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Executive Summary

This report describes the research activity in the Seventh Framework Programme, Theme 3 “In-
formation and Communication Technologies”, STREP research projectHierarchical and Dis-
tributed Model Predictive Control of Large Scale Systems- HD-MPC, focusing on WP5 -
“Distributed state estimation algorithms”. Specifically, the report aims at presenting the main re-
sults achieved in Task 5.1 (State estimation) and Task 5.2 (Variance estimation).
The report is organized in four chapters:

• Chapter 1 presents a synopsis of the report, summarizes the content of thefollowing chapters
and, for each one of them, highlights the main results achieved.

• Chapter 2 generalizes to nonlinear discrete-time systems, the results, already described in
Deliverable D5.2, concerning the problem of distributed state estimation, i.e. the problem
of estimating the state of the system by means of a network of sensors that canexchange
information according to a given topology. Then, the problem is formally stated and a
solution based on the use of moving horizon estimators (MHE) is proposed.

• Chapter 3 presents an MHE method for discrete-time nonlinear partitioned systems, i.e.
systems decomposed into coupled subsystems with non-overlapping states. In the proposed
algorithm, each subsystem solves a reduced-order MHE problem to estimateits own state
based on the estimates computed by its neighbors. Conditions for the convergence of the
estimates are investigated. The algorithm is applied to the model of three river reaches, i.e.
to a part of the hydropower valley extensively studied within the HD-MPC project.

• Chapter 4 deals with the problem of variance estimation. This problem is of paramount
importance since the distributed estimation approaches described in the previous deliver-
ables and chapters require the a-priori knowledge of the covariancesof the noises affecting
the system states and outputs, which are generally unknown. Therefore, a simple on-line
covariance estimation algorithm is developed and its performance analyzed ina couple of
significant test cases.
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Chapter 1

Synopsis of the report

1.1 Synopsis of Chapter 2

First of all, it is worth recalling that in deliverable D5.1 a distinction was made betweendistributed
estimation, where each agent estimates the state of the whole system, andpartition-based estimation,
where each agent estimates only part of the whole state based on its own measurements and on the
information transmitted by its neighborhoods, including the estimates of other system’s components.
In this final deliverable, this distinction will be reconsidered and two specific algorithms, one referred
to thedistributed estimationproblem (Chapter 2) and the other referred to thepartition-based estima-
tion problem (Chapter 3), will be described. Both of them are based on the moving horizon estimation
(MHE) approach and are derived for nonlinear discrete-time systems.
Specifically, in this chapter, the previous results on distributed state estimation for linear systems al-
ready described in Deliverable D5.2, are generalized to nonlinear systems. The goal is to provide a
Nonlinear DMHE (NDMHE) scheme enjoying stability properties. In order to characterize states that
can and cannot be recovered by each sensor without communication the notion of MHE detectability,
see [43], is first exploited. Moreover, a consensus-on-estimates penalty term in local MHE problems is
used to let each sensor learn locally MHE undetectable parts of the state from other sensors. The state
estimation error dynamics is derived and it is shown that when it enjoys incremental input-to-state
stability (δ ISS) [6], so that stability of the estimation scheme is guaranteed. Unfortunately, check-
ing δ ISS properties can be hard and requires a global analysis of all estimationerrors committed by
individual sensors. Therefore, exploiting a small gain property inspired by [10], simple conditions
are provided on the weights associated to communication channels in order to enforce stability of
DMHE. An example of application concerning four Van der Pol oscillators isconsidered to analyze
the performance of the proposed NDMHE algorithm. All the technical proofs of the main results are
collected at the end of the chapter.

1.2 Synopsis of Chapter 3

The distributed approach described in the previous chapter is mainly useful for the coordination of sen-
sor networks, i.e. when each sensor must estimate the whole system state with the limited information
provided by its own measurements and those transmitted by its neighboring sensors. However, in
industrial process control, the distributed estimation problem can assume significantly different char-
acteristics. In fact, many industrial processes and physical systems arecomposed by a large number
of interconnected units, each one described by a dynamic model. In these cases, the computational
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load associated to the design of a unique centralized controller can be high; moreover, a centralized
approach does not take advantage of the sparsity of the system. For these reasons, within the HD-
MPC project research has focused on the design of efficient and reliable distributed control systems
(see WP3 and WP4), which, however, are usually state-feedback. Therefore, in order to guarantee a
fully distributed control design, also distributed state estimation algorithms dealingwith constraints
are needed.
Early works in this field have been reported [30], where a solution basedon the use of reduced-order
and decoupled models for each subsystem was proposed, while subsystems with overlapping states
were considered in [25, 50, 49, 51]. Within the HD-MPC project, three partition-based MHE algo-
rithms (PMHE) for linear constrained systems decomposed into interconnected subsystems without
overlapping states have recently been developed and described in [17]. In these algorithms, which
differ in terms of communication requirements, accuracy and computational complexity, each subsys-
tem solves a reduced-order MHE problem in order to estimate its own states based on the estimate of
the other subsystems’ states transmitted by its neighbors.
In this chapter, the results of [17] are extended to the case of nonlinear systems so as to cope with the
majority of problems arising in process control, where the nonlinear dynamic phenomena have often
to be considered in order to guarantee the accuracy of the solution. The convergence properties of the
method are investigated and sufficient conditions are given. These conditions turn out to be automati-
cally satisfied when the directed graph describing interconnections among subsystems is acyclic.
The proposed partition-based MHE is applied to the problem of estimating the levels and flow rates
in the model of three cascade river reaches, which represents a partof the Hydro Power Valley bench-
mark extensively studied in the HD-MPC project (WP7). Interconnectionsbetween successive reaches
are due to the dependence of the input flow rate of the downstream reaches to the level of the final
section of the upstream ones, which cannot be measured, but just estimated from the available mea-
sures collected along the reach.
All the technical proofs of the main results are collected at the end of the chapter.

1.3 Synopsis of Chapter 4

All the distributed estimation algorithms base on the MHE approach developed in the HD-MPC
project and partially described in the previous chapters of this deliverable require the a-priori knowl-
edge of the covariances of the noises affecting the system states and outputs, which are generally
unknown. This is a serious drawback which could prevent one from achieving satisfactory results,
and a particular attention must be placed to the tuning phase.
Many different approaches have been proposed in the technical literature to solve the problem of co-
variance estimation; some of them have already been presented and analyzed in deliverable D5.2.
The analysis reported there has shown that the so-called correlation approach is probably the most
effective and reliable one. Therefore, the algorithms developed by Mehra, see [28, 29], and the Auto-
covariance Least Squares (ALS) method described in [31] have beenspecifically considered. Further
tests have proven that the ALS approach is the most effective one, sinceit outperforms significantly
the one proposed in [28].
In this chapter the ALS method is used to implement a novel adaptive algorithm for the on-line esti-
mation of the noise properties; the estimates so computed are then used for the adaptive tuning of the
weights of the moving horizon estimators. Basically, starting form the output estimation error com-
puted on-line, this algorithm adaptively updates the noise variances, whichcorrespond to the inverse
of the weights in the MHE performance index. The method is used in a couple ofsignificant test cases
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with excellent results, so that it is believed that it can be successfully applied in the majority of cases.
As a simple example, extensively discussed in the chapter, consider a system affected by a noise with
covarianceQw = qI acting on the state and by a measurement noise with covarianceRv = rI ; Figure
1.1 shows the estimate of the parametersq andr provided by the method here developed. It is ap-
parent that the unknown covariances are properly estimated, and can be uses in the state estimation
algorithms (either Kalman estimators or MHE estimators) to improve their performance.
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Figure 1.1: Convergence of the covariances via the adaptive law.

The chapter is organized as follows. First, the problem is stated, the performance index used in
MHE is recalled and some preliminary definitions are reported. Then the ALS algorithm, already
extensively presented in deliverable D5.2, is briefly summarized. The adaptive method for the on-line
update of the MHE tuning parameters is then given and tested in two significantsimulation examples.
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Chapter 2

Distributed moving horizon estimation
for nonlinear systems

In this chapter, the problem of distributed state estimation for nonlinear discrete-time systems is for-
mally posed and a solution is proposed with the MHE approach. The content of this chapter is based
on the paper [18].

2.1 Introduction

State estimation for nonlinear systems based on distributed sensing schemes is achallenging problem,
the solution of which is of great importance in many fields. Distributed monitoring,exploration,
surveillance and tracking of moving objects over specific regions are topical applications, due to
the wide diffusion of sensor networks in the last decade. Sensor networks are collections of small,
low power consuming and possibly cheap sensing devices, with communicationand computation
capabilities.

Available methods for distributed state estimation rely on local state estimators for linear systems
combined with consensus and sensor-fusion algorithms. Typically, each sensor provides an estimate
of the system state based on local data and consensus schemes are employed either to provide a
wider set of measurement data for each individual sensor (i.e., consensus on measurements) or to
correct individual state estimates by comparison with neighboring nodes information (i.e., consensus
on estimates). Approaches to distributed estimation based on Kalman filters have been proposed in
[8], [5], [36], [33], [47], [34], [24], [35]. The algorithms described in [36], [33] and [47] rely on
consensus on measurements, while in [34] a solution based on consensuson estimates is proposed.
Recently, convergence in mean of the local state estimates obtained with the algorithm presented in
[33] has been proved in [24] provided that the observed process is stable. Moreover, a stability analysis
of the state estimator presented in [34] is provided in [35]. A two-step optimization procedure relying
on consensus on estimates is used in [5] and in [8]. In the latter, formal analysis of the estimator
properties is carried out when the observed signal is a random walk.
As shown in [42] for centralized estimation problems, methods based on Kalmanfiltering may become
suboptimal or even unstable when constraints on noise and state variables are present. This motivated
the development of centralized MHE schemes for linear [40, 2], nonlinear[41, 43, 3, 4] and hybrid
[19] systems, capable to guarantee observer convergence and/or stability in a constrained setting. For
these reasons, distributed MHE (DMHE) methods for linear constrained systems have been developed
in the HD-MPC project; the main results achieved have been described in deliverable D5.2 and in [13]
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and [14].

In the following, we generalize our previous results to the nonlinear setting with the goal of pro-
viding a Nonlinear DMHE (NDMHE) scheme enjoying stability properties. In order to characterize
states that can and cannot be recovered by each sensor without communication we exploit the notion
of MHE detectability [43]. Moreover we use a consensus-on-estimates penalty term in local MHE
problems to let each sensor learn locally MHE undetectable parts of the state from other sensors.
Furthermore, we explicitly derive the error dynamics and show that when itenjoys incremental input-
to-state stability (δ ISS) [6], stability of the estimation scheme is guaranteed. Unfortunately, checking
δ ISS properties can be hard and requires a global analysis of all estimationerrors committed by in-
dividual sensors. Therefore, exploiting a small gain property inspiredby [10], we provide simple
conditions on weights associated to communication channels for enforcing stability of DMHE.

The chapter is structured as follows. In Section 2.2 we introduce the observed dynamical system,
the structure of the sensor network, and we recall notions of detectability for nonlinear systems. In
Section 2.3 we describe the distributed state estimation algorithm. In Section 2.4 we investigate the
stability and convergence properties of the presented observer and in Section 2.5 we generalize the
results provided in the previous sections to a wider class of systems. In Section 2.6 we show an
example of application of the proposed NDMHE algorithm. For the sake of clarity, the proofs are
collected at the end of the chapter.

Notation. In the chapter, the following notation will be used.In and 000ν×µ denote then×n identity
matrix and theν × µ matrix of zero elements, respectively. The symbol⊗ denotes the Kronecker
product, and1M is theM-dimensional column vector whose entries are all equal to 1. The matrix
diag(M1, . . . ,Ms) is block-diagonal with blocksMi . We use the short-handv = (v1, . . . ,vs) to denote a
column vector withs(not necessarily scalar) components. For a discrete-time signalw(t) anda,b∈N,
a≤ b, we denote(w(a),w(a+1), . . . ,w(b)) with w[a:b]. For the definition of positive-definite,K , K∞
andK L functions we defer the reader to [43]. Finally, the notation‖z‖2

S stands forzTSz, whereS is
a symmetric positive-semidefinite matrix.

2.2 The system and its observability properties

2.2.1 System and sensor network

We assume that the observed process obeys to the dynamics

xt+1 = f (xt ,wt) (2.1)

wherext ∈ X ⊆ R
n is the state vector and the termwt ∈ W ⊆ R

m represents an unknown disturbance
term. We assume that the setsX andW are convex and thatW contains the origin. Furthermore,
f (x,w) has continuous partial derivatives with respect to the componentsw j of w, j = 1, . . . ,n, and
satisfies the following Assumption.

Assumption 1 Function f is globally Lipschitz with respect to w and with respect to xi.e., ∃l > 0 :
∀x∈ X and∀w1,w2 ∈ W

‖ f (x,w1)− f (x,w2)‖ ≤ l‖w1−w2‖ (2.2a)

and∃lx > 0 ∀x1,x2 ∈ X

‖ f (x1,0)− f (x2,0)‖ ≤ lx‖x1−x2‖ (2.2b)
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Measurements on the state vector are performed byM sensors, according to the sensing models
(in general different from sensor to sensor)

yi
t = hi(xt)+vi

t , i = 1, ...,M (2.3)

where the termvi
t ∈ R

pi represents an unknown measurement error.
The communication network among sensors is modeled by the directed graphG = (V ,E ), where

the nodes inV = {1,2, . . . ,M} are sensors and an edge( j, i) in the setE ⊆ V ×V models that sensor
j can transmit information to sensori. We assume(i, i) ∈ E , ∀i ∈ V . We denote withVi the set of the
neighbors to nodei, i.e., Vi = { j ∈ V : ( j, i) ∈ E }.

We associate to the graphG the stochastic matrixK ∈ R
M×M, with entries

ki j ≥ 0 if ( j, i) ∈ E (2.4a)

ki j = 0 otherwise (2.4b)
M

∑
j=1

ki j = 1, ∀i = 1, ...,M (2.4c)

Any matrixK with entries satisfying (2.4) is said to becompatiblewith G . At a generic time instantt,
sensori collects measurements produced by itself and its neighboring sensors. Moreover, each sensor
transmits and receives information once within a sampling intervali.e., measurements available to
nodei arey j

t , with j ∈ Vi .
Three types of quantities can be distinguished:individual, regional, andcollective. Specifically, a
quantity is referred to as: (a) individual (with respect to sensori) when it is related to the nodei
solely; (b) regional (with respect to sensori) if it is related to the nodes inVi ; (c) collective, if it is
related to the whole network. For the sake of clarity, we use different notations for individual, regional
and collective variables. Namely, given a variablez, zi , z̄i andz represent its individual, regional and
collective version, respectively. For instance, we refer toyi

t in (2.3) as individual measurement. On
the other hand, ifVi = { j i1, ..., j ivi

}, the regional measurement of nodei is given by

ȳi
t = h̄i(xt)+ v̄i

t (2.5)

whereȳi
t = (y

j i1
t , . . . ,y

j ivi
t ), h̄i(xt) = (h j i1(xt), . . . ,h

j ivi (xt)), andv̄i
t = (v

j i1
t , . . . ,v

j ivi
t ). The dimension of vec-

tors ȳi
t andv̄i

t is p̄i = ∑vi
k=1 p j ik

.

2.2.2 Detectability properties

For the sake of simplicity, we assume that the state vector of systems (2.1), (2.5) can be split into two
sub-vectorsxD,i

t ∈ R
ni

D andxUD,i
t ∈ R

n−ni
D , whose dynamics is given by

xUD,i
t+1 = fUD,i(xUD,i

t ,xD,i
t ,wi

t) (2.6a)

xD,i
t+1 = f D,i(xD,i

t ,wi
t) (2.6b)

ȳi
t = h̃i(xD,i

t )+ v̄i
t (2.6c)

where the subsystem (2.6b), (2.6c) is MHE detectable, according to the notion of MHE detectability
for nonlinear systems introduced in [43]. In Section 2.5 we will show how to generalize the main
results to systems (2.1)-(2.5) that can be brought in the form (2.6) via a coordinate change.
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Definition 1 The system xD,i
k+1 = f D,i(xD,i

k ,w1
k), yk = h̃(xD,i

k ) is MHE detectableif the system augmented
with an extra disturbance w2k

xD,i
k+1 = f D,i(xD,i

k ,w1
k)+w2

k (2.7a)

yk = h̃i(xD,i
k ) (2.7b)

is incrementally input-output-to-state-stable (δ IOSS) with respect to the augmented disturbances
w̃k = (w1

k,w
2
k). Namely, there exist functionsβD ∈ K L , γ1,γ2 ∈ K such that, for every two initial

states z and z∗ and two disturbance sequencesw̃[0:k] and w̃∗
[0:k] and, given the corresponding output

sequences y[0:k] and y∗[0:k], it holds that

‖xD,i
t −xD,i∗

t ‖ ≤ βD(‖z−z∗‖, t)+ γ1(‖w̃k− w̃∗
k‖[0:t−1])+

+γ2(‖yk−y∗k‖[0:t])

where xD,i
k and xD,i∗

k are the state sequences stemming (through system(2.7a)) from z,w̃[0:k] and from
z∗, w̃∗

[0:k], respectively. �

It follows that xD,i
t and xUD,i

t denote regionally MHE detectable and regionally MHE undetectable
components ofxt , respectively. LetP̄i

UD and P̄i
D be then× n orthonormal projection matrices de-

fined in such a way that̄Pi
UDxt = (xUD,i

t ,0) andP̄i
Dxt = (0,xD,i

t ), respectively. Note that vectorsxt and
(xUD,i

t ,xD,i
t ) are the same up to a permutation of the elements ofxt . Therefore, we define the permuta-

tion matrixP̃i = (P̄i
UD + P̄i

D)T that givesxt = P̃i(xUD,i
t ,xD,i

t ). We define alsoPUD =diag(P̄1
UD, . . . , P̄M

UD),
PD =diag(P̄1

D, . . . , P̄M
D ) andP̃ =diag(P̃1, . . . , P̃M).

Four different notions of MHE detectability can be introduced.

Definition 2 The system isindividually MHE detectableby sensor i (sensor i is individually MHE
detectable) if the system xk+1 = f (xk,wk), yi

k = hi(xk) is MHE detectable. The system isregionally
MHE detectableby sensor i (sensor i is regionally MHE detectable) if the system xk+1 = f (xk,wk),
ȳi

k = h̄i(xk) is MHE detectable. The system isMHE detectableby a subgraphG ∗ = (V ∗,E ∗), where
V ∗ = {i1, . . . , iM∗} (the subgraphG ∗ is MHE detectable) if the system xk+1 = f (xk,wk), y∗k = h∗(xk),

wherey∗k = (ȳi1
k , . . . , ȳiM∗

k ) andh∗(xk) = (h̄i1(xk), . . . , h̄iM∗ (xk)) is MHE detectable. Finally the system
is collectively MHE detectable if the graphG is MHE detectable. �

Note that, in view of Assumption 1, for alli ∈ V , function fUD,i is globally Lipschitz with respect
to xUD,i i.e., ∃l i

x > 0 ∀x1,x2 ∈ X such thatP̄i
Dx1 = P̄i

Dx2 = xD, j and denotingxUD,i
1 = P̄i

UDx1, xUD,i
2 =

P̄i
UDx2

‖ fUD,i(xUD,i
1 ,xD,i ,0)− fUD,i(xUD,i

2 ,xD,i ,0)‖ ≤ l i
x‖xUD,i

1 −xUD,i
2 ‖ (2.8)

In the sequel we denote asVD (respectively asVUD) the set of regionally MHE detectable (respec-
tively regionally MHE undetectable) sensors.
Notice that, for a given sensori, individual detectability implies regional detectability, and regional
detectability of any sensor implies collective detectability, while all opposite implications are false.
Furthermore, if the system is regionally MHE detectable by sensori, thenP̄i

UD = 000n×n, P̄i
D = In and

l i
x = 0.

2.3 The distributed estimation algorithm

Our aim is to design, for a generic sensori ∈ V , an algorithm for computing an estimate of the system
state based on regional measurements ¯yi

t and further pieces of information provided by sensorsj ∈ Vi .
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The proposed solution relies on the use of MHE, [40, 41, 38, 4, 20, 39], in view of its capability
to handle state and noise constraints. More specifically, we propose a Distributed MHE scheme for
nonlinear systems (NDMHE) where each sensor solves an individual MHE problem.

2.3.1 The individual minimization problem

Each nodei ∈ V , for a given estimation horizonN ≥ 1, at timet determines the estimates ˆxi andŵi of
x andw, respectively, by solving the constrained minimization problemMHE-i defined as

Θ∗i
t = min

x̂i
t−N,{ŵi

k}
t
k=t−N

Ji(t −N, t, x̂i
t−N, ŵi , ˆ̄vi ,Γi

t−N) (2.9)

under the constraints

x̂i
k+1 = f (x̂i

k, ŵ
i
k) , k = t −N, . . . , t (2.10a)

ȳi
k = h̄i(x̂i

k)+ ˆ̄vi
k (2.10b)

ŵi
k ∈ W (2.10c)

x̂i
k ∈ X (2.10d)

The individual cost functionJi is given by

Ji(t −N, t, x̂i
t−N, ŵi , ˆ̄vi ,Γi

t−N) =
t

∑
k=t−N

Li( ˆ̄vi
k, ŵ

i
k)+Γi

t−N(x̂i
t−N) (2.11a)

Γi
t−N(x̂i

t−N) = ΓC,i
t−N(x̂i

t−N; ˆ̄xi
t−N/t−1)+Γ0,i

t−N(x̂i
t−N; x̂i

t−N/t−1)+Θ∗i
t−1 (2.11b)

We denote with ˆxi
t−N/t and with

{

ŵi
k/t

}t

k=t−N
the optimizers to (2.9) and with ˆxi

k/t , k = t −N, ..., t

the individual state sequence stemming from ˆxi
t−N/t and

{

ŵi
k/t

}t

k=t−N
. Furthermore

ˆ̄xi
k/t =

M

∑
j=1

ki j x̂
j
k/t (2.12)

denotes the weighted average of the state estimates produced by sensorsj ∈V i . In (2.11), the function
Li is the stage cost,ΓC,i

t−N is the consensus initial penalty andΓ0,i
t−N is the regularization initial cost.

They should be defined in order to satisfy the following assumption.

Assumption 2 The stage costs Li and the initial penaltiesΓC,i
t−N andΓ0,i

t−N are continuous, bounded,
positive definite and they satisfy the following inequalities for all w∈ R

m, v̄∈ R
p̄i , x̂i

0, ˆ̄xi
0/N−1 ∈ R

n

γ
L
(‖(v̄,w)‖) ≤ Li(v̄,w) (2.13a)

ΓC,i
0 (x̂i

0; ˆ̄xi
0/N−1) ≤ γ0(‖x̂i

0− ˆ̄xi
0/N−1‖) (2.13b)

Γ0,i
0 (x̂i

0; x̂i
0/N−1) ≤ γ0(‖x̂i

0− x̂i
0/N−1‖) (2.13c)

whereγ
L

andγ0 are suitableK∞ functions.
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As recalled in [41] and [13], choices ofΓC,i
t−N andΓ0,i

t−N fulfilling Assumption 2 are the quadratic

functionsΓC,i
t−N = ‖x̂i

t−N − ˆ̄xi
t−N/t−1‖

2
(ΠC,i

t−N)−1
andΓ0,i

t−N = ‖x̂i
t−N − x̂i

t−N/t−1‖
2
(Π0,i

t−N)−1
where the matrices

ΠC,i
t−N andΠ0,i

t−N must be positive definite and bounded.

The penalty termΓC,i
t−N embodies aconsensus-on-estimatesterm, in the sense that it penalizes de-

viations ofx̂i
t−N from ˆ̄xi

t−N/t−1. Consensus, besides increasing accuracy of the individual estimates,is
fundamental to guarantee convergence of the state estimates to the state of theobserved system even if
regional MHE detectability does not hold. In other words, it allows sensori to reconstruct components
of the state that cannot be estimated by thei-th regional model.

Finally notice that, since the cost (2.11) and the constraints (2.10) depend only upon regional
variables, the overall estimation scheme is decentralized.

2.3.2 The collective minimization problem

The individual estimation problem (2.9) can be given a collective form. To this end, letJ be the
collective cost function given by

J =
M

∑
i=1

Ji(t −N, t, x̂i
t−N, ŵi , ˆ̄vi ,Γi

t−N) (2.14)

Define the collective vectorŝxt = (x̂1
t , . . . , x̂

M
t ), ˆ̄vt = ( ˆ̄v1

t , . . . , ˆ̄vM
t ), ŵt = (ŵ1

t , . . . , ŵ
M
t ), the matrixK =

K⊗ In, the quantityΘΘΘ∗
t = ∑M

i=1 Θ∗i
t and the collective costs

L( ˆ̄vk, ŵk) =
M

∑
i=1

Li( ˆ̄vi
k, ŵ

i
k) (2.15a)

ΓΓΓC
t−N(x̂t−N;Kx̂t−N/t−1) =

M

∑
i=1

ΓC,i
t−N(x̂i

t−N; ˆ̄xi
t−N/t−1) (2.15b)

ΓΓΓ0
t−N(x̂t−N; x̂t−N/t−1) =

M

∑
i=1

Γ0,i
t−N(x̂i

t−N; x̂i
t−N/t−1) (2.15c)

ΓΓΓt−N(x̂t−N) = ΓΓΓC
t−N(x̂t−N;Kx̂t−N/t−1)+ΓΓΓ0

t−N(x̂t−N; x̂t−N/t−1)+ΘΘΘ∗
t−1 (2.15d)

whereK = K⊗ In. Then, the collective cost functionJ can be rewritten as

J(t −N, t, x̂t−N, ŵ, ˆ̄v,ΓΓΓt−N) =
t

∑
k=t−N

L( ˆ̄vk, ŵk)+ΓΓΓt−N(x̂t−N) (2.16)

Definingf(x̂k, ŵk)= ( f (x̂1
k, ŵ

1
k), . . . , f (x̂M

k , ŵM
k )), ȳk = (ȳ1

k, . . . , ȳ
M
k ) andh(x̂k)= (h̄1(x̂1

k), . . . , h̄
M(x̂M

k )),
also the constraints (2.10) can be written in the following collective form

x̂k+1 = f(x̂k, ŵk) , k = t −N, . . . , t (2.17a)

ȳk = h(x̂k)+ ˆ̄vi
k (2.17b)

ŵk ∈ W
M (2.17c)

x̂k ∈ X
M (2.17d)

It is easy to show that solving the problem

Θ∗
t = min

x̂t−N,{ŵk}
t
k=t−N

{
J(t −N, t, x̂t−N, ŵ, ˆ̄v,ΓΓΓt−N) subj. to (2.17)

}
(2.18)
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is equivalent to solve the MHE-i problems (2.9), in the sense that ˆxi
t−N/t ,{ŵi

k/t}
t
k=t−N is a solution

to (2.9) if and only ifx̂t−N/t ,{ŵk/t}
t
k=t−N is a solution to (2.18), wherêwk/t = (ŵ1

k/t , . . . , ŵ
M
k/t).

Let t1 verify t−N≤ t1 ≤ t. We define thetransit costof a generic statez∈R
n at timet1, computed

at instantt as
Ξi

t1/t(z) = minx̂i
t−N,{ŵi

k}
t
k=t−N

{
Ji(t −N, t, x̂i

t−N, ŵi , ˆ̄vi ,Γi
t−N)

subject to (2.10) and ˆxi
t1 = z

} (2.19)

Note that the associated optimization problem is feasible for allz in Z = f (X,W)∩X and therefore
Z is the domain ofΞi

t1/t(z). The collective transit cost of a generic statex ∈ R
nM at timet1, computed

at instantt is defined as

ΞΞΞt1/t(x) = minx̂t−N,{ŵk}
t
k=t−N

{
J(t −N, t, x̂t−N, ŵ, ˆ̄v,ΓΓΓt−N)

subject to (2.17) and̂xt1 = x}
(2.20)

and it holds that

ΞΞΞt1/t(x̂t1) =
M

∑
i=1

Ξi
t1/t(x̂

i
t1) (2.21)

In view of Assumption 2 and (2.15a), the cost functionL is continuous, bounded, positive definite,
and satisfies the following inequality for allw ∈ R

M·m, v̄ ∈ R∑M
i=1 p̄i

γγγ
L
(‖(v̄,w)‖) ≤ L(v̄,w) (2.22)

whereγγγ
L
∈ K∞.

Furthermore, the initial penaltiesΓC,i
t−N andΓ0,i

t−N must be defined in order to fulfill the following
collective condition.

Assumption 3 There existsγγγ
0
∈ K∞ such that the following inequalities are verified

γγγ
0
(‖x−Kx̂t−N/t−1‖) ≤ ΓΓΓC

t−N(x;Kx̂t−N/t−1), ∀x ∈ X
M (2.23a)

γγγ
0
(‖x− x̂t−N/t−1‖) ≤ ΓΓΓ0

t−N(x; x̂t−N/t−1), ∀x ∈ X
M (2.23b)

ΓΓΓt−N(z) ≤ ΞΞΞt−N/t−1(z), ∀z = 1M ⊗z, z∈ Z (2.23c)

Assumption 3 is similar to Assumption 4.17 in [43]. However, there are two key differences. First,
inequalities in (2.23c) must hold only for the consensus statesz. In particular, we highlight that if
x̂t−N/t−1 = z thenKx̂t−N/t−1 = z and henceΘΘΘ∗

t−1 is a global lower bound toΓΓΓt−N. Second, similarly
to [13], as an upper bound toΓΓΓt−N we use the transit cost instead of the arrival cost (see Definition
4.16 in [43]).
Note that, guaranteeing that (2.23) is verified is a challenging issue, which isstill an open problem
in the centralized [43], as well as in the decentralised context. In the special case when (2.1), (2.3)
is a linear system, if the stage and initial penalty cost functions are quadratic,as shown in [13, 15],
it is possible to provide recursive distributed equations for updating the penalty weighting matrices
ΠC,i

t−N and Π0,i
t−N in order to satisfy Assumption 3, and conditions to guarantee that these matrices

remain bounded, in such a way that Assumption 2 is not violated. In the nonlinear context, empirical
solutions can be either to computeΠC,i

t−N andΠ0,i
t−N on the basis of quadratic local approximations of

the transit costs or to assign constant values toΠC,i
t−N andΠ0,i

t−N, as it is done in the example shown in
Section 2.6.
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2.4 Collective stability properties of NDMHE

The main purpose of this section is to extend the stability results of [43] for centralized MHE to the
proposed NDMHE scheme.

2.4.1 Collective stability results

Definition 3 Let Σ be system(2.1)with w= 0 and denote by xΣ(t,x0) the state reached byΣ at time t
starting from initial condition x0. Assume that the trajectory xΣ(t,x0) is feasible,i.e.,xΣ(t,x0) ∈ X for
all t. Define also the collective vectorsx0 = 1M ⊗ x0 andxΣ(t,x0) = 1M ⊗ xΣ(t,x0) ∈ X

M. NDMHE
is collectively stableif, for all ε > 0, there existsδ > 0 such that‖x̂0/N−1 − x0‖ < δ implies that
‖x̂t−N/t −xΣ(t −N,x0)‖ < ε ∀t ≥ N. Also, NDMHE iscollectively asymptotically stableif it is stable
and asymptotically convergent,i.e.

‖x̂t−N/t −xΣ(t −N,x0)‖
t→∞
−→ 0 (2.24)

�

Notice that the condition (2.24) is equivalent toindividualconvergence for all the nodes estimates,i.e.

‖x̂i
t−N/t −xΣ(t −N,x0)‖

t→∞
−→ 0 (2.25)

for all i ∈ V .
Moreover, as in [40], convergence is defined assuming that the model generating the data is noise-

less, but the possible presence of noise is taken into account in the state estimation algorithm.
Before to state our main result, we need to introduce the following dynamical system, describing the
dynamics of the variableηηη t ∈ R

n·M

ηηη t = PUDK
[
f
(
P̃(ηηη t−1 +PDxxxΣ(t −N−1,x0)+αααx

t−1),0
)
+αααw

t

]
+PUDαααC

t (2.26)

whereαααw
t , αααx

t , αααC
t andxxxΣ(t −N−1,x0) are input terms. In the following we resort to the definition

of incremental input-to-state stability [6].

Definition 4 System(2.26) is incrementally input-to-state stable (δ ISS) with respect to the input
triplet (αααx

t ,αααw
t ,αααC

t ), if there existβ ∈ K L , σα ∈ K∞ such that, for any t≥ 0, any pair of initial
conditionsηηη j,0, j = 1,2 and any pair of input triplets(αααx

j,t ,αααw
j,t ,αααC

j,t), j = 1,2 one has

‖ηηη1,t −ηηη2,t‖ ≤ β (‖ηηη1,0−ηηη2,0‖, t)+
+σα(‖(αααx

1,k,ααα
w
1,k,ααα

C
1,k)− (αααx

2,k,ααα
w
2,k,ααα

C
2,k)‖[0:t])

(2.27)

We are now in the position to state the main result.

Theorem 1 Under Assumptions 2 and 3, if the system(2.26) is δ ISS with respect to the input triplet
(αααx

t ,αααw
t ,αααC

t ) then NDMHE is collectively asymptotically stable.

Note that, if the system is regionally MHE detectable by any sensor,P̄i
UD = 000n×n for all i ∈ V , and

hencePUD = 000nM×nM. Therefore, from equation (2.26) one has thatηηη t = 0, and theδ ISS condition
required by Theorem 1 is trivially satisfied.
As shown in the proof of Lemma 2 in the Appendix, the dynamics (2.26) governs the regionally
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undetectable components of the state estimates. Thereforeδ ISS of (2.26) implies that the regionally
undetectable components of the estimation error vanish when(αααw

t ,αααx
t ,αααC

t ) tends to zero.
For linear constrained systemsδ ISS of (2.26) is implied by the much simpler condition that a suitably
defined matrix (matrixΦ in (23) of [14]) is Schur. In the nonlinear context, a sufficient conditionis
provided in the next section.

2.4.2 A sufficient condition for asymptotic stability of NDMHE

In this section we will provide a sufficient condition which implies theδ ISS property of (2.26). In
the nonlinear context, the system (2.26) can be viewed as the interconnection of M dynamically cou-
pled subsystems. The small gain theorem for networks [10] can be appliedfor guaranteeingδ ISS
of (2.26) on the basis of theδ ISS properties of individual sensors and suitable conditions on their
interconnections. Similar arguments lead to the result stated in the following theorem.

Theorem 2 Define Ci j = P̄i
UDP̃ j P̄ j

UDP̃ j and letΓ be a M×M matrix whose elementsγi j i, j ∈ V are
γi j = ki j‖Ci j‖l j

x if i 6= j, and γii = kii l i
x. Assume that one can assign matrix K compatible with the

graphG in such a way that the matrixΓ with elementsγi j is Schur. Then, if Assumption 1 is verified,
system(2.26)is δ ISS.

Notice that, in general, the problem of providingki j s such that, at the same time(i) K is compatible
with the graphG , i.e. it satisfies (2.4),(ii) Γ is Schur, may not have a solution. If this occurs, the
δ ISS property of system (2.26) may be guaranteed by using a “global” analysis approach, see for
example [6]. However, for many classes of systems, Theorem 2 provides a powerful design tool for
assigning weightski j even without computing the system’s Lipschitz constantsl i

x, which is not, in
general, a trivial task.

For example, consider the case whereVD is not empty and where, for each node inVUD, there
exists an incoming directed path stemming from a regionally MHE detectable node.The latter is
satisfied, for instance, when the graph is strongly connected (i.e., there exists a direct path from each
node and any other node). In this case it is possible to show thatK verifying (i) and(ii) always exists,
and that its design can be carried out by the following algorithm.

Algorithm 1

1) for each i∈ VD, set kii = 1;

2) for each i∈ VUD, select kii = 0;

3) for each i∈ VUD select a node j∈ VD and a path from j to i, in such a way that each node in the
path has at most one neighbor. We denote withE ∗ the set of edges selected in this way;

4) for all edges(i, j) ∈ E ∗, choose ki j = 1, while for all edges(i, j) ∈ E \E ∗, set ki j = 0. �

By selectingK according to Algorithm 1 the following result holds.

Corollary 1 Assume that Assumption 1 holds, thatVD is non-empty and, for all i∈ VUD, there ex-
ists an incoming directed path stemming from a node inVD. Then, if K is selected according to
Algorithm 1, system(2.26)is δ ISS.
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Some comments are in order. First, notice that Algorithm 1 is equivalent to Algorithm 1 in [15],
which is devised in the context of linear distributed MHE. Interestingly, both algorithms are based on
the detectability/observability properties of one or more “leading sensors” (nodes inVD) and on graph
topological properties. The conditions for their application are thereforestraightforward to verify, and
their application guarantees convergence to zero of the estimation error ofthe unobservable part of
the state, for all sensors (see also Corollary 2 in [15]).
Second, observe that Algorithm 1 implicitly provides a rule for connecting a new regionally MHE
detectable/MHE undetectable sensor to the network without spoiling stability of NDMHE, allowing
for reconfigurability of the estimation scheme when new sensors are added.
Finally note that, using the same argument as in [15], it is possible to prove that,under the assumptions
of Corollary 1, the choice of a matrixK is not unique and the available degrees of freedom in the
definition of a suitableK can be used to reduce the conservativeness imposed by Algorithm 1. In
fact the generated matrixK is lower triangular, up to a permutation of the node indexes. However,
the same results can be obtained by any stochastic matrixK compatible withG with: (a) the same
diagonal elements of the matrixK obtained with Algorithm 1;(b) non-zero elements in the lower
triangular part;(c) sufficiently small elements in the upper triangular part. This choice allows for
a full exploitation of the communication links and hence faster convergence of the estimates to a
common value is expected. Moreover, the presence of more links results in an increased reliability
against communication faults.

2.5 Generalization

In general, the system (2.1), (2.3) cannot be written in the form (2.6). The general case is the case
where we assume that there exists a diffeomorphismTi : R

n → R
n, T−1

i : xt 7→ ξ i
t = T−1

i (xt) such that,
by changing coordinates, and beingξ i

t = (ξUD,i
t ,ξ D,i

t ) the state of the equivalent system, one has

ξUD,i
t+1 = fUD,i(ξUD,i

t ,ξ D,i
t ,wi

t) (2.28a)

ξ D,i
t+1 = f D,i(ξ D,i

t ,wi
t) (2.28b)

ȳi
t = h̃i(ξ D,i

t )+ v̄i
t (2.28c)

where the subsystem (2.28b), (2.28c) is MHE detectable. It follows thatξ D,i
t ∈ R

ni
D andξUD,i

t ∈
R

n−ni
D denote regionally MHE detectable and regionally MHE undetectable components ofξ i

t , respec-
tively.

Let P̄i
UD andP̄i

D be then×n orthonormal projection matrices defined in such a way thatP̄i
UDξ i

t =

(ξUD,i
t ,0) andP̄i

Dξ i
t = (0,ξ D,i

t ), respectively. Note that, differently from the previous case, hereP̄i
UD

and P̄i
D are diagonal matrices. Furthermore, let the mapT : R

M·n → R
M·n be such that, forξξξ t =

(ξ 1
t , . . . ,ξ M

t ), one hasT(ξξξ t) = (T1(ξ 1
t ), . . . ,TM(ξ M

t )).
One can prove that Theorems 1 and 2 and Corollary 1 still hold under the following Lipschitz

assumption onTi andT−1
i .

Assumption 4 For all i ∈ V , there existαT ,αT−1 > 0 such that
∥
∥
∥
∥
∥

∂Ti(ξ )

∂ξ

∣
∣
∣
∣
ξ̃ i

∥
∥
∥
∥
∥
≤ α i

T (2.29a)

∥
∥
∥
∥

∂T−1
i (x)
∂x

∣
∣
∣
∣
x̃

∥
∥
∥
∥
≤ α i

T−1 (2.29b)
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for ξ̃ i = T−1
i (x̃), for all x̃∈ R

n, andα i
T ≤ αT , α i

T−1 ≤ αT−1 ∀i ∈ V .

In the general case equation (2.26) becomes

ηηη t = PUDT−1
{

K [f (T (ηηη t−1 +PDξξξ Σ(t −N−1,x0)+

+αααξ
t−1

)

,0
)

+αααw
t

]

+αααC
t

} (2.30)

whereξξξ Σ(t,x0) = T−1(xΣ(t,x0)). For more details see [18].

2.6 Example

Consider the system, composed by four Van der Pol oscillators:







x1
t+1 = x1

t +0.06[x2
t +(x1

t −0.02(x1
t )

3)]+kcons(x7
t −x1

t )+w1
t

x2
t+1 = x2

t −0.06x1
t +w2

t
x3

t+1 = x3
t +0.072[x4

t +1.1(x3
t −0.015(x3

t )
3)]+kcons(x1

t −x3
t )+w3

t
x4

t+1 = x4
t −0.072x3

t +w4
t

x5
t+1 = x5

t +0.09[x6
t +0.8(x5

t −0.01(x5
t )

3)]+kcons(x3
t −x5

t )+w5
t

x6
t+1 = x6

t −0.09x5
t +w6

t
x7

t+1 = x7
t +0.096[x8

t +0.9(x7
t −0.013(x7

t )
3)]+kcons(x5

t −x7
t )+w7

t
x8

t+1 = x8
t −0.096x7

t +w8
t

(2.31)

where we assume thatwi
t is a white noise with uniform distribution in the interval[−0.5,0.5].

Note that, ifkcons= 0.2 the oscillators are coupled and they are uncoupled ifkcons= 0. Assume that
four sensors are providing measures and are transmitting both estimates andmeasurements according
to the graph in Figure 2.1.

Figure 2.1:Scheme of the network in the example.

The individual sensing models of the four sensors are

y1
t = x2

t +v1
t

y2
t = x4

t +v2
t

y3
t = x6

t +v3
t

y4
t = x8

t +v4
t

(2.32)
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wherevi
t are Gaussian random variable with zero mean and variance equal toRi = 1 for all i = 1, . . . ,4.

Note that the collective sensing model is

y∗t = h∗(xt)+vt =







0 1 0 0 0 0 0 0
0 0 0 1 0 0 0 0
0 0 0 0 0 1 0 0
0 0 0 0 0 0 0 1














x1
t

x2
t
...

x8
t








+







v1
t

v2
t

v3
t

v4
t







(2.33)

We can easily verify that the graph is collectively uniformly observable. Infact, the observability map
O(xt) of the collective system (2.31), (2.33) is

O(xt) =

[
h∗(xt)

h∗( f (xt))

]

Up to a permutation of the rows ofO(xt), one obtains the matrix

O
∗(xt) =















0 1 0 0 0 0 0 0
−0.06 1 0 0 0 0 0 0

0 0 0 1 0 0 0 0
0 0 −0.072 1 0 0 0 0
0 0 0 0 0 1 0 0
0 0 0 0 −0.09 1 0 0
0 0 0 0 0 0 0 1
0 0 0 0 0 0 −0.096 1





























x1
t

x2
t

x3
t

x4
t

x5
t

x6
t

x7
t

x8
t















which is globally invertible for all values ofkcons.
To guarantee the incremental input-to-state stability of system (2.26) we will resort to the sufficient
condition provided by Theorem 2. In general,l i

x ≥ 0 for all i ∈ V . Note that the regional measurement
of sensors 1 and 2 include(y1

t ,y
2
t ), and the regional measurement of sensors 3 and 4 include(y3

t ,y
4
t ).

Therefore, being the system collectively observable (from the collective measurement(y1
t ,y

2
t ,y

3
t ,y

4
t )),

it is easy to show thatC32 = 0 andC14 = 0.
We assignkii = 0 for all i ∈ V , andk12 = 0, k14 = 1, k21 = 1, k32 = 1, k34 = 0, k43 = 1, resulting in

K =







0 0 0 1
1 0 0 0
0 1 0 0
0 0 1 0







Recall that the non-diagonal entries ofΓ, γi j i 6= j are equal toγi j = ki j‖Ci j‖l j
x. In view of the previous

choice ofK, we obtain that

Γ =







0 0 0 ‖C14‖l4
x

‖C21‖l1
x 0 0 0

0 ‖C32‖l2
x 0 0

0 0 ‖C43‖l3
x 0







=







0 0 0 0
‖C21‖l1

x 0 0 0
0 0 0 0
0 0 ‖C43‖l3

x 0







which is Schur for all values of‖C21‖l1
x and‖C43‖l3

x . Furthermore, Assumption 1 is verified forX

bounded such that all the state trajectories are contained inX and therefore Theorem 2 guarantees that
system (2.26) isδ ISS.
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Figure 2.2:Components of the estimation errorxt − x̂i
t/t of the different sensors, withkcons= 0.2. The com-

ponents with even index (corresponding to the statesx2
t , x4

t , x6
t , x8

t ) are depicted with dashed lines, and the
components with odd index (corresponding to the statesx1

t , x3
t , x5

t andx7
t ) are depicted with solid lines.

We setN = 2, Li(vi
t ,w

i
t) = 1

2‖wi
t‖(Qi)−1 + 1

2‖vi
t‖(Ri)−1 whereQi = I8, Ri = 1 and the regularization term

weight and the consensus term weight are equal toΠO,i
t−N = I8 andΠC,i

t−N = 0.2 · I8 for all i = 1, . . . ,4,
respectively.

The estimation errors produced by all sensors are shown, withkcons= 0.2 and withkcons= 0, in
Figure 2.2 and in Figure 2.3, respectively. Notice that, in both cases, the estimation errors of the states
which are directly observed by each sensor converge to zero very fast, while the estimation errors of
the states which are not directly observed by each sensor asymptotically tend to zero thanks to the
consensus action embodied in the NDMHE scheme.

2.7 Proofs

Proof of Theorem 1

Under (2.23) the first step towards the convergence of the NDMHE estimator is the following
lemma.
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Figure 2.3:Components of the estimation errorxt − x̂i
t/t of the different sensors, withkcons= 0. The com-

ponents with even index (corresponding to the statesx2
t , x4

t , x6
t , x8

t ) are depicted with dashed lines, and the
components with odd index (corresponding to the statesx1

t , x3
t , x5

t andx7
t ) are depicted with solid lines.

Lemma 1 If Assumption 3 holds then

t

∑
k=t−N

L( ˆ̄vk/t , ŵk/t)
t→∞
−→ 0 (2.34a)

γγγ
0
(‖x̂t−N/t −Kx̂t−N/t−1‖)

t→∞
−→ 0 (2.34b)

γγγ
0
(‖x̂t−N/t − x̂t−N/t−1‖)

t→∞
−→ 0 (2.34c)

For the sake of clarity the proof of Theorem 1 is split in the proof of the next two lemmas.

Lemma 2 Under Assumptions 2 and 3, if the system(2.26) is δ ISS with respect to the input triplet
(αααx

t ,αααw
t ,αααC

t ) then NDMHE is asymptotically convergent.

Finally, the following lemma deals with collective stability of the estimates.

Lemma 3 Under the assumptions of Lemma 2 then NDMHE is collectively stable.

Proof of Lemma 1
The proof is similar to the one in Proposition 5 in [40]. For allt ≥ 0 one has, from (2.23)

ΘΘΘ∗
t −ΘΘΘ∗

t−1 ≥ ∑t
k=t−N L( ˆ̄vk/t , ŵk/t)+ γγγ

0
(‖x̂t−N/t −Kx̂t−N/t−1‖)+

+γγγ
0
(‖x̂t−N/t − x̂t−N/t−1‖)

(2.35)
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showing that the sequenceΘΘΘ∗
t is increasing. Note that sincexΣ(t,x0)∈X, the transit costΞΞΞt−N/t−1(xΣ(t−

N,x0)) is well defined,∀t ≥ N, i.e.,xΣ(t,x0) ∈ Z .
By optimality ΘΘΘ∗

t ≤ ΞΞΞt−N+1/t(xΣ(t −N+1,x0)), ∀t. Moreover, from Definition 3

ΞΞΞt−N+1/t(xΣ(t −N+1,x0)) ≤ J(t −N, t,xΣ(t −N,x0),0,0,ΓΓΓt−N)

From (2.16), one has

J(t −N, t,xΣ(t −N,x0),0,0,ΓΓΓt−N) = ΓΓΓt−N(xΣ(t −N,x0))

and in view of (2.23)
ΘΘΘ∗

t ≤ ΞΞΞt−N/t−1(xΣ(t −N,x0))

We can iterate this procedure and prove that

ΘΘΘ∗
t ≤ ΓΓΓ0(x0) (2.36)

for all t, for anyx0 ∈ X
M. From (2.36) and (2.13b)-(2.13c), the sequenceΘΘΘ∗

t is bounded. Therefore,
the sequenceΘΘΘ∗

t converges and from (2.35) the equations (2.34a) and (2.34b) and (2.34c) follow. �

Proof of Lemma 2
Next we create, for each sensor nodei, a single estimate sequence ¯xi

t = x̂i
t/t+N by concatenating MHE

sequences for the system (2.1). This gives the state sequences ¯xi
k and the corresponding augmented

disturbance sequences̄w̃i
k = (w̄i,1

k , w̄i,2
k )

x̄i
t+1 = f (x̄i

t , w̄
i,1
t )+ w̄i,2

t (2.37a)

ȳi
t = h(x̄i

t)+ ˆ̄vt/t+N (2.37b)

where

w̄i,1
t = ŵi

t/t+N (2.38a)

w̄i,2
t = x̂i

t+1/t+N+1− x̂i
t+1/t+N (2.38b)

Define a sequence

αx,i
t = P̄i

D

(
x̄i

t−N −xΣ(t −N,x0)
)

(2.39)

In view of (2.6) and Definition 1, one has

‖αx,i
t ‖ ≤ βD(‖x̄i

0−x0‖, t −N)+ γ1(‖ ¯̃wi
k‖[0:t−N−1])+ γ2(‖ ˆ̄vi

k/k+N‖[0:t−N]) (2.40a)

This, according to (2.38), implies that there exist functionsγ11,γ12 ∈ K such that

‖αx,i
t ‖ ≤βD(‖x̄i

0−x0‖, t −N)+

+ γ11(‖ŵi
k/k+N‖[0:t−N−1])+ γ2(‖ ˆ̄vi

k/k+N‖[0:t−N])+

+ γ12(‖x̂i
k+1/k+N+1− x̂i

k+1/k+N‖[0:t−N−1]) (2.40b)
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We definexΣ(t,x0)=1M⊗xΣ(t,x0), x̄t = (x̄1
t , . . . , x̄

M
t ) andαααx

t = (αx,1
t , . . . ,αx,M

t ). Collectively (2.39)
results in

αααx
t = PD (x̄t−N −xΣ(t −N,x0)) (2.41)

Furthermore, applying the mean value theorem for vector functions (see Appendix A in [43]), we
can write

x̂i
k+1/t = f (x̂i

k/t ,0)+αw,i
k/t (2.42)

where

‖αw,i
k/t‖ ≤ l‖ŵi

k/t‖ (2.43)

l being the Lipschitz constant in (2.2a). We defineαααw
t = (αw,1

t−N−1/t−1, . . . ,α
w,M
t−N−1/t−1) and f(x̂k) =

( f (x̂1
k), . . . , f (x̂M

k )). Collectively we write (2.42) as

x̂t−N/t−1 = f(x̂t−N−1/t−1,0)+αααw
t (2.44)

From Lemma 1, (2.34a) holds and together with (2.22) one has that‖(ŵt−N/t , ˆ̄vt−N/t)‖→ 0 ast →+∞.
Hence,‖(ŵi

t−N/t , ˆ̄vi
t−N/t)‖ → 0 as t → +∞ for all i ∈ V . Similarly, from (2.34c),‖x̂i

t+1/t+N+1 −

x̂i
t+1/t+N‖ → 0 ast → +∞ for all i ∈ V . In view of (2.40b) and Proposition 4.2 in [43] (convergence

of the state underδ IOSS, see Definition 1), this implies thatαx,i
t → 0 ast → +∞, i.e.

P̄i
D

(
x̄i

t−N −xi
Σ(t −N,x0)

) t→+∞
−→ 0 ∀i ∈ V (2.45)

Moreover

αααw
t

t→+∞
−→ 0 (2.46)

Finally, from (2.34b) and (2.23), we obtain that

x̂t−N/t = Kx̂t−N/t−1 +αααC
t (2.47)

whereαααC
t → 0 ast → +∞.

According to (2.44) and (2.47) we can write

PUDx̄t−N = PUD
(
Kx̂t−N/t−1 +αααC

t

)

= PUD
[
K (f(x̄t−N−1,0)+αααw

t )+αααC
t

]

where, using (2.41) we can write

x̄t−N−1 = P̃(PDxΣ(t −N−1,x0)+PUDx̄t−N−1 +αααx
t−1)

Hence, we obtain that the dynamics ofPUDx̄t−N evolves according to (2.26). By direct calcula-
tion the dynamics of variablePUDxΣ(t −N,x0) is given by (2.26), withαααw

t ,αααx
t ,αααC

t = 0. We define
η̂ηη t = PUDx̄t−N andηηηΣ(t,x0) = PUDxΣ(t −N,x0). We introduce the functionF, so that the dynamical
equations for̂ηηη t andηηηΣ(t,x0) can be written as

η̂ηη t = F(η̂ηη t−1,PDxΣ(t −N−1,x0),αααx
t−1,αααw

t ,αααC
t ) (2.48a)

ηηηΣ(t,x0) = F(ηηηΣ(t −1,x0),PDxΣ(t −N−1,x0),0,0,0) (2.48b)
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According to Definition 4, if the system (2.48a) isδ ISS, then there existβ ∈ K L , σα ∈ K∞ such
that

‖η̂ηη t −ηηηΣ(t,x0)‖ ≤β (‖η̂ηη0−ηηηΣ(0,x0)‖, t)+σα(‖(αααx
k,ααα

w
k ,αααC

k )‖[0:t]) (2.49)

If (2.49) holds then, using Proposition 4.2 in [43] one has‖η̂ηη t −ηηηΣ(t,x0)‖→0 because(αααx
t ,αααw

t ,αααC
t )→

0 ast → +∞. This, together with (2.46) implies thatx̂t−N/t → x̂Σ(t −N,x0) ast → +∞. �

Proof of Lemma 3

For the sake of clarity, the proof is split in four parts.

1) We chooseρ > 0 such that

t

∑
k=t−N

L( ˆ̄vk/t , ŵk/t) < ρ (2.50a)

ΓΓΓC
t−N(x̂t−N/t ;Kx̂t−N/t−1) < ρ (2.50b)

ΓΓΓ0
t−N(x̂t−N/t ; x̂t−N/t−1) < ρ (2.50c)

From (2.50a), in view of (2.22), we obtain that‖ŵk/t‖ < γγγ−1
L

(ρ) and‖ ˆ̄vk/t‖ < γγγ−1
L

(ρ). Further-

more, from (2.50c) and in view of (2.23),‖x̂t−N/t − x̂t−N/t−1‖ ≤ γγγ−1
0

(ρ). Then, from (2.40b)
there existγγγ3 ∈ K , βββ D ∈ K L such thatαααx

t in (2.41) satisfies

‖αααx
t ‖ < γγγ3(ρ)+βββ D(‖x̄0−x0‖,0) (2.51)

Similarly, from (2.43), we obtain that there exists a functionγ̃γγw ∈ K such thatαααw
t satisfies

‖αααw
t ‖ < γ̃γγw(ρ) (2.52)

Furthermore, from (2.50b), in view of Assumption 3 and equation (2.47), we obtain thatαααC
t

satisfies

‖αααC
t ‖ < γγγ−1

0
(ρ) (2.53)

2) In view of (2.41)

‖PD (x̄t−N −xΣ(t −N,x0)))‖ < γγγ3(ρ)+

+βββ D(‖x̄0−xΣ(0,x0)‖,0) (2.54)

Note that, in view of (2.47)

‖x̄0−xΣ(0,x0)‖ = ‖Kx̂0/N−1 +αααC
N −x0‖

≤ ‖Kx̂0/N−1−x0‖+‖αααC
N‖ (2.55a)

From (2.53) there exist functionsβββ D,x,γγγ∗3 ∈ K such that

‖PD (x̄t−N −xΣ(t −N,x0))‖ < γγγ∗3(ρ)+

+βββ D,x(‖x̂0/N−1−x0‖) (2.56)
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Furthermore, in view of (2.49), recalling thatη̂ηη t = PUDx̄t−N andηηηΣ(t,x0) = PUDxΣ(t −N,x0),
one has

‖PUD (x̄t−N −xΣ(t −N,x0))‖ ≤
≤ β (‖PUD (x̄0−xΣ(0,x0))‖, t)+

+σα(‖(αααx
k,ααα

w
k ,αααC

k )‖[0:t])
(2.57)

Note that
‖PUD (x̄0−xΣ(0,x0))‖ ≤ ‖x̄0−xΣ(0,x0)‖

From (2.53), (2.49) and (2.55a) one concludes that

‖PUD (x̄t−N −xΣ(t −N,x0))‖ ≤

≤ β (2‖K(x̂0/N−1−x0)‖,0)+β (2‖αααC
N‖,0)+

+σα(‖(αααx
k,ααα

w
k ,αααC

k )‖L∞) (2.58)

and so, there exist a functionsσ̃α ∈ K∞ such that

‖PUD (x̄t−N −xΣ(t −N,x0))‖ ≤

≤ β (2‖K(x̂0/N−1−x0)‖,0)+ σ̃α(ρ) (2.59)

3) From equation (2.36) it follows that, for allt > 0, ΘΘΘ∗
t ≤ ΓΓΓ0(x0) = ΓΓΓ0(Kx0), where the last

equality holds becausex0 = 1M ⊗x0. If we defineδ = x̂0/N−1−x0, then there existsγγγ0 ∈ K∞
such that, in view of (2.13b)

t

∑
k=t−N

L( ˆ̄vk/t , ŵk/t) < γγγ0(δ ) (2.60a)

ΓΓΓC
t−N(x̂t−N/t ;Kx̂t−N/t−1) < γγγ0(δ ) (2.60b)

ΓΓΓ0
t−N(x̂t−N/t ; x̂t−N/t−1) < γγγ0(δ ) (2.60c)

We defineδ = γγγ−1
0 (ρ), the functionγγγ−1

0 being aK∞ function as well, see [41]. From equa-
tion (2.59) one concludes that there exists a functionγγγ4 ∈ K∞ such that

‖PUD (x̄t−N −xΣ(t −N,x0))‖ ≤ γγγ4(ρ) (2.61)

From (2.56) and (2.61), we obtain that there exists a functionγγγ5 ∈ K∞ such that

‖x̂t−N/t −xΣ(t −N,x0)‖ < γγγ5(ρ)

Let ε = γγγ5(ρ), one can computeδ = γγγ−1
0

(
γγγ−1

5 (ε)
)

and the condition for collective stability is
verified.

�
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Proof of Theorem 2

System (2.26) can be viewed as the interconnection ofM subsystems havingη i
t as state variables,

i = 1, . . .M, with ηηη t = (η1
t , . . . ,ηM

t ). The dynamics ofη i
t is described by the subsystem

η i
t = P̄i

UD

{

∑M
j=1ki j

[

f
(

P̃ j
(

η j
t−1 + P̄ j

DxΣ(t −N−1,x0)+αx, j
t−1

)

,0
)

+αw, j
t

]

+αC,i
t

}

= P̄i
UD

{

kii

[

f
(

P̃i
(

η i
t−1 + P̄i

DxΣ(t −N−1,x0)+αx,i
t−1

)

,0
)

+αw,i
t

]

+∑ j 6=i ki j f (xΣ(t −N−1;x0),0)+

+∑ j 6=i ki j

[

f
(

P̃ j
(

η j
t−1 + P̄ j

DxΣ(t −N−1,x0)+αx, j
t−1

)

,0
)

− f (xΣ(t −N−1;x0),0)+αw, j
t

]

+αC,i
t

}

(2.62)
Recall thatη i

Σ(t,x0) is the solution to system (2.62) with inputsη j
t−1 = P̄ j

UDxΣ(t −N−1,x0), j 6= i,

and with zero input termsαx, j
t , αw, j

t , αC, j
t . Denote∆η i

t = η i
t −η i

Σ(t,x0) for all i = 1, . . . ,M. It results
that the dynamics of∆η i

t is given by the system

∆η i
t = P̄i

UD

{

kii

[

f
(

xΣ(t −N−1,x0)+ P̃i
(

∆η i
t−1 +αx,i

t−1

)

,0
)

− f (xΣ(t −N−1;x0),0)+αw,i
t

]

+

+∑ j 6=i ki j

[

f
(

xΣ(t −N−1,x0)+ P̃ j
(

∆η j
t−1 +αx, j

t−1

)

,0
)

− f (xΣ(t −N−1;x0),0)+αw, j
t

]

+αC,i
t

}

(2.63)
For simplicity, we denotẽα i

t = ∑M
j=1ki j P̄i

UD(αw, j
t +αC,i

t ) and

gi j (∆η j
t−1;xΣ(t −N−1),αx, j

t−1) = (2.64)

P̄i
UD

[

f
(

xΣ(t −N−1,x0)+ P̃ j
(

∆η j
t−1 +αx, j

t−1

)

,0
)

− f (xΣ(t −N−1;x0),0)
]

(2.65)

in such a way that

∆η i
t = φi(∆η i

t ,{∆η j
t } j 6=i ,αx,i

t−1, α̃
i
t ) =

kii gii (∆η i
t−1;xΣ(t −N−1),αx,i

t−1)+∑ j 6=i ki j gi j (∆η j
t−1;xΣ(t −N−1),αx, j

t−1)+ α̃ i
t

(2.66)

We have shown thatδ ISS of (2.26) is equivalent to ISS fromααα t = (α1
t , . . . ,αM

t ) and fromαααx
ttt to

∆ηηη t = (∆η1
t , . . . ,∆ηM

t ) for the collection of systems (2.66).
By resorting to the Lipschitz Assumption 1 on the functionf , functionsgi j in (2.65) can be

analyzed more into details. For brevity we writef̃ (x) = f (x,0). For notational simplicity we will
denote (when clear from the context)xΣ as a short-hand forxΣ(t −N−1,x0). In view of the mean
value theorem

f̃ (xΣ + P̃ j(∆η j
t−1 +αx, j

t−1)) = f̃ (xΣ + P̃ j∆η j
t−1)+Φ(xΣ + P̃ j∆η j

t−1,xΣ + P̃ j(∆η j
t−1 +αx, j

t−1))P̃
jαx, j

t−1
(2.67)

whereΦ(x1,x2)=
∫ 1

0
∂ f̃ (x)

∂x |x1+(x2−x1)sds. In view of Assumption 1,Φ(xΣ+P̃ j(∆η j
t−1),xΣ+P̃ j(∆η j

t−1+

αx, j
t−1))P̃

jαx, j
t−1 is bounded ifαx, j

t−1 is bounded. Furthermore

f̃ (xΣ + P̃ j∆η j
t−1)− f̃ (xΣ) = P̃ j

([

fUD, j(xUD
Σ +∆ηUD, j

t−1 ,xD
Σ ,0)

f D, j(xD
Σ ,0)

]

−

[
fUD, j(xUD

Σ ,xD
Σ ,0)

f D, j(xD
Σ ,0)

])

= P̃ j
[

fUD, j(xUD
Σ +∆ηUD, j

t−1 ,xD
Σ ,0)− fUD, j(xUD

Σ ,xD
Σ ,0)

0

]

(2.68)
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By further applying the mean value theorem we obtain that

[

fUD, j(xUD
Σ +∆ηUD, j

t−1 ,xD
Σ ,0)− fUD, j(xUD

Σ ,xD
Σ ,0)

0

]

= ΦUD, j(xΣ,xΣ +∆η j
t−1)∆η j

t−1 (2.69)

where

ΦUD, j(x1,x2) =

[
∫ 1

0
∂ fUD, j (xUD,xD)

∂xUD |x1+(x2−x1)sds 0
0 0

]

In the sequel, for notational simplicity, if possible and when clear from the context, function arguments
will be omitted. In view of its structure, note thatΦUD, j = P̄ j

UDP̃ jΦUD, j for all j ∈ V . Let us define
Ci j = P̄i

UDP̃ j P̄ j
UDP̃ j . In view of (2.67), (2.68) and (2.69) we rewrite (2.66) as

∆η i
t = kii ΦUD,i∆η i

t−1 +∑ j 6=i ki j P̄i
UDP̃ jΦUD, j∆η j

t−1 + ᾱ i
t =

kii ΦUD,i∆η i
t−1 +∑ j 6=i ki jCi j ΦUD, j∆η j

t−1 + ᾱ i
t

(2.70)
whereᾱ i

t is bounded ifαx, j
t−1 is bounded. From (2.70) we obtain that

‖∆η i
t‖ ≤ kii l i

x‖∆η i
t−1‖+∑ j 6=i ki j‖Ci j‖l j

x‖∆η j
t−1‖+‖ᾱ i

t‖ (2.71)

Now define the matrixΓ as specified. We writeet = (‖∆η1
t ‖, . . . ,‖∆ηM

t ‖) andᾱαα t = (‖ᾱ1
t ‖, . . . ,‖ᾱM

t ‖).
From (2.71),et ≤ Γet−1 + ᾱαα t element-wise. Define the sequencee∗t such thate∗0 = e0, and

e∗t = Γe∗t−1 + ᾱαα t (2.72)

SinceΓ is a positive matrix then, for allt ≥ 0, 0≤ et ≤ e∗t . Then, ifΓ is Schur, the system (2.72) is
ISS fromᾱαα t to e∗t . Therefore the overall system is ISS from(αx,i

t−1, α̃
i
t ) to ∆η i

t , i ∈ V . �

Proof of Corollary 1
First notice that, by assigningK according to Algorithm 1,K is compatible withG andkii l i

x = 0 for
all i ∈ V . In fact, for all i ∈ VD, l i

x = 0 and, for alli ∈ VUD, kii = 0 according to step 2 of Algorithm 1.
From the graph(V ,E ), we derive a subgraphG ∗ = (V ,E ∗), by selecting edges(i, j) ∈ E ∗ ⊆ E

according to step 3 of Algorithm 1. By construction, the graphG ∗ is a maximal forest [7], i.e. a graph
composed by a number of mutually disjoint trees and covering all the nodes. Moreover, the root of
each tree is a regionally MHE detectable node while all other nodes are regionally MHE undetectable.
It follows that each row of the matrixK produced by Algorithm 1 has only one off-diagonal element
that is different from zero.
Up to a permutation of the node indexes,K is lower triangular. It follows that the matrixΓ = {γi j}
enjoys the following properties:(i) its diagonal entries are equal to zero,(ii) it is lower triangular.
ThereforeΓ is Schur. Finally, resorting to Theorem 2, it is possible to prove theδ ISS of (2.26). �
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Chapter 3

Partition-based moving horizon
estimation for nonlinear systems

3.1 Introduction

Many industrial processes and physical systems are composed by a large number of interconnected
units, each one described by a dynamic model. In these cases, the computational load associated to the
design of a unique centralized controller can be high; moreover, a centralized approach does not take
advantage of the sparsity of the system. For these reasons, research inthe design of distributed control
systems, in particular with Model Predictive Control (MPC), has produced many significant results
and is going to play an ever increasing role, see e.g. the results achieved inhe HD-MPC project, the
review [46] and the references therein. However, most of the distributed control methods proposed so
far are state-feedback, so that in order to guarantee a fully distributed control design, also distributed
state estimation algorithms dealing with constraints are needed. The availability of distributed state-
estimation algorithms is of paramount importance in many different engineering applications, such as
process control [51], power networks [48] and transport networks [45].
Early works in distributed estimation were aimed at reducing the computational complexity of cen-
tralized Kalman filters by parallelizing computations, see e.g. [22, 37], underthe assumption that each
subsystem has full knowledge of the whole dynamics. Subsequently, [30] proposed a solution based
on the use of reduced-order and decoupled models for each subsystem, while subsystems with overlap-
ping states were considered in [25, 50, 49, 51]. While the estimation schemesproposed in [51] require
an all-to-all communication among subsystems, in [25, 50, 49] the topology of the network is defined
by dependencies among the states of the subsystems resulting in a fully distributed scheme. More
recently, distributed state estimators for sensor networks where each sensor measures just some of the
system outputs and computes the estimate of the overall state have been studiedin [5, 8, 24, 34]. In
these methods, convergence of the estimates to a common value is achieved through consensus algo-
rithms under weak assumptions on the topology of the communication network. Along the same lines
and in order to cope with constraint on noise and state variables, in the HD-MPC project distributed
MHE algorithms for sensor networks have been proposed, see deliverable D5.2 and [13, 15, 16] .
Three partition-based MHE algorithms (PMHE) for linear constrained systems decomposed into in-
terconnected subsystems without overlapping states have also been developed in the HD-MPC project
and described in [17]. In these algorithms, which differ in terms of communication requirements,
accuracy and computational complexity, each subsystem solves a reduced-order MHE problem in or-
der to estimate its own states based on the estimate of the other subsystems’ states transmitted by its
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neighbors.
The results of [17] are here extended to the case of nonlinear systems soas to cope with the ma-

jority of problems arising in process control, where the nonlinear dynamic phenomena have often to
be considered in order to guarantee the accuracy of the solution. The convergence properties of the
method are investigated and sufficient conditions are given. These conditions turn out to be automati-
cally satisfied when the directed graph describing interconnections among subsystems is acyclic.
The proposed partition-based MHE is applied to the problem of estimating the levels and flow rates in
the model of three cascade river reaches, which represent a significant part of the Hydro Power Valley
benchmark extensively studied in the project (see the workpackages WP6 and WP7). Interconnections
between successive reaches are due to the dependence of the input flow rate of the downstream reaches
to the level of the final section of the upstream ones, which cannot be measured, but just estimated
from the available measures collected along the reach.

The chapter is structured as follows. Section 3.2 introduces nonlinear partitioned systems and the
main assumptions concerning their dynamics. Section 3.3 describes the proposed MHE algorithm,
while convergence results are provided in Section 3.4. The illustrative example is considered in Sec-
tion 3.5. For the sake of readability, the proofs of the main results are collected at the end of the
chapter.

Notation. In the chapter, the following notation is adopted.In and 0 denote then× n identity
matrix and the matrix of zero elements whose dimensions will be clear from the context. The notation
‖z‖2

S stands forzTSz, whereS is a symmetric positive-semidefinite matrix. Given a set of scalar
variablesv = {vi1, . . . ,vin}, i1 < i2 < · · · < in, we use the short-hand(v) or (vi1, . . . ,vin) to denote
the vector[vi1, . . . ,vin]T . By extension, ifvi1, . . . ,vin are sets of scalar variables,(v) or (vi1, . . . ,vin)
denote((vi1), . . . ,(vin)). With a little abuse of notation, and when clear from the context, we will usev
instead of(v) i.e., identify sets of variables with the corresponding column vectors. Givena function
f (x1, . . . ,xn) : D ⊆ R

n → R
m we define arg( f ) = {xi : f is not constant inxi onD}.

For a discrete-time signalwt anda,b∈ N, a≤ b, we denote(wa,wa+1, . . . ,wb) with w[a:b]. For the
definition of positive-definite,K , K∞ andK L functions we defer the reader to [43]. Finally, given
xk,x∗k ∈ R

n, we define‖xk−x∗k‖[a:b] = maxk∈[a:b] ‖xk−x∗k‖, where‖ · ‖ denotes the Euclidean norm.

3.2 Nonlinear large-scale systems

Consider the discrete-time nonlinear system

xt+1 = f(xt ,ut)+wt , (3.1)

wherext = (x1
t , . . . ,x

n
t ) ∈ R

n is the state,wt ∈ R
n is the process noise andut ∈ R

m is the input.
Measurements are performed according to the sensing model

yt = h(xt ,ut)+vt (3.2)

wherevt ∈ R
p is the measurement noise.

We assume thatf(xt ,ut) has continuous partial derivatives with respect to the argumentxt and also
satisfies the following Assumption.

Assumption 5 Function f is globally Lipschitz with respect tox· i.e., ∃lx > 0 : ∀x1,x2 ∈ X, for all
u ∈ R

m and

‖f(x1,u)− f(x2,u)‖ ≤ lx‖x1−x2‖ (3.3)
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We split system (3.1) intoM interconnected submodels by choosing a time-invariant partition of
elements ofxt into the setsx[1]

t , . . . , x[M]
t , M ≤ n so thatxt = (x[1]

t , . . . ,x[M]
t ) up to an index permutation,

wherex[i]
t ∈ R

ni for all i = 1, . . . ,M. Accordingly, we definef(xt ,ut) = ( f [1](xt ,ut), . . . , f [M](xt ,ut)),

andwt = (w[1]
t , . . . ,w[M]

t ) so that the dynamics of subsystemi is

x[i]
t+1 = f [i](xt ,ut)+w[i]

t (3.4)

wherew[i]
t ∈R

ni for all i = 1, . . . ,M. The partition induces an interconnection network in the form of a
directed graphG = (V ,E ) where nodes inV = {1, . . . ,M} are subsystems and( j, i) ∈ E if and only

if i 6= j and∃xk
t ∈arg( f [i](·,ut)) : xk

t ∈ x[ j]
t .

Defining Ni = { j : ( j, i) ∈ E }, u[i],x
t = {x[ j]

t , j ∈ Ni} andu[i]
t = {uk

t : uk
t ∈arg( f [i](xt , ·))} ∈ R

mi

model (3.4) can be written as
x[i]

t+1 = f [i](x[i]
t ,u[i],x

t ,u[i]
t )+w[i]

t (3.5)

We assume that the state of subsystemi fulfills the constraintx[i]
t ∈ Xi , whereXi is a convex set. If

X = R
n we say that the system is unconstrained and ifM = 1 we say that the partition is trivial.

In view of Assumption 5 we have that, for alli = 1, . . . ,M, there exist Lipschitz constantsl i j > 0 :

∀x[ j]
1 ,x[ j]

2 ∈ X j , j ∈ Ni ∪{i}, for all u[i] ∈ R
mi , such that

‖ f [i](x[i]
1 ,u[i],x

1 ,u[i])− f [i](x[i]
2 ,u[i],x

2 ,u[i])‖

≤ l ii‖x[i]
1 −x[i]

2 ‖+ ∑
j∈Ni

l i j‖x[ j]
1 −x[ j]

2 ‖ (3.6)

We denote asL the matrix whosei-th row, i = 1, . . . ,M, is composed by the elementsl i j if j ∈Ni ∪{i}
and 0 otherwise. Note that we can interpret matrixL in (3.6) as a weighted adjacency matrix for the
graph (more specifically, the elementsai j i, j = 1, . . . ,M of the adjacency matrixA verify ai j = 1 if
l ji > 0 andai j = 0 otherwise).

As for the outputs of subsystems, we assume that the setsy[1]
t , . . . , y[M]

t are a time-invariant partition
of variables inyt and, analogously, the setsv[1]

t , . . . , v[M]
t are a time-invariant partition of variables in

vt , so that
y[i]

t = h[i](x[i]
t ,u[i]

t )+v[i]
t (3.7)

for suitable functionsh[i]. Note that (3.7), besides excluding the case of outputs shared by multiple
subsystems, also assumes thaty[i]

t only depends upon the local variablesx[i]
t andu[i]

t . We highlight
that these structural assumptions are made only for the sake of simplicity and the main results can be
generalized to the case where they do not hold.

From now on, we assume that the system partitioning and the input sequence{uk} are such that
the following observability assumption on the local subsystems is satisfied (see[43] for M = 1).

Assumption 6 For all i = 1, . . . ,M and j∈ Ni , there exists noi ∈ N\{0} and functionsγ [i]
w (·), γi j (·),

γ [i]
y (·) ∈ K such that for every initial states x[i]

0 , x∗[i]0 , for any feasible sequences x[ j]
[0:k−1], x∗[ j][0:k−1] and

for any disturbance sequences w[i]
[0:k−1], w∗[i]

[0:k−1]

‖x[i]
0 −x∗[i]0 ‖ ≤ γ [i]

w (‖w[i]
t −w∗[i]

t ‖[0:k−1])

+γ [i]
y (‖y[i]

t −y∗[i]t ‖[0:k])+∑ j∈Ni
γi j (‖x[ j]

t −x∗[ j]t ‖[0:k−1])
(3.8)
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where k≥no
i , and y[i]t and y∗[i]t are the output sequences stemming from(w[i]

t ,u[i],x
t ,u[i]

t ) and(w∗[i]
t ,u∗[i],xt ,u[i]

t )

with initial conditions x[i]0 and x∗[i]0 , respectively.

3.3 A non-iterative moving horizon partition-based algorithm

Our aim is to design, for each subsystem, a non-iterative distributed estimationscheme based on
neighbor-to-neighbor communication for computing a reliable estimate ˆx[i] of x[i] based on the mea-
surementsy[i] and on the crosstalk termsu[i],x provided by the estimators associated to the other sub-
systems. Specifically, by extending to nonlinear systems the results described in [17], we propose a
moving horizon estimation (MHE) scheme, which is denoted NPMHE.

3.3.1 Model for estimation and information transmission graph

We denote with ˆx[i]
t1/t2

the estimate ofx[i]
t1 performed at timet2 by subsystemi and we definêxt1/t2 =

(x̂[1]
t1/t2

, . . . , x̂[M]
t1/t2

). At each instantt we assume that an estimate of the crosstalk termu[i],x
k k = t −

N, . . . , t is provided by the neighbors at timet −1, therefore allowing for decentralization of the state
estimation algorithm. At timet the estimation model is, fork = t −N, . . . , t −1

x̂[i]
k+1 = f [i](x̂[i]

k , û[i],x
k/t−1,u

[i]
k )+ ŵ[i]

k (3.9a)

y[i]
k = h[i](x̂[i]

k ,u[i]
k )+ v̂[i]

k (3.9b)

and defines constraints of the NPMHE estimation problem given below.
In (3.9),û[i],x

k/t−1 is the set of variables{x̂[ j]
k/t−1, j ∈Ni}, denoting the estimates of the system’s states

available to subsystemi’s neighbors at timet. Therefore, subsystems communicate over a network that
has the same topology of the interconnection graph and, if( j, i)∈ E , thenx̂[ j]

k/t−1 for k= t−N, . . . , t−1
are transmitted to subsystemi.
Finally, note that the noise estimates ˆw[i]

k and v̂[i]
k in (3.9) encompass both the noise appearing in the

equations (3.5), (3.7) and the estimation error due to the uncertainty on ˆu[i],x
k/t−1.

3.3.2 The NPMHE estimation problems

Given an estimation horizonN ≥ 1, in order to perform the NPMHE algorithm, each nodei ∈ V at
time t solves the constrained minimization problem NMHE-i defined as

Θ∗[i]
t = min

x̂[i]
t−N,ŵ[i]

J[i](t −N, t, x̂[i]
t−N, ŵ[i], v̂[i],Γ[i]

t−N) (3.10)

whereŵ[i] and v̂[i] stand forŵ[i]
[t−N:t] and v̂[i]

[t−N:t], respectively, under the constraints imposed by sys-
tem (3.9) and

x̂[i]
k ∈ Xi , k = t −N, . . . , t (3.11)

The local cost functionJ[i] is given by
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J[i](t −N, t, x̂[i]
t−N,ŵ[i], v̂[i],Γ[i]

t−N) =
t

∑
k=t−N

L[i](ŵ[i]
k , v̂[i]

k )

+Γ[i]
t−N(x̂[i]

t−N; x̂[i]
t−N/t−1) (3.12)

In (3.12), the functionsL[i] andΓ[i]
t−N are thestage costand theinitial penalty, respectively, and must

be defined in order to satisfy the following assumption.

Assumption 7 L[i] andΓ[i]
t−N are continuous, bounded, positive definite and satisfy the following in-

equalities for all w[i] ∈ R
ni , v[i] ∈ R

pi , x[i]
1 ,x[i]

2 ∈ R
ni

γ
L
(‖(w[i],v[i])‖) ≤ L[i](w[i],v[i]) (3.13a)

Γ[i]
0 (x[i]

1 ;x[i]
2 ) ≤ γ0(‖x[i]

1 −x[i]
2 ‖) (3.13b)

whereγ
L

andγ0 are suitableK∞ functions.

The quantities ˆx[i]
t−N/t and

{

ŵ[i]
k/t

}t

k=t−N
are the optimizers to (3.10) and ˆx[i]

k/t , k = t −N+1, ..., t is the

local state sequence stemming from ˆx[i]
t−N/t , {û[i]

k/t−1}
t−1
k=t−N and

{

ŵ[i]
k/t

}t−1

k=t−N
.

3.3.3 The collective minimization problem

Denote byJ the sum of the local cost functionsJ[i], given by (3.12), i.e.

J =
M

∑
i=1

J[i](t −N, t, x̂[i]
t−N, ŵ[i], v̂[i],Γ[i]

t−N) (3.14)

Define the collective vectorŝxt = (x̂[1]
t , . . . , x̂[M]

t )∈R
n, v̂t = (v̂[1]

t , . . . , v̂[M]
t )∈R

p, ŵt = (ŵ[1]
t , . . . , ŵ[M]

t )∈
R

n and rewriteJ as

J =
t

∑
k=t−N

L(ŵk, v̂k)+ΓΓΓt−N(x̂t−N; x̂t−N/t−1) (3.15)

whereL andΓΓΓt−N are given by

L(ŵk, v̂k) =
M

∑
i=1

L[i](ŵ[i]
k , v̂[i]

k ) (3.16a)

ΓΓΓt−N(x̂t−N; x̂t−N/t−1) =
M

∑
i=1

Γ[i]
t−N(x̂[i]

t−N; x̂[i]
t−N/t−1) (3.16b)

We define the function

f̃(x̂k, x̂k/t−1,uk) = ( f [1](x̂[1]
k , û[1],x

k/t−1,u
[1]
k ),

, . . . , f [M](x̂[M]
k , û[M],x

k/t−1,u
[M]
k ))
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so that constraints (3.9) and (3.11) can be written in the collective form

x̂k+1 = f̃(x̂k, x̂k/t−1,uk)+ ŵk (3.17a)

yk = h(x̂k,uk)+ v̂k (3.17b)

x̂k ∈ X (3.17c)

with k = t −N, . . . , t. The solution to

min
x̂t−N,ŵ

J(t −N, t, x̂t−N, ŵ, v̂,ΓΓΓt−N) (3.18)

whereŵ andv̂ are short-hand notation for̂w[t−N:t] andv̂[t−N:t] respectively, is equivalent to the solution

to the MHE-i problems (3.10), in the sense that ˆx[i]
t−N/t ,{ŵ[i]

k/t}
t
k=t−N is a solution to (3.10) if and only

if x̂t−N/t ,{ŵk/t}
t
k=t−N is a solution to (3.18), wherêwk/t = (ŵ[1]

k/t , . . . , ŵ
[M]
k/t ). In fact, at timet, variables

x̂k/t−1 are fixed inputs for the system (3.17).
We define the transit cost for subsystemi as

Ξ[i]
[t−N+1:t]/t(z

[i]
[t−N+1:t]) = min

x̂i
t−N,ŵi

{

J[i](t −N, t, x̂[i]
t−N, ŵ[i], v̂[i],Γ[i]

t−N)

subject to (3.9), (3.11) and ˆx[i]
k = z[i]

k for k = t −N+1, . . . , t
}

(3.19)

The collective transit cost in a generic sequencezk = (z[1]
k , . . . , z[M]

k )∈R
n k= t−N+1, . . . , t, is defined

as

ΞΞΞ[t−N+1:t]/t(z[t−N+1:t]) = min
x̂t−N,ŵ

{J(t −N, t, x̂t−N, ŵ, v̂,ΓΓΓt−N)

subject to (3.17) and̂xk = zk for k = t −N+1, . . . , t} (3.20)

and it holds that

ΞΞΞ[t−N+1:t]/t(z[t−N+1:t]) =
M

∑
i=1

Ξ[i]
[t−N+1:t]/t(z

[i]
[t−N+1:t]) (3.21)

From (3.16) and in view of Assumption 7 there exist suitableK∞ functionsγ∗
L

andγ∗0 such that

γ∗
L
(‖(w,v)‖) ≤ L(w,v) (3.22a)

ΓΓΓ0(x1;x2) ≤ γ∗0(‖x1−x2‖) (3.22b)

for all w ∈ R
n, v ∈ R

p andx1,x2 ∈ R
n.

We discuss now the choice of the initial penaltiesΓ[i]
t−N. As it will clear in the next section, for

convergence of the NPMHE scheme they must fulfill the following assumption.

Assumption 8 Given a state sequencezk ∈ X, k = t −N, . . . , t − 1, the following inequalities are
verified

ΘΘΘ∗
t−1 ≤ ΓΓΓt−N(zt−N; x̂t−N/t−1) (3.23)
t−1

∑
k=t−N

L(f̃(zk,zk,uk)− f̃(zk, x̂k/t−1,uk),0)+ (3.24)

+ΓΓΓt−N(zt−N; x̂t−N/t−1) ≤ ΞΞΞ[t−N:t−1]/t−1(z[t−N:t−1])

whereΘΘΘ∗
t−1 = ∑M

i=1 Θ∗[i]
t−1.
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Remark 1 Note that Assumption 8 is the most critical one. Currently, even in case of atrivial par-
tition where one has that∑t−1

k=t−N L(f̃(zk,zk,uk)− f̃(zk, x̂k/t−1,uk),0) = 0, there are just approximate
methods for computing initial penaltiesΓΓΓt−N 6= ΘΘΘ∗

t−1 verifying(3.23)and (3.24), see [43].
Note however thatz[t−N:t−1] = x̂[t−N:t−1]/t−1 are minimizers ofΞΞΞ[t−N:t−1]/t−1(z[t−N:t−1]) and yield
ΞΞΞ[t−N:t−1]/t−1(z[t−N:t−1]) = ΘΘΘ∗

t−1. Hence(3.23)-(3.24)imply thatx̂[t−N:t−1]/t−1 is a minimizer ofΓΓΓt−N

and thatΓΓΓt−N(x̂t−N/t−1; x̂t−N/t−1) = ΘΘΘ∗
t−1.

As in [17], a choice forL[i] andΓ[i]
t−N fulfilling Assumption 7 and (3.23) is to consider the quadratic

functions

L[i] =
1
2
‖ŵ[i]

k ‖
2
(Q[i])−1 +

1
2
‖v̂[i]

k ‖
2
(R[i])−1 (3.25)

Γ[i]
t−N =

1
2
‖x̂[i]

t−N − x̂[i]
t−N/t−1‖

2
(Π[i]

t−N/t−1)
−1

+Θ∗[i]
t−1 (3.26)

whereQ[i] andR [i] are suitable symmetric and positive-definite matrices, andΠ[i]
t−N/t−1 is a symmetric

semi definite-positive matrix.
It is easy to prove that, under Assumption 5 and if the stage cost and the initialpenalty are defined

as in (3.25) and (3.26), respectively, Assumption 8 is verified if, for each subsystemi, the following
inequality is satisfied, for all sequencesz[i]

k ∈ Xi , k = t −N, . . . , t −1

1
2

t−1

∑
k=t−N

qi‖z[i]
k − x̂[i]

k/t−1‖
2 +

1
2
‖z[i]

t−N − x̂[i]
t−N/t−1‖

2
(Π[i]

t−N/t−1)
−1

≤ Ξ[i]
[t−N:t−1]/t−1(z

[i]
[t−N:t−1]) (3.27)

where, for alli, qi = ∑M
j=1 l̃ ji , l̃ i j = 2l2

i j σmax
(
(Q[i])−1

)
if j ∈ Ni and l̃ i j = 0 otherwise, andσmax(·)

denotes the maximum singular value of its argument.
Note that (3.27) is indeed a local re-formulation of Assumption 8 and recall that also the cost (3.12)
and the constraints (3.9) depend only upon local variables. In view of this, the implementation of the
NPMHE estimation scheme results to be completely decentralized.

3.4 Convergence properties of the proposed estimators

In this section the convergence results reported in [41] for centralized estimators (corresponding to
the trivial partition) are extended to the proposed NPMHE scheme. Similarly to [41], these properties
are analyzed in a deterministic setting.

Definition 5 Let Σ be system(3.1) with wt = 0 and denote byxΣ(t,x0) the state reached byΣ at
time t starting from initial conditionx0 with input sequenceuk, k = 0, . . . , t − 1. Assume that the
trajectoryxΣ(t,x0) is feasible,i.e.,xΣ(t,x0) ∈ X for all t. Then, NPMHE is asymptotically convergent

if ‖x̂t/t −xΣ(t,x0)‖
t→∞
−→ 0.

Moreover, in order to state the main convergence result, some further definitions are required.

Definition 6 Letη ≥ 0 and r be a real and an integer number respectively. Then,λ (η , r) is a function
defined as

λ (η , r) =
1−η r

1−η
, if η 6= 1, andλ (η , r) = r, if η = 1
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Figure 3.1: River scheme.

Definition 7 TheK∞-functionsγ̃i j are defined as

γ̃i j (η) = max
k∈[t−N+1:t]

(

lk−(t−N)
ii γi j (η)+ l i j λ (l ii ,k− (t −N))η

)

(3.28)

Definition 8 Given a vectorδδδ ∈ R
M, with componentsδ [i] ≥ 0, i = 1, . . . ,M, define the gain map

Γ̃(δδδ ) =






∑ j∈V1
γ̃1 j(δ [ j])
...

∑ j∈VM
γ̃M j(δ [ j])




 (3.29)

and the diagonal operator D: R
M → R

M such that

D(δδδ ) :=






(Id+d1)(δ [1])
...

(Id+dM)(δ [M])






whereId is the identity function and di ∈ K∞, i = 1, . . . ,M.

Finally we need to introduce asmall gain condition, which will be fundamental to guarantee
convergence of NPMHE and is derived from [10]. Specifically, we willrequire that, for allδδδ 6= 0,
with componentsδ [i] ≥ 0, i = 1, . . . ,M one has

Γ̃◦D 6≥ Id (3.30)

In a few words, inequality (3.30) requires that, for allδδδ , there is at least one component of vector
Γ̃(D(δδδ )) which strictly decreases.

Theorem 3 If Assumptions 5, 6, 7 and 8 hold and if, for allδδδ 6= 0, with componentsδ [i] ≥ 0, i =
1, . . . ,M, (3.30)is verified, then the NPMHE scheme is asymptotically convergent.

Recall that a Directed Acyclic Graph (DAG) is a directed graph with no cycles. Namely,G is
a DAG if, for all subsystemsi and j, when there is a path fromi to j, then there does not exist a
path from j to i. After a suitable permutation of the node indexes, the adjacency matrix of a DAG is
triangular.

Corollary 2 If Assumptions 5, 6, 7 and 8 hold and if the interconnection graph is a DAG,then the
NPMHE scheme is asymptotically convergent.
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3.5 An application: three cascade river reaches

In this section we apply the NPMHE algorithm to a system composed by three river reaches, which
are part of a larger system describing a Hydro Power Valley (HPV), see [12]. The development of
distributed predictive control techniques for the HPV requires proper estimation of the states of the
reaches, i.e. levels and flow rates at different points, as well as of the disturbances, which correspond
to unknown input/output terms (e.g., creeks, rain, leakages).

3.5.1 Model of the reaches

Each reach is endowed with a power house placed in a lateral channel where a turbine generates the
electric power, and with a weir along the main natural river course, see Fig. 3.1. The model of a single
reach is based on the classical de Saint Venant equations, i.e. mass and momentum equations, see e.g.
[44], [21], [26], [27]. Lettingx∈ R be the main spatial coordinate defined by the flow direction andτ
be the continuous time, in order to simplify the model, the assumptions of constant river widthW(x)
and rectangular cross sectionS(x,τ) are made. Furthermore, we assume that the river friction slope is
given by the Manning-Strickler equation [26].
According to the previous assumptions and denoting withH(x,τ) andQ(x,τ) the river height and the
flow rate, respectively, the de Saint Venant dynamic equations can be written as

∂H
∂τ = − 1

W
∂Q
∂x

∂Q
∂τ = −2Q

WH
∂Q
∂x +

((
Q
H

)2
1
W −gWH

)

∂H
∂x +gWI0H

−gWH
k2

str

(
W+2H

WH

)4/3
(

Q
WH

)2

(3.31)

where the dependence of the variablesQ andH uponx andτ has been omitted for simplicity,g is the
gravitational acceleration,I0 is the bed slope andkstr(x) is the Strickler coefficient.

For simulation, control and estimation purposes, the model has been discretized intoNc sections
along the flow direction, each one with length∆x = X/Nc, whereX is the total length of the reach. To
avoid unnecessary stiffness, the crossing sections of the different variables are overlapped. The flow
ratesQ are computed at the crossing of each section while the heightsH are computed in the middle
of the section, see Fig. 3.2 and the references [44], [21]. The discretization is made by the finite
difference method by approximating the derivatives with the first term in the Taylor series expansions
of Q andH around any pointχi :

∂Q2i
∂ χ2i

= Q(χ2i+2)−Q(χ2i)
χ2i+2−χ2i

∂H2i−1
∂ χ2i−1

= H(χ2i+1)−H(χ2i−1)
χ2i+1−χ2i−1

The boundary conditions are given by the inlet flow rate at the first reach Qin and by the output
flow rateQout, which is a function of the level at the end of the third reach, i.e.Qout = Qout(H2Nc+1).
For the second and third reaches, the inlet flow rates coincide with the outletflow rate of the upstream
reach.
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Figure 3.2: Spatial discretization of each reach. The portion of the reachenclosed in the dashed frame
corresponds to the portion of each reach enclosed in the dashed frame inFig. 3.1. ωl1, ωl2 are flow
disturbances andωl2 = 0 for reaches 1 and 3.

In view of these assumptions, the ODE model of each reach is

dH1
dτ = − 1

W
Q2−Qin

∆x/2
dQ2
dτ = − 2Q2

WH2

Q2−Qin
∆x/2 +

(
Q2

2
WH2

2
−gWH2

)
H3−H1

∆x

−gWH2

k2
str

(
W+2H2

H2

)4/3(
Q2

WH2

)2
+gWI0H2

dH2 j−1

dτ = − 1
W

Q2 j−Q2 j−2

∆x
dQ2 j

dτ = −
2Q2 j

WH2 j

Q2 j−Q2 j−2

∆x +

(
Q2

2 j

WH2
2 j
−gWH2 j

)

H2 j+1−H2 j−1

∆x

−
gWH2 j

k2
str

(
W+2H2 j

WH2 j

)4/3( Q2 j

WH2 j

)2
+gWI0H2 j ,

j = 2, . . . ,Nc
dH2Nc+1

dτ = − 1
W

Q2Nc−Qout

∆x/2

(3.32)

where the dependence onτ has been omitted and the heightsH2i , i = 1, . . . ,Nc, are computed as a
linear combination of the adjacent heights, i.e.

H2i =
H2i+1 +H2i−1

2
, i = 1, . . . ,Nc

The output flow rate of each reach is defined as

Qout = Qt +QD(H2Nc+1) (3.33)

where
QD(H2Nc+1) = kweirAweir

√

2g(H2Nc+1) (3.34)

kweir is a parameter that depends of the characteristic of the dam,Aweir is the weir cross-sectional area,
QD is the flow rate through the weir of the dam andQt is the flow rate through the channel and the
power house, assumed constant in the considered state estimation problem.
In the following each reach has been divided intoNc = 5 cells.
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Length of each reach 4000[m]

Width of each reachW 100[m]

Strickler coefficientkstr 30[m1/3/s]
Slope of the bed of each reachI0 0.0033[−]

Section of the weir of the damAweir 18.26[m2]

Discharge coefficient, weir of the dam,kweir 0.6[−]

Nominal flow rate through the turbineQt 100[m3/s]

Table 3.1: Reach Data

3.5.2 Disturbances model

In order to test the capability of the proposed MHE scheme to estimate unknowndisturbances, it is
assumed that each reach is affected by unmeasurable inlet flows. Specifically, as shown in Fig. 3.2, a
flow rateωl1 is forced at the beginning of each reach and represents the variation ofthe inflowQin due
to the variations of the concession level of an upstream dam. Moreover, an additional flow rateωl2 is
placed at the input of the third cell of the second reach to model the presence of an unknown affluent.

Both ωl1 and ωl2 are generated as the sum of a constant term (ω1 and ω2) and the state (d1

andd2) of a first-order stable system fed by zero-mean White Gaussian Noises (WGNs) w1(k) and
w2(k) with variancesσ2

1 andσ2
2 , respectively. Saturation constraints are included to impose that these

disturbances are non negative.

3.5.3 River data and available measurements

The three reaches have the same geometric characteristics, summarized in Table 3.1. In nominal sta-
tionary conditions, the considered constant flow rate isQ = 300[m3/s], while the values of the height
areH̄1 = 3.83[m], H̄3 = 7.11[m], H̄5 = 10.4[m], H̄7 = 13.7[m], H̄9 = 17[m]. As for the disturbances,
the following values have been used:ω1 = 10[m3/s],ω2 = 30[m3/s],σ2

1 = σ2
2 = 5, while the filters

have gain equal to 0.5 and time constant 105[s]. Moreover, it is assumed that the inflowQin of the
first reach is known, as well as the flow rates through the turbines, while for estimation and control
purposes three measurements are available for any reach, namely the levels H1 andH5 and the flow
rateQ8 in the first and third reaches, and the variablesH1, H7 andQ4 in the second reach. These mea-
surements are also affected by noise; specifically, a WGN with zero mean and varianceσ2 = 0.1 is
added to the level measures, while a zero mean WGN with unitary variance corrupts the flow measure.
Remarkably, the measured flowQ8 does not correspond to the inflow of the downstream reach, see
eqs. (3.33) and (3.34), so that there is an effective coupling between the estimation problems. This
motivates the use of the NPMHE scheme presented in the previous sections.

3.5.4 MHE and simulation results

The NPMHE algorithm described in Sections 2-4 is applied to the three reaches viewed as a system
with a cascade structure; therefore, Corollary 2 is automatically verified. The reaches are described by
the equations (3.32), while the mutual influences are due to the relations (3.33) and (3.34). As such,
the state of the subsystems arex[i] = (H [i]

1 ,Q[i]
2 ,H [i]

3 ,Q[i]
4 ,H [i]

5 ,Q[i]
6 ,H [i]

7 ,Q[i]
8 , H [i]

9 ), i = 1,2,3, while the
inputs areu[i] = Qt , i = 1,2,3. Positivity constraints on all the estimated states have been imposed
and flowsQ[i]

j (i = 1,2,3, j = 2,4,6,8) are constrained to be smaller than 450[m3/s].
The models of the reaches have then been discretized with a sampling time∆τ = 60[s] to implement
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the distributed MHE algorithm, that assumes discrete-time systems. In the discrete-time model so
obtained, it has been assumed that the state disturbancewt (see (3.1)) acts on the statesH1,Q2 for the
first and third reaches, and onH1,Q2,H5,Q6 for the second reach.
The stage cost and the initial penalty (see (3.12)) are given by equations(3.25) and (3.26). where
Π[i]

t−N/t−1 = 10I9, i = 1,2,3. The matricesQ[i] are diagonal with elements equal to 3.33· 104 cor-
responding to the non-zero components of the disturbancewt , and equal to very small values corre-
sponding to the zero components. Also the matricesR [i] have been chosen as diagonal, with elements
equal to 200 for the level estimation errors and to 2·103 for the flow rate estimation errors.
The simulation experiments have been performed with MATLAB and optimizations are carried out
with the TOMLAB optimization environment [23]. We add a sinusoidal variation of amplitude
±30[m3/s] and period of about 2.3[h] to the nominal inlet flow rateQin. With reference to the first
reach, Fig. 3.3 shows the true and estimated values of the flow rateQ2 and of the levelsH1 andH9 at
the beginning and at the end of the reach. Fig. 3.4 depicts the true and estimated disturbance acting
on the initial section of the reach. These results clearly show that, after an initial negligible transient
mainly due to the optimization procedure, all the estimates converge to the true values.
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Figure 3.3: LevelsH1, H9 and flow rateQ2 of the first reach.

Fig. 3.5 illustrates the results for the second reach, in particular the values and estimates ofQ2, H1

and ofQ6, which is the flow rate of the reach after the additional inlet flow described as a disturbance
term (see Fig.3.2). The values of the true and estimated disturbances acting on the second reach are
shown in Figs.3.6 and 3.7. It is apparent that the proposed scheme is able tocorrectly determine the
state and disturbance estimates even though the additional input flow rate is not directly measured, but
computed on the basis of the estimates performed for the first reach.
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Figure 3.4: Disturbance at the beginning of the first reach.

Finally, in Fig. 3.8 and in Fig. 3.9 the estimates ofQ2, H1, H9 and of the disturbance acting at
the initial section of the third reach are depicted, showing estimation performances comparable with
those obtained on the previous reaches.

3.6 Proofs

Since system (3.5) is time-invariant, forN ≥ n̄o = max{no
i }, Assumption 6 guarantees that

‖x[i]
t−N −x∗[i]t−N‖ ≤ γ [i]

w (‖w[i]
k −w∗[i]

k ‖[t−N:t−1])

+γ [i]
y (‖y[i]

k −y∗[i]k ‖[t−N:t])+∑ j∈Ni
γi j (‖x[ j]

k −x∗[ j]k ‖[t−N:t−1])
(3.35)

wherey[i]
k andy∗[i]k are the output sequences stemming from(w[i]

k ,u[i],x
k ,u[i]

k ) and(w∗[i]
k ,u∗[i],xk ,u[i]

k ) with

initial conditionsx[i]
t−N andx∗[i]t−N, respectively.

The first step towards the convergence of the NPMHE scheme is the following lemma.

Lemma 4 If Assumptions 7 and 8 hold then

t

∑
k=t−N

L(ŵk/t , v̂k/t)
t→∞
−→ 0 (3.36)
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Figure 3.5: LevelH1 flow ratesQ2 andQ6 of the second reach.

0 2000 4000 6000 8000 10000 12000 14000 16000
0

10

20

30

40

50

60

70

time [s]

di
st

ur
ba

nc
e 

[m
3 /s

]

 

 
estimation
simulation

Figure 3.6: Disturbance at the beginning of the second reach.
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Figure 3.7: Disturbance in the middle of the second reach.

Proof of Lemma 4 The proof is similar to the one in Proposition 5 in [40]. For allt ≥ 0, in view
of (3.23) one has

ΘΘΘ∗
t −ΘΘΘ∗

t−1 ≥
t

∑
k=t−N

L(ŵk/t , v̂k/t) (3.37)

Note that, by optimalityΘΘΘ∗
t ≤ ΞΞΞ[t−N+1:t]/t({xΣ(k,x0)}

t
k=t−N+1) ∀t > N. The trajectory stemming

from xΣ(t −N,x0), ŵ∗
k = f̃(xΣ(k,x0),xΣ(k,x0),uk)− f̃(xΣ(k,x0), x̂k/t−1,uk) for k = t −N, . . . , t − 1

andŵ∗
t = 0 is xΣ(k,x0) for k = t −N+1, . . . , t, and hence it is feasible. Sincey[t−N:t] corresponds to

the deterministic system output (see Definition 5), it follows thatv̂k = yk−h(xΣ(k,x0),ut) = 0 for all
k = t −N, . . . , t. Moreover, by optimality

ΞΞΞ[t−N+1:t]/t({xΣ(k,x0)}
t
k=t−N+1)

≤ J(t −N, t,xΣ(t −N,x0), ŵ∗,0,ΓΓΓt−N)

From (3.15), one has

J(t −N, t,xΣ(t −N,x0), ŵ∗,0,ΓΓΓt−N) =

=
t−1

∑
k=t−N

L(ŵ∗
k,0)+ΓΓΓt−N(xΣ(t −N,x0); x̂t−N/t−1),

and in view of (3.24),ΘΘΘ∗
t ≤ ΞΞΞ[t−N:t−1]/t−1({xΣ(k,x0)}

t−1
k=t−N). We can iterate this procedure and prove

that
ΘΘΘ∗

t ≤ Γ∗
0(x0;m0) ≤ γγγ0(‖x0−m0‖) (3.38)
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Figure 3.8: LevelsH1, H9 and flow rateQ2 of the third reach.

for all t, for any x0 ∈ X, wherem0 ∈ X is the prior estimate ofx0 and whereγ∗0 is a suitableK∞
function, in view of (3.22b), which derives from Assumption 7.
Finally, from (3.37) the sequenceΘΘΘ∗

t is increasing and from (3.38) it is bounded. Therefore, the se-
quenceΘΘΘ∗

t converges and, from (3.37), equation (3.36) follows. �

In view of Lemma 4, the proof of Theorem 3 can be devised.

Proof of Theorem 3Since Assumptions 7 and 8 hold, by Lemma 4 equation (3.36) is guaranteed. In
view of (3.22a), it implies that

max
k∈[t−N:t]

(‖v̂k/t‖,‖ŵk/t‖)
t→∞
−→ 0 (3.39)

Notice that, in the noiseless case (w[i]
Σ (k) = 0 for all k and i = 1, . . . ,M), for any t, the trajectory

xΣ(t,x0) is generated by the system

xΣ(t +1,x0) = f̃(xΣ(t +1,x0),xΣ(t +1,x0),ut) (3.40)

and the output signal, for each sub-system, is

y[i]
k = h[i](x[i]

Σ (k,x0),u
[i]
k )

andv̂[i]
k/t = y[i]

k −h[i](x̂[i]
k/t ,u

[i]
k ). Recalling (3.35), we obtain that

‖x̂[i]
t−N/t −x[i]

Σ (t −N,x0)‖ ≤ γ [i]
w (‖w[i]

Σ (k)− ŵ[i]
k ‖[t−N:t−1])

+γ [i]
y (‖v̂[i]

k/t‖[t−N:t])+∑ j∈Ni
γi j (‖x̂[ j]

k/t−1−x[ j]
Σ (k,x0)‖[t−N:t−1])

(3.41)
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Figure 3.9: Disturbance at the beginning of the third reach.

From (3.39) we obtain that, for alli = 1, . . . ,M there exists a positive sequenceα [i]
t satisfyingα [i]

t
t→∞
−→ 0

such that
‖x̂[i]

t−N/t −x[i]
Σ (t −N,x0)‖ ≤

≤ ∑ j∈Ni
γi j (‖x̂[ j]

k/t−1−x[ j]
Σ (k,x0)‖[t−N:t−1])+α [i]

t

(3.42)

Recall thatu[i],x
k/t−1 = {x̂[ j]

k/t−1, j ∈ Ni} and, in the noiseless setting,u[i],x
k = {x[ j]

Σ (k,x0), j ∈ Ni}. For
k≥ t −N, in view of (3.9b)

x̂[i]
k+1/t = f [i](x̂[i]

k/t ,u
[i],x
k/t−1,u

[i]
k )+ ŵ[i]

k/t (3.43)

while x[i]
Σ (k,x0) stems from (3.40), that is

x[i]
Σ (k+1,x0) = f [i](x[i]

Σ (k,x0),u
[i],x
k ,u[i]

k ) (3.44)

Defining∆[i]
k1/k2

= x̂[i]
k1/k2

−x[i]
Σ (k1,x0), we obtain, from (3.43) and (3.44)

∆[i]
k+1/t = f [i](x[i]

Σ (k,x0)+∆[i]
k/t ,{x[ j]

Σ (k,x0)+∆[ j]
k/t−1} j∈Ni ,u

[i]
k )+

− f [i](x[i]
Σ (k,x0),{x[ j]

Σ (k,x0)} j∈Ni ,u
[i]
k )+ ŵ[i]

k/t (3.45)
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From (3.45) and (3.6) (which derives from Assumption 5) it follows that:

‖∆[i]
k+1/t‖ ≤‖ f [i](x[i]

Σ (k,x0)+∆[i]
k/t ,{x[ j]

Σ (k,x0)+∆[ j]
k/t−1} j∈Ni ,u

[i]
k )

− f [i](x[i]
Σ (k,x0),{x[ j]

Σ (k,x0)} j∈Ni ,u
[i]
k )‖+‖ŵ[i]

k/t‖

≤l ii‖∆[i]
k/t‖+ ∑

j∈Vi

l i j‖∆[ j]
k/t−1‖+‖ŵ[i]

k/t‖ (3.46)

Iterating equation (3.46) we obtain that, fork = t −N+1, . . . , t

‖∆[i]
k/t‖ ≤lk−(t−N)

ii ‖∆[i]
t−N/t‖+ ∑

j∈Vi

l i j (
k−(t−N)−1

∑
r=0

l r
ii‖∆[ j]

k−1−r/t−1‖)

+
k−(t−N)−1

∑
r=0

l r
ii‖ŵ[i]

k−1−r/t‖ (3.47)

Definingδ [i]
t = maxk∈[t−N+1:t] ‖∆[i]

k/t‖ andαw,[i]
t = maxk∈[t−N:t−1] ‖ŵ[i]

k/t‖ we can write, from (3.47)

‖∆[i]
k/t‖ ≤lk−(t−N)

ii ‖∆[i]
t−N/t‖+ ∑

j∈Ni

l i j λ (l ii ,k− (t −N))δ [ j]
t−1

+λ (l ii ,k− (t −N))αw,[i]
t (3.48)

whereλ (·, ·) is given in Definition 6. In view of (3.42),‖∆[i]
t−N/t‖ ≤ ∑ j∈Ni

γi j (δ
[ j]
t−1)+α [i]

t , from which
it follows that

‖∆[i]
k/t‖ ≤ ∑

j∈Ni

(

lk−(t−N)
ii γi j (δ

[ j]
t−1)+ l i j λ (l ii ,k− (t −N))δ [ j]

t−1

)

+λ (l ii ,k− (t −N))αw,[i]
t + lk−(t−N)

ii α [i]
t (3.49)

Therefore one concludes that

δ [i]
t ≤ ∑

j∈Ni

max
k∈[t−N+1:t]

(lk−(t−N)
ii γi j (δ

[ j]
t−1)

+ l i j λ (l ii ,k− (t −N))δ [ j]
t−1) (3.50)

+ max
k∈[t−N+1:t]

(

λ (l ii ,k− (t −N))αw,[i]
t + lk−(t−N)

ii α [i]
t

)

We define
α̃ [i]

t = max
k∈[t−N+1:t]

(

λ (l ii ,k− (t −N))αw,[i]
t + lk−(t−N)

ii α [i]
t

)

which, in view of (3.39), is an asymptotically vanishing term. Furthermore, in view of Definition 7,
we can write (3.50) as

δ [i]
t ≤ ∑

j∈Vi

γ̃i j (δ
[ j]
t−1)+ α̃ [i]

t (3.51)

The stability of the system of interconnected equations (3.51) can be analyzed by means of the small
gain condition given in [10].
Define a vectorδδδ ∈ R

M, with componentsδ [i] ≥ 0, i = 1, . . . ,M. Since, by definition, for alli, thei-th
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component of̃Γ(δδδ ) does not depend onδ [i] and is aK∞ function ofδ [ j], j ∈ Ni , it is easy to see that

the system of equations (3.51) is asymptotically stable (i.e.,δ [i]
t → 0 ast → ∞ for all i = 1, . . . ,M) if

the mapΓ̃ satisfies the small gain condition (3.30). �

Proof of Corollary 2

Recall thatL is defined in Section 3.2 as the matrix collecting the Lipschitz constantsl i j , defined
in (3.6). If the system partition induces a DAG and since Assumption 5 holds,L is (lower) triangular,
after a suitable permutation of the subsystem indexes. Therefore, withoutloss of generality, we have
l i j = 0 if j > i. Also, since Assumption 6 holds, similar arguments apply to theK -functionsγi j

in (3.8) i.e., for alli = 1, . . . ,M, γi j is defined only forj < i. This, according to (3.28), gives rise to a
mapΓ̃(δδδ ) whosei-th element depends only uponδ [ j], with j < i, for all i = 1, . . . ,M.

Now we prove that, sincẽΓ has such a structure and its entries areK -functions, the small gain
condition is verified. Notice that, by definition,δ [i] ≥ 0 for all i = 1, . . . ,M. Note that any admissible
δδδ satisfies the following: there exists an indexi suchδ [ j] = 0 for all j < i andδ [i] > 0 (if i = 1 this
corresponds only to the conditionδ [1] > 0). In view of its structure, thei-th entry ofΓ̃ is equal to zero
i.e., Γ̃i = 0. Therefore, for allδδδ , there exists an indexi such that̃Γ(D(δδδ ))i < δ [i]. This corresponds to
the small gain condition (3.30). Being Assumptions 5, 6,7, 8 verified, we resort to Theorem 3 which
guarantees asymptotic convergence of the NPMHE scheme. �
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Chapter 4

Variance estimation - adaptive tuning of
moving horizon estimators

4.1 Introduction

The distributed estimation algorithms based on the MHE approach developed in the HD-MPC project
and partially described in the previous chapters of this deliverable require the a-priori knowledge of
the covariances of the noises affecting the system states and outputs, which are generally unknown.
This is a serious drawback which could prevent one from achieving satisfactory results, and particular
attention must be placed to the tuning phase.
Algorithms for covariance estimation have been already proposed in the literature; among them,
the most significant and promising ones have already been reviewed and tested in deliverable D5.2.
Specifically, reference has been made to the so-called correlation approach developed by Mehra, see
[28, 29], and to the Autocovariance Least Squares (ALS) method described in [31], which has proved
to be the most effective one, since it outperforms significantly the one proposed in [28].
For all the above reasons, in this chapter a simple adaptive covariance estimation algorithm based on
the ALS approach is developed and used for the on-line tuning of the weights used in MHE. Basi-
cally, starting form the estimation error computed on-line, this algorithm adaptively updates the noise
variances, which are actually used as weights in the MHE performance index. The method is then ap-
plied to a couple of significant test cases with excellent results, so that it is believed that the proposed
approach can be successfully used in the majority of cases.
The chapter is organized as follows. First, the problem is stated, the performance index used in MHE is
recalled and some preliminary definitions are reported. Then the ALS algorithm, already extensively
presented in deliverable D5.2 is briefly summarized. The adaptive method for the on-line update of
the MHE tuning parameters is then given and tested in the considered simulation examples.

4.2 Problem Statement

Consider a linear, time-invariant, discrete-time model:

xt+1 = Fxt +But +Gwt

zt = Hxt +vt
(4.1)
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wherex∈ R
n is the system state,F ∈ R

n×n is the transition matrix,B∈ R
n×m is the control matrix,

G∈ R
n×g is the disturbance matrix,z∈ R

p is the observation vector, andH ∈ R
p×n is the observation

matrix. Note that{ut}
Nd
t=0, {wt}

Nd
t=0, and{vt}

Nd
t=0 are the control, the state uncertainty vector (or process-

noise), and the measurement noise sequences respectively, withNd the size of the sequences. The
disturbancesv andw are zero-mean Gaussian white noises withRv andQw as covariance matrices,
respectively.

Now assume that the state estimates are computed using the linear, time-invariant state estimator:

x̂t+1|t = Fx̂t|t +But

x̂t|t = x̂t|t−1 +L
[
zt −Hx̂t|t−1

] (4.2)

whereL is the observer gain. From (4.1), (4.2) it follows that the dynamics of the state estimation
errorεt|t−1 = xt − x̂t|t−1 is given by:

εt+1|t = Fxt +But +Gwt −F
[
x̂t|t−1 +L

(
zt −Hx̂t|t−1

)]
−But

= Fxt +Gwt −F(I −LH)x̂t|t−1−FLzt

= Fxt +Gwt −F(I −LH)x̂t|t−1−F(Hxt +vt)

(4.3)

leading to
εt+1|t = F(I −LH)εt|t−1 +Gwt −FLvt (4.4)

Moreover, assuming thatE{εt|t−1} = 0, whereE{·} denotes the statistical expectation, the prediction
error covariance is defined as:

Mt = E
{

εt|t−1εT
t|t−1

}

(4.5)

A very well known and effective way to compute the gainL is to resort to the Kalman filtering ap-
proach, which requires to know the true covariance matricesQw andRv. In the following, we denote
asM the stationary value ofM(t), computed through the algebraic Riccati equation.
As already shown in deliverable D5.2, the use of wrong covariances leads to a suboptimal estimation.
Define the L-innovations as follows

Zt = zt −Hx̂t|t−1 (4.6)

The variance estimation problem reduces to find the true matricesQw andRv using real data from the
innovations (4.6), with the final goal of computing the optimal prediction errorcovariance matrix and
the optimal filter gain.
An analogous problem is related to the use of MHE, which are based on the solution of the following
minimization problem:

min
x̂t−N,{ŵk}

t−1
t−N

t−1

∑
k=t−N

‖ν̂k‖
2
R−1

v
+‖ŵk‖

2
Q−1

w
+‖x̂t−N − x̂t−N/[t−2N:t−N−1]‖

2
Π−1

t−N

s.t.

{
x̂k+1 = Fx̂k + ŵk

ν̂k = zk−Hx̂k

s.t. x∈ X, w∈ W, ν ∈ V, and (4.1)

(4.7)

whereX, W, andV are polyhedral and convex sets with 0∈ W, and 0∈ V, N is the moving horizon
window, x̂t−N andŵk, k= t−N, . . . , t−1 are the optimization variables which correspond to the initial
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condition of the state in the moving window and to the model disturbance sequence respectively,t is
the current time. Finally, the term

Ξt−N(x̂t−N) = ‖x̂t−N − x̂t−N/[t−2N:t−N−1]‖
2
Π−1

t−N

is denotedarrival cost [40], where ˆxt−N/[t−2N:t−N−1] is given as the result of the optimization prob-
lem (4.7) solved at timet −N with available datazt−2N, . . . ,zt−N−1.

For linear systems, in the unconstrained case, and by a proper choice ofthe arrival cost, it has been
shown the equivalence between the Kalman predictor and MHE, see [40, 42, 41]. In this scenario
the tuning matricesRv and Qw must be chosen as the covariances of the noisesν and w, respec-
tively. Therefore, the problem of properly tuning these matrices is fundamental for obtaining suitable
estimation performance for MHE methods as well.

4.2.1 Autocovariance Least Squares -ALS

The ALS method presented in [31] and already extensively described in deliverable D5.2 is now
briefly summarized.
Consider the dynamic evolution of the state prediction error,εt = xt − x̂t|t−1, from (4.4):

εt+1 = (F −FLH)
︸ ︷︷ ︸

F̄

εt +
[

G −FL
]

︸ ︷︷ ︸

Ḡ

[
wt

vt

]

︸ ︷︷ ︸

w̄t

(4.8)

Then, the state-space model of theL-innovations is defined as:

εt+1 = F̄εt + Ḡw̄t

Zt = Hεt +vt
(4.9)

In the sequel, the following conditions are assumed to hold:

• The pair(F,H) is detectable.

• The transition matrix of the estimation error dynamics is stable.

• E(ε0) = 0, Cov(ε0) = M0

Under stationarity conditions, we have that

E
{
ZtZ

T
t

}
= HMHT +Rv

E
{
Zt+ jZ

T
t

}
= HF̄ jMHT −HF̄ j−1FLRv, j ≥ 1

(4.10)

We define the autocovariance matrix (ACM) as:

R(N) = E






C0 · · · CN−1
...

.. .
...

CT
N−1 · · · C0




 (4.11)
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whose elements are derived from data according to

Ĉk =
1

Nd

Nd

∑
t=k

ZtZ
T

t−k (4.12)

andN is a user-defined parameter. Using (4.10) and (4.11) the ACM of theL-innovations can be
written as:

R(N) = OALSM
−
O

T
ALS+Γ

[
N⊕

i=1

ḠQ̄wḠT

]

ΓT +Ψ

[
N⊕

j=1

Rv

]

+

[
N⊕

j=1

Rv

]

ΨT +

[
N⊕

j=1

Rv

]

(4.13)

where,

OALS=








H
HF̄

...
HF̄N−1








, Γ =








0 0 0 0
H 0 0 0
...

...
...

HF̄N−2 · · · H 0








, Ψ = Γ

[
N⊕

j=1

−FL

]

Also, the covariance of the noise ¯wt is given by

E
[
w̄t(w̄t)

T]= Q̄w =

[
Qw 0
0 Rv

]

In order to show the problem formulation as a Least-Squares problem, equation (4.13) is given in
stacked form. Henceforth,(·)s denotes the outcome to apply thevecoperator to(·). Equation (4.13)
is written in a stacked way using the standard definitions [31] of the Kronecker sum⊕, Kronecker
product⊗, and direct sum

⊕
as:

[R(N)]s =
[
(OALS⊗OALS)(In2 − F̄ ⊗ F̄)−1 +(Γ⊗Γ)In,N

]
(G⊗G)(Qw)s

+
{[

(OALS⊗OALS)(In2 − F̄ ⊗ F̄)−1 +(Γ⊗Γ)In,N
]
(FL⊗FL)+

[
Ψ⊕Ψ+ Ip2N2

]
Ip,N

}
(Rv)s

(4.14)

Equation (4.14) can be written as a LS problem, considering thatR(N)s can be estimated from (4.11)
using the acquired data.

GivenA x = b, with

D =
[

(OALS⊗OALS(In2 − F̄ ⊗ F̄)−1 +(Γ⊗Γ)In,N)
]

A =
[

D(G⊗G) D(FL⊗FL)+
[
Ψ⊕Ψ+ Ip2N2

]
Ip,N

]

x =
[

(Qw)T
s (Rv)

T
s

]T

b = R(N)s
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whereIp,N is a permutation matrix to convert the direct sum to a vector, i.eIp,N is the(pN)2× p2

matrix of zeros and ones satisfying:
(

N⊕

j=1

Rv

)

s

= Ip,N(Rv)s

We define the ALS estimate as follows:

x̂ = argmin
x

‖A x−b‖2
2

s.t Qw,Rv ≥ 0
(4.15)

in which x̂ =
[

(Qw)T
s (Rv)

T
s

]T
, andb̂ = R̂(N)s. These steps are summarized inAlgorithm 1 .

Algorithm 1 ALS Algorithm
for j = 1 toN−1 do

Ĉj = 1
Nd− j ∑Nd− j

i=1 ZiZ
T

i+ j
end for
Computeb̂ = R̂(N)s from Eq. (4.11)

Solve

[
Q̂w

R̂v

]

= arg min
Qw,Rv

∥
∥
∥
∥
∥
A

[
(Qw)s

(Rv)s

]

− b̂

∥
∥
∥
∥
∥

2

2

s.t. Qw > 0, Rv > 0

The existence, uniqueness and unbiasedness nature of the estimates have been proved in [31] and
already discussed in deliverable D5.2.

4.3 Recursive ALS with MHE-based innovations

In order to adaptively tune the noise covariance matrices to be used in the MHE algorithms developed
in the HD-MPC project, we now propose a new adaptive ALS scheme to be used in on-line operations.
It is based on the adaptive update of matricesQw andRw used in the estimation problem (4.7). The
update ofQw andRw is carried out, at each time instant, according to the equations

Q+
w = Qw +ρQ(Qopt

w −Qw)

R+
v = Rv +ρR(Ropt

v −Rv)
(4.16)

whereQopt
w and Ropt

v result from (4.15). In turn, the termŝCk, used in (4.16), are computed and
updated, at each time instantt > k, using a recursive (simplified) version of (4.12), i.e.

Ĉ(t)
k = Ĉ(t−1)

k +ρC(ZtZ
T

t−k−Ĉ(t−1)
k ) (4.17)

In equations (4.16) and (4.17), the parametersρQ, ρR, andρC are suitably defined parameters taking
values in the interval(0,1).
The new algorithm (i.e., Algorithm 2) for covariance estimation is more formally reported below,
whereN is the MHE time window,Nsim is the simulation time,NALS is the ALS tuning parameter,
tstart is the time at which the adaptation starts,Qini andRini are the initial guesses for the covariances.
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Algorithm 2 Adaptive Autocovariance Least Squares (AALS)
DefineN, Nsim, NALS, tstart, Qini , Rini

SetQw = Qini andRv = Rini

ComputeΠi−N as the stationary prediction error covariance matrix through the algebraic Riccati
equation (ARE).
Initialize the sampled covariancesĈk (k = 0, . . . ,NALS−1).
for t = N+1 toNsim−1 do

Solve the MHE problem (4.7).
if i ≥ NALS+1 then

Update the sampled covariancesĈk (k = 0, . . . ,NALS−1) using (4.17).
end if
if t > tstart then

Solve the ALS problem (4.15).
Update the estimated covariancesQw andRv using (4.16).
UpdateΠi−N.

end if
end for

4.4 Case studies

4.4.1 Van der Vusse reaction system

A non-isothermal Van der Vusse reactor system has been considered totest the adaptive algorithm;
this system has already been used as a benchmark in several control and estimation contributions
[1, 9, 11, 32].

The reactor is a vessel where an exothermic reaction is given; the excess of heat is removed by means
of a cold flow through a jacket, making this flow rate critical in order to obtain thedesired amount
of product. From mass and energy balance equations it is possible to derive the dynamic 4-th order
model of the system [11]:

ċA =
F
VR

(cA0−cA)−k1(T)cA−k3(T)c2
A

ċB = −
F
VR

cB +k1(T)cA−k2(T)cB

Ṫ = −
1

ρCp
(k1(T)cA∆Hr1 +k2(T)cB∆Hr2 +k3(T)c2

A∆Hr3)+
F
VR

(T0−T)+
kwAR

ρCpVR
(Tj −T)

Ṫj =
1

mjCp j
(Q̇ j +kwAR(T −Tj))

(4.18)

wherecA andcB are the concentrations of componentsA andB in the effluent stream, respectively,T
is the reaction temperature, andTj is the coolant temperature,cA0 is the concentration ofA in the inlet
stream,F is the feed flow rate,VR is the reactor volume anḋQ j is the rate of heat addition or removal.
The reaction coefficientski , i = 1, ...,3 are given by means of the Arrhenius equation:

ki(T) = k0ie
Ei/T (4.19)
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Table 4.1: Parameters of the Van der Vusse reactor
Symbol Value Symbol Value

k01
[
h−1
]

1.287×1012 ∆Hr1 [kJ/mol] 4.2
k02
[
h−1
]

1.287×1012 ∆Hr2 [kJ/mol] −11
k03[l/(mol·h)] 9.043×109 ∆Hr1 [kJ/mol] −41.85
E1 [K] −9758.3 ρ [kg/l ] 0.9342
E2 [K] −9758.3 Cp [kJ/(kg·K)] 3.01
E3 [K] −8560 kw

[
kJ/(h·m2 ·K)

]
4032

AR
[
m2
]

0.215 VR
[
m3
]

0.01
mj [kg] 5 Cp j [kJ/(kg·K)] 2

Table 4.2: Nominal steady-state values for the Van der Vusse reactor

Symbol Value Symbol Value

cs
A [mol/l ] 2.1402 Fs[l/h] 141.9

cs
B [mol/l ] 1.0903 Q̇s

j [kJ/h] −1113.5
Ts[K] 387.34 cs

A0 [mol/l ] 5.1
Ts

j [K] 386.06 Ts
0 [K] 378.05

The model parameters are given in Table 4.1.

A linear, time-invariant, discrete-time model has been obtained by linearizing (4.18) around the oper-
ating point presented in Table 4.2, and discretizing it with a sampling timeTs = 0.01h.

xt+1 = Adxt +Bdut +Bp,dpt +σdwt

yt = Cdxt +νt
(4.20)

where

x =







cA−cs
A

cB−cs
B

T −Ts

Tj −Ts
j







, u =

[
F −Fs

Q̇ j − Q̇s
j

]

, p =

[
cA0−cs

A0
T0−Ts

0

]

(4.21)

νk ∼ N(0,Rv) andwk ∼ N(0,Qw) are the noises disturbing the process and the measurements, re-

spectively, andσd = diag
([

cs
A,cs

B,Ts,Ts
j

])

. Moreover, we assume thatcB andT are the measured

variables, namely

H =

[
0 1 0 0
0 0 1 0

]

For the sake of simplicity, we assume the covariance matrices are diagonal matrices (we take this as a
further constraint in the optimization problem (4.15)):

Qw = qI, Rv = rI (4.22)

whereI are identity matrices of proper dimension. In the data generation process, the real values ofq
andr areqo = 0.8 andro = 0.2.
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Table 4.3: AALS parameters for the Van der Vusse reactor example

Parameter Value Parameter Value

N 10 Nsim 6000
NALS 10 tstart 1000
qo 0.8 ro 0.2
qini 3 r ini 0.06
ρ 0.001

The adaptive ALS algorithm has been used with the parameters specified in Table 4.3, beingqini and
r ini the initial guesses forq andr respectively. Figure 4.1 shows the real and estimated values of the
parametersq and r. Moreover, in Figure 4.2 the true and estimated values of the state variablecA

are reported: it is clear that the estimate is progressively improved as the covariance matrices, i.e. the
weights in the MHE problem, are more precisely evaluated.
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Figure 4.1: Convergence of the covariances via the adaptive law.
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Figure 4.2: True and estimated values ofcA with the adaptive tuning of the covariances.

4.4.2 Mehra’s example

As a second test case, consider the example presented in [28], i.e. the linear time-invariant discrete-
time system:

F =









0.75 −1.74 −0.3 0 −0.15
0.09 0.91 −0.0015 0 −0.008

0 0 0.95 0 0
0 0 0 0.55 0
0 0 0 0 0.905









, G =









0 0 0
0 0 0

24.64 0 0
0 0.835 0
0 0 1.83









H =

[
1 0 0 0 1
0 1 0 1 0

]

(4.23)

The data are generated according to the following distributions:

w(k) ∼ N(0,0.5I3) , v(k) ∼ N(0, I2) , (4.24)

The parameters used in the adaptive tuning algorithm are presented in Table4.4, whereqini and
r ini are the initial guesses forqo = 0.5 andr0 = 1 respectively. Figure 4.3 shows the outcome of the
Algorithm with ρ = 0.001; this choice guarantees a smooth and slow convergence ofq and r. As
expected, using the valueρ = 0.1, the convergence is faster, but with an oscillatory response, see
Figure 4.4.

Also in this example, it is apparent that the adaptive tuning algorithm performsvery well, so that a
significant improvement of any estimation algorithm requiring the knowledge ofthe noise covariances
can be achieved.
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Table 4.4: AALS parameters

Parameter Value Parameter Value

N 10 Nsim 6000
NALS 10 tstart 1000
qo 0.5 ro 1
qini 4 r ini 0.2
ρ 0.001
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Figure 4.3: Convergence of the covariances with the adaptive law andρ = 0.001.
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Figure 4.4: Convergence of the covariances with the adaptive law andρ = 0.1.
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