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Executive Summary

This report describes the research activity in the Seventh FramewogkaPnme, Theme 3 “Inm
formation and Communication Technologies”, STREP research prbjecarchical and Dis-
tributed Model Predictive Control of Large Scale Systems- HD-MRC, focusing on WP5
“Distributed state estimation algorithms”. Specifically, the report aims at ptiegethe main re-
sults achieved in Task 5.1 (State estimation) and Task 5.2 (Variance estimation).

The report is organized in four chapters:

e Chapter 1 presents a synopsis of the report, summarizes the conterfolibthieng chapterg
and, for each one of them, highlights the main results achieved.

e Chapter 2 first introduces the problem of distributed state estimation, i.e. abéepr of
estimating the state of the system by means of a network of sensors whickatemee
information according to a given topology. Then, the problem is formally dtatel a
solution based on the use of Moving Horizon Estimators is proposed. Tpenies of
the approach, in terms of convergence of the state estimates, are pilessthesimulatior
example is shown to illustrate the potentials of the method.

e Chapter 3 describes some extensions of the distributed MHE algorithmmfedse the pre-
vious chapter. Specifically, it is highlighted how the performance of the e&ttmation
scheme depends upon various observability properties of the systeitieaméin conver
gence results are extended to consider different communication protécdiscussion or
how these protocols impact on the quality of the estimates is finally reported.

e Chapter 4 extends some results already sketched in Deliverable D5€rcimnthe analysi
of the methods reported in the literature for the estimation of the noise variafieesng
the system. The methods are critically compared and tested in a number of ai
simulation examples. Some ideas for further improvements are also repodtdsenssed
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Chapter 1

Synopsis of the report

1.1 Synopsis of Chapter 2

In Chapter 2, the problem of distributed state estimation is formulated and dmfvegorting to the
Moving Horizon Estimation (MHE) technique. In order to properly defineptablem, consider sen-
sor networks composed by a set of electronic devices, with sensingoamglitational capabilities,
which coordinate their activity through a communication network. Sensoronk$vzan be employed
in a wide range of applications, such as monitoring, exploration, survedllanto track targets over
specific regions; their diffusion is partly due to the recent development&r@less communications
and to the availability of low cost devices. Despite the recent developments ifielld, many chal-
lenging problems have still to be tackled in order to fully exploit the potentialitisgon$or networks.
Among the open problems, their use for distributed state estimation is of parammantance.

The problem can be described as follows. Assume that each senser métthiork measures some
variables, computes a local estimate of the overall state of the system unoigonng, and transmits
to the sensors connected to it both the measured values and the computegtstate. Then, the
main challenge is to provide a methodology which guarantees that all thesesgmptotically reach
a common reliable estimate of the state variables, i.e. the local estimates @aw®easusThis goal
must be achieved even if the measurements performed by any sensat atdficient to guaran-
tee observability of the process state (ilecal observability, provided that all the sensors, if put
together, guarantee such property (icallective observability The transmission of measurements
and of estimates among the sensors must lead to the twofold advantage rdieghhe property of
observability of the sensors and of reducing the uncertainty of state estioteitguted by each node,
respectively. In the literature, many consensus algorithms for distribtege estimation based on
Kalman filters have recently been proposed; however, stability has ratgreved for the discrete-
time versions of these algorithms and optimality of the estimates has not beeasadtrin general,
the issue of distributed sensor fusion has been widely studied in the @ast yéhile other studies
focused on the design of decentralized Kalman filters based on systemgesition. Different so-
lutions can be classified according to the model used by each subsystatatésestimation purposes
and the topology of the communication network among subsystems. Howewerphthe proposed
solutions can handle constraints either on the state variables or on the alistestaffecting the state
dynamics.

In Chapter 2 a novel MHE distributed algorithm is proposed. This apprbas many advantages;
first of all, the observer displays optimality properties, since a suitable minimizptimblem must
be solved on-line at each time instant. Furthermore, it is proven that, uredg ebservability con-
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ditions, convergence of the state estimates is guaranteed in a deterministizdrkmEinally, con-
straints on the noise and on the state are taken into account, as it is commogadimgelgorizon
approaches in control and estimation.

The main assumptions of the developed method are the following:

e the system under investigation is described by a discrete time linear modekdftey distur-
bances acting on the state and on the output measurements;

e the availableM sensing nodes are connected by a directed graph with known strucidire a
can exchange information (measurements and local state estimates) agdorthiis graph
structure.

Accordingly, it is possible to distinguish betwelacal, regionalandcollectivequantities. Specif-
ically, for any node, a quantity (for example a set of measurements) is:

e local, if related to the node solely;
e regional, if referred to the node and its neighborhoods;

e collective, if referred to the whole network.
This leads to different definitions of observability, namely the system is:

¢ locally observable by any node if it is observable with respect to its locasurements;
e regionally observable by any node if it is observable with respect to itsmagmeasurements;

e collectively observable if it is observable with respect to all its measurements

The DMHE (Distributed Moving Horizon Estimation) algorithm, presented in detaiBhapter 2,
can be sketched at follows. At each time instant, every node:

e receives from its neighbors their measurements, state estimates and #sponding covari-
ances;

e computes a weighted average estimate of the state and of the correspondirigmu®e accord-
ing to the graph topology;

e determines the new estimate of the state and of the state disturbance over avsiitiog
according to the Moving Horizon Estimation approach.

The proposed approach guarantees convergence of the DMHEvebsader weak assumptions, in
particular a given matrix (function of the system and of the algorithm paras)egerequired to be
Schur. This matrix collectively identifies the dynamics of the regionally unohbée modes of the
sensors’ estimation errors and it is easily computable. A necessary conglitithe transmission
graph guaranteeing that the eigenvalues of this matrix can be assignédistiso reported. More
specifically, each isolated strongly connected subgraph of the netwbie€ the term isolated de-
notes the fact that no node of such a subnetwork has neighbors mgjdao@ther subnetworks) must
be collectively observable. Finally, conditions guaranteeing that theieoeas of the computed es-
timates remain bounded are given.
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The DMHE algorithm can be coupled with the state feedback distributed MRydeictive Control al-
gorithms developed in the other workpackages, and in particular in WP8doige output feedback
methods to be used in most practical cases, where the knowledge of the st&ieally unavailable.

The chapter is structured as follows. After an initial review of the relelimrature, in Section 2|2
the observed dynamical system is introduced together with the structure sétisor network, and
the observability properties are defined. In Section 2.3 the distributed stateaton algorithm is
described in detail. In Section 2.4 the convergence properties of thétafgare investigated, and in
Section 2.5 it is discussed how to select the design parameters in orderantgeahe applicability
of the main results. Finally, in Section 2.6 a simulation example is presented. Frakéef clarity,
the proofs are reported in Section 2.7.

1.2 Synopsis of Chapter 3

In Chapter 3 the results presented in Chapter 2 are extended to inderpatamber of significant
practical considerations. Specifically, the main results of Chapter 2 areddy considering dif-
ferent communication protocols, and it is discussed how these protocolstiompthe quality of the
estimates.

Assuming that the measurements taken by a sensor at ineeinstantaneously transmitted to its ad-
jacent (with reference to the network topology) neighboring agentdgedtimty Nt > 1 be the number
of transmissions between two sensors within a sampling interval, two typedaotadi@munication
protocols are considered:

P1) ForNr > 1, at timet each sensor collects the sets of measurements taken from all otherssensor
that are connected to it by a path of length less than or equNy to

P,) For Ny = 1 and a sliding windowN > 1 used in the DMHE algorithm, at timteeach sensor
collects the sets of measurement from the other sensors which can traasmio dt within a
frame ofN steps, i.e. sensors that are connected by a path of length less thamldioddju

Protocol B is schematically illustrated in Figure 1.1. Note also that the protocols can be agnbin
to obtain a more complex information transmission scheme. However, for simphdi@apter 3 the
two cases Pand B have been addressed independently. The main results shown in thisratzapte
be summarized as follows.

A) In the case of communication protocol the fundamental property of regional observability can
be enhanced by increasing the numiRerof data transmissions between agents within a sampling
interval. This produces two accompanying effects.

1) If all the isolated strongly connected subgraphs are collectivelyrodisie, there exists a
threshold value foNr (sayN;) such that regional observability is satisfied by all the sensors
for Nt > Nr.

2) Itenhances the stability properties of the estimation algorithm (in terms of\@lyees location
of a properly defined dynamic matrix).

B) As for protocol B, it is shown how to enhance regional observability and the stability propérty
the estimation algorithm by increasing the estimation horidon
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Figure 1.1: lllustration of the communication protocelf®r N = 2.

The chapter is structured as follows. In Section 3.1 the definition of diff@@mmunication protocols
is introduced and an analysis on how they affect the definition of regiapsgrvability is carried
out. In Section 3.2 we highlight the main implications on the distributed state estimationittaig
when different transmission protocols are introduced. Finally, in Secti®nit3is shown how the
parameters of the communication protocols can be properly tuned, so dsatacerthe performance
of the estimation scheme.

1.3 Synopsis of Chapter 4

It is well known that, in Kalman filtering, the knowledge of the covarian@gsandR, of the noises
affecting the state equation and the output measurements, respectivielgtlisrequired. In fact, the
performance of the estimator can significantly deteriorate when the algoriflechugth wrong values
of these matrices. However, in many practical ca@ysandR, are not a-priori known and quite often
they are used as tuning parameters. The same knowledge is required ithapproach, i.e. the
one used in the developments described in the previous chapters, @hened R, are weighting
terms to be used in the performance index to be minimized, together with the (tigirgjamatrix
M weighting the state error at the beginning of the considered time window.

For these reasons, there is practical interest in the estimation of the ngéseea, and for the solution
of this problem many methods have been proposed in the literature (seeafs@liminary results
reported in Deliverable D5.1). Among them, two appear to be the most inteyesioh promising
ones. The first, which can be viewed as a seminal contribution in the fieldeitodViehra and traces
back to the early '70s (see [32,33]), while the second one has beenthedeveloped (see [35], [1]).
In order to compare their performance, these methods have been implermedtedted in a number
of significant cases.

We denote byN; the number of data sets used to assess the mean and variance of eseimceva
estimation method, and t@i, andl% the estimates d®,,, andR, respectively, obtained with the data
generated in test In order to test the quality of the covariance matrix estimation performatices,
following indices are used:

Page 8/68




| HD-MPC ICT-223854 Methods for distributed state and covariarce estimation

e The Root Mean Square (RMS) error,

2 1 N A 12 2 1 & S, 112
RM§, = E;HQW—QNIZ, RMS = E-Z\”RV_RHZ

e The mean of theo-norm of errors (MIE),

N N
MIEq= = 3 IQu—0le;  MIE = =3[R ~Rle
g Nt,; Ntlzi

Three different test cases are studied in Chapgter 4, two of which fesretaken from the literature,
while the third corresponds to the linearized model of a single reach of tire{power valley, which
is one of the main benchmarks of the HD-MPC project. In all the cases, shdg@chieved have
shown that the more recent methods proposed in [35] and [1] outpetfee basic Mehra’s algo-
rithm ([32, 33]). However, all these algorithms require a very large datao achieve reasonable
performance, so that the problem of properly tuning the MHE (and Kalrnitarsii remains a critical
practical problem.

In order to have a quick overview of the main results, one of the considest cases refers to a
linear discrete time model with staxe= R®, disturbancev € R®, and outputy € R%. Denoting byNg
the number of samples in the data set used for the estimation of the covariamioesn#he results
obtained are summarized in the following tables:

Table 1.1: Mehra’s algorithm

No [[RMS[| [[RMS|| [[MIEg| [MIE ]

10° 3.8078 4.2695 3.0682 3.4597
100 1.0694 1.2339 0.8821  1.0353
10° 0.3597 0.4002 0.2981  0.3297

Table 1.2: ALS algorithm ([1])

Ng [RMS[| [[RMS|| [MIEg| [MIE |

10° 1.6399 1.0288 1.3323  0.8369
100 0.7965 0.4961 0.6546  0.4092
10° 0.3118 0.1942 0.2464  0.1533

It is apparent that acceptable performances can be obtained only vétly Baxge data set, which
turns out to be a very restrictive condition for a practical implementation ofrtbhods. For this
reason, it is believed that different tuning knobs that are easy to ugklwe required to make the
MHE algorithms practically useful in industrial applications.
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Chapter 2

Distributed Moving Horizon Estimation
for linear systems

In this chapter, the problem of distributed state estimation is formally posedsoidten is proposed
with the MHE approach. The content of this chapter is based on the [#Zjjer [

2.1 Literature review

The problem of distributed state estimation with sensor networks has beely digseussed in the
literature. Consensus algorithms for distributed state estimation based on Kaleramave recently
been proposed in [16, 6, 39, 37, 50, 38, 29]. In particular, in [39,58], consensus on measure-
mentsis used to reduce their uncertainty and Kalman filters are applied by each &u¢38], three
algorithms for distributed filtering are proposed. The first algorithm is similahéoone described
in [37], save for the fact that sensors exploit only partial measurenoétite state vector. The sec-
ond approach relies on communicating the state estimates among neighbonits) @yesensus on
estimatels The third algorithm, nameilerative Kalman consensus filteis based on the discrete-
time version of a continuous-time Kalman filter plus@sensus stegn the state estimates, which is
proved to be stable. However, stability has not been proved for thestksttme version of the algo-
rithm and optimality of the estimates has not been addressed. Recentlyygemmeesin mean of the
local state estimates obtained with the algorithm presented in [37] has benl imd29], provided
that the observed process is stable.

In [6] consensus on the estimates is used together with Kalman filters. Thbtsveigthe sensors’
estimates in the consensus step and the Kalman gain are optimized in order to minaresérnia-
tion error covariance. A two-step procedure is also used in [16],evierconsidered observed signal
is arandom walk A two-step algorithm is proposed, where filtering and consensus & ped
subsequently, and the estimation error is minimized with respect to both thevebgain and the
consensus weights. This guarantees optimality of the solution.

More in general, the issue of distributed sensor fusion has been wideigdtin the past years
e.g., [14,) 51]. The paper [14] provides an algorithm accounting ferahically changing inter-
connections among sensors, unreliable communication links, and faultsg wiievergence of the
estimates to the true values is proved, under suitable hypothesis of “dyfiagna@h connectivity,
while in [51] the authors propose a minimum variance estimator for distributekiimigaof a noisy
time-varying signal.

Other studies focused on the design of decentralized Kalman filters bassdtem decomposi-
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tion. Different solutions can be classified according to the model useadly fibsystem for state-
estimation purposes and the topology of the communication network amongtrnsy Early works,
e.g. [23], [41] require all-to-all communication and assume each subsyste full knowledge of the
whole dynamics. Subsystems with overlapping states are also stediedn [31], where a fully
decentralized scheme is presented.

Notation. I, and@,,, denote then x n identity matrix and thes x u matrix of zero elements,
respectively. Given a se¥’, |.#| denotes its cardinality. The notatiga||% stands forz" Sz whereS
is a symmetric positive-semidefinite matrix. The symBotlenotes the Kronecker product, afgl
is theM-dimensional column vector whose entries are all equal to 1. The matrixrgiag. , ns) is
block-diagonal with blocks);. Finally, we use the short-hand= (vi,...,Vs) to denote a column
vector withs (not necessarily scalar) components.

2.2 System and sensor network

We assume that the observed process obeys to the linear dynamics
X1 = A% + W, (2.1)

wherex € X C R" is the state vector and the temp €¢ W C R" represents a white noise with co-
variance equal t€. We assume that the séfsandW are convex and contain the origin. The initial
conditionxg € X is a random variable with megnand covariancé€ly. The pair(A, /Q) is stabiliz-
able. Measurements on the state vector are performeéd $gnsors, according to the sensing model
(in general different from sensor to sensor)

Yi=C'x+V,i=1,.,M (2.2)

where the ternv} € RP represents white noise with covariance equato

The communication network among sensors is described by the directédqrap?’, &), where
the nodes i’ = {1,2,...,M} represent the sensors and the egige in the set®’ C ¥ x ¥ models
that sensojj can transmit information to sensorWe assuméi,i) € &, Vi € 7. We denote withyX
the set ok-th order neighbors to nodei.e., %X = {j € 7 : there is a path of length at mdsfrom
jtoiin%}. We will also use the shorthang = 7! and we denote all; the number of nodes
satisfying(i, j) € &.
We introduce now the definition a$olatedsubgraph. If the grap## is not strongly connected.¢.,
it is reduciblg, one can partitio®Z into | nonempty irreducible subgraps= (A, 44),i=1,....1
(see e.g. [18]). If, for alp € A4, q € ¥, implies thatg € .4 we say that4 is isolated Remark that if
¢ is strongly connected, it is also isolated.

We associate to the graghthe stochastic matrik € RM*M with entries

kj >0if (j,i)e& (2.3a)
kij = 0 otherwise (2.3b)
M
D> kj=1vi=1..M (2.3c)
j=1

Any matrix K with entries satisfying (213) is said to be compatible wthGiven a grapl¥/, there are
many degrees of freedom for the choicekgfwhich will be exploited to guarantee the convergence
of the state estimator described in the following and/or to reduce the uncedéihiy estimates.
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Itis assumed that, at a generic time instasensor collects the measurements produced by itself
and its neighboring sensors. Moreover, each sensor transmits ankegeinformation once within a
sampling interval. This means that measurements available toi modyg , with j € .

Three types of quantities can be distinguishedal, regional andcollective Specifically, a quantity

is local (with respect to sensad) when it is related to the nodesolely. A quantity isregional (with
respect to sensay if it is related to the nodes itf{. Finally, a quantity iscollective if it is related to
the whole network. For the sake of clarity, we use different notationleéad, regional and collective
variables. Namely, given a varial#eZ represents its local versiom,is its regional counterpart, and

z the collective one. For instance, we refentan (2.2) as local measurement. On the other hand, if
% = {j}, ..., i\, }, the regional measurement of ndads given by

% =Cx+v (2.4)

whereyl = (ytjil,...,ytjvi), C =[(Cl)T ... (CjiVi_)T]T, andvf = (vtjil, - ,vtjvi). The dimension of vectors

vt andvi, and the number of rows of matr® is pj = z‘lle pji - Furthermore, we denote 15, the
covariance matrix related to the regional noisen sensor, i.e., R :diag(Rjil, Ry )
According to the adopted terminology, three different observability nottansbe introduced.

Definition 1 The system ifocally observabldy sensor i (sensor i is locally observable) if the pair
(A,.C')is observable. The systemregionally observabley sensor i (sensor i is regionally observ-
able) if the pair(A,C') is observable. The systemadsllectively observabléf the pair (A,C*) is
observable, wher€* = [(CH)T ... (CM)T]T. O

Notice that, for a given sensoyrlocal observability implies regional observability, and regional
observability of any sensor implies collective observability, while all oppasifgications are false.
We partition the set” into the subset¥o = {j € ¥ : (A,C!) is an observable pgir o= {j € 7 :
(A,Cl) is an unobservable pair B

Given a single sensor model (2.1)-(2.2), tita sensor regional observability matwd, is

oh=[CHT CAT ... AT (2.5)

Let I5,"\IO be the orthogonal projection matrix on ket ), that is the regionally unobservable subspace.
Similarly, let Pio_be the orthogonal projection on the regional observability subspa¢éker. Next,

we recall howP} and P, can be computed. Let =rank(&}) and denote wité .1, ..., & an
orthonormal basis of kég},). Let alsoéy, ..., &, be an orthonormal basis of Ker!,)* and define the
orthonormal and non-singular matfx = [£}, ..., &}]. Defining the matrice§, andS,, as

J |ri d 0n><(n—n):|

% [O(HH)XFJ o [ In—r, ’
we have Py = T'S,($,)"(TH) ! and Pl = T'S0(Sio)"(TH) L. Furthermore, defining
T = diag(Ty, ..., Tm), So = diag(S, ..., ), and Syo = diag(So,- -, o). the collective pro-

jection matrices ar®o = TSoSLT 1 andPno = TSnoSoT L Note thatS, is empty when the
system is regionally observable by senisdn this case we assume tHR{f = Onxn.

2.3 The distributed estimation algorithm

Our aim is to design, for a generic senser?’, an algorithm for computing an estimate of the system
state based on regional measuremgnésd further pieces of information provided by sengogs¥;.
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The proposed solution relies on MHE, in view of its capability to handle statenaisé constraints.
More specifically, we propose a Distributed MHE (DMHE) scheme wheth sansor solves a MHE
problem.

2.3.1 The local minimization problem

For a given estimation horizad > 1, each nodee ¥ at timet determines the estimatgsahdw of
x andw, respectively, by solving the constrained minimization probl&tRE-i)

0= min  J(t—N{t& WV, T ) (2.6)
N
under the constraints
R =AR +W, k=t—N,...;t (2.7a)
Vi =C'8 +Vi (2.7b)
W e W (2.7¢)
% e X (2.7d)

The local cost functiod' is given by

F=NER W VLT ) = 3 T n VK2 —1+

2.8)
+3 St IEIE o+ TN (R Xt_N/t_l)

We denote withd™ nye @nd with {@ t}k 1y the optimizers to (2/6) and wit;kj(/;, k=t—N,...,t
the local state sequence stemming fn&}rm/t and{wj it - Furthermore

th N/t-1 (2.9)

HMZ

denotes the weighted average state estimates produced by sersofs In (2.8), the function
FLN(X'th;%r_N/t_l) is the so callednitial penalty, defined as follows

. . . 1 .
i ol . or o *
Mn RN onp-1)=5 R 1|| D) 1+6 (2.10)
whereG)t*i_1 is the optimal cost defined in (2.6) and the positive-definite symmetric weightitigxma

I'I{ = appearing in (2.10) plays the role of a covariance matrix whose choiceemilldzussed in

details in the next paragraphs. The te@ﬁl is a constant in (2.10) and could be neglected when
solving (2.6). However, since it plays a major role in establishing the mainecgemce properties of
DMHE, it is here maintained for clarity of presentation.

Note that, in view of the definition df; in (2.3), r'(-) depends only upon regional quantities
and, since also the cost (2.8) and the constraints (2.7) depend onlyagional variables, the overall
estimation scheme is decentralized. Finally, noticelﬂﬁ(a) embodies @onsensus-on-estimatesm,
in the sense that it penalizes deV|at|ons>(p N1 from i{_N/t_l. Consensus, besides increasing
accuracy of the local estimates, is fundamental to guarantee convergfkthe state estimates to the
state of the observed system even if regional observability does nat holether words, it allows
sensol to reconstruct components of the state that cannot be estimated ibghtregional model.
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2.3.2 The collective minimization problem

The local estimation problems (2.6)-(2.10) can be given a collective forne switable for the fol-
lowing developments. To this end, l&be the collective cost function given by

M . . . . .
J() = 213'0 — Nt R W VT ) (2.11)
i=
Define the collective vectorg = (..., M), vy = (V,...,W), W = (Wf,..., W), the quantities
O 1 =506, K=Kl

My, = diag(l'ltll/tz, " nt“f/t2> (2.12)
and the collective initial penalty
FenN (RN Keonyi-1) = FeonReonge Xonj-1) + O g (2.13)

where rtofN(xth/t;f(th/tfl) - %Hkt_,\, — Kf(t*N/tflulz'l;lN/l R Then, wusing the matrices

R =diag(RL,...,R"), Q = diag(Q,...,Q) € R™*"™  the collective cost functiod(-) can be rewrit-

ten as . A 1 <t oo
‘J(t - N,t,thN,W,V, rt*N) =2 Xk:th HVKHF?—H‘

Z A by - 2.14
+% Skt n |Wk”é—1 NN Ke-nji-1) (2.14)

Defining A =diag(A, ...,A) € R"™>*" andC =diag(Cl,...,CM), also the constraints (2.7) can be
written in the following collective form

§(k+1=A)’Zk+Wk, k=t—N,....t (2.15&)
Yk = C i+ Vi (2.15b)
Wi € WM (2.15c)

X € XM (2.15d)

It is important to note that solving the problem

O = min {J(t—N,t,%_n,W,V,l_n) subject to[(2.15) (2.16)
SN AWy
is equivalent to solve th&HE-i problems/((2.6), in the sense thég,\]/t,{v%t }(‘:}_N is a solution
to (2.6) if and only if%;_ ¢, { Wit Ht_y IS @ solution tol(2.16), whend; = (v”v&/t, . ,th).
Lett; verify t — N <t; <t. We define thdransit costof a generic state R™, computed at
instantt as

Etl/t(z) = min {J(t—N,t,kt,N,\iv,V, Ft,N)
SN Wity

subject to[(2.15) ang, = z} (2.17)

As discussed in [22F, (z) provides a measure of the likelihood tiigtis equal taz given the data
Yk, K=t —N,... ,t and the prior likelihood™; n(-) onx;_n. Specifically, the loweE,, 1(z), the more
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likely the equalityk;, = z. The priorl't_n(-) can be interpreted as an approximatioreefy ;1 (-).
The key condition involving these two terms, that will be fundamental for ipgpeonvergence of
DMHE (see Sectioh 2.7.2), is that, for alE X

FnImM®ZX ni-1) < Ztnp-1(Im®2) (2.18)

Equation [(2.18) is similar to the assumption (C2) in [45] for centralized MHBEvéder, in (2.18),
the transit cost instead of the arrival cost appears. In3ag§_; is a smoothing term, since it takes
into account data up to timein order to enforce consensus (in [44] this approach is caliedbthing
updats.

An explicit formula for a lower bound t&;_y ;_1(z) (which coincides withg;_;_1(2) for un-
constrained estimation problems, see the proof of Lemima 1 in Section 2.7.2¢mshyia quadratic
cost function, i.e.

— 1 o X
Ztnp-1(2) > EHZ—thN/tle%ﬁth/tfl)fl +6_1 (2.19)
for a suitable choice oﬁt_N/t_l. The computation oﬁt_N/t_l, and a procedure for updating the

matrix My_p ;1 in (2.13) satisfying (2.18) are given in the next section.

2.3.3 Update of the weighting matrices

As remarked in the previous section, the first step for updating maﬂﬂheﬁ/t,l, is to compute
Mi_njt—1 1 (2.19), with the following diagonal structure

A s = diag(ﬁt{N RPN L /H) (2.20)

where the update cfﬂ{_N/t_l is carried out by the sensarbased on regional pieces of information.
For this reason, this step is denotedional weights updateSpecifically, the matrifILN/tfl, iev,

is given by one iteration of the difference Riccati equation associated &draaf filter for the system

{X_t—N = AX-N-11+W-N-1
Zn = Oen+Vin

where matrixﬁ_,i\l is defined in[(2.5). If we define

0 0o ... 0
i
G = C c_) € RPNxn(N-1) (2.21)
Gav2 gane G
Ry = diag(R,...,R) ¢ RPN*PN (2.22)
Qu-1 = diag(Q,...,Q) € RMN-HxnN=1) (2:23)
Coviw] =Q (2.24)
CoviV{] =Ry = Ry + A4 Qu-1(44)" (2.25)
and set the covariance of the estimgte,”, as
etz = (Moy_gpo) T+ C)TR)C) (2.26)

Page 15/68 |




| HD-MPC ICT-223854 Methods for distributed state and covariarce estimation

the resulting Riccati recursion is given by

ﬁ{—N/t—l =% (rlt*i—N—l/t—Z; Q, thll) (2.27)
:AHTLNA/FZAT +Q— Aniifol/tfz(ﬁll\l)T X

ﬁ_il-l*i ﬁ*. T | i 7167' M AT
x | O\ t_N_l/t_z( N TRy N N2

Once the matriceEI{_N/t_l have been computed, we perfornt@nsensus weights update order

to compute the matricelﬁ{_N/t_1 appearing in/ (2.10), which must satisfy the fundamental inequal-
ity (2.18). As stated in Lemmia 1 in Section 2.7.2, (2.18) is verifieify ;. fulfills the Linear

Matrix Inequality (LMI)
My njea > KA e KT (2.28)

The LMI (2.28) deserves a few comments. In order to make the initial pefalty(-) a good ap-
proximation of the transit co&;__1(-), one would require the matrid;_y ;1 to be “as close as
possible” toK I:It,N/t,lKT. Therefore, in our case, one would make the mdtixy 1, “as small as
possible”, subject to the constraint (2.28). A way for achieving this is lieshe LMI problem

min (tracgM;_y 1)) , Subject to[(2.28), (2.29)

wherel;_y ;1 has the block-diagonal structure (2.12). Notice that (2.29) could beddly each
sensor since, similarly to the formula for updating covariances in Kalman fifigihie computation of
I'I{_N/t_1 does not depend upon the collected measurements. However, prob2&nh@s a central-
ized flavor. This limitation is severe since, for instance, the LMI (2.28) tmsns< M which implies
that the computational burden for solving (2.29) scales with the numbensbsg hence hampering
the application of DMHE to large networks. The next proposition provideayto circumvent this

problem.

Proposition 1 The matricesﬂLN/F1 which satisfyyi € 7

-
MiKE 1L g (2.30)

Mz

i
t-Njt-1 =

=1

also satisfy the LM(2.28)
Proof 1 See Section 2.7.1.

Notice that, in the solution provided by Proposition 1, each node comﬁl{lyﬁt_l solely on the

basis oﬂzltj_N/t_l, provided by its neighborg, e #. In view of this, the LMI|(2.28) can be solved in

a decentralized fashion by setting

) M .
N1 = lejlq%ﬂs,N/t,l (2.31)
J:
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2.3.4 DMHE algorithm

In the following we sketch the steps that have to be carried out, in practiceder to apply the
proposed DMHE algorithm.

e Initialization: att = 0 all nodes store the matrfo and the estimate, o = u of xo, wherep is
given. Recall thally is the covariance matrix related to the initial conditign

e if 1 <t <N, the estimation horizoN is reduced t&N =t and node € # performs the following
steps

- computeI'ILN/F1 = I‘I‘O/t_1 from Mg according to[(2.31), for alle ¥,

— solve the problenMHE-i, with initial penalty

) 1 . )
FLN = é”xl()—iro/t—lﬂ(zn'

I()/t71)71

e if t > N, at each time instant, every node 7,
- computesﬂLN/Fl from My_n_1 1> according to (2.26); (2.27) and (2.31),
— solves the problerviHE-i, with initial penalty

g o

r{—N = EHX’HN _)Q*N/T*]-H(zn{_N/t—l)_l

2.4 Convergence properties of DMHE

The main purpose of this section is to extend the convergence results] éb{4éntralized MHE to
the proposed DMHE scheme.

Definition 2 LetX be systen(2.1)with w= 0 and denote bys(t,Xo) the state reached by at time t
starting from initial condition . Assume that the trajectory i, xo) is feasiblej.e., xs(t,xo) € X for

all t. DMHE is convergentf H)‘({/t —Xs(t,%o) || =2 0foralli € 7. O

Note that, as in [44], convergence is defined assuming that the modehtrgehe data is noiseless,
but the possible presence of noise is taken into account in the state estingaidine. Now, defining
the collective vectoks (t,Xo) = Im ® Xz (t,X0) and&y s = Xyt — Xz (K, Xo), the following result can be
stated.

Theorem 1 If: (i) matricesI'ILN/ti1 are computed according {2.26) (2.27)and(2.28) (ii) I'ILN/F1
are bounded for all t, and for all&€ ¥, (iii) N> n—1and N> 1, then

a) there exists an asymptotically vanishing sequemog.e., || o:|| = 0) such that the dynamics
of the state estimation error provided by the DMHE scheme is given by

&N = PE_N_1t-11 Ot (2.32)
where® = PNyoKAP no;

b) if (iv) @ is Schur, then DMHE is convergent.
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Proof 2 See Section 2.7.2.

In Section 2.5 we will provide a method to choose a matrisompatible with such that condi-
tions (i) and(iv) of Theorem 1 are satisfied.

We highlight that Conditiorfiv) does not require the asymptotic stability of system|(2.1). More-
over, Theorem [1 does not hinge on observability properties. In faoyecgence of the estimation
error can be achieved even if a weaker detectability property is satiséied,matrix ® inherits only
stable eigenvalues @& However, it is of interest to determine conditions guaranteeing that the matrix
@ does not inherit any (non-zero) eigenvalue®ofThe reason is twofold. First, this is tantamount to
requiring that the unobservable dynamics of all regional systems a&eedfby the communication
network. Second, the study is a preliminary step towards the goal of iclgd¢sand, when possible,
the network topology, in order to assign the eigenvalue® @it will. Let /\,& andv‘A be the eigen-
values and the eigenvectors Af respectively, with = 1,...,n. Then, the eigenvalues &f are)\,k
(i=1,...,n), each one with multiplicityM. Moreover, denoting bg;j, j = 1,...,M the canonical
basis vectors oRM, the eigenspace reIatedXQ is spané; @ Vh, ..., ey ®V'A). In view of the previous
discussion, we want to investigate the following property.

Property 1 If A; is a non-zero eigenvalue of A, for allcspan(g @ Vi, ..., ey ®Vh), A} andx are not
an eigenvalue/eigenvector pair far. O

Conditions guaranteeing that Property 1 holds are given in the followiegfBm, which is illustrated
in Figure 2.1.

Theorem 2 Consider a partition of7 into the irreducible subgraph€; = (A4, <4),i=1,...,1. If for
all the isolated strongly connected subgraghst holds
M ker(G}) =0 (2.33)
jeM

then Property 1 is verified.
Proof 3 See Sectidn 2.7.3.

In the case of strongly connected graphs we have the following result.

Corollary 1 If ¢ is strongly connected and the system is collectively observable, thenr§rape
verified.

Proof 4 See Section 2.7.3.

As atrivial case, assume that all sensors are regionally observabderanged in a strongly connected
graph¥. This yieldsPno = ® = O,v<nv and convergence of DMHE follows from Theorem 1.
Moreover, Property|1 trivially holds.

2.5 Selection of the design parameter K

The key assumption of Theorem 1 that the sequeiten -1}t IS bounded is not a-priori guar-
anteed by formula (2.31). However, under weak assumptions, boneseof{ M, _y 1} can be
enforced by properly choosing the entrles V(i, j) € & of K. Interestingly, we will also prove that
the proposed choice ¢f results in assigning all the eigenvaluesdtqual to zero, that guarantees
convergence of DMHE and Propelrty 1.
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Figure 2.1: The graph is decomposed into three connected subdfaptds and ;. Notice that
the node 2 of%, is a neighbor to node 3 ¢fs. Therefore, grapl¥; is not isolated. Analogously,
the subgraph?, is not isolated, while the subgrap# is isolated. Condition (2.33) states that
collective observability is required for the subgragh i.e., the pair(A, C;;l) is observable, where

Cy, =1CHT (CHT ).

Theorem 3 If /o is non-empty and, for all&€ o, there exists k> 0 such that"Vikﬂ“//o # 0, then
there exists K, compatible withi, such that matricetTlLN/Fl (i=1,...,M), resulting from(2.27)
and (2.31)are bounded for all £ ¥'.

Proof 5 See Sectidn 2.7.4.

The assumption of Theorem 3 that, for each nodéja, there exists an incoming directed path
stemming from a node itto requires that at least one sensor is regionally observable. This conditio
although not necessary to guarantee the existence of a suialalkows one to identify at least a
“reference” node, which provides reliable estimates even without comuationic see the proof of
Theorem 3 in Section 2.7.4. The proof of Theorem 3 is constructive aals l® the following algo-
rithm for computing the matriX. Algorithm/[1 is illustrated in Figure 2.2. Given the availability of
methods for computing paths with a computational complexity that scales polynowmaigily? | [10],
the overall algorithm is polynomial. Moreover&fis complete graph, Algorithm 1 provides a method
for designing a not a-priori fixed communication network. Furthermotgpithm(1 implicitly pro-
vides a rule for connecting a new regionally observable/unobservabsmsto the network without
spoiling the boundedness of the sequefide nt—1}i-o-

Finally, by selectindK according to Algorithm 1, the following result holds.

Corollary 2 Under the assumption of Theorem 3, if K is selected according to Algarithhehd
has all the eigenvalues equal to zero.

Proof 6 See Section 2.7.5.
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Algorithm 1 Selection oK
1) for each € 7o, setkj = 1,

2) for eachi € 7o, seleck; < m wherea(”(A)=max{]/\j(i)(A)\ ; /\j(”(A) is an unobservable

eigenvalue for the paifA,C')};

3) for eachi € o select a node € 7o and a path fronj to i, in such a way that each node in the
path has at most one neighbor. We denote ittihe set of edges selected in this way;

4) for all edgeqi, j) € &*, choosek;; = 1 —k;, while for all edgedi, j) € &\ &, setkj; = 0. O

A final remark is due. Under the assumption of Theadrem 3, the choice ofraxras not unique
and details on the available degrees of freedom in the definition of a suialslee Remark 1 after
the proof of Theorem|3) can be used to reduce the conservativeangssed by Algorithm 1. In
fact the generated matriX is lower triangular, up to a permutation of the node indexes. However,
the same arguments of the proof of Theoreém 3 can be used to show tinakcoimess oIf'I{_Nlt_1 is
guaranteed also by any stochastic malkieompatible with& with: (i) the same diagonal elements
of the matrixK obtained with Algorithm 1; (ii) arbitrary (non a-priori zero) elements in thedow
triangular part; (iii) sufficiently small (non a-priori zero) elements in thearggangular part. Details
on point (iii) are given in Remark/1 in Section 2.7.4. This choice allows follafploitation of the
communication links. In view of this, and the fact that connected componétite graph produced
by Algorithm/1 can be linked through arcs, one expects to increase rgamee rates of the estimates
to a common value. Moreover, the presence of more links results in an $ecrealiability against
communication faults.

2.6 Example

We consider the fourth-order system

0.9962 01949 0 0

—0.1949 03819 0 0
0 0 —1.21 198

wherex; = [Xyt X2t X3t x4,t]T. Notice that the eigenvalues of the matfbare 09264, 04517, 099+
0.4795i and, sincg0.99+ 0.4795i| > 1, the system is unstable.

Let & € R4, be white noise with covariand@, = diag(0.00120.038 0.0012 0.038). In the fol-
lowing we consider two cases

A. W = &, Q= Q. andW = R* (unconstrained input noise)
B. vt =|a|, Q= QecandW = Rgo (constrained input noise)

In both cases, we sgt=[0000T, My = 100, andN = 2 in the DMHE algorithm.
The state off (2.34) is measured lly= 4 sensors with sensing model

% = [1000x+v ifi=12
Y = [0010x+v ifi=34
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k, O ky 0 0 0 I 0 0 0 0 0 0
0 kyy 0 0 0 0 ky O 1 0 0 0 0 0
ky O ks ky O 0 0 Gy 0 &y 0 0 0 0
K=|0 kyp ky ky 0 0 0 K=|0 0 %y ky, 0 0 0
ks ksy 0 0 kss ke O 0 &k 0 0 %y 0 0
0 0 0 0 ks kg O 0 0 0 0 ks kg O
0k, 0 0 0 0 Kyl 0 k5, 0 0 0 0 %

Figure 2.2: The original grap¥ (left panel) presents two types of sensors: nodes 1 and 2 are region-
ally observable (black circles), and nodes 3-7 are regionally unedisler(white circles). Therefore,

Yo ={1,2} and*no = {3,4,5,6,7}. The graphG (right panel) is defined by selecting a subset of
edges (black ones) of the original graph, according to step 2 of Algorith Below each graph we
show the corresponding matri

where Vafj)) =R =1,i =1,...,4. Sensors are connected according to the graph in Figure 2.3,
where the matriX is also given. It is apparent that the information available, at each instamide

1 consists of the measurementxpf andxs; (transmitted by sensor 4). Analogously, the information
available to node 3 consists gf; (transmitted by sensor 2) and;. It is easy to check that the
system is regionally observable by sensors 1 and 3. On the other haathatime instant sensor

2 can only use two different measurementxgf (produced by sensors 1 and 2). Similarly, sensor
4 can only use two different measuresxgf (produced by sensors 3 and 4). Therefore, the system
is not regionally observable by sensors 2 and 4. In Eﬁ:(t,:diag(o, 0,1,1), Pﬁo =diag(1,1,0,0).

The eigenvalues of the matri® are 0, 04632, 02258 and 950+ 0.239%. Since® is Schuir,
convergence of DMHE is guaranteed by Theorem 1. Moreover, $iigcgraph is strongly connected
and collective observability holds, Corollary 1 guarantees that alseRyop holds.

In Figure 2.4(d) the estimation errors produced by all sensors in thédcageshown. It is worth
noticing that the estimates produced by sensors 2 [resp. 4], relativeeeista X4t [resp. Xit, Xa]
display big errors fot < 6. In fact, these states cannot be observed by these sensors gsimgire
measurements. Nonetheless, the estimation errors of all sensors asympttaically the same
values, thanks to the consensus action embodied in the DMHE scheme. tihhatiea errors for
case B are depicted in Figure 2.4(b). Analogously to case A, conveegdrDMHE can be noticed.
Figurel 2.5 depicts the evolution of the eigenvalues of matm'q'gtgr,\,_l over time. Note that these
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== O O
Rl— O O =

O O =t —
O == O

Figure 2.3: Communication network and associated métrix

matrices are the same in the cases A and B. Indeed, the update procestnbet in Section 2.3.3
does not depend on the estimates and can be run off-line. Further simeéapiennments have been
performed (results not shown for space limitations), in order to assessféut of the variation of

the horizon lengtiN on the estimation performances. As expected, the larger the horizon lémegth,
more accurate the results. In fact, [dSncreases, a larger set of data is taken into account in the
optimization problem. However, the need of increadiépr optimality reasons is conflicting with
the need of reducing as much as possible the computational load.

2.7 Proofs
2.7.1 Proof of Proposition 1
Proof 7 For all vectorsx = [x{ ... x};]T € R™, from (2.28)it holds that
X M e aX > XKy 1K TX (2.35)

Notice that the j-th block K Tx corresponds tgy M, kijx; so that, in view 0f(2.20) the right-hand
side of equatiorf2.35)can be written as

T2 <. 2
K" x||& = (i %il=
TR, s = 20 3 il
Using the triangle inequality we obtain

M M 8 &
Zj:1||2i:1|<ijxi||2ﬁ§,w, = ZFleZizlkﬁHXiHZ':'LN/H
M 2
M 1% 8
Z|71H 'HZ’JV':le -zjn[],N/t—l

which proves that matricelﬁLN/F1 verifying (2.30)also verify(2.28)

2.7.2 Proof of Theorem 1

The proof of Theorem 1 uses classical results for MHE, [43, 4248} and additional results we
provide next.

Lemma 1 If (2.28)is satisfied then, for X, (2.18)is fulfilled.
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Figure 2.4: Components of the estimation efgy, &,,.€;,,€,,]" =% —%, of the different sensors.
Solid linei = 1, dotted lind = 2 , dashed liné = 3, dash-dotted line= 4.
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Sensor 1
100 : ‘
50f
0 Sensor 2
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50
T Senora
200 ensor
1OOK

Figure 2.5: Evolution of the four eigenvalues (for each sensor) of tha‘aeal'l{/HNfl, i=1,...,4.
Solid linei = 1, dotted lina = 2 , dashed liné = 3, dash-dotted line= 4.

Proof 8 (Proof of Lemmal1) Letz = 1y ® z. We define the “unconstrained” transit cost as

E?—N—i—l/t (Z) = min)A(t—N,{VAVk}L;%,N {‘J(t - Nvta )A(t—Nawv\A/_v r'[—N)

subject to(2.15a) (2.15b)and%;_n+1 = Z}
that, differently from,_ 14 in (2.17) does not account for input and state constraints. Notice that

Mo
SN2 = ;Eli‘NH/t(Z) (2.36)

where the unconstrained transit cost associated to sensor i is
EL’LJNJ’»]_/t(Z) = . n;].intil {‘]l (t - Nata),z{fN7W7\7r7 r{fN)
% Nt N

subject to(2.74) (2.7b)andR_y.1 =2} (2.37)

We first compute explicitlﬁii‘NH/t(z). Recalling(2.7) we can write

—t-N+Lt NI o fopgt-N+Lt-1
L A .
where matrices 4/, and &), are defined in (221) and (2.5) respectively,

VN o )T DT, YN = @ )T DT, and
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WM — 0@ T (W ,)T]T. We can rewrite the i-th sensor’s cost function as

o NALt] S e i lt-N+LE-1
20 -9, = ||Y—|[t - ﬁll\lx'lchJrl_(g'{lWi[t o ]”(2'5"\‘)71_;_

t—N-+1t—1] HZ

+ -t W B+ (2.38)

M
i g 2 i S 122
+]|R_n— ]Zlk”X[_N/t_lll(nLN/t—l)il +[1Vin —CIX{—NH(Ri)—l

()

where ma’tricesﬁN and Q\Fl are defined in(2.22) and (2.23), respectively. Minimizing the partial
cost(x) in (2.38)with respect tog_,, gives

)’zt*LN/tflzn;HfN/tfl[(rqu/tfl)7lzlkii % w2+ (C)T(R) ]
=

with I'I;‘LN/F1 as in(2.26) Therefore one has that the term) in (2.38)is equal to
o oxi 2
1%~ — &7N/t71||(nfi—N/l—l)7l (2.39)
up to a constant term.
We denote withl(-) the minimum of \-) with respect to vectorWNH’t*l}, ie,
L'= min J() (2.40)

~ot—1
{Wk}k:thH

We comput% =0. The vector\{{}_'\'+1’t_l]"("ot which solves the minimization problggh40)
is
WP ()T (RY) M+ Q) ) x
< ()T (RY (N - A% i) (2.42)
Replacing(2.41)into (2.38)and using(2.39)one obtains

P OteN+L] S e 2
L' = [, ~ OWnll{R g o a2

M2 o px 2"
"’HWLN HQ—l + ”)(th XtiN/til”(ntﬂ—N/t—l)il

up to an additive constant term. The solution of the optimization prolff&¥)can be computed
through a Kalman filter recursion with respect to the modified dynamicskay

2’1—N+1 = AXLN +Wi—N
NGt = —it—N+1t (2.42)
{ A ﬁll\l)q—N+l+\/i[ e

where w has covariance equal to Q, the covarianceZBFN”’t] is Ry + 41 Qn-1(E)T, andl‘l;*LN/F1

in (2.26)is the uncertainty of the initial condition guess. In this way we can write thensined
transit cost as follows (see [22])

i 1 N .
:LBNJrl/t(Z) =3 lz— XItiJNJrl/t ”?ﬁi ERC . (2.43)

t—N+1/t
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wheref(ithH/t minimizes the unconstrained problem, aﬂ{ﬁi’” is the optimal solution of the uncon-

strained minimization problem, arifILN+lt is computed as iif2.27) Remark that the regionally

unobservable subspaces of sys{@m2)and systen2.1)-(2.2) coincide.
From (2.43)and (2.36)one has that

- 1 S 2 *,
::J—N-l-l/t(z) = é HZ_ XtLLN+1/t ||(|:|th+1/1)’1 + et - (2-44)

where ;" = M of" and M, n;1. :diag(ﬁtl_N+1/t, - I:It"’lNH/t). We also define

O N1t (6K Ny 1) = lIx— i |’(2|:|t—N+l/t)7l in such a way that

E{J_N+1/t(z) = 9t—N+1/t(Z;>A<tu,N+1/t) + 0", Let us finally consider the case of constrained estima-
tion. Following the rationale of the proof of Lemma 4 in [44] one has that,esiles in the feasibility

region by assumption, one obtai(&19) Notice that the initial penalty terfi;_n1(-), computed as
in (2.13)in z, is

. 1 . 2 »
MN(ZXeNr) = EHZ— KXt—N+1/tH.—.t—}NH/t +6; =
1 A > «
=5 12— Xe—Nr1t HKTnt—}NH/tK + 6 (2.45)

where the second equality holds becalige= z.
Using Schur complement, the LNR.28)is equivalent to

N i K
CNEL >0 (2.46)
K M Nyt

and, being matricefl;_y_; and ﬁth/tfl positive definite(2.46)is equivalent to

. ~ 1
KTntle/t—lK <N (2.47)

From (2.19)and (2.45), (2.47)implies(2.18)
Lemma 2 If (2.28)is satisfied, then

O < To(Xo0;Xo)0) forallt >0 (2.48)
wherexo =[x} ... x}]T € R™ andxq/o = Im @ U

Proof 9 (Proof of Lemmal 2) First notice that, in view of Definition|2, the sequengét, xo) verifies
the constraintg2.15d) In view of Lemma 1, equatiof2.18) holds forz = xs(t,Xp), for all t. By
optimality, we have

@t* < Eth+l/t(Xz(t —N+ 1,X0)), vt>0

Furthermore
Et—NJrl/t(XZ(t —N + 17 XO))S‘](t - N7t7XZ(t - N7X0)707 07 rt—N)

Note that, from(2.14) one hasJ(t — N,t,xs(t —N,%0),0,0,lt n) = Fe-n(Xs(t — N,X0); Xe—nyt—1)
and in view of((2.18)0F < =;_n—1(Xz(t —N,%0)) < F-n-1(Xs(t —N —1,X0); X _n—1/t—2). We can

further iterate this procedure in order to proy2.48)
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Lemma 3 Assume thata) N > n—1, with N > 1, (b) 3 such thaﬂ'l{ Nji—1 < I‘_I, for all t, for all
ie?,and(c)

t—oo
k:tnjﬁx (Vi el T2 (Reonjt Ke—nje—1)) — O (2.49)

Then the dynamics of the state estimation error provided by the DMHE scisagiven by(2.32)

Proof 10 (Proof of Lemma 3) In the noiseless case, for any sensar¥ at any t, the output signal
|sy7[( C'xs(t,%o). Similarly to Lemma 4.3 in [43],

z 1l = z %k~ CiRi | > (2.50)

k=t—

t — .
> S (- CATENR - [CAENE TR
k=t—N

The first term at the right-hand side @2.50)is
IV = CAENR el = 1082 (5 (= Noxo) =Ry o) (2.51)
N
k=t—

Whereg,i\l+1 is the “extended” regional observability matrix of N1 rows defined by replacing n with
N+1in (2.5). From(2.7), one has

k—(t—N)
R (N e o
XL/t:A ¢ N)XLN/H' le AJV"llej/t

The second term at the right-hand side(@f50)can be bounded as

Zk t— NHCAk (t=N) X[ N/t_CIXk/tH <
(t—N
< Slen G A (2.52)

__ Py K
<NC Skt Zj:(lt )HA”J”kaj/tH

By replacing equationf2.51)and (2.52)into (2.50) one obtains

||5"N+1<RLNA —xs(t—=N,%0))|| <

t k=
< S ¥+ IC) >
k=t—

k=t—N

N
S 1AWl (2.53)
=1

Note that the matri>6’_,i\l+1 at the left-hand side of2.53)selects the observable part((i{_,\,/t —xs(t—
N,Xo)). Therefore, fron{2.49) equation(2.53)leads to

t—o0

[IPo(Xt—nyt =Xz (t =N, o)) || — 0, (2.54)

t—oo

M N (Re-nyo Xe-njt-1) — O (2.55)
In view of assumptiofb), it follows that

FEN RN/t Reonji—1) > [[Re-nye — X5 (6= N, Xo) | giagii-
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Hence, from(2.55)
~ t—oo
||Xt7N/t7XZ(t7N7XO)H —0 (256)
Note that, fork=t —N,...,t — 1
Kir1/t = ARt + Wit (2.57)
and that, in view 0f(2.49) one hasV,; — 0 as t— . Therefore one also has
)’Zk+1/t —A)“(k/t —0ast— o (258)

From now on, we introduce, for simplicity of notation, term%to indicate asymptotically van-
ishing variablesij.e., ||a || =20, for all j € 7. Formulae(2.54) (2.56)and (2.57)are equivalent to

PO)A(t—N/t = Pon(t - N,Xo) + atl (259&)
Xe-njt = KRNt + af (2.59b)
Xi-N41t = ARenj+ at3 (2.59c¢)

Recall that, by definitiorRo + Pno = |. Therefore,

Xe—n/t = PoXt—nt + PnoXe—n it (2.60)

In (2.60) we replace termPoX;_n/ andPnoX;_n, according to(2.59a)and (2.59b) premultiplied
by Pno, respectively, we get

RNyt = Poxs(t —N,Xo) + PnoKRe_njt-1+ Of (2.61)
SincePo 4+ Pno = |, we writePoxs (t — N, Xg) = X5 (t — N, Xo) — PnoXs (t — N, Xg), and obtain
Re_njt — Xz (t—N, %) = Pno(K&_njt-1—Xs(t— N, X)) + oy’ (2.62)
First recall that, sinceK is stochastic ands(t —N,Xp) = Iy @ Xs(t —N,Xp), KXz (t —N,Xp) = X5 (t —
N,Xp). Then notice thaks (t — N,Xg) = Axs(t — N —1,Xp). From(2.59¢)one obtains
& Nt = PnOKAE N 14 1+07
= PnoKA (Pno+Po)&r nj + OfF (2.63)

Equation(2.59a)implies that the terniPog; 1 is asymptotically vanishing and equati¢32)fol-
lows from(2.63)

Proof 11 (Proof of Theorem 1) By direct calculation, for all t> 0 one has
O — Oy = d¥hei nllViellZ s+ B 3icE I3 a+
r?fN()A(t—N/t;)A(t—N/t—l)

Furthermore, (2.48)follows from Lemmia 2 an(2.28) Therefore it follows thad S|y Vi[5 1+

3 Shetn Wi 1B 2+ TN (Renye % ngea) % 0 and hence(2.49) holds. This, in turn, implies
(using Lemma 3) that the dynamics of state estimation error provided HyNH¢E scheme is given
by (2.32)

Furthermore, from(2.32), convergence of the error to zero is guaranteed is Schur.
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2.7.3 Proof of Theorem 2 and Corollary 1

Proof 12 (Proof of Theorem 2) If the graph¥ is not strongly connected it can be partitioned into
k irreducible subgraphg’’, ¢, ..., % of cardinality m, ..., nx, and 25(21 m = M. Without loss of
generality, (i.e. by permuting sensor indexes) the matrix K can be btaugtblock lower triangular
form (with k square diagonal blocks K...Kk, of dimensions m) ..., mx, respectively).

Notice that the block Kis stochastic if and only if = 0 for j <i. In this case, the nodes of
the subgrapli4* have no neighbors belonging to other subgraphs @jids isolated Moreover, if a
subgraplt* is isolated, the block Kis stochastic and it has a single Frobenius eigenvalue equal to 1.
On the other hand, if a graptd* is not isolated, K is irreducible but not stochastic (specifically, the
sum of the entries of at least a row is smaller tHarand its Frobenius eigenvalue has absolute value
smaller thanl®. Notice that the eigenvalues of K are the eigenvalues, gf K. So, the number of
eigenvalues of K equal tbequals the number of isolated graphs in the network.

Note thafT ~ AT = Ako =diag(Ako, .. ., Alo) where A is the “regional” observability Kalman
decomposition of A associated to sensor i, that is

. i 0
A [A.o . ] (2.64)
O Ay Ao
SincePno = TSnoSkoT 1 one has )
O = PyoKA

whereA = TAoT 1, Ako =diag(ALg, ..., A¥,), and

%o~ [o A
©= o Ay

Now we prove that espan(e ®v‘A, e €M ®\/‘A) is not an eigenvector ap associated to a non-
zero eigenvalud,. In general, given a vectar € RM, with a # 0, one has that the eigenvectoof
A can be written ax = a ® V). We obtain

G]_VIA alAlle
Ax = diag(At,....AM) | : | = :
GMVIA GMAMVIA
By construction AlVj, = ALV, if Vi, belongs to the regionally unobservable subspace of sensor j.
OtherwiseAlv, = 0. We write, in generah!vj, = fijjApV,, where

1 if v‘A belongs to the regionally unobservable
fij = subspace of sensor j
0 otherwise.

Defining f = [fi1,..., fiu]", we can write

Ax = A)(diag(fj)a) @V

IThis follows from the third Gershgorin theorem [53], dealing with irredlecibatrices. Specifically, an eigenvalue of
an irreducible matrix (in our cad€;), which is on the boundary of a Gershgorin circle, is located on the toyraf all
the Gershgorin circles. Since there is at least a roWj;o$uch that the sum of its entries is smaller than 1, 1 cannot be an
eigenvalue oKj, and hence all the eigenvalueskGf are strictly inside the unit circle (from the first Gershgorin theorem).
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FromK = K® 1, we obtain
®x = A\Pno(K @ In) [(diag( fi) o) @V
Recall that(A® B)(C® D) = (AC) ® (BD) and hence
®x = A\Pno(Kdiag( fi)a) @ Vi = Aj(diag( fi )Kdiag(fi)a) @ viy

Finally, we obtain _ _ _
®(a ®@Vy) = Ap(diag( fi)Kdiag(fi)a) @ Vi

from which it is apparent thatr @ Vi, is an eigenvector o, with eigenvalue\) # 0 if and only

if diag( fi)Kdiag(fi)a = a. Moreover, there exista satisfying the previous equation if and only if
diag( fi)Kdiag( fi) has at least one eigenvector equallioThis occurs if and only ifjf = 1 for all j
belonging to an isolated subgraph. This means that all the sensors obkateild subgraph have at
least a common regionally unobservable eigenvector. Hehespan(e ®v"A, M ®v"A) can not be
an eigenvector ob if (2.33)holds. This completes the proof.

Proof 13 (Proof of Corollary[1) Recalling Definition 1, collective observability holds if and only if
the observability matriX0* of the pair(A,C*) is such that

ker(O*) =0 (2.65)
Notice that, up to a permutation of the rows@f, we havel (61)T ... (6M)T]". Therefore(2.65)
is equivalent to B
M ker(l) =0
eV

which is equivalent t¢2.33)when the graph is strongly connected. This concludes the proof.

2.7.4 Proof of Theorem 3

To prove Theorem 3, a number of intermediate results are needed. Ferstddvess the problem
of the stability of Riccati equations with respect to perturbations. This pmolilas been scarcely
explored in the literature, with the exception of [52] where stability is provél respect to small
perturbations. In the following, we explore the issue under the lead ofr€he 4.1 in [13], and
provide global stability results.

Given a pain(A,C), and matrice® > 0, R > 0 of appropriate size, consider the following Riccati
equation, affected by an exogenous perturbation fiasrm

M1 = (A= GRO) (M + ) (A~ GRO)T + Q+ GRR(GY)T (2.66)

wherellg is the initial condition and matrigy, is the Kalman gain

GY =AM+ A)CT (C(MN2+8)CT +R)

(2.67)
Assuming that the paifA,C) is detectable and that the pdi, \/Q) is stabilizable, there exists a
unique solution > 0 of th_e) algebraic Riccati equation associated to (2.66) With- 0. In the
sequel, we will denote withX ; the sequence of matricég, with k=0,..., 1. In [30] the following
definition of Z-stability of system (2.66) is given.
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Definition 3 Systen(2.66)is .#-stable from input) if, for a given norm.#, there existy > 0 and
B > 0 such that
— — —

M=y <y|Alg+B, VAE L NVT €[0,).
From now on, we denote wit||hYTHgm theco-norm of the sequendgX||2, witht =0,...,T.
Lemma 4 Given a detectable paifA,C), system(2.66)is .Z.-stable from a positive semi-definite
inputAg > 0.
Proof 14 We define a sequentk (with Mo = M§) as follows

Mis1 = (A—GC)(Mk+A)(A—GC)T +Q+GRG, (2.68)

where G is an arbitrary gain such that & A— GC is Hurwitz. Notice that G always exists, since
(A,C) is detectable. Fronf2.68) we obtain, for k> 1,

M1 —Me=F (M= Mg_1)FT +F(A— D 1)F T
and hence, for & 1,

Miya— i =F' (M —Mo)(FT)' + 2Fj(Ai+1_j —A0)(FT))

Then, for k> 1,
Me = Mo+ 33 (Mixa—)
= ZI‘&F'(ﬂl Mo)(FT) + Mo+ (2.69)
+ YT AR (A - A )(FT))
Notice that, assuminfp = 0in (2.69)one has
k=1 i k-1

Zl ZlFJ(Ainj —Aij)(FT) = 21 F'oyi(FT)
i=1j= i=

and (2.69)gives
k—1 k-1
M= _§0Fi<n1—no><FT>i +no+_leiAk_i(FT>‘ (2.70)

Letus sef|lM1—Mo|2 = a and|| Aoo”gm = 4. Since F is Hurwitz, there exists> 0and0 < v < 1
such that||F'||> < uv'. Remark that, sincAy > 0, from optimality off1P [13] one has0 < MY < My,
vk > 0, and hence|[P||> < ||My||2. Furthermore, fron{(2.70)

k-1
IMRNl2 < [IMk]l2 < _Z)HF'II%H”l—ﬂoller [IMol|2+
i=

k1
leHF'H%HAk—in (2.71)
i=

k-1 _ k-1
< auz %VZ' + |||-|0H2+5IJ2 Zlv2|
i= i=

l*VZk _ 1— 2(k-1)
< aul 2,,2
<au 1_V2+|||_|0H2+5[.l Y.
1 1 -
< a1 n 2,,2
The proofis concluded by applying Definition 3 wth= o 12 1_1

v2

+[[Moll2-+ M2 andy = pv2 2

Page 31/68




| HD-MPC ICT-223854 Methods for distributed state and covariarce estimation|

The proof of Theorem 3 can now be completed by applying Lemma 4 and tHegaimaresult
for interconnected systems reported in [17].

Proof 15 (Proof of Theorem 3) First we show, by applyinfR.27)and (2.31) that it holds that:
. . M ~ J—
Nt S2Y MKEAY g 5 QU RY) (2.72)
=1
From (2.26) one hast‘lt*LNfl/tf2 < nifol/t72' Then, by applying2.27)and by optimality [13],

ﬁLN/tflz'%i < ;KLNfl/th;Q?F\?KD <% ( LNfl/th;Q’F?Kli)

and j_roqu.Sl) we obtain(2.72) Now, with reference to the i-th sensor characterized by the pair
(A, 0)), we define the following sequence of matriCegs

My = # (Z?’Ll Mj'ﬂ%ﬂ‘;Q,ﬁ,’d) (2.73)
with initial condition T}, = Izlio/N_l. From optimality we obtain thdﬁL_N/k_l <nj_, forallk>N.

Therefore, in order to prove boundednessﬂQjN K1 it is sufficient to show that the sequerﬂ:{gis
bounded. This is the aim of the remainder of the proof.

If we defined], = ﬁﬂ? S, MiKj M}, (2.73)can be written as

My = (A-GOMiK (M +4) (A-Goy)+
+HQ+GRIG)T (2.74)
= (VMikiA=G/Miki Op) (M+4) x '
x (v/MikiA— Gl v/Miki 04)T + Q+ GR (GL)T

where Cﬁ is the optimal Kalman gain computed as
=AML+ A (G)T (G B ()T +RY) ™

First we show that systeif2.74) is %.-stable. To this aim, we use Lemma 4. In order to satisfy
the assumption of Lemma 4, one must guarantee that the @alkki A, /Mik; ﬁ,‘\,) are detectable,
for all i € 7/, which turns out to be a condition on the Qa(rA,Ci), and on the weightsjk First
notice that, by definition ot’l,, the pair (v/Miki A, v/Mikij ﬁ,‘\,) is detectable if and only if the pair
(VMikiA, \/quci) is detectable. The assumption of Theorem 3 is sufficient to guarantedathat,
any regionally unobservable nodes, there exists a path stemming frogiocaaly observable node
i.e., for which the assumption of Lemma 4 is satisfied for any arbitrary vallgg. dh particular, in
step 1 of Algorithm 1;k= 1is chosen, for all & 5.
On the other hand, ifA,C') is not observable, the assumption of Lemma 4 can be verified if the pair
(v/MikiA,C") is detectable. This leads to the choice pirkstep 2 of Algorithrh 1.

Then, by Lemma 42.74)is a finite gain.%,-stable system from inpdt, > 0, and there exist
¥ > 0,3 > 0 such that

M= A2 < Wl Bl + B, VDY € Lo, VK € [0,00) (2.75)
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From the definition ofy, we get

M

i A ) 2N .
M=l < i 3 Mkl + B (2.76)
j#i

VI'IH( € %o, Yk e [0,0),Y]j € #'. Given(2.76), we resort to Theorem®in [17] for guaranteeing that
M, are bounded if the matrix

i Yiv
M1k§17 "My kI%/IM

is Schur. In(2.77)the symbob represents the element-wise matrix product.

To conclude the proof, we show that, under the assumptions of Th&giiei possible to find a
matrix K, compatible with the graph topology, such tHats Schur.

First, from the graph(¥', &), we derive a subgrapf* = (7',&™*), by selecting edg€s, j) € &* C
& according to Algorithm 1.

By construction, the grap#* is a forest [12], i.e. a graph composed by a number of mutually
disjoint trees. Moreover, the root of each tree is a regionally obsdevabde while all other nodes
are regionally unobservable. It follows that each row of the matrix K paomdl by Algorithm [1 has
only one off-diagonal element that is different from Zero

Up to a permutation of the node indexes, K is lower triangular (see, e.g.ré&@2). It follows
that the matrix defined in(2.77)is triangular, with zero diagonal entries and hence, for any choice
ofy, 1 =1,...,M, Wis Schur. This concludes the proof.

W = diag( ) (K®Kdiag(My, ..., My) —diag(Mikiy, ... Mukéy))  (2.77)

Remark 1 The matrix K generated by Algorithm 1 is lower triangular, up to a permutatfahenode
indexes. The same arguments of the above proof can be used tdogtammtinuity, that boundedness
of I'Ii_,\”t_l is guaranteed by any stochastic matixcompatible with(7",&) with: (i) the same
diagonal elements of the matrix K; (ii) arbitrary elements in the lower triangpéat; (iii) sufficiently
small elements in the upper triangular part so as to guarantee the m#tdgfined in(2.77)is Schur.

2.7.5 Proof of Corollary2

Proof 16 Recall that, from Algorithm 1, K is lower triangular up to a permutation of thessen
indexes. Hence&K = K® I, is a block lower triangular matrix. Recalling th#yo and A are block
diagonal matrices® = PNyoKAP no is a block lower triangular matrix as well. Accordingly, the
eigenvalues o correspond to the eigenvalues of the M diagonal block®,alenoted ash;, i € 7/,

and defined as o o
@ = ki T'(Svo) " Svo(T) AT (Svo) ' Swo(T)
Let Ao be defined as i2.64) One has

P = ki T'(Svo) SvoAko (Svo) " Sho(T) (2.78)

2Note that, Theorem 8 in [17] can be directly applied when the con&aint(2.75) is replaced by &, function of
the initial conditions. Furthermore, Theorem 8 deals with global stability ratren %, -stability. However, a careful
examination of the proof reveals that Theorem 8 holds with referené& tostability whenf is constant, provided that the
gain map (represented by matkin our context) is linear. We also highlight that, although Theorem 8 is fotirmoous-
time systems, Proposition 15 in [17] guarantees that it holds for distine¢esystems as well.

3We also highlight that the matrik produced by Algorithh 11 is compatible with the graph, &).
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and according to the definition é\lo, one also obtains

Y& TE A & Ta 00
Ako = (Svo)" SvoAko (Svo) 'Svo = [0 i o]
Therefore, from(2.78) ®; = T' %A{(O (TH~L. Itis thus clear that the non-zero eigenvaluestoére

also eigenvalues of‘,ﬁ), for some i \o. Ifi € Yo, O = ALO = 0nxn. On the other hand, if_e’E TNOs

recall that, from step 2 of Algorithm 1, we havge m Therefore|A;(®;)| < kioW(A) <

dé}wi <1, forall j=1,...,n, foralli € ¥§o. The Schureness dfthen follows from the Schureness of
[

Finally, notice that the assumptions of Theorem 3 imply that, in all the isolatedgiyr con-
nected subgraphs ¢, there is at least one observable node, and h&€@cg3)holds. Therefore, by
Theorem 2, Property|1 is verified. This concludes the proof.
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Chapter 3

DMHE extensions and analysis of the
Impact of different communication
protocols

This chapter extends the results presented in Chapter 2 by considefargmticommunication pro-
tocols among the agents of the sensor network. The effect of theseg@tm the quality of the
estimates is also studied. The content of this chapter is based on the pHper [2

3.1 Communication protocols and models

The first assumption on the communication network is that measurements takesehgor at time

t are instantaneously transmitted to its first-order neighboring agents, i.e. agehés directly con-
nected to it. Secondly, we I& > 1 be the number of transmissions between two sensors within a
sampling interval. Two types of data communication protocols can be assumed:

P1) For Nt > 1, at timet sensori collects the sets of measuremé&[j/t = {ylj(, j€ %NT}, for all
ke t—N,t].

P,) For Nr = 1 and givenN > 1, at timet sensori collects the sets of measurement
o=yl e n K1) foralike [t N1

Note that, even if¢ contains loops, measurements in the %jﬁ, are considered just once. In the
case of protocol § the elements of the se&j/t are illustrated in Figure 3.1. Note also that the
protocols can be combined to obtain a more complex information transmissianescHewever, for
simplicity, in the following the two cases Rnd B will be addressed independently.

We introduce now suitable notations for describing measurements availalol@eaiat timet with
both protocaols. LeyiJt be the vector of measurements@(j/tl. We denote Witl"p[k the dimension

of ﬁ(/t. Apparently, from matrice€' one can build matrice@_ti_k € RP-*" such that

ﬁ/t:d—kxk‘i‘\_/ir(/u t—N<k<t (3.1)

INote that the order in which elements@;f/t are listed iw}:/t does not play any particular role.
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Ao—o Po—e
if if
—3  G—@
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Vh=thaty Yo T Bt Udae
" = {1 vi 1%}
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"
@4—@

yi;,l—2/t = {yg'—i’ yt2—2} U yt2—‘2/t—1
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Figure 3.1: lllustration of the communication protocel fer N = 2. The information available to
node 1 at time consists o@k}t, k=t—2t—1t. The set@t/lt (panel A) collects the data measured

by nodes 1 and 2 at tinte The se@tfl/t (panel B) contains data measured by nodes 1 and 2 at time
t—1and data collected by node 2 attime 1, that is%?,,_, = {y{ 1,3 1 }. Analogously*, ,
contains (panel C) the measuremeyj@, i=1...,4.

where\ﬁk'/t collects noise samples affecting the measurermmtsN'ote also that in case of protocol

Py, matricesC]_, are all identical.

We can now redefine @egional quantity (with respect to sensras a quantity which is related
to the sensor and the nodes irl/iNT and"l/it*kH for protocols R and B, respectively. Similarly to
Sectionﬂy};t in (3.1) will be referred to as a regional measurement. Furthermore, weelby

R« :cov[\7k/t] € RP-«*Pi«, the covariance matrix of the regional noizigt i.e., ﬁ{fk =diag{R;, j €
#N andR_, =diag{R;, j € %'~**1} for protocols R and B, respectively. The concept of regional
observability can also be re-defined, similarly to the previous chapter.etwbesides depending
on the local observability properties of the single sensors, it is intimately litdkede estimation
methodology adopted and to the communication graph properties. In facggibeal modelg2.1)
and (3.1) are time-varying models, since the output equation (3.1) deppodk, and the definition
of regional observability will refer to these kinds of models. In this contée most suitable observ-
ability definition is that of uniform observability [45], which easily applies to tiwaeying systems,
as well as to nonlinear systems. For this reason, the following definitiorendeygpon the size of
the estimation horizon and, in particular, upon the number of output-depemimsmm(% RET
seel(2.8)i(e., N+1).

Given a single sensor model (2.1) and (3.1) and the considered comminmigeotocol, thes step
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regional observability matrizé_’; for sensoii is
Cly
— |CLLA
oi=| 7 (3.2)
@)Asfl
Definition 4 The system isegionally observabley sensor i (or, equivalently, the sensor régjion-
ally observablgon horizon N, if kefoy ., ;) = 0. a

Now that the matrix7y,, , has been re-defined, the matrid®s P, o, Po, andPyo are defined equiv-
alently as in Section 2.2.

3.2 The distributed estimation algorithm and main results

For a given estimation horizad > 1, each nodée ¥ at timet solves the constrained minimization
problemMHE-i (2.6), under the constraints (2.7) where (2.7b) is replaced by the folipmie
Yior = G+ Vi (3.3)
wherek =t —N, ...t and the local cost functiodi is given by
i+ _ S Wi _1ct Fl12.
J (t . I\ivtiXtNiWI;\A’rv rtfl.\l) _A.z zk:AFr—N H\7|r<|’(p§7k)71+ (3.4)
+3 St WG+ TR X (E =N/t =1))

t—1

We denote withxTt —N/t) and with {W (k/t)},—,_,, the optimizers to[(2.6) and witk (k/t),

t—1

k=t—N,....,t the local state sequence stemming froh = N /t) and{v‘vi (k/t) },_;_n- Furthermore,
X' (t —N/t — 1) denotes the weighted average state estimate
)?r(t—N/t—l):Zkijf(](t—N/t—l) (3.5)
=1

wherek(; are the entries of the stochastic matikcompatible with the grap#™ induced byk N, Of
course, the choick* = KN is always possible. However, note that ageran set the nonzero entries
kij autonomously, as far a§'j\":1 kij = 1. For instance, a possible choicekjs = 1/|%M"|, and this
highlights that the choice of coefficierits can be done in a distributed fashion. In (3.4), the function
M (R X(t— N/t — 1)) is theinitial penaltydefined, analogously to (2.10), as

. 1 . I
MnRonsX (t=N/t—1)) = > 1% N — X (t =N/t - 1)|\(2|-|LN/t71)—1 +01, (3.6)

whereG);‘i_1 is the optimal cost defined in (2.6).

From now on, the proposed algorithm is equivalent to the one proposéhdapter 2. The only
further difference lies in the fact th&f andK* are used in (2.31) and in the definition ®finstead
of kijj andK. For instance, about the latter

® = PNyoK*APNO

whereK* = K*® I,. The scalaM; is now defined as the number Nf-th order neighbors of sensor
i. Having said this, the results presented in Sectioh 2.4 still hold without aritycad assumption or
further definition.
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3.3 Collective observability and convergence of DMHE

In this section we analyze some key implications of collective observabilitygsérition/1). Specif-
ically, we investigate how the assumptions of Theorems 3 and 1 can be fulfiltgutoperly tuning
N andNr, and provided that the assumptions of Theorem 2 are satisfied. Firstng@er the as-
sumptions of Theorem!3. Then, we prove thaand Ny can be chosen in such a way thatis
Schur.

) First of all, for sufficiently large values dfl andNy, the assumptions of Theorem 2 imply the
assumptions of Theorem 3. In fact, there exists a threshold d&ljfieesp.N] such that, at least
one node in each isolated irreducible subgraplyj = 1,...,1) is observable foNt > Nr [resp.

N > NJ.

II) We now study the matrig. As a limit case, assume that all sensors enjoy regional observability.
This yieldsPyo = ® = Opwxnm and convergence of DMHE follows from Theorem 1. Consider
now the two data transmission protocols mentioned in Section 3.1.

In the case B, regional observability can be enhanced by increasing the nuxibafrdata trans-
missions between agents within a sampling interval. The incredse bas two accompanying
effects.

1) If all the isolated strongly connected subgraphs are collectivelyredisie, there exists a
threshold value foNt (sayN;) such that regional observability is satisfied by all the sensors
for Nt > Nt. So, forNy > Nt one hafPno = Onmxnm-

2) If K* = KN, the modulus of the eigenvalues of matibdecrease asr increases. In fact, the
eigenvalues oK * are equal to the eigenvaluesk¥. SinceK is stochastic, it hak (being
| the number of non empty irreducible subgraphs in which one can par#tja@igenvalues
equal to 1, and\l — | eigenvalues with modulus strictly less than 1. We denote witthe
j-th eigenvalues oK. The corresponding eigenvaluesksf verify \)\j'\“| < |Aj|, resulting in
a decrease of the eigenvalueginf

On the other hand, if the communication protoceli® employed, we can enhance regional
observability and the Schurenessdby increasing the estimation horizdh As a limit case,

if all the isolated strongly connected subgraphs are collectively oldsiervhere exists a value
N such thatN > N implies thatPnyo = Onvx<nm, Which guarantees thét is Schur.
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Chapter 4

Covariance estimation - a critical analysis
of existing algorithms and some new ideas

Kalman filtering has been a widely used estimation technique since the '60garkrgees optimal
estimation performances (in that it aims to minimize the estimation error varianagpiagsthat
disturbances affect the system dynamics and the system measurements.

The covariances of the noisy disturbances entering in the model and tsema@@nts are consid-
ered as the tuning parameters of the filter. However, in many applicationsiéheaiues of such noise
covariances are not known. In this scenario, the optimality of the Kalmanddtenot be guaranteed.

Hence, in order to use the optimal filter, we need to know the covariantls disturbances affecting
the system, from which the optimal Kalman filter gain can be computed. In thisttiyegoroblem of
estimating the noise covariances for linear, time-invariant systems is aeldress

First a statement of the problem is given. Then the state of the art is prdsédiwo main algo-
rithms are presented and tested on two well-known academic examples. Rivabglected scheme
is tested on a realistic problem.

4.1 Problem statement

Consider a linear, time-invariant, discrete-time model:

X1 = FXc+ B+ Gwi

(4.2)
Z = HXxg + W

wherex € R" is the system stat&; € R™" is the transition matrixB € R"*™M is the control matrix,

G € R™9 s the disturbance matriz,c RP is the observation vector, amtic RP*" is the observation
matrix. Note that,{uc}pe,, {Wi}rto, and {v}pe, are the control, the state uncertainty vector (or
process-noise), and the measurement noise sequences respetilidly the size of the sequences.
The disturbancesandw are zero-mean Gaussian white noises WitndQ,, as covariance matrices,
respectively.

State estimates of the system are computed using a linear, time-invariant statéoestima

Rt 1k = F Rk + Bk

. R ~ (4.2)
Rigk = Rigk—1 + L [z — H%qi—1
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wherelL is the estimator gain, which is not necessarily the optimal gain. The residuls ofitput
equationsz — HX«_1 are the so-calledi-innovations, since these are calculated using a state esti-
mator with gainL. The variance estimation problem is reduced to find the true ma@gendR,
using real data from the innovations, with the final goal of computing the op#stanator’s error
covariance matrix and the optimal filter gain.

4.1.1 The effect of erroneous covariance matrices on the fiteptimality

Let consider the effect of using a non-optimal gain on the performaitte dilter due to the assump-
tion of erroneous covariance matrid®g andR, [24]. It will be shown that the use of the erroneous
covariance matrices gives a suboptimal solution of the filtering problem.

First, letLx be the optimal Kalman gain calculated with the real covariance mat@QgesndR, at
instantk. Consider the use of this gain in a filter as[in (4.2). The error in the estimatiafired as
k-1 = Xk — Xk—1. Then, an expression for the error dynamics is given by:

€1k = FXc+ B+ GWe — F [Rigk—1 + Lic (2 — HRqi-1) | — Bu
= Fx¢+ Gk — F (1 — LkH )Xk—1 — FLiz (4.3)
=Fxx+Gwg — F(| — LkH)ik‘k,l - FLk(HXk—I—Vk)

and after some calculations,

Ekt+1k = F(— LkH)Ek\k—l + GW — FLkVk (4.4)

The estimation error covariance is defined as:

My = E{gk\k—lgl-(likfl} (45)

whereE{-} denotes the statistical expectation. Using|(4.4) in the last equation we obtain

My,1 = E { [F(1 = LiH) g1+ G — FLiv] [F (1 = LiH) gigi_1 + Gk — FLkvk]T} (4.6)

which after some computations allows to write the expression for the estimatimncewariance
matrix in a recursive way as:

M1 =FMFT —FMHTLEFT —FLHMFT +FLHMcHTLIFT +GQWGT +FLKRLLFT (4.7)

Equation|(4.7) can be rearranged as:

Mic1 = F [Mic—= MHTL] — LiHMic+ L (HMHT +R)LE | FT + GQUGT (4.8)
Minimizing (4.8) with respect to the gair, we obtain:

minMi1 = min {F M= MHTL{ — LHM+ Ly HMHT +R)Lg ] FT +GQ,G™}  (4.9)
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which gives the classic result of the Kalman filter,

Le=MHT (HMHT +R,) (4.10)

On the other hand, a suboptimal gafhcan be computed by using the erroneous covariance matrices
Q5 andRY, where the super index)® denotes a erroneous quantity. Let us assume that the gain used
in the filter deviates from the optimal gain by a quandty, i.e,

Ly = Lk + Lk (4.11)

Then the suboptimal estimation error covariance matrix can be written as:

M1 = F [ME=MEHT (LE)T — LEHME+ LEHMEHT +R) (L)) [ FT+ 66T (4.12)
From (4.8) and (4.12) we can verify that, whilg minimizesMy in (4.8), the gain

Le=MEHT (HMEHT +Re) (4.13)
minimizes [(4.12), but the desired (4.8) as claimed.

4.2 State of the art

The problem of estimating the covariances from open-loop data has |l@mdudject of research
in the field of adaptive filtering, and according to [35] the methods can\idedi into four general
categories: Bayesian [7, 25], maximum likelihood/[11, 28], covariandelmteg [34], and correlation
techniques. Bayesian and maximum likelihood methods have fallen out aof b@oause of their
sometimes excessive computation times. They may be well suited to a multi-modebeip@s
in [8]. Covariance matching is the computation of the covariances from giduads of the state
estimation problem. Covariance matching techniques have been shown biagigd estimates of the
true covariances. The fourth category is correlation techniques)\iapmeered by Mehra [32, 33]
and Carew and 8anger|[9, 15]. In/[35] an alternative method to the one presented irB@2s
described, where necessary and sufficient conditions for unigaarie¢he estimated covariances are
also given. This method, called Autocovariance Least Squares (Altpeidorms significantly the
results obtained by the algorithm proposed in [32] as it will be shown later.

In the sequel the algorithm proposed in [32] and the ALS algorithm ptedém|[35] will be presented
in detail. The firstis presented in order to show the starting point in the literabout the correlation-
based covariance estimation schemes. Then, a deep explanation of tmeedh@& is given.

4.2.1 The pioneering work of Mehra [32].

A covariance estimation scheme was proposed by Mehra at the beginrtimgy'@0s. In[32] a three
step covariance estimation procedure usingd-tienovations of the system from a sub-optimal tuning
of the filter is shown. The preliminary step consists of an optimality test in ordeerity when a
innovation sequence originates from a suboptimal filter. The optimality tessiitded in detail in
the following:
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Optimality test. First a test of optimality is made to theinnovation sequence. If the test gives
positive results about the optimality of the innovation sequence, the nestatepliscarded and the
assumed covariances can be taken as the real ones. Otherwise tovaeiances must be estimated.
To show how the test of optimality works, consider the normalized autoctioreleoefficients of the
L-innovation sequence,

[ék} ij
{16, &), )"

where [Ck]ij denotes the element in theh row and thej-th column of the matrixCy, which is
known as the estimated autocorrelation function oflthenovation sequence and can be estimated as
follows:

[oulij = (4.14)

. 1 N
=S £z’ 4.15
Ck Nd i;( 1=<j—k ( )

with 2k = z — HXk_1 as theL-innovation at the k-th time instant. Therefore, the test consist of
analyzing the sequencégy};, k > 0 and checking the number of times they lie outside the band

i(1.96/N§/2), assuming a confidence band of 95%. If this number is less than 5% of thetheta
sequenced 21, ..., 2\, } is white [26].

The three steps to perform the covariance estimation algorithm are the fajtowin

1. Computation of MHT. In order to computHT, consider the autocorrelation function, which
is formally defined as

C=E{ZZL} (4.16)

TheL-innovation can be written as a function of the estimation egirerx; — X;_, as:
2 =Hg +v (4.17)
Using (4.16) and (4.17), the autocorrelation function can be written as:
Ce=E{(Hg+w)(Ha_x+Vi)'}

=HE{&g  JHT +HE{&V|  } +E{vig" , JHT +E{vv] } (4.18)
;\',_/

(i) (ii) -0 -0

The computation ofi) can be performed using the recursive equation (4.4), whetel (the
filter is considered in stationary conditions).

By iterating (4.4), we obtain that

k ) k )
§=[F(1—LH)g_— JZl[F(I —LH)tFLv + JZl[F(l —LH))*Gw_;  (4.19)
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Equation|(4.19) is post multiplied bgf_k in order to get an expression f@),

E{agl ) = [F(I—LH)*M (4.20)

whereM is the steady state error covariance matrix for the suboptimal case. Aessiqo for
M can be obtained directly from (4.4) as:

M=E{g¢g'}
TET TET T (4.21)
=F(I —LH)M(I —LH)"FT + FLRL'FT + GQ,G
The computation ofii ) is based on (4.19) post multiplied by
E{avl )} =—[F(1—LH)]*'FLR, (4.22)
Hence, replacing (4.20) and (4.22)lin (4.18) it follows that:
Ck=HI[F(I —LH)*MH —H[F(I - LH)]**FLR, (423
—H[F(I—LH)]*F [MHT —L(HMHT +R))] '
Hence
C«=HMH" +R,, k=0
1 ; (4.24)
=H[F( —LH)*'F[MHT —LGy], k>0
From (4.24) the ternvIHT can be obtained in two alternative ways, i.e:
Ci+HFLG
Co+HFLCy+HF?LC
MHT =B" | . (4.25)
Ch+HFLCy 1+---+HF"LCy
or
MHT =KGo+AT[C; - G T (4.26)

where(-)T denotes the Moore Penrose pseudoinversg)oB is the product between the ob-
servability matri of the system and the transition matrix,

B=(0(F,H)-F (4.27)

T
lthe observability matrix is defined @(F,H):[ HT HAT .. [Hanl}T }
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and,

HF

HF (I —LH)F

A= (4.28)

;4 [F(I—LH)™F

Then an estimate of the produdH™ (denotedViHT) can be calculated using the estimated
values of the autocorrelation function using either (4.25), (4.26). Thsoasuggests to use
(4.26) since he claims that it is numerically better conditioned than|(4.25).

2. Estimation of R,. The covariance of the state noise can be computed directly Uising (4r24) fo
k=0,

R =Co—H(MHT) (4.29)

3. Estimation of Q. This step becomes more complicated since m&yjxs only involved in the
error covariance matrix equatian (4.21). Then, amby p linear relationships for the unknown
parameters irQ,, are available from this equation. If the number of unknown parameters are
greater tham x p, an alternative procedure must be used. Moreover, as the estimakési for
andR, are not helpful in the way the equation (4.21) is written, a derived equittam (4.21)
must be found to get advantage of the estimations. In order to explain hosvkswconsider
that (4.21) can be rewritten as follows:

M=F(—-LHM(I-LH)TFT +FLRL'FT + GQ,G'

4.30
=FMFT + Q4+ GQ,G' (4.30)

whereQ =F [-LHM —MHTLT + LGLT| FT. Substituting back foM in (4.30)n times and
separating the terms involvir@,, we have that

Z)FJGQWGT(FJ)T =M —F*"M(F4T - %FJQ(FJ)T, k=1,..n (4.31)
i= i=
Premultiplying both sides of last equation Hyand post-multiplying byF —<)THT

k—1 . )
Z HFIGQ,G'(FI ) THT =HM(F *)THT — HF*MHT
=

1 (4.32)
—~ S HFIQFI™THT,  k=1,..,n
2

Note that the right-hand side of (4/32) is completely determinet/lby/ andCy. Then the
estimations of these terms allow to determine the components of the riggtriXone of the
drawbacks in the estimation of the components of ma&jxs that the equations described by
means of[(4.32) are not all linearly independent. Then, a linear indepesdbset of these
equations must be chosen.
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4.2.2 Autocovariance Least Squares -ALS- [35]

In [35] a method (constrained Autocovariance Least Squares -Ab%3timate the variances of the
disturbances entering the process using routine operating data istpcesknthis paper the results
are compared with those presented in [32], which is considered as a papeain this subject. As
a result of this comparison, Odelsenal. stated the inability of the previous contribution to tackle
the covariance estimation in certain cases. Indeed, it is shown that in speafnples, Mehra’s
scheme does not work properly. Moreover, one of the main criticisms oNétea’s algorithm is
the use of a three-step procedure to compute the covariances. The meghedted in [35] uses a
one-step procedure, which yields covariance estimates with lower uintgida all tested examples.
The formulation used in this paper provides necessary and sufficieditioms for uniqueness of the
estimated covariances, previously not available in the literature. Finallyuthera give a formulation
to avoid negative definite estimates with a convex optimization problem usingiarkiarm.

In order to show the algorithm, consider the dynamic evolution of the state estin@tior, &, =
X — Rk—1, from (4.4):

fir1=(F—FLH)g+[ G —FL ] [ " ] (4.33)
— k
F G —
Wik

Then, the state-space model of thanovations is defined as:

Pyl (3
In the sequel, the following conditions are assumed to hold:
e The pair(F,H) is detectable.
e The transition matrix of the estimation error dynamics is stable.
e E(g) =0, Cov(&) =My

The last assumption gives the possibility of using the Lyapunov equatiorataigiee a recursion for
the covariance of the estimation error:

M =FM,FT+GQuG, j=1..k (4.35)

Using (4.35) and the error dynamics, the expected values of the innavat@onbe written alge-
braically:

E{ZZ]} =HM HT +R,

_ — 4.36
E{Z%: 2} =HFM HT ~HFI"'FLR,, j>1 (4.39)
Moreover, the autocovariance matrix (ACM) is defined as:
Co - Cna
Z(N)=E : : (4.37)
C§71 N
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whereCy is defined in[(4.16) anll is a user-defined parameter. Using (4.36) and (4.37) the ACM of
theL-innovations can be written as:

N N N
RA(N) = Op LM~ Ox s+T @GQWGT M+w PR |+ |PR|NVY + PR (4.38)
i=1 j=1 =1 j=1
where,
H 0 0 00
HF H 0 00 N
ﬁALS— ) M= 9 r @_F ]
K - . : =1
HFEN-1 HFN-2 ... H 0

Also, the covariance of the whole noise is,
o — — 0
E [T = Gu=| G 2 |
v

In order to show the problem formulation as a Least-Squares probler8) {@ @ven in stacked form.
Henceforth{-)s denotes the outcome to apply thecoperator tq-).(4.38) is written in a stacked way
using the standard definitions [35] of the Kronecker sanKronecker product), and direct sunégp
as:

[Z(N)]s= [(Oas® OnLs)(le —F @F) 1+ (T @) 5w ] (G2 G)(Qu)s

+{[(OaLs® OnLs) (e —F @F) 1+ (T @T) Ion] (FLOFL) + [WB W+ 1 2n2] o (R)s
(4.39)

where also the Lyapunov equation is written as:
Mg = (F @ F)Mg + (GQwG')s (4.40)

Equation((4.39) can be written as a LS problem, consideringtilit)s can be estimated from (4.37)
using the acquired data.

Given@/X = b, with

[ ﬁALS@ ﬁALS( nz—F@F) (r@r)fn,N) ]
[ (G®G) D(FL@ FL)+ [W@W+|pzN2] JoN ]

=[ (@I RI]
b—%’(N)s

where.#, \ is a permutation matrix to convert the direct sum to a vector/,g is the (pN)? x p?
matrix of zeros and ones satisfying:

(@ Rv) c%p N Rv)
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We define the ALS estimate as follows:

% = argmin||.«/x— b||3
X

st Qw,R, >0

(4.41)

inwhichXx=[ (Quw)! (R/)S }T, andb = %(N)s. These steps are summarizedhigorithm 2..

Algorithm 2 ALS Algorithm
for j = ltoNﬁl_do
Ci =y 2icy AL
endfor
Computeb = Z(N)s from (4.37)

Solve{ Q } =arg min
Qu

RV Ry

2
(QW)S A
ﬂ[ (R }—bH2 st. Qu=0, R >0

The following Lemmas and Theorem guarantee the existence, uniguenkgstdasedness nature of
the estimates [35]:

Lemma 5 The ALS estimate given for the Algorithm 2 exists and is unique if and asfyhias full
column rank.

Lemma 6 The expectation of the estimated autocovaria@cés equal to the autocovariance, @r
all j, and the variance tends to zero ag ténds too.

E{Cj}=Cj, j=0,..,N
A 1
CovC) =0 ——
MCi) <Nd—1>

Theorem 4 Given. has full column rank, the ALS noise covariance estimd@asR,) are unbiased
for all samples sizes and converge asymptotically to the true covarid@ge®,) as Ny — co.

4.2.3 Advanced schemes

In [1] a generalization of the ALS method for estimating the noise covariag@s assuming cross
covariances is presented. It is shown that equivalent results alieadbtgith both the predicting and
the filtering form of the Kalman filter. The original algorithm is reformulatediasisg that

FR(REA) 4

In [2] an advanced ALSel method for estimating the noise covariancesrfral data is also discussed.
The covariance estimation problem is stated as a least-squares problemissulved as a symmet-
ric semidefinite least-squares problem. In this paébe,ssonet al. address the problem following the
analysis from [35] and generalized in [1] for systems with correlatedgg®and measurement noises.
Two contributions can be highlighted: the generalization of the autocoe&riaast-square method to
systems with correlated noise, and the interior-point predictor-corraigorithm for solving the sym-
metric semidefinite least-squares problem. The need of including an integiatinghance model to
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the linear state-space model in order to achieve offset-free controbistted, especially in MPC
applications. This model can be written as follows:

X1 = FX¢ + Buc+ G1di + Gowy
Oki1 = Ok + &k (4.43)
Z = Hix + Hody + v

whereG; € R™ ", Gy is asG in (4.1),H, € R™*™. The white nois€ has covarianc®; which is
uncorrelated with the process noise and the measurement noise. Thegnaented model is formed
from (4.43):

Xi+1 = AXi + Bnuk + Gna

_ (4.44)
Yk = CXc+ Vi

with = [ % ok |, ax=[ we & ], and

A:[F Gl}, Bn:{B}, c-;n:{G2 0], C=[Hi Hy] (4.45)

0 | 0 0 |
Then, the covariances of the noises are defined as:
_ Qw 0] _
— , = 0 4.46
&= % o] Sw=lsw 0] (4.46)

The problem of optimal tuning of the Kalman filter is reduced to the estimation ofukectivariance
matrices in the augmented system (4.44). Once these matrices are estimatqutintiaé foter or
predictor can be implemented as follows:

Predictor:
X 11k = A1 + Bnli + Kp [Yk — CXiqi—1 (4.47)

Filter:

Time update

)A(_k+1|k = Af([qk,l + Bruk + GGk

Measurement update (4.48)
Xk = X1 + Kx(Yk — Cxigc—1)

gk = Krw (Vi — CXgk-1)

with the Kalman gain for the predictidf, and filteringKsy, Kfy as:

Kp = (ARC' +GnSw)(CPCT +R,)
Kix=P,CT(CRCT +R,)* (4.49)

Kiw=Sw(CRCT +R,) !
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andP;, is the covariance of the state prediction error, what is obtained as the sabfitibe Riccati
equation.

In [36] the ALS method proposed in [35] was tested on two chemical reaottrol problems. This
method uses closed-loop process data to recover the covarianceslisttinbances entering the pro-
cess. Moreover, in this contribution the ALS method is used with integrating wbise disturbances,
which are required for offset-free control in most of the MPC applicatidn fact, the authors high-
light the considerably improved results obtained by using the optimal tuning éf€ahman filter.

Later, the ALS scheme has been modified in [48]. The authors claim thaficagw improvements
to the original ALS method are presented, highlighting the followifignew and simpler necessary
and sufficient conditions for the uniqueness of the covariance estinfatean optimal weighting
applied to the least-squares formulation in order to minimize the variance oftthreatss, andiii )
the estimation of the stochastic disturbance structure affecting the states.

Under the assumptions of observability and the use of the innovations datatlie steady state
response of the system, the ALS method is reformulated avoiding reduthefamition of the lagged
covariances. Hence, instead using (4.16) and (4.37) the ALS schepwrittan using only the first
block column of the autocovariance matrix:

Kzl
%1 (N) =E : (4.50)
Zn-12]

As a result (by analogy with the original scheme) the following positive deftonstrained least-
squares problem in the symmetric elements of the covaridB@a&" andR, is defined:

2
o Zn(GQWGT )ss } e
¢= GQT(;?,R\, “ [ (Rv)ss b

subject to, GQ,G",R, >0, R, =R/

W (4.51)

where (Ry)ss denote the column-wise stacking of only the symmepip+ 1)/2 elements of the

matrix R,. In other words, there exists an unique matrix < RP**5 called theduplication matrix

containing zeros and ones such that,

(R\,)S - -@p(RV)ss

andW is a weighting matrix in order to guarantee the minimum variance among all the adbias
estimators.

The first contribution is made assumilg = |, and the complete knowledge of matx Using
(4.36), and the Lyapunov equation (4.35), (4.50) can be written as fallow

Z#1(N) = OPH" +TR, (4.52)
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in which
H Ip
HF —HFL
0= _ , = _ (4.53)
HFN-1 ~HFN-2FL

Then, (4.52) is stacked as in the original ALS contribution:

[%Z5(N)]s=[(H® O)(lz —F®F) ] (G& G)(Qu)s

o (4.54)
+[(H®O)(1e—FaF) J(FLoFL)+ (1,2 )] (R)s
Considering
#(N)=E[C - Cya] (4.55)
2#1(N) can be estimated using (4.18). Then the new LS problem is given as follows:
min||.</x— b||3
X (4.56)
S-t QW7 szoa QW:Q\-II—WRV:R-/I—
=] (HoO)(lp—F®F) YG®G) (H®O)(lp,—FaF)(FL&FL)+(Ip®l) |
x=[ (@I (R)I]" (4.57)

New necessary and sufficient conditions for uniqueness of the estiana&teterived taking into ac-
count the new formulation. These results can be summarized as follows:

Theorem 5 If (F,H) is observable and F is non-singular, the optimization (4.51) with the above
assumptions has a unique solution iff dkull(M)] = 0, where

M= (C@ln)(le—F®F) (G®G)Z

The second contribution deals with a relationship to compute the weighting niétgiaranteeing
the minimum variance of the estimates among all constrained linear unbiased estiNaimely, an
iterative methodology to find the optimal weighting matrix is provided. Howeveraththors made
the following claims:(i) the convergence of the iterative scheme could not be tested becausge of th
numerical burden(ii) large data sets are needed to guarantee a reliable weight estinfatiothe
computation of such a weighting matrix could become prohibitively large evendimall dimensional
problem with large data sets.

For these reasons, this algorithm will not be considered in the followingrérpntal tests.
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Finally, assumingV = | in (4.51) the problem can be transformed to the problem of identifying the
minimal disturbance structure affecting the system state, also with the unkcawanances. This
problem is stated as follows

2
—mi Qs | _ ,
= CR, %[ (R)s } ° 2+P Q) (4.58)
(o)

subjectto, Q.R, >0, Q=Q", R, =R]

whereQ = GQ,G', andp is a tuning parameter. Since the constraints are in the form of convex linear
matrix inequalities and the optimization problem is convex, the complexity of thdgumois mainly

due to the termank(Q). In fact, as the rank term only assumes integer values, this makes thenproble
computationally NP hard. This drawback can be tackled changing the foatte follows:

2

. = min M[ ((SV))S ] —b|| +pTr(Q)

~~

(0]
subjectto, QR, >0, Q=Q", R =R!

[

(4.59)

Finally, as the above optimization problem can be transformed into an aut@we least-squares
with semidefinite programming problem (henceforth ALS-SDP) the followingoFem can be stated:

Theorem 6 A solution(Q,R,) to the ALS-SDP ii4.59)is unique iff dimNull(M)] = 0, where M is
as in Theorem|5. Moreover G is any full column rank decompositiégp-6fGG"

Although a way to estimate the minimum structure of the model disturbance termvisigulp the
change from the original problem to the above one is only justified whek{bex models are used,
i.e, in systems where the disturbance structure is completely unknown.

4.3 Case studies

In this section the schemes presented in [32, 35] are tested using two kcademic examples. To
quantify the performance achieved in the application of the presenteddaelndifferent tests are
performed, each corresponding to a batch of data randomly genecatediiagly to[(4.1). Denote
with Qq, andRy the vectors containing the true main diagonals of the covariances of the mgpdelin
and measurement noises respectively. MoredMgis the number of data sets used to assess the
mean and variance of each covariance estimation mef@odndl% are the estimates @y, andRy
respectively, obtained with the data generated inite3b test the quality of the covariance matrix
estimation performances, the following indexes are used:

e The Root Mean Square (RMS) error,

2 1 N A2 2 1 N S, (2
RMS, = E‘;HQd—Qina RMS = Q_ZLHRC’_R‘HZ
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e The mean of thee-norm of errors (MIE),
LS j0i- 6l LSRRI
MIEq:* Qd_Q 00y MIErzf Rd_R| o0
N9 N &

4.3.1 Mehra’s example

The example presented in [32] is tested with both Mehra’s and the ALS algwrittConsider the
following linear time-invariant discrete-time system:

[075 -1.74 -03 0 -015 0 0 0
0.09 091 -00015 0 -—0.008 0 0 0
F=| 0 0 095 0 0 |, G=|2464 0 O
0 0 0 055 0 0O 0835 0 (4.60)
0 0 0 0 0905 0 0 183
y_[1 000 1]
101000

The data are generated according to the following distributions:

w(k)NN(o,E g f)l)]), v(k)~N<O,[cl) (1)]) (4.61)

Note that

! 1

Q=|1|, Ra= [ 1 }

1

The initial values ofQ,, andR,, i.e, the covariances used to generate the innovations, are:
025 O 0
Q=| 0 05 0 |, Ro = [ 064 006 ] (4.62)
0 0 075 '

Mehra’s algorithm

e First Scenario: the Mehra’s algorithm is tested witkk = 100 and\yg = 1000 samples in each
data set. As mean estimates of the main diagonals we have:

1.0007
Qm= | 14340 |, Ryp= [ é‘gggﬂ
1.0794 '
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Table 4.1: Performance measurements using different amount of dataa'®algorithm
Ng_ [RMS[ [RMS[| [MIEq] [MIE]]
10° 3.8078 4.2695 3.0682  3.4597
10* 1.0694 1.2339 0.8821 1.0353
10° 0.3597 0.4002 0.2981 0.3297

e Second Scenario the Mehra’s algorithm is tested witly = 100 andNg = 10*. As mean
estimates of the main diagonals we have:

1.0010
Qu- | 10100 . - | 10220]
0.9537 '

e Third Scenario: the Mehra’s algorithm is tested witihk = 100 andNg = 10°. As mean esti-
mates of the main diagonals we have:

0.9996
- { 0.9887] R | T
0.9774 '

The performance indexes are presented in 4.1. Notice that Eserthan 5% are achieved
using a considerable amount of dék > 10%).
ALS algorithm

ALS algorithm is tested using the Algorithm 2. Thanks to the possibility to definstcaints, only
numerical values greater or equal to zero are expected on the main aliggon

e First Scenario: the ALS algorithm is tested witN; = 100 and\gq = 10°. The tuning parameter
is chosen adl = 10. As mean estimates of the main diagonals we have:

0.9901
Qm= | 1.4340 |, Fh::[ ééggg}
1.0032 '

e Second Scenariothe ALS algorithm is tested witN; = 100 andNg = 10*. The tuning param-
eter is chosen a¥ = 10. As mean estimates of the main diagonals we have:

0.9973
Qm= | 1.0457 |, Rm::[ égégg}
0.9847 ‘

e Third Scenario: the ALS algorithm is tested with; = 100 andNy = 10°. The tuning parameter
is chosen adl = 10. As mean estimates of the main diagonals we have:
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Table 4.2: Performance measurements using different amount of daSaalgbrithm

Ng [RMS[| [[RMS|| [MIEg| [MIE |

10° 1.6399 1.0288 1.3323  0.8369
100 0.7965 0.4961 0.6546  0.4092
10° 0.3118 0.1942 0.2464  0.1533

0.9994
Qn= | 1.0404 |, Rn= [ 3'83‘712}
0.9962 '

The performance indexes for the three scenarios are presentedédTablt is apparent that errors
less than 5% are reached with a considerable amount of data, but anobrdagnitude less than
with the Mehra’s algorithm. In Figure 4.1 we show the variation of the root nsgaare norm as the
number of measured data increases for both algorithms.

Performance index, matrix Q
15 T T

*  Mehra
O ALS

RMS norm

10

*  Mehra
4 O ALS

RMS norm

10

Figure 4.1: Root mean square norm (RMS) as the number of available mata. gBoth methods
applied to the Mehra’s example.

4.3.2 Example from [35]

Consider the discrete-time system described for the following matrices:

01 0 o1 1
F=| 0 02 o0 G=|2| H=[01 02 0] (4.63)
0 0 03 3
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The data are generated using noise sequences with covarl@are@s5, R= 0.1. ThelL-innovations
are calculated with a filter gain corresponding to incorrect noise vasdpge 0.2, Ry = 0.4.

This method is performed usiridgy = 1000 data points. As in this example only one-element matrices
must be estimated, the results can be presented graphically. In Figure 4l2cam the results pro-
vided by the ALS algorithm using a tuning paramdter 15. The desired results are obtained after
performing 200 simulations in order to illustrate the mean and variances oftiimats. The original
contribution proposedll = 15, but similar results are obtained using other values of this parameter.

original ALS algorithm

*  ALS estimate
02r true value i
*
0.15t B
2
@ 0.1f |
0.05 * b
*
wh
* 7%
*
* %
or * A

0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

Figure 4.2: ALS method applied to a case study.

The algorithm has a good performance using different values of tlaeneeN, and even if the initial
tuning is not close to the real values. The main drawback of this algorithnthaxse based on this
is the need to perform a considerably amount of simulations in order to find tae wadues of the
entries of the covariance matrices. Moreover, although many values tftiimg parameteN make
the algorithm work in a desired way, the choice of the best tuning paraiMéterot a straightforward
task. Also, there is not a criterion to know when the covariance matricegaraentified.

Mehra’s algorithm was tested on the same example. Also in this simulation the metherfbisned
usingNg = 1000 data points, and 200 data sets in order to compare the mean andevaaiaes with

the ALS results. The results of the estimates are shown in Figure 4.3. As litecaeen from this
figure, the estimation of th@,, parameter has a considerably bigger variance compared with the one
obtained using the ALS scheme. In Figure 4.4 the evolution of the RMS measiiherespect to the
number of samplelly is shown for both methods.

Page 55/68




HD-MPC ICT-223854 Methods for distributed state and covariarce estimation

Mehra’s algorithm

4 T
* * Estimates
3r True value|
2+ i
1t i
x> of E
_1 - -
_2 - -
*
_3 - -
*
Il Il Il Il Il Il Il
-60 -40 -20 0 20 40 60
QW
Figure 4.3: Mehra’s algorithm applied to a case study.
Performance index, matrix Q
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€ 2000} .
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Performance index, matrix R
154 . .
*  Mehra
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o
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*
O(/ @& &
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Figure 4.4: Performance index as the amount of data grows.
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4.3.3 Application of the ALS Method to the model of a reach of a Hgdro Power Valley
Plant

The ALS-based methods have shown better results than previous coeseistimation schemes. Both
the classic ALS scheme and the reduced ALS scheme described by (dcb@).57) were tested on
the model of one reach of a Hydro Power Valley [49]. Reduced AL®s&his selected in view of
its simplicity of implementation and reliability. First the reach model is presented,résiits on
covariance estimation using the reduced ALS scheme will be shown.

A hydro power valley is a system of lakes, reaches, ducts, penstiarks, pumps, valves and turbines
which are interconnected together and controlled in order to generataceever [40]. In this test,
only a single reach model is considered.

The Saint Venant nonlinear, first-order system of partial differeetiglations (PDE) represents the
state of the art for modeling one-dimensional river hydraulics with conélizd density [49]. The
hydraulic states of the river are described by two variables: the watgh ¢z t) [m|, and the
discharge across the sectiQfiz,t) [m3/s] , both varying as a function of spazand timet. The river
dynamics are usually expressed as [49, 40]:

Jdz ot (4.64)
got\S) 290t \ & gz 0T
aiQ_FBaiH:O
0z ot (4.65)
ii 9 _}.iﬂ gz +0j+| _| .
gBat \H /) "2g8?at\H2) "9z T °

whereS(z,t) is the wetted are@mz}, It is the friction slope], the bed slope and the gravitational
acceleratior[m/sz]. The friction slopd is defined by the Manning-Strickler formula:
_(Q/97 _S
lf(zt) = 2R R=3 (4.66)
whereks;, is the Strickler coefficien{rrﬂ/:”/s], R(zt) is the hydraulic radius, ané(zt) the wetted
perimeterim].

The first Saint Venant equation of (4/65) originates from the consiervaf mass principle while the
second equation results from the conservation of momentum. All other piamsnaee derived from
the river geometry as shown in Figure 4.5.
Assuming that the cross section of the river can be approximated as aglecémd we consider the
river width B constant along the river, then:

B(zt)=B, P(zt)=2H(zt)+B (4.67)

A simple way to implement and simulate a PDE model is to discretize it into severaldgDElinary
Differential Equations), by substituting the space derivatives with theiesponding finite differ-
ences [40]. To obtain an ODE model we divide our river int¢ 1 small cross sections along the

| Page 57/68 |




HD-MPC ICT-223854 Methods for distributed state and covariarce estimation

Figure 4.5: Variables definition in a river cross section [49, 40]

direction of the river, see Figure 4.6. To avoid unnecessary stiffnessverlap the crossings section

of the different variables. Thid variables are calculated at the crossing of each section and the vari-
ableQ is calculated in the middle of every section. The discretization is made by the fififiiedce
method. To approximate out derivatives we use the first term in the Tagfi@ssexpansions @ and

H. Dividing the reach im+ 1 cells we obtain the following ODE model whel& = L./n, andL. is

the length of the reach:

dH; ~ 1Q:-Qs
dt B Az/2

dQ 2Q2 Q2 — Q1 Q3 Hs—H1
=— —gB
dt ~ BH, Az2 <BH22 9By | =7
BHy (B+2H,\*° 2
- 9%Fe (B4 2 %2 )" gBlH,
kstr BH; BH,
dHa-1 ~ 1Qai— Qa2 (4.68)
dt B Az
dQi = 2Q2 Q2 — Qa2 Q3 \ Haipa—H2i—1
dt  BHy Bz BHz 9BH Az
gBH: <B+2H2i>4/3< Qa )2 .
B + BIH, |:2”n
Kair BHi BHy; 9Bl
dHon.1 _ 1Qxn—Qanps
dt B Az

whereH; are referred as heights a@gl are the flow rates. The even heights can be obtained by using

a linear relationship:

Hai 1 +Hai1
2 )

Assumingn = 4, previous model can be linearized around the following operating p&®t [

Hai = i=1,..,n

Xop=[ 3.8346 300 71073 300 104024 300 137008 300 17}T
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Figure 4.6: Spatial discretization [49,/40]

and then discretized using a sampling time [&f o get the following linear time-invariant, discrete-
time model:

[ 0.99 0 Q0001 0 0 0 0 0 0 7
5.37 098 -5.28 0 —0.0001 0 0 0 0
0 0 099 0 0 0 0 0 0
0.0019 00007 857 099 856 0 —0.0002 0 0
F= 0 0 0 0 099 0 Q0001 0 0 ,
0 0 00023 00006 1180 099 1180 00001 -0.0003
0 0 0 0 00001 0 099 0 Q0001
0 0 0 0 00026 Q0005 150335 09993 -15.0329
. 0 0 0 0 0 0 00002 0 099
-0 -0
0 0.0022
0 0
0 0 1 000O0O0OO0CDO
B= 0 G= 0 H=|0 00010000
0 0 0 000OO0OO0OO0OT10O
0 0
0.0002 0
L 0 ] L 0
where the system state is defined as:
x=[H1 Q2 H3 Q4 H5 Q6 H7 Q8 H9]'
As initial conditions:
Q2i(0)=Qo, i=1,...,n—1; Hy;1(0)=Hy, i=1,...,n (4.69)
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whereHy is the normal height, and the boundary condition on the upstream and tleamsof the
reach:

Q1(0) = Qin (4.70)

with Qi considered as a system disturbance.
In this model the manipulated variable is the discharge through the tug@jrehich is related with
the last flow rate as follows:

Qzni1=Qt +Qo(Hzns1)
whereQp is a constant value discharge, known as the weir-discharge.

Noises (model and measurement) are generated accordingly to the folldsirigutions:

01 0 0
w(k) ~ N(0,10), vk ~N|[o0,| 0 01 o], (4.71)
0 0 1

which correspond to the modeling uncertainty and the sensor variancis, éagle two flow rate sensor
and a level sensor.

As discussed, the estimation of the covariances using the constraineddareéd ALS scheme has
the following degrees of freedom: the number of data in each dahysetd the tuning parametst.
Therefore, the results are presented as follows:

e The amount of data is fixed & = 10°. Then, the results are evaluated as the tuning parameter
is changed.

e The N parameter is chosen in such a way that any increase in it value doesneagea
significant reduction on the variance of the estimates. Fixing this parametsinthlations are
performed using different amount of data in each data set.

In all the aforementioned cases we perfoNn= 200 different tests in order to obtain a reliable
statistical characterization of the results.

In the first testN; = 200 sets of fixed data (each one with = 10%) are used to estimate the covari-
ances as thdl parameter is changed. In Table 4.3 the mean of the state noise covajaixcshown
together also with the corresponding performance indexdsgrews.

It is apparent that the accuracy of the estimation increasismsreases. However there is a point at
which a considerable increaseMfloes not imply a considerable reduction of the estimation variance.

In the second test, the tuning parameter is takel as47. The starting values @,, andR,, i.e, the
covariances used to generate the innovations are:

025 0 0
Qo=09, Re=| 0 05 0 (4.72)
0 0 075

Then, the following scenarios are considered:

Page 60/68




HD-MPC ICT-223854 Methods for distributed state and covariarce estimation

Table 4.3: Performance indexesiss varied

N  Qm |RMS[]  [RMS]  [[MAE] [MAE]

2 216647 354.8952 .8091x 10 * 14.1385 0.0161
10 11.0444 46.3145 .2268x10* 5.3920 0.0146
20 10.0479 24.9942 .2103x10°% 4.0660 0.0145
30 9.9039 18.0471 .2916x10% 3.5151  0.0145
40 9.6083 15.8991 .2963x 104 3.2015 0.0145
50 9.4683 14.0892 .2986x 104 3.0749 0.0145

Table 4.4: Performance measurements using different amount of datacéteALS algorithm

Ng  [|IRMS] IRMS | IMIEq| [[MIE|

10°  55.6970 0.0020 6.1658  0.0428

10* 12,5323 21163x10-4 2.8934 0.0134
5x10* 2.9040 46010x10°° 1.3733  0.0064

e First Scenario: the covariances are estimated Wi = 10°. A graphical sketch of the esti-
mation is presented in Figure 4.7 where each component of the main diaddiabkmlotted
against the one-element matfl,. As mean values of the main diagonals we have:

0.1002

Qm=1007253 Rn= | 0.1002
0.9991

e Second Scenario the covariances are estimated with = 10*. A graphical sketch of the
estimated covariances is presented in Figure 4.8 where each componeanudithdiagonal
of Ry is plotted against the one-element mat@iy. As mean values of the main diagonals we
have:

0.1001
Qn=9.7339 Rn= { 0.0999]
0.9992

e Third Scenario: the covariances are estimated Wil = 5 x 10*. A graphical sketch of the
estimated covariances is presented in Figure 4.9 where each componennudithdiagonal
of Ry is plotted against the one-element matgy. As mean values of the main diagonals we
have:

0.1000 ]

Qm=10.0968 Rn= | 0.1000
0.9996

The performance indexes for the aforementioned scenarios ar@faese Table 4.4.

In this test the covariances have been estimated using a fixed number setitia= 200, theN
parameter, the initial guesses, and varying the amount of data in eacl thes® sets. Figurfe 4.10
shows how the estimates are considerably improved as the amount of date&set However, it
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Figure 4.7: Covariance estimation in the single reach model. First scenaah dlement oR, is
plotted against th&,,
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Figure 4.8: Covariance estimation in the single reach model. Second scdfacioelement oR, is
plotted against th&,,
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Figure 4.9: Covariance estimation in the single reach model. Third scenaih éfement oR, is
plotted against th&,,
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Figure 4.10: Root mean square norm (RMS) as the number of availablgmaia. Reduced ALS
method applied to the single reach model.
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can be noticed that in order to achieve small variance in the m@yithe amount of data must be
increased considerably.
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