter gain.

4.1.1 The effect of erroneous covariance matrices on the filter optimality

Let consider the effect of using a non-optimal gain on the performance of the filter due to the assump-
tion of erroneous covariance matricesQw andRv [24]. It will be shown that the use of the erroneous
covariance matrices gives a suboptimal solution of the filtering problem.

First, letLk be the optimal Kalman gain calculated with the real covariance matricesQw andRv at
instantk. Consider the use of this gain in a filter as in (4.2). The error in the estimation is defined as
εk|k−1 = xk− x̂k|k−1. Then, an expression for the error dynamics is given by:

εk+1|k = Fxk +Buk +Gwk−F
[
x̂k|k−1 +Lk

(
zk−Hx̂k|k−1

)]
−Buk

= Fxk +Gwk−F(I −LkH)x̂k|k−1−FLkzk

= Fxk +Gwk−F(I −LkH)x̂k|k−1−FLk(Hxk +vk)

(4.3)

and after some calculations,

εk+1|k = F(I −LkH)εk|k−1 +Gwk−FLkvk (4.4)

The estimation error covariance is defined as:

Mk = E
{

εk|k−1εT
k|k−1

}

(4.5)

whereE{·} denotes the statistical expectation. Using (4.4) in the last equation we obtain

Mk+1 = E
{[

F(I −LkH)εk|k−1 +Gwk−FLkvk
][

F(I −LkH)εk|k−1 +Gwk−FLkvk
]T
}

(4.6)

which after some computations allows to write the expression for the estimation error covariance
matrix in a recursive way as:

Mk+1 = FMkF
T −FMkH

TLT
k FT −FLkHMKFT +FLkHMKHTLT

k FT +GQwGT +FLkRvL
T
k FT (4.7)

Equation (4.7) can be rearranged as:

Mk+1 = F
[
Mk−MkH

TLT
k −LkHMk +Lk(HMkH

T +Rv)L
T
k

]
FT +GQwGT (4.8)

Minimizing (4.8) with respect to the gainLk we obtain:

min
Lk

Mk+1 = min
Lk

{
F
[
Mk−MkH

TLT
k −LkHMk +Lk(HMkH

T +Rv)L
T
k

]
FT +GQwGT} (4.9)
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which gives the classic result of the Kalman filter,

Lk = MkH
T (HMkH

T +Rv
)−1

(4.10)

On the other hand, a suboptimal gainLe
k can be computed by using the erroneous covariance matrices

Qe
w andRe

v, where the super index(·)e denotes a erroneous quantity. Let us assume that the gain used
in the filter deviates from the optimal gain by a quantityδLk, i.e,

Le
k = Lk +δLk (4.11)

Then the suboptimal estimation error covariance matrix can be written as:

Me
k+1 = F

[

Me
k −Me

kHT (Le
k)

T −Le
kHMe

k +Le
k(HMe

kHT +Re
v)(Le

k)
T
]

FT +GQe
wGT (4.12)

From (4.8) and (4.12) we can verify that, whileLk minimizesMk in (4.8), the gain

Le
k = Me

kHT (HMe
kHT +Re

v

)−1
(4.13)

minimizes (4.12), but the desired (4.8) as claimed.

4.2 State of the art

The problem of estimating the covariances from open-loop data has long been subject of research
in the field of adaptive filtering, and according to [35] the methods can be divided into four general
categories: Bayesian [7, 25], maximum likelihood [11, 28], covariance matching [34], and correlation
techniques. Bayesian and maximum likelihood methods have fallen out of favor because of their
sometimes excessive computation times. They may be well suited to a multi-model approach as
in [8]. Covariance matching is the computation of the covariances from the residuals of the state
estimation problem. Covariance matching techniques have been shown to givebiased estimates of the
true covariances. The fourth category is correlation techniques, largely pioneered by Mehra [32, 33]
and Carew and B́elanger [9, 15]. In [35] an alternative method to the one presented in [32, 33] is
described, where necessary and sufficient conditions for uniqueness of the estimated covariances are
also given. This method, called Autocovariance Least Squares (ALS) outperforms significantly the
results obtained by the algorithm proposed in [32] as it will be shown later.

In the sequel the algorithm proposed in [32] and the ALS algorithm presented in [35] will be presented
in detail. The first is presented in order to show the starting point in the literature about the correlation-
based covariance estimation schemes. Then, a deep explanation of the ALSmethod is given.

4.2.1 The pioneering work of Mehra [32].

A covariance estimation scheme was proposed by Mehra at the beginning ofthe ’70s. In [32] a three
step covariance estimation procedure using theL-innovations of the system from a sub-optimal tuning
of the filter is shown. The preliminary step consists of an optimality test in order toverify when a
innovation sequence originates from a suboptimal filter. The optimality test is described in detail in
the following:
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Optimality test . First a test of optimality is made to theL-innovation sequence. If the test gives
positive results about the optimality of the innovation sequence, the next steps are discarded and the
assumed covariances can be taken as the real ones. Otherwise the realcovariances must be estimated.
To show how the test of optimality works, consider the normalized autocorrelation coefficients of the
L-innovation sequence,

[ρ̂k]i j =

[
Ĉk
]

i j
{[

Ĉ0
]

ii

[
Ĉ0
]

j j

}1/2
(4.14)

where
[
Ĉk
]

i j denotes the element in thei-th row and thej-th column of the matrixĈk, which is
known as the estimated autocorrelation function of theL-innovation sequence and can be estimated as
follows:

Ĉk =
1

Nd

Nd

∑
i=k

ZiZ
T

i−k (4.15)

with Zk = zk −Hx̂k|k−1 as theL-innovation at the k-th time instant. Therefore, the test consist of
analyzing the sequences{ρ̂k}ii , k > 0 and checking the number of times they lie outside the band

±(1.96/N1/2
d ), assuming a confidence band of 95%. If this number is less than 5% of the total, the

sequence{Z1, ...,ZNd} is white [26].

The three steps to perform the covariance estimation algorithm are the following:

1. Computation of M̂ĤT . In order to computeMHT , consider the autocorrelation function, which
is formally defined as

Ck = E
{
ZiZ

T
i−k

}
(4.16)

TheL-innovation can be written as a function of the estimation errorεi = xi − x̂i|i−1 as:

Zi = Hεi +vi (4.17)

Using (4.16) and (4.17), the autocorrelation function can be written as:

Ck = E
{
(Hεi +vi)(Hεi−k +vi−k)

T}

= H E
{

εiεT
i−k

}

︸ ︷︷ ︸

(i)

HT +H E
{

εiv
T
i−k

}

︸ ︷︷ ︸

(ii)

+E
{

viεT
i−k

}
HT

︸ ︷︷ ︸

=0

+E
{

viv
T
i−k

}

︸ ︷︷ ︸

=0

(4.18)

The computation of(i) can be performed using the recursive equation (4.4), whereLk = L (the
filter is considered in stationary conditions).

By iterating (4.4), we obtain that

εi = [F(I −LH)]k εi−k−
k

∑
j=1

[F(I −LH)] j−1FLvi− j +
k

∑
j=1

[F(I −LH)] j−1Gwi− j (4.19)
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Equation (4.19) is post multiplied byεT
i−k in order to get an expression for(i),

E
{

εiεT
i−k

}
= [F(I −LH)]k M (4.20)

whereM is the steady state error covariance matrix for the suboptimal case. An expression for
M can be obtained directly from (4.4) as:

M = E
{

εiεT
i

}

= F(I −LH)M(I −LH)TFT +FLRLTFT +GQwGT
(4.21)

The computation of(ii) is based on (4.19) post multiplied byvT
i−k,

E
{

εiv
T
i−k

}
= − [F(I −LH)]k−1FLRv (4.22)

Hence, replacing (4.20) and (4.22) in (4.18) it follows that:

Ck = H [F(I −LH)]k MH −H [F(I −LH)]k−1FLRv

= H [F(I −LH)]k−1F
[
MHT −L(HMHT +Rv)

] (4.23)

Hence

Ck = HMHT +Rv, k = 0

= H [F(I −LH)]k−1F
[
MHT −LC0

]
, k > 0

(4.24)

From (4.24) the termMHT can be obtained in two alternative ways, i.e:

MHT = B†








C1 +HFLC0

C2 +HFLC1 +HF2LC0
...
Cn +HFLCn−1 + · · ·+HFnLC0








(4.25)

or

MHT = KC0 +A†[ C1 · · · Cn
]T

(4.26)

where(·)† denotes the Moore Penrose pseudoinverse of(·), B is the product between the ob-
servability matrix1 of the system and the transition matrix,

B≡ O(F,H) ·F (4.27)

1the observability matrix is defined asO(F,H) =
[

HT (HF)T · · ·
[
HFn−1

]T
]T
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and,

A =








HF
HF(I −LH)F
...
H
[
F(I −LH)n−1

]
F








(4.28)

Then an estimate of the productMHT (denotedM̂ĤT) can be calculated using the estimated
values of the autocorrelation function using either (4.25), (4.26). The author suggests to use
(4.26) since he claims that it is numerically better conditioned than (4.25).

2. Estimation of Rv. The covariance of the state noise can be computed directly using (4.24) for
k = 0,

R̂v = Ĉ0−H(M̂ĤT) (4.29)

3. Estimation of Qw. This step becomes more complicated since matrixQw is only involved in the
error covariance matrix equation (4.21). Then, onlyn× p linear relationships for the unknown
parameters inQw are available from this equation. If the number of unknown parameters are
greater thann× p, an alternative procedure must be used. Moreover, as the estimates forMHT

andRv are not helpful in the way the equation (4.21) is written, a derived equationfrom (4.21)
must be found to get advantage of the estimations. In order to explain how it works, consider
that (4.21) can be rewritten as follows:

M = F(I −LH)M(I −LH)TFT +FLRvL
TFT +GQwGT

= FMFT +Ω+GQwGT
(4.30)

whereΩ = F
[
−LHM−MHTLT +LC0LT

]
FT . Substituting back forM in (4.30)n times and

separating the terms involvingQw, we have that

k−1

∑
j=0

F jGQwGT(F j)T = M−FkM(Fk)T −
k−1

∑
j=0

F jΩ(F j)T , k = 1, ...,n (4.31)

Premultiplying both sides of last equation byH and post-multiplying by(F−k)THT

k−1

∑
j=0

HF jGQwGT(F j−k)THT =HM(F−k)THT −HFkMHT

−
k−1

∑
j=0

HF jΩ(F j−k)THT , k = 1, ...,n.

(4.32)

Note that the right-hand side of (4.32) is completely determined byMHT andC0. Then the
estimations of these terms allow to determine the components of the matrixQw. One of the
drawbacks in the estimation of the components of matrixQw is that the equations described by
means of (4.32) are not all linearly independent. Then, a linear independent subset of these
equations must be chosen.
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4.2.2 Autocovariance Least Squares -ALS- [35]

In [35] a method (constrained Autocovariance Least Squares -ALS-)to estimate the variances of the
disturbances entering the process using routine operating data is presented. In this paper the results
are compared with those presented in [32], which is considered as a seminal paper in this subject. As
a result of this comparison, Odelsonet al. stated the inability of the previous contribution to tackle
the covariance estimation in certain cases. Indeed, it is shown that in specific examples, Mehra’s
scheme does not work properly. Moreover, one of the main criticisms on theMehra’s algorithm is
the use of a three-step procedure to compute the covariances. The methodpresented in [35] uses a
one-step procedure, which yields covariance estimates with lower uncertainty on all tested examples.
The formulation used in this paper provides necessary and sufficient conditions for uniqueness of the
estimated covariances, previously not available in the literature. Finally, the authors give a formulation
to avoid negative definite estimates with a convex optimization problem using a barrier term.

In order to show the algorithm, consider the dynamic evolution of the state estimation error,εk =
xk− x̂k|k−1, from (4.4):

εk+1 = (F −FLH)
︸ ︷︷ ︸

F̄

εk +
[

G −FL
]

︸ ︷︷ ︸

Ḡ

[
wk

vk

]

︸ ︷︷ ︸

w̄(k)

(4.33)

Then, the state-space model of theL-innovations is defined as:

εk+1 = F̄εk + Ḡw̄k

Zk = Hεk +vk
(4.34)

In the sequel, the following conditions are assumed to hold:

• The pair(F,H) is detectable.

• The transition matrix of the estimation error dynamics is stable.

• E(ε0) = 0, Cov(ε0) = M−
0

The last assumption gives the possibility of using the Lyapunov equation to guarantee a recursion for
the covariance of the estimation error:

M−
j = F̄M−

j−1F̄T + ḠQ̄wḠ, j = 1, ...,k. (4.35)

Using (4.35) and the error dynamics, the expected values of the innovations can be written alge-
braically:

E
{
ZkZ

T
k

}
= HM−HT +Rv

E
{
Zk+ jZ

T
k

}
= HF̄ jM−HT −HF̄ j−1FLRv, j ≥ 1

(4.36)

Moreover, the autocovariance matrix (ACM) is defined as:

R(N) = E






C0 · · · CN−1
...

.. .
...

CT
N−1 · · · C0




 (4.37)
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whereCk is defined in (4.16) andN is a user-defined parameter. Using (4.36) and (4.37) the ACM of
theL-innovations can be written as:

R(N) = OALSM
−
O

T
ALS+Γ

[
N⊕

i=1

ḠQ̄wḠT

]

ΓT +Ψ

[
N⊕

j=1

Rv

]

+

[
N⊕

j=1

Rv

]

ΨT +

[
N⊕

j=1

Rv

]

(4.38)

where,

OALS=








H
HF̄

...
HF̄N−1








, Γ =








0 0 0 0
H 0 0 0
...

...
...

HF̄N−2 · · · H 0








, Ψ = Γ

[
N⊕

j=1

−FL

]

Also, the covariance of the whole noise is,

E
[
w̄(k)(w̄(k))T]= Q̄w =

[
Qw 0
0 Rv

]

In order to show the problem formulation as a Least-Squares problem, (4.38) is given in stacked form.
Henceforth,(·)s denotes the outcome to apply thevecoperator to(·).(4.38) is written in a stacked way
using the standard definitions [35] of the Kronecker sum⊕, Kronecker product⊗, and direct sum

⊕

as:

[R(N)]s =
[
(OALS⊗OALS)(In2 − F̄ ⊗ F̄)−1 +(Γ⊗Γ)In,N

]
(G⊗G)(Qw)s

+
{[

(OALS⊗OALS)(In2 − F̄ ⊗ F̄)−1 +(Γ⊗Γ)In,N
]
(FL⊗FL)+

[
Ψ⊕Ψ+ Ip2N2

]
Ip,N

}
(Rv)s

(4.39)

where also the Lyapunov equation is written as:

M−
s = (F̄ ⊗ F̄)M−

s +(ḠQ̄wḠT)s (4.40)

Equation (4.39) can be written as a LS problem, considering thatR(N)s can be estimated from (4.37)
using the acquired data.

GivenA x = b, with

D =
[

(OALS⊗OALS(In2 − F̄ ⊗ F̄)−1 +(Γ⊗Γ)In,N)
]

A =
[

D(G⊗G) D(FL⊗FL)+
[
Ψ⊕Ψ+ Ip2N2

]
Ip,N

]

x =
[

(Qw)T
s (Rv)

T
s

]T

b = R(N)s

whereIp,N is a permutation matrix to convert the direct sum to a vector, i.eIp,N is the(pN)2× p2

matrix of zeros and ones satisfying:
(

N⊕

j=1

Rv

)

s

= Ip,N(Rv)s
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We define the ALS estimate as follows:

x̂ = argmin
x

‖A x−b‖2
2

s.t Qw,Rv ≥ 0
(4.41)

in which x̂ =
[

(Qw)T
s (Rv)

T
s

]T
, andb̂ = R̂(N)s. These steps are summarized inAlgorithm 2 .

Algorithm 2 ALS Algorithm
for j = 1 toN−1 do

Ĉj = 1
Nd− j ∑Nd− j

i=1 ZiZ
T

i+ j
end for
Computeb̂ = R̂(N)s from (4.37)

Solve

[
Q̂w

R̂v

]

= arg min
Qw,Rv

∥
∥
∥
∥
∥
A

[
(Qw)s

(Rv)s

]

− b̂

∥
∥
∥
∥
∥

2

2

s.t. Qw > 0, Rv > 0

The following Lemmas and Theorem guarantee the existence, uniqueness and unbiasedness nature of
the estimates [35]:

Lemma 5 The ALS estimate given for the Algorithm 2 exists and is unique if and only ifA has full
column rank.

Lemma 6 The expectation of the estimated autocovarianceĈj is equal to the autocovariance Cj for
all j, and the variance tends to zero as Nd tends to∞.

E
{
Ĉj
}

= Cj , j = 0, ...,N

Cov(Ĉj) = O

(
1

Nd − j

)

Theorem 4 GivenA has full column rank, the ALS noise covariance estimates(Q̂w, R̂v) are unbiased
for all samples sizes and converge asymptotically to the true covariances(Qw,Rv) as Nd → ∞.

4.2.3 Advanced schemes

In [1] a generalization of the ALS method for estimating the noise covarianceseven assuming cross
covariances is presented. It is shown that equivalent results are obtained with both the predicting and
the filtering form of the Kalman filter. The original algorithm is reformulated assuming that

[
wk

vk

]

∼ N

([
0
0

]

,

[
Qw Swv

ST
wv Rv

])

(4.42)

In [2] an advanced ALSel method for estimating the noise covariances from real data is also discussed.
The covariance estimation problem is stated as a least-squares problem, which is solved as a symmet-
ric semidefinite least-squares problem. In this paper,Åkessonet al. address the problem following the
analysis from [35] and generalized in [1] for systems with correlated process and measurement noises.
Two contributions can be highlighted: the generalization of the autocovariance least-square method to
systems with correlated noise, and the interior-point predictor-correctoralgorithm for solving the sym-
metric semidefinite least-squares problem. The need of including an integratingdisturbance model to
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the linear state-space model in order to achieve offset-free control is also stated, especially in MPC
applications. This model can be written as follows:

xk+1 = Fxk +Buk +G1dk +G2wk

dk+1 = dk +ξk

zk = H1xk +H2dk +vk

(4.43)

whereG1 ∈ R
nx×nd , G2 is asG in (4.1),H2 ∈ R

nz×nd . The white noiseξk has covarianceQξ which is
uncorrelated with the process noise and the measurement noise. Then, anaugmented model is formed
from (4.43):

x̄k+1 = Ax̄k +Bnuk +Gnωk

yk = Cx̄k +vk
(4.44)

with x̄k =
[

xk dk
]T

, ωk =
[

wk ξk
]T

, and

A =

[
F G1

0 I

]

, Bn =

[
B
0

]

, Gn =

[
G2 0
0 I

]

, C =
[

H1 H2
]

(4.45)

Then, the covariances of the noises are defined as:

Q̄w =

[
Qw 0
0 Qξ

]

, S̄wv =
[

Swv 0
]

(4.46)

The problem of optimal tuning of the Kalman filter is reduced to the estimation of the true covariance
matrices in the augmented system (4.44). Once these matrices are estimated, the optimal filter or
predictor can be implemented as follows:

Predictor:
ˆ̄xk+1|k = A ˆ̄xk|k−1 +Bnuk +Kp

[
yk−C ˆ̄xk|k−1

]
(4.47)

Filter:

Time update
ˆ̄xk+1|k = A ˆ̄xk|k−1 +Bnuk +Gnω̂k|k

Measurement update
ˆ̄xk|k = ˆ̄xk|k−1 +K f x(yk−C ˆ̄xk|k−1)

ω̂k|k = K f w(yk−C ˆ̄xk|k−1)

(4.48)

with the Kalman gain for the predictionKp and filteringK f x, K f w as:

Kp = (APpC
T +GnS̄wv)(CPpC

T +Rv)
−1

K f x = PpC
T(CPpC

T +Rv)
−1

K f w = S̄wv(CPpC
T +Rv)

−1

(4.49)

Page 48/68



HD-MPC ICT-223854 Methods for distributed state and covariance estimation

andPp is the covariance of the state prediction error, what is obtained as the solution of the Riccati
equation.

In [36] the ALS method proposed in [35] was tested on two chemical reactorcontrol problems. This
method uses closed-loop process data to recover the covariances of thedisturbances entering the pro-
cess. Moreover, in this contribution the ALS method is used with integrating whitenoise disturbances,
which are required for offset-free control in most of the MPC applications. In fact, the authors high-
light the considerably improved results obtained by using the optimal tuning of the Kalman filter.

Later, the ALS scheme has been modified in [48]. The authors claim that significant improvements
to the original ALS method are presented, highlighting the following:(i) new and simpler necessary
and sufficient conditions for the uniqueness of the covariance estimates,(ii) an optimal weighting
applied to the least-squares formulation in order to minimize the variance of the estimates, and(iii )
the estimation of the stochastic disturbance structure affecting the states.

Under the assumptions of observability and the use of the innovations data from the steady state
response of the system, the ALS method is reformulated avoiding redundantdefinition of the lagged
covariances. Hence, instead using (4.16) and (4.37) the ALS scheme is rewritten using only the first
block column of the autocovariance matrix:

R1(N) = E






ZkZ
T

k
...

Zk+N−1Z
T

k




 (4.50)

As a result (by analogy with the original scheme) the following positive definite constrained least-
squares problem in the symmetric elements of the covariancesGQwGT andRv is defined:

Φ = min
GQwGT ,Rv

∥
∥
∥
∥
∥
A

[
Dn(GQwGT)ss

(Rv)ss

]

− b̂

∥
∥
∥
∥
∥

2

W

subject to, GQwGT ,Rv > 0, Rv = RT
v

(4.51)

where(Rv)ss denote the column-wise stacking of only the symmetricp(p+ 1)/2 elements of the

matrixRv. In other words, there exists an unique matrixDp ∈ R
p2× p(p+1)

2 called theduplication matrix
containing zeros and ones such that,

(Rv)s = Dp(Rv)ss

andW is a weighting matrix in order to guarantee the minimum variance among all the unbiased
estimators.

The first contribution is made assumingW = I , and the complete knowledge of matrixG. Using
(4.36), and the Lyapunov equation (4.35), (4.50) can be written as follows:

R1(N) = OPHT +ΓRv (4.52)
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in which

O =








H
HF̄

...
HF̄N−1








, Γ =








Ip

−HFL
...

−HF̄N−2FL








(4.53)

Then, (4.52) is stacked as in the original ALS contribution:

[Rs(N)]s =
[
(H ⊗O)(In2 − F̄ ⊗ F̄)−1](G⊗G)(Qw)s

+
[
(H ⊗O)(In2 − F̄ ⊗ F̄)−1](FL⊗FL)+(Ip⊗Γ)

]
(Rv)s

(4.54)

Considering

R1(N) = E
[

C1 · · · CN−1
]T

(4.55)

R1(N) can be estimated using (4.18). Then the new LS problem is given as follows:

min
x

‖A x− b̂‖2
2

s.t Qw, Rv ≥ 0, Qw = QT
w,Rv = RT

v

(4.56)

A =
[

(H ⊗O)(In2 − F̄ ⊗ F̄)−1(G⊗G) (H ⊗O)(In2 − F̄ ⊗ F̄)(FL⊗FL)+(Ip⊗Γ)
]

x =
[

(Qw)T
s (Rv)

T
s

]T

b̂ = R̂1(N)s

(4.57)

New necessary and sufficient conditions for uniqueness of the estimatesare derived taking into ac-
count the new formulation. These results can be summarized as follows:

Theorem 5 If (F,H) is observable and F is non-singular, the optimization (4.51) with the above
assumptions has a unique solution iff dim[Null(M)] = 0, where

M = (C⊗ In)(In2 − F̄ ⊗ F̄)−1(G⊗G)Dg

The second contribution deals with a relationship to compute the weighting matrixW guaranteeing
the minimum variance of the estimates among all constrained linear unbiased estimators. Namely, an
iterative methodology to find the optimal weighting matrix is provided. However, the authors made
the following claims:(i) the convergence of the iterative scheme could not be tested because of the
numerical burden;(ii) large data sets are needed to guarantee a reliable weight estimation;(iii ) the
computation of such a weighting matrix could become prohibitively large even for a small dimensional
problem with large data sets.

For these reasons, this algorithm will not be considered in the following experimental tests.
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Finally, assumingW = I in (4.51) the problem can be transformed to the problem of identifying the
minimal disturbance structure affecting the system state, also with the unknowncovariances. This
problem is stated as follows

Φ∗ = min
Q,Rv

∥
∥
∥
∥
∥
A

[
(Q)s

(Rv)s

]

− b̂

∥
∥
∥
∥
∥

2

2
︸ ︷︷ ︸

Φ

+ρ · rank(Q)

subject to, Q,Rv > 0, Q = QT , Rv = RT
v

(4.58)

whereQ= GQwGT , andρ is a tuning parameter. Since the constraints are in the form of convex linear
matrix inequalities and the optimization problem is convex, the complexity of the problem is mainly
due to the termrank(Q). In fact, as the rank term only assumes integer values, this makes the problem
computationally NP hard. This drawback can be tackled changing the functional as follows:

Φ∗ = min
Q,Rv

∥
∥
∥
∥
∥
A

[
(Q)s

(Rv)s

]

− b̂

∥
∥
∥
∥
∥

2

︸ ︷︷ ︸

Φ

+ρTr(Q)

subject to, Q,Rv > 0, Q = QT , Rv = RT
v

(4.59)

Finally, as the above optimization problem can be transformed into an autocovariance least-squares
with semidefinite programming problem (henceforth ALS-SDP) the following Theorem can be stated:

Theorem 6 A solution(Q̂, R̂v) to the ALS-SDP in(4.59)is unique iff dim[Null(M)] = 0, where M is
as in Theorem 5. Moreover G is any full column rank decomposition ofQ̂ = GGT

Although a way to estimate the minimum structure of the model disturbance term is provided, the
change from the original problem to the above one is only justified when black-box models are used,
i.e, in systems where the disturbance structure is completely unknown.

4.3 Case studies

In this section the schemes presented in [32, 35] are tested using two knownacademic examples. To
quantify the performance achieved in the application of the presented techniques, different tests are
performed, each corresponding to a batch of data randomly generated accordingly to (4.1). Denote
with Qd, andRd the vectors containing the true main diagonals of the covariances of the modeling
and measurement noises respectively. Moreover,Nt is the number of data sets used to assess the
mean and variance of each covariance estimation method,Q̂i , andR̂i are the estimates ofQd, andRd

respectively, obtained with the data generated in testi. To test the quality of the covariance matrix
estimation performances, the following indexes are used:

• The Root Mean Square (RMS) error,

RMSq = 2

√

1
Nt

Nt

∑
i=1

‖Qd − Q̂i‖2
2, RMSr = 2

√

1
Nt

Nt

∑
i=1

‖Rd − R̂i‖2
2
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• The mean of the∞-norm of errors (MIE),

MIEq =
1
Nt

Nt

∑
i=1

‖Qd − Q̂i‖∞, MIEr =
1
Nt

Nt

∑
i=1

‖Rd − R̂i‖∞

4.3.1 Mehra’s example

The example presented in [32] is tested with both Mehra’s and the ALS algorithms. Consider the
following linear time-invariant discrete-time system:

F =









0.75 −1.74 −0.3 0 −0.15
0.09 0.91 −0.0015 0 −0.008

0 0 095 0 0
0 0 0 0.55 0
0 0 0 0 0.905









, G =









0 0 0
0 0 0

24.64 0 0
0 0.835 0
0 0 1.83









H =

[
1 0 0 0 1
0 1 0 0 0

]

(4.60)

The data are generated according to the following distributions:

w(k) ∼ N



0,





1 0 0
0 1 0
0 0 1







 , v(k) ∼ N

(

0,

[
1 0
0 1

])

, (4.61)

Note that

Qd =





1
1
1



 , Rd =

[
1
1

]

The initial values ofQw andRv, i.e, the covariances used to generate the innovations, are:

Q0 =





0.25 0 0
0 0.5 0
0 0 0.75



 , R0 =

[
0.4 0
0 0.6

]

(4.62)

Mehra’s algorithm

• First Scenario: the Mehra’s algorithm is tested withNt = 100 andNd = 1000 samples in each
data set. As mean estimates of the main diagonals we have:

Qm =





1.0007
1.4340
1.0794



 , Rm =

[
1.3054
0.9922

]
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Table 4.1: Performance measurements using different amount of data. Mehra’s algorithm

Nd ‖RMSq‖ ‖RMSr‖ ‖MIEq‖ ‖MIEr‖
103 3.8078 4.2695 3.0682 3.4597
104 1.0694 1.2339 0.8821 1.0353
105 0.3597 0.4002 0.2981 0.3297

• Second Scenario: the Mehra’s algorithm is tested withNt = 100 andNd = 104. As mean
estimates of the main diagonals we have:

Qm =





1.0010
1.0149
0.9537



 , Rm =

[
1.0230
0.9962

]

• Third Scenario: the Mehra’s algorithm is tested withNt = 100 andNd = 105. As mean esti-
mates of the main diagonals we have:

Qm =





0.9996
0.9887
0.9774



 , Rm =

[
1.0331
1.0043

]

The performance indexes are presented in Table 4.1. Notice that errorsless than 5% are achieved
using a considerable amount of data(Nd > 104).

ALS algorithm

ALS algorithm is tested using the Algorithm 2. Thanks to the possibility to define constraints, only
numerical values greater or equal to zero are expected on the main diagonals.

• First Scenario: the ALS algorithm is tested withNt = 100 andNd = 103. The tuning parameter
is chosen asN = 10. As mean estimates of the main diagonals we have:

Qm =





0.9901
1.4340
1.0032



 , Rm =

[
1.1643
0.6790

]

• Second Scenario: the ALS algorithm is tested withNt = 100 andNd = 104. The tuning param-
eter is chosen asN = 10. As mean estimates of the main diagonals we have:

Qm =





0.9973
1.0457
0.9847



 , Rm =

[
1.0192
0.9667

]

• Third Scenario: the ALS algorithm is tested withNt = 100 andNd = 105. The tuning parameter
is chosen asN = 10. As mean estimates of the main diagonals we have:
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Table 4.2: Performance measurements using different amount of data. ALS algorithm

Nd ‖RMSq‖ ‖RMSr‖ ‖MIEq‖ ‖MIEr‖
103 1.6399 1.0288 1.3323 0.8369
104 0.7965 0.4961 0.6546 0.4092
105 0.3118 0.1942 0.2464 0.1533

Qm =





0.9994
1.0404
0.9962



 , Rm =

[
1.0043
0.9773

]

The performance indexes for the three scenarios are presented in Table 4.2. It is apparent that errors
less than 5% are reached with a considerable amount of data, but an order of magnitude less than
with the Mehra’s algorithm. In Figure 4.1 we show the variation of the root meansquare norm as the
number of measured data increases for both algorithms.
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Figure 4.1: Root mean square norm (RMS) as the number of available data grows. Both methods
applied to the Mehra’s example.

4.3.2 Example from [35]

Consider the discrete-time system described for the following matrices:

F =





0.1 0 0.1
0 0.2 0
0 0 0.3



 G =





1
2
3



 H =
[

0.1 0.2 0
]

(4.63)
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The data are generated using noise sequences with covariancesQ = 0.5, R= 0.1. TheL-innovations
are calculated with a filter gain corresponding to incorrect noise variances Q0 = 0.2, R0 = 0.4.

This method is performed usingNd = 1000 data points. As in this example only one-element matrices
must be estimated, the results can be presented graphically. In Figure 4.2 are shown the results pro-
vided by the ALS algorithm using a tuning parameterN = 15. The desired results are obtained after
performing 200 simulations in order to illustrate the mean and variances of the estimator. The original
contribution proposedN = 15, but similar results are obtained using other values of this parameter.

0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

0

0.05

0.1

0.15

0.2

Q
w

R
w

original ALS algorithm

 

 

ALS estimate

true value

Figure 4.2: ALS method applied to a case study.

The algorithm has a good performance using different values of the parameterN, and even if the initial
tuning is not close to the real values. The main drawback of this algorithm andthose based on this
is the need to perform a considerably amount of simulations in order to find the mean values of the
entries of the covariance matrices. Moreover, although many values of thetuning parameterN make
the algorithm work in a desired way, the choice of the best tuning parameterN is not a straightforward
task. Also, there is not a criterion to know when the covariance matrices arewell identified.

Mehra’s algorithm was tested on the same example. Also in this simulation the method isperformed
usingNd = 1000 data points, and 200 data sets in order to compare the mean and variance values with
the ALS results. The results of the estimates are shown in Figure 4.3. As it canbe seen from this
figure, the estimation of theQw parameter has a considerably bigger variance compared with the one
obtained using the ALS scheme. In Figure 4.4 the evolution of the RMS measures with respect to the
number of samplesNd is shown for both methods.
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Figure 4.3: Mehra’s algorithm applied to a case study.
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Figure 4.4: Performance index as the amount of data grows.
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4.3.3 Application of the ALS Method to the model of a reach of a Hydro Power Valley
Plant

The ALS-based methods have shown better results than previous covariance estimation schemes. Both
the classic ALS scheme and the reduced ALS scheme described by (4.56) and (4.57) were tested on
the model of one reach of a Hydro Power Valley [49]. Reduced ALS scheme is selected in view of
its simplicity of implementation and reliability. First the reach model is presented, thenresults on
covariance estimation using the reduced ALS scheme will be shown.

A hydro power valley is a system of lakes, reaches, ducts, penstocks,dams, pumps, valves and turbines
which are interconnected together and controlled in order to generate electric power [40]. In this test,
only a single reach model is considered.

The Saint Venant nonlinear, first-order system of partial differentialequations (PDE) represents the
state of the art for modeling one-dimensional river hydraulics with constant fluid density [49]. The
hydraulic states of the river are described by two variables: the water depth H(z, t) [m], and the
discharge across the sectionQ(z, t)

[
m3/s

]
, both varying as a function of spacezand timet. The river

dynamics are usually expressed as [49, 40]:

∂Q
∂z

+
∂S
∂ t

= 0

1
g

∂
∂ t

(
Q
S

)

+
1
2g

∂
∂ t

(
Q2

S2

)

+
∂H
∂z

+ I f − I0 = 0
(4.64)

∂Q
∂z

+B
∂H
∂ t

= 0

1
gB

∂
∂ t

(
Q
H

)

+
1

2gB2

∂
∂ t

(
Q2

H2

)

+
∂H
∂z

+ I f − I0

(4.65)

whereS(z, t) is the wetted area
[
m2
]
, I f is the friction slope,I0 the bed slope andg the gravitational

acceleration
[
m/s2

]
. The friction slopeI f is defined by the Manning-Strickler formula:

I f (z, t) =
(Q/S)2

k2
strR4/3

, R=
S
P

(4.66)

wherekstr is the Strickler coefficient
[
m1/3/s

]
, R(z, t) is the hydraulic radius, andP(z, t) the wetted

perimeter[m].

The first Saint Venant equation of (4.65) originates from the conservation of mass principle while the
second equation results from the conservation of momentum. All other parameters are derived from
the river geometry as shown in Figure 4.5.
Assuming that the cross section of the river can be approximated as a rectangle and we consider the
river width B constant along the river, then:

B(z, t) = B, P(z, t) = 2H(z, t)+B (4.67)

A simple way to implement and simulate a PDE model is to discretize it into several ODE’s (Ordinary
Differential Equations), by substituting the space derivatives with their corresponding finite differ-
ences [40]. To obtain an ODE model we divide our river inton+ 1 small cross sections along the
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z
Q(z,t)

B(z,t)

H(z,t)

S(z,t)

Figure 4.5: Variables definition in a river cross section [49, 40]

direction of the river, see Figure 4.6. To avoid unnecessary stiffnesswe overlap the crossings section
of the different variables. TheH variables are calculated at the crossing of each section and the vari-
ableQ is calculated in the middle of every section. The discretization is made by the finite difference
method. To approximate out derivatives we use the first term in the Taylor series expansions ofQ and
H. Dividing the reach inn+1 cells we obtain the following ODE model where∆z= Lc/n, andLc is
the length of the reach:

dH1

dt
=− 1

B
Q2−Q1

∆z/2

dQ2

dt
=− 2Q2

BH2

Q2−Q1

∆z/2
+

(
Q2

2

BH2
2

−gBH2

)
H3−H1

∆z

− gBH2

k2
str

(
B+2H2

BH2

)4/3( Q2

BH2

)2

+gBIoH2

...

dH2i−1

dt
=− 1

B
Q2i −Q2i−2

∆z
dQ2i

dt
=− 2Q2i

BH2i

Q2i −Q2i−2

∆z
+

(
Q2

2i

BH2
2i

−gBH2i

)
H2i+1−H2i−1

∆z

− gBH2i

k2
str

(
B+2H2i

BH2i

)4/3( Q2i

BH2i

)2

+gBIoH2i , i = 2, · · · ,n

dH2n+1

dt
=− 1

B
Q2n−Q2n+1

∆z/2

(4.68)

whereHi are referred as heights andQi are the flow rates. The even heights can be obtained by using
a linear relationship:

H2i =
H2i+1 +H2i−1

2
, i = 1, ...,n

Assumingn = 4, previous model can be linearized around the following operating point [49]:

xop =
[

3.8346 300 7.1073 300 10.4024 300 13.7008 300 17
]T
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Figure 4.6: Spatial discretization [49, 40]

and then discretized using a sampling time of 1[s] to get the following linear time-invariant, discrete-
time model:

F =

















0.99 0 0.0001 0 0 0 0 0 0
5.37 0.98 −5.28 0 −0.0001 0 0 0 0

0 0 0.99 0 0 0 0 0 0
0.0019 0.0007 8.57 0.99 −8.56 0 −0.0002 0 0

0 0 0 0 0.99 0 0.0001 0 0
0 0 0.0023 0.0006 11.80 0.99 −11.80 0.0001 −0.0003
0 0 0 0 0.0001 0 0.99 0 0.0001
0 0 0 0 0.0026 0.0005 15.0335 0.9993 −15.0329
0 0 0 0 0 0 0.0002 0 0.99

















,

B =

















0
0
0
0
0
0
0

0.0002
0

















G =

















0
0.0022

0
0
0
0
0
0
0

















H =





1 0 0 0 0 0 0 0 0
0 0 0 0 1 0 0 0 0
0 0 0 0 0 0 0 1 0





where the system state is defined as:

x =
[

H1 Q2 H3 Q4 H5 Q6 H7 Q8 H9
]T

As initial conditions:

Q2i(0) = Q0, i = 1, ...,n−1; H2i+1(0) = HN, i = 1, ...,n (4.69)
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whereHN is the normal height, and the boundary condition on the upstream and downstream of the
reach:

Q1(0) = Qin (4.70)

with Qin considered as a system disturbance.
In this model the manipulated variable is the discharge through the turbineQt , which is related with
the last flow rate as follows:

Q2n+1 = Qt +QD(H2n+1)

whereQD is a constant value discharge, known as the weir-discharge.

Noises (model and measurement) are generated accordingly to the followingdistributions:

w(k) ∼ N(0,10) , v(k) ∼ N



0,





0.1 0 0
0 0.1 0
0 0 1







 , (4.71)

which correspond to the modeling uncertainty and the sensor variance, in this case two flow rate sensor
and a level sensor.

As discussed, the estimation of the covariances using the constrained and reduced ALS scheme has
the following degrees of freedom: the number of data in each data setNd and the tuning parameterN.
Therefore, the results are presented as follows:

• The amount of data is fixed asNd = 104. Then, the results are evaluated as the tuning parameter
is changed.

• The N parameter is chosen in such a way that any increase in it value does not generate a
significant reduction on the variance of the estimates. Fixing this parameter, the simulations are
performed using different amount of data in each data set.

In all the aforementioned cases we performNt = 200 different tests in order to obtain a reliable
statistical characterization of the results.

In the first test,Nt = 200 sets of fixed data (each one withNd = 104) are used to estimate the covari-
ances as theN parameter is changed. In Table 4.3 the mean of the state noise covarianceQw is shown
together also with the corresponding performance indexes asN grows.
It is apparent that the accuracy of the estimation increases asN increases. However there is a point at
which a considerable increase ofN does not imply a considerable reduction of the estimation variance.

In the second test, the tuning parameter is taken asN = 47. The starting values ofQw andRv, i.e, the
covariances used to generate the innovations are:

Q0 = 9, R0 =





0.25 0 0
0 0.5 0
0 0 0.75



 (4.72)

Then, the following scenarios are considered:
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Table 4.3: Performance indexes asN is varied
N Qm ‖RMSq‖ ‖RMSr‖ ‖MAEq‖ ‖MAEr‖
2 21.6647 354.8952 2.8091×10−4 14.1385 0.0161
10 11.0444 46.3145 2.3268×10−4 5.3920 0.0146
20 10.0479 24.9942 2.3103×10−4 4.0660 0.0145
30 9.9039 18.0471 2.2916×10−4 3.5151 0.0145
40 9.6083 15.8991 2.2963×10−4 3.2015 0.0145
50 9.4683 14.0892 2.2986×10−4 3.0749 0.0145

Table 4.4: Performance measurements using different amount of data. Reduced ALS algorithm

Nd ‖RMSq‖ ‖RMSr‖ ‖MIEq‖ ‖MIEr‖
103 55.6970 0.0020 6.1658 0.0428
104 12.5323 2.1163×10−4 2.8934 0.0134

5×104 2.9040 4.6010×10−5 1.3733 0.0064

• First Scenario: the covariances are estimated withNd = 103. A graphical sketch of the esti-
mation is presented in Figure 4.7 where each component of the main diagonal of Rv is plotted
against the one-element matrixQw. As mean values of the main diagonals we have:

Qm = 10.0725, Rm =





0.1002
0.1002
0.9991





• Second Scenario: the covariances are estimated withNd = 104. A graphical sketch of the
estimated covariances is presented in Figure 4.8 where each component of the main diagonal
of Rv is plotted against the one-element matrixQw. As mean values of the main diagonals we
have:

Qm = 9.7339, Rm =





0.1001
0.0999
0.9992





• Third Scenario: the covariances are estimated withNd = 5×104. A graphical sketch of the
estimated covariances is presented in Figure 4.9 where each component of the main diagonal
of Rv is plotted against the one-element matrixQw. As mean values of the main diagonals we
have:

Qm = 10.0968, Rm =





0.1000
0.1000
0.9996





The performance indexes for the aforementioned scenarios are presented in Table 4.4.
In this test the covariances have been estimated using a fixed number of datasetsNt = 200, theN
parameter, the initial guesses, and varying the amount of data in each one of these sets. Figure 4.10
shows how the estimates are considerably improved as the amount of data is increased. However, it
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Figure 4.7: Covariance estimation in the single reach model. First scenario. Each element ofRv is
plotted against theQw
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Figure 4.8: Covariance estimation in the single reach model. Second scenario. Each element ofRv is
plotted against theQw
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Figure 4.9: Covariance estimation in the single reach model. Third scenario. Each element ofRv is
plotted against theQw
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Figure 4.10: Root mean square norm (RMS) as the number of available datagrows. Reduced ALS
method applied to the single reach model.
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can be noticed that in order to achieve small variance in the matrixQw the amount of data must be
increased considerably.
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