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Executive Summary

This report describes the research activity in the Seventh FramewogkaPnme, Theme 3 “Inm
formation and Communication Technologies”, STREP research prbjecarchical and Dis-
tributed Model Predictive Control of Large Scale Systems- HD-MRC, focusing on WP5
“Distributed state estimation algorithms”. Specifically, the report aims at ptiegethe main re-
sults achieved in Task 5.1 (State estimation) and Task 5.2 (Variance estimation).

The report is organized in four chapters:

e Chapter 1 presents a synopsis of the report, summarizes the conterfodibtiveng chapter
and, for each one of them, highlights the main results achieved.

e Chapter 2 generalizes to nonlinear discrete-time systems, the resultsy alesadibed i
Deliverable D5.2, concerning the problem of distributed state estimation, & grtilem
of estimating the state of the system by means of a network of sensors thexa@nge
information according to a given topology. Then, the problem is formally dtatel a
solution based on the use of moving horizon estimators (MHE) is proposed.

e Chapter 3 presents an MHE method for discrete-time nonlinear partitionéehsysi.e.
systems decomposed into coupled subsystems with non-overlapping stdtespiopose
algorithm, each subsystem solves a reduced-order MHE problem to estisnaiten state
based on the estimates computed by its neighbors. Conditions for the cemvergf the
estimates are investigated. The algorithm is applied to the model of threeeaahas, i.e
to a part of the hydropower valley extensively studied within the HD-MRgjegt.

e Chapter 4 deals with the problem of variance estimation. This problem is afmmamnt
importance since the distributed estimation approaches described in theuprdeiiver-
ables and chapters require the a-priori knowledge of the covariafities noises affecting
the system states and outputs, which are generally unknown. Therafsimple on-ling
covariance estimation algorithm is developed and its performance analyaecbinple of
significant test cases.
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Chapter 1

Synopsis of the report

1.1 Synopsis of Chapter 2

First of all, it is worth recalling that in deliverable D5.1 a distinction was made/&endistributed
estimationwhere each agent estimates the state of the whole systerpasgtitobn-based estimatign
where each agent estimates only part of the whole state based on its owrengasts and on the
information transmitted by its neighborhoods, including the estimates of othensgomponents.
In this final deliverable, this distinction will be reconsidered and two spegifiorithms, one referred
to thedistributed estimatioproblem (Chapter 2) and the other referred toghgition-based estima-
tion problem (Chapter 3), will be described. Both of them are based on thmgiosrizon estimation
(MHE) approach and are derived for nonlinear discrete-time systems.

Specifically, in this chapter, the previous results on distributed state estimatibndar systems al-
ready described in Deliverable D5.2, are generalized to nonlineamsystehe goal is to provide a
Nonlinear DMHE (NDMHE) scheme enjoying stability properties. In orderaracterize states that
can and cannot be recovered by each sensor without communicatiootiive of MHE detectability,
see [43], is first exploited. Moreover, a consensus-on-estimate#yerm in local MHE problems is
used to let each sensor learn locally MHE undetectable parts of the statetier sensors. The state
estimation error dynamics is derived and it is shown that when it enjoysnirr&l input-to-state
stability (3ISS) [6], so that stability of the estimation scheme is guaranteed. Unfortynetieck-
ing 1SS properties can be hard and requires a global analysis of all estineatays committed by
individual sensors. Therefore, exploiting a small gain property inddise[10], simple conditions
are provided on the weights associated to communication channels in ord&otoeestability of
DMHE. An example of application concerning four Van der Pol oscillatoissidered to analyze
the performance of the proposed NDMHE algorithm. All the technical grobthe main results are
collected at the end of the chapter.

1.2 Synopsis of Chapter 3

The distributed approach described in the previous chapter is mainly twehe coordination of sen-
sor networks, i.e. when each sensor must estimate the whole system statewitfitéd information
provided by its own measurements and those transmitted by its neighborirgyssehrtowever, in
industrial process control, the distributed estimation problem can assunifecaigfty different char-
acteristics. In fact, many industrial processes and physical systerneraposed by a large number
of interconnected units, each one described by a dynamic model. In thesg ¢the computational
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load associated to the design of a unique centralized controller can be higigwen a centralized
approach does not take advantage of the sparsity of the system. Ferd¢assns, within the HD-
MPC project research has focused on the design of efficient an@lestisstributed control systems
(see WP3 and WP4), which, however, are usually state-feedbaekefbne, in order to guarantee a
fully distributed control design, also distributed state estimation algorithms dealihgonstraints
are needed.

Early works in this field have been reported [30], where a solution baiséde use of reduced-order
and decoupled models for each subsystem was proposed, while tmuhsygith overlapping states
were considered in [25, 50, 49, 51]. Within the HD-MPC project, thradtjgm-based MHE algo-
rithms (PMHE) for linear constrained systems decomposed into intercodnadbsystems without
overlapping states have recently been developed and described .inlflfffese algorithms, which
differ in terms of communication requirements, accuracy and computatiomgilerity, each subsys-
tem solves a reduced-order MHE problem in order to estimate its own stated tia the estimate of
the other subsystems’ states transmitted by its neighbors.

In this chapter, the results of [17] are extended to the case of nonliysanss so as to cope with the
majority of problems arising in process control, where the nonlinear dynameicgmena have often
to be considered in order to guarantee the accuracy of the solutionotiergence properties of the
method are investigated and sufficient conditions are given. Thesdioosdurn out to be automati-
cally satisfied when the directed graph describing interconnections ambegstems is acyclic.

The proposed partition-based MHE is applied to the problem of estimating thks kewd flow rates
in the model of three cascade river reaches, which representsdaf tregtHydro Power Valley bench-
mark extensively studied in the HD-MPC project (WP7). Interconnectiebseen successive reaches
are due to the dependence of the input flow rate of the downstreameseticthe level of the final
section of the upstream ones, which cannot be measured, but just edtfinoatethe available mea-
sures collected along the reach.

All the technical proofs of the main results are collected at the end of theeha

1.3 Synopsis of Chapter 4

All the distributed estimation algorithms base on the MHE approach developea iHBAMPC
project and partially described in the previous chapters of this delikerauire the a-priori knowl-
edge of the covariances of the noises affecting the system states antsputpich are generally
unknown. This is a serious drawback which could prevent one frdmeging satisfactory results,
and a particular attention must be placed to the tuning phase.

Many different approaches have been proposed in the technicalliteta solve the problem of co-
variance estimation; some of them have already been presented andednalyieliverable D5.2.
The analysis reported there has shown that the so-called correlatiomaapps probably the most
effective and reliable one. Therefore, the algorithms developed byaviebe [28, 29], and the Auto-
covariance Least Squares (ALS) method described in [31] havedpeeifically considered. Further
tests have proven that the ALS approach is the most effective one,isowtperforms significantly
the one proposed in [28].

In this chapter the ALS method is used to implement a novel adaptive algorithimef@n-line esti-
mation of the noise properties; the estimates so computed are then used faptieeatuning of the
weights of the moving horizon estimators. Basically, starting form the output egiimmerror com-
puted on-line, this algorithm adaptively updates the noise variances, whiicdspond to the inverse
of the weights in the MHE performance index. The method is used in a cougigrificant test cases

Page 6/61




| HD-MPC ICT-223854 New methods for distributed state and coveaance estimation|

with excellent results, so that it is believed that it can be successfully dpplibe majority of cases.
As a simple example, extensively discussed in the chapter, consider m sffteted by a noise with
covarianceQ,, = gl acting on the state and by a measurement noise with covarigneel ; Figure
1.1 shows the estimate of the parametgendr provided by the method here developed. It is ap-
parent that the unknown covariances are properly estimated, anceasseb in the state estimation
algorithms (either Kalman estimators or MHE estimators) to improve their perfoenanc

Estimated and real covariances

25 , ““““ est

15

0.5

= ki h  d

ol I I I I I I I I ]
1000 1500 2000 2500 3000 3500 4000 4500 5000 5500 6000
Samples

Figure 1.1: Convergence of the covariances via the adaptive law.

The chapter is organized as follows. First, the problem is stated, theparice index used in
MHE is recalled and some preliminary definitions are reported. Then the Ad@ithm, already
extensively presented in deliverable D5.2, is briefly summarized. Thgigelanethod for the on-line
update of the MHE tuning parameters is then given and tested in two sign#icaulation examples.
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Chapter 2

Distributed moving horizon estimation
for nonlinear systems

In this chapter, the problem of distributed state estimation for nonlinear thsitnee systems is for-
mally posed and a solution is proposed with the MHE approach. The coritdn$ ahapter is based
on the paper [18].

2.1 Introduction

State estimation for nonlinear systems based on distributed sensing schetesisraging problem,
the solution of which is of great importance in many fields. Distributed monitoxgloration,
surveillance and tracking of moving objects over specific regions arealogpplications, due to
the wide diffusion of sensor networks in the last decade. Sensor rietwaog collections of small,
low power consuming and possibly cheap sensing devices, with communieaitbcomputation
capabilities.

Available methods for distributed state estimation rely on local state estimatorsdar gstems
combined with consensus and sensor-fusion algorithms. Typically, easlrsprovides an estimate
of the system state based on local data and consensus schemes aresé@rgjifer to provide a
wider set of measurement data for each individual sens®y ¢onsensus on measuremeris to
correct individual state estimates by comparison with neighboring nodmsriafion (.e., consensus
on estimates Approaches to distributed estimation based on Kalman filters have begosprbin
[8], [5], [36], [33], [47], [34], [24], [35]. The algorithms desibed in [36], [33] and/[47] rely on
consensus on measurements, while in [34] a solution based on consenssismates is proposed.
Recently, convergence in mean of the local state estimates obtained with thihalgaoresented in
[33] has been proved in [24] provided that the observed processhiesMoreover, a stability analysis
of the state estimator presented in[34] is provided in [35]. A two-step optimizatiocedure relying
on consensus on estimates is used in [5] and iin [8]. In the latter, formbis@naf the estimator
properties is carried out when the observed signal is a random walk.

As shown in [42] for centralized estimation problems, methods based on Kéilteeing may become
suboptimal or even unstable when constraints on noise and state varigjessent. This motivated
the development of centralized MHE schemes for linear([40, 2], nonlidda43, 3, 4] and hybrid
[19] systems, capable to guarantee observer convergence anbilitystaa constrained setting. For
these reasons, distributed MHE (DMHE) methods for linear constrairstdrag have been developed
in the HD-MPC project; the main results achieved have been describedvardélie D5.2 and in [13]
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and [14].

In the following, we generalize our previous results to the nonlinear settitigtiae goal of pro-
viding a Nonlinear DMHE (NDMHE) scheme enjoying stability properties. ldesrto characterize
states that can and cannot be recovered by each sensor without cmamuanve exploit the notion
of MHE detectability [43]. Moreover we use a consensus-on-estimatestpeaerm in local MHE
problems to let each sensor learn locally MHE undetectable parts of the tateother sensors.
Furthermore, we explicitly derive the error dynamics and show that whenays incremental input-
to-state stability §ISS) [6], stability of the estimation scheme is guaranteed. Unfortunatelgkicige
OISS properties can be hard and requires a global analysis of all estireatos committed by in-
dividual sensors. Therefore, exploiting a small gain property insgiseflLO], we provide simple
conditions on weights associated to communication channels for enforchilitgtaf DMHE.

The chapter is structured as follows. In Section 2.2 we introduce thewalssdynamical system,
the structure of the sensor network, and we recall notions of detectabitityohlinear systems. In
Section 2.3 we describe the distributed state estimation algorithm. In Section 2.4eségate the
stability and convergence properties of the presented observer ardtior52.5 we generalize the
results provided in the previous sections to a wider class of systems. {ior886 we show an
example of application of the proposed NDMHE algorithm. For the sake atycl#ne proofs are
collected at the end of the chapter.

Notation. In the chapter, the following notation will be usddand@, ., denote ther x nidentity
matrix and thev x u matrix of zero elements, respectively. The symiotlenotes the Kronecker
product, andly, is the M-dimensional column vector whose entries are all equal to 1. The matrix
diag My, ..., Ms) is block-diagonal with block#;. We use the short-hand= (v, ...,Vs) to denote a
column vector witts (not necessarily scalar) components. For a discrete-time sigtjehnda, b € N,
a<b, we denotéw(a),w(a+1),...,w(b)) with wi,. For the definition of positive-definite?”, 7,
and.# ¢ functions we defer the reader to [43]. Finally, the notatja}ig stands foz" Sz whereSis
a symmetric positive-semidefinite matrix.

2.2 The system and its observability properties

2.2.1 System and sensor network
We assume that the observed process obeys to the dynamics

X1 = f(x,w) (2.1)

wherex, € X C R" is the state vector and the temp € W C R™ represents an unknown disturbance
term. We assume that the s&sandW are convex and thaty contains the origin. Furthermore,
f(x,w) has continuous partial derivatives with respect to the componenté w, j = 1,...,n, and
satisfies the following Assumption.

Assumption 1 Function f is globally Lipschitz with respect to w and with respect i@xdl > 0:
vxe XandVwy,w, € W

1 (x,wa) — £ (x W) | < 1w — W (2.2a)
anddly > 0VXxy,x e X
[ (x1,0) — f(X2,0)]| < Ix]|x1 — Xzl (2.2b)
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Measurements on the state vector are performebl lBensors, according to the sensing models
(in general different from sensor to sensor)

i=h(x)+v,i=1..,M (2.3)

where the ternv} € RP represents an unknown measurement error.

The communication network among sensors is modeled by the directedgragty’, &), where
the nodes i’ = {1,2,...,M} are sensors and an eddei) in the set§’ C ¥ x ¥ models that sensor
j can transmit information to sensoWe assuméi,i) € &, Vi € ¥". We denote with¥{ the set of the
neighbors to nodgi.e, % ={je€ 7 :(j,i) € &}.

We associate to the graghthe stochastic matriK € RM*M with entries

kij >0if (j,i)e& (2.4a)
kij = 0 otherwise (2.4b)
M
Ski=1vi=1..M (2.4¢)
=1

Any matrix K with entries satisfying (2.4) is said to bempatiblewith ¢. At a generic time instartf
sensol collects measurements produced by itself and its neighboring sensomsowdgreach sensor
transmits and receives information once within a sampling interealmeasurements available to
nodei arey{, with j € %.

Three types of quantities can be distinguishadlividual, regional andcollective Specifically, a
quantity is referred to as:a) individual (with respect to sensadj when it is related to the node
solely; () regional (with respect to sensay if it is related to the nodes if{; (c) collective if it is
related to the whole network. For the sake of clarity, we use differentionfor individual, regional
and collective variables. Namely, given a variahle, Z andz represent its individual, regional and
collective version, respectively. For instance, we refeyi tim (2.3) as individual measurement. On
the other hand, it = {j}, ..., ji, }, the regional measurement of ndde given by

Y= hi(x)+Vi (2.5)

wherey] = (ytjil, . ,yle‘), N (x) = (Wi (%), ...,hY% (%)), andvi = (vtjil, .. ,vtjlvi ). The dimension of vec-
torsyf andv{is pi = 3! ; P

2.2.2 Detectability properties

For the sake of simplicity, we assume that the state vector of systems|(2.}1)d@.be split into two

sub-vectors®' € R™ andx’P' € R, whose dynamics is given by

Xtu+Dl,i _ fUD,i()(tUD,i7XtD7i7V\/{) (2.6a)
XtD+,i1 _ ¢Di (XtD’i,W{) (2.6b)
¥ =P+ (2.6¢)

where the subsystem (2.6h), (2.6¢) is MHE detectable, according to tioe o6 MHE detectability
for nonlinear systems introduced in [43]. In Section| 2.5 we will show howetoegalize the main
results to systems (2.1)-(2.5) that can be brought in the form (2.6) viardiocate change.
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Definition 1 The systemX, = 2 (x>, wi), y = h(x,") is MHE detectabléf the system augmented
with an extra disturbance gv

R = 10100 W)+ g 2.72)
yie = A Q) (2.7b)

is incrementally input-output-to-state-stabl@IQSS) with respect to the augmented disturbances
Wi = (Wi, w2). Namely, there exist functioiy € # ., i,y € # such that, for every two initial
states z and*zand two disturbance sequencég;; and w; 0 and, given the corresponding output
sequencesyyy and %k] it holds that

X = < Bo (12~ 2110) + (¥~ W o1 ) +

+Ya(llYi— Yillox))
where >E' and )E’i* are the state sequences stemming (through sy&efa) from z,W, and from
Z', Wio,» respectively. O

It follows thatxt ! andxt UDIT denote regionally MHE detectable and regionally MHE undetectable

components ok, respectively. LeR,, and P, be then >< n orthonormal projection matrices de-
UD.i

fined in such a way thﬂmxt (x~,0) and Pﬁ,xt (O, x> ", respectively. Note that vectoxsand
(xtUD ',xt ) are the same up to a permutation of the elemem;s dtherefore, we define the permuta-

tion matrixP' = (PQD-FPD) that givesq = P (™' xP"). We define als®yp =diag R}y, ..., RY,),

Pp =diag(P},...,PY) andP =diag(F!,...,PM).
Four different notions of MHE detectability can be introduced.

Definition 2 The system isndividually MHE detectabléoy sensor i (sensor i is individually MHE

detectable) if the systemx = f (X, Wk), ¥, = h' (%) is MHE detectable. The systemregionally

MHE detectabléby sensor i (sensor i is regionally MHE detectable) if the system 3¢ f(x, wi),

Yk = h' (%) is MHE detectable. The system\#HE detectabléby a subgraphy* = (7*,&*), where
= {i1,...,im} (the subgrapl¥* is MHE detectable) if the systemyx = (X, Wk), Vi = h* (%),

whereyy = )7[(, )7“" and h*(x) = (W1(xc), ..., (x)) is MHE detectable. Finally the system

is collectively MHE detectable if the graghis MHE detectable. O
Note that, in view of Assumption/ 1, for alle 7, function fUD1is globally Lipschitz with respect
to xUPi i.e, 3l > 0 Vxq, % € X such thathx; = Pixp = xP4 and denotingg ™' = B pxq, x5 °F =

RipXe _ _
| £UPI (21 5P, 0) — fUPI (P x0T )| < 11X — x| (2:8)

In the sequel we denote & (respectively ag{;p) the set of regionally MHE detectable (respec-
tively regionally MHE undetectable) sensors.
Notice that, for a given sensarindividual detectability implies regional detectability, and regional
detectability of any sensor implies collective detectability, while all opposite implicatawe false.
Furthermore, if the system is regionally MHE detectable by sehsbenR),; = On.n, Py = I, and
I, =0.

2.3 The distributed estimation algorithm

Our aim is to design, for a generic senser?’, an algorithm for computing an estimate of the system
state based on regional measuremgnésd further pieces of information provided by sengogs¥;.
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The proposed solution relies on the use of MHE, [40, 41, 38, 4, 20,iB39]iew of its capability
to handle state and noise constraints. More specifically, we propose @dillistr MHE scheme for
nonlinear systems (NDMHE) where each sensor solves an individud& ptblblem.

2.3.1 The individual minimization problem

Each node € ¥, for a given estimation horizoN > 1, at timet determines the estimatgsahdw' of
x andw, respectively, by solving the constrained minimization probMhiE-i defined as

0= min  J({t—N{t& WV, T ) (2.9)
VR N
under the constraints
R 1= F(R,W), k=t—N,....t (2.10a)
Vi =h (&) +V (2.10b)
W e W (2.10c)
% e X (2.10d)

The individual cost functiod' is given by
JE=NtR WV ) = LV W) + My (Rn) (2.11a)
k=t—N

NN =Ty ()?’i(fN;)A(t-rfN/tfl) + rtOLiN()A({fN;)?{—N/t—l) +6,  (211b)

t .
We denote withd”™ Nt and WIth{W'k/t} the optimizers ta (29) and wiukj(/;, k=t—N,...,t

. t
the individual state sequence stemming fnquN;t and{v“v‘k/t}kit N Furthermore

HMZ

xk/t (2.12)

denotes the Welghted average of the state estimates produced by eng6rdn (2.11), the function
L' is the stage cost' N is the consensus initial penalty aﬁ& n IS the regularization initial cost.
They should be deflned in order to satisfy the following assumption.

Assumption 2 The stage costs'land the initial penaltiest'tC;iN and F?;iN are continuous, bounded,
positive definite and they satisfy the following inequalities for afl R™, ve RP, *'o QO/N

y (lmw)) < L'(v;w) (2.13a)
M (R0: % n-1) < WollI%— XO/N ) (2.13b)
ro" (Ro: R/ 1) < o(II%0 — Ro/n_4ll) (2.13¢)

wherey, andy, are suitable 7., functions.
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As recalled in [41] and [13], choices 6f N andl’to'N fulfllllng Assumption 2 are the quadratic

functionsT 'l = [[%5 —X_ N/t ? (et ) candrdy = IR % N/t 2 o) . Where the matrices

n<', andn®, must be positive definite and bounded.

The penalty terrrh' N €mbodies @onsensus-on-estimat&sm, in the sense that it penalizes de-
viations ofxt N from X xt N1 Consensus, besides increasing accuracy of the individual estinsates,
fundamental to guarantee convergence of the state estimates to the statebskttved system even if
regional MHE detectability does not hold. In other words, it allows sen®areconstruct components
of the state that cannot be estimated byittieregional model.

Finally notice that, since the cost (2.11) and the constraints (2.10) depéydigon regional
variables, the overall estimation scheme is decentralized.
2.3.2 The collective minimization problem

The individual estimation problem (2.9) can be given a collective form. Tehd, letd be the
collective cost function given by

J= ZJ'(t—N,t,)A(LN,VV,\‘}r,I_LN) (2.14)
i=
Define the collective vector§ = (%,...,R"), vy = (V... W), Wy = (W{,...,Wf"), the matrixK =
K ® I, the quantity®; = yM, ©; and the collective costs
L (Vi, W) = ZLLI (Vi W) (2.15a)
i=
C i g s
Men (Ke-ng KR njp-1) = _Z\rtLN(XLNJ X _Njt-1) (2.15b)
i=
0 o0 o g
Mo NN Rene-1) = 'ert;N()qu; % njoa) (2.15c)
i=

Men(X-n) = rﬁN(f(thi KX _Njt—1) + r'?fN(s\(th;s\(t—N/tfl) +0O{_1 (2.15d)

whereK = K® I,. Then, the collective cost functiahcan be rewritten as

t
‘](t_Nat75\(t—N7w7V7 rt—N) - z L(Vkvwk)+rt—N()’Zt—N) (216)
k=t—N

Definingf (X, Wi) = (f (XL, W), ..., F (R W), yie= (72, ..., ¥ andh(R) = (hL(L), ..., hM (M),
also the constraints (2.10) can be Wr|tten in the following collective form

K1 = F(Ri, W), k=t —N,... t (2.17a)
Vi = h(%) + Vi (2.17b)
Wi € WM (2.17¢)
% € XM (2.17d)

It is easy to show that solving the problem

©f = min  {J(t—N,t,%_n,W,V,l_n) subj. to[(2.17} (2.18)

RN AWy
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is equivalent to solve the MHEproblems|[(2.9), in the sense the%lg,\l‘/t,{viﬁi(/t}}(:tf,\l is a solution

to (2.9) if and only if%;_n 1, {Wit }i_;_y is @ solution to[(2.18), whendy ; = (v“vli/t, . ,th).
Lett; verifyt —N <t; <t. We define théransit costof a generic statec R" at timet;, computed

at instant as _ _ _ o
@ =ming Gy {I(t =Nt %, W,V TLy)

subject to(2.10) ang,"= z}
Note that the associated optimization problem is feasible fariallZ” = f (X, W) N X and therefore

Z is the domain oE{l/t(z). The collective transit cost of a generic state R™ at timet;, computed
atinstant is defined as

(2.19)

Etl/t (X) = min)A(th{Wk}tk:tiN {J(t — N,t,f(t_N,\iV,\A/_, I't_N)

subject to/(2.17) ang, = x} (2.20)
and it holds that
M ]
=) = .Zzh/t(f‘h) (2.21)
I=

In view of Assumption 2 and (2.15a), the cost functiois coptinuous, bounded, positive definite,
and satisfies the following inequality for all e RM™ v e RE%1P

Y, ([(vw)[)) <L(V,w) (2.22)

wheregL € .

Furthermore, the initial penaltid‘§c;i,\, and FtO;iN must be defined in order to fulfill the following
collective condition.

Assumption 3 There existsg0 € ¥ such that the following inequalities are verified

Yo (X =KX nje-all) < FE N OGK R nji-1), VX € XM (2.23a)
XO(HX_)A(t—N/t—lH) < r?—N(X;)’Zt—N/t—Da vx e XM (2.23b)
M nZ) <Znp-1(2),V2=1w®z 2 Z (2.23c)

Assumption 3 is similar to Assumption 4.17 in [43]. However, there are two kégrdifces. First,
inequalities in[(2.23c) must hold only for the consensus statda particular, we highlight that if
Xi—njt—1 = ZthenKX;_y 11 = zand hencd®;_, is a global lower bound t6;_n. Second, similarly

to [13], as an upper bound 16_n we use the transit cost instead of the arrival cost (see Definition
4.16 in [43)).

Note that, guaranteeing that (2.23) is verified is a challenging issue, whtii isn open problem

in the centralized [43], as well as in the decentralised context. In the $pas@when (2.1), (2.3)

is a linear system, if the stage and initial penalty cost functions are quadratstiown in [13, 15],

it is possible to provide recursive distributed equations for updating thaltyeweighting matrices
I'If;'N and I'Itog'N in order to satisfy Assumptian 3, and conditions to guarantee that these raatrice
remain bounded, in such a way that Assumption 2 is not violated. In the nankinatext, empirical
solutions can be either to compu’ﬂ&',\l and I'Itog'N on the basis of quadratic local approximations of
the transit costs or to assign constant valuelﬁﬁ_d]\, and I'I?"_'N, as itis done in the example shown in

Section 2.6.
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2.4 Collective stability properties of NDMHE

The main purpose of this section is to extend the stability results of [43] faratemed MHE to the
proposed NDMHE scheme.

2.4.1 Collective stability results

Definition 3 LetX be systen2.1)with w= 0 and denote byst,Xo) the state reached by at time t
starting from initial condition ¥. Assume that the trajectory ft, xo) is feasiblej.e.,xs(t,xo) € X for
all t. Define also the collective vectoxs = Ty ® X andxs(t,xo) = Iy @ xs(t,%) € XM. NDMHE
is collectively stableif, for all € > 0, there exist®d > 0 such that||Xo/n_1 — Xo|| < & implies that
1% —njt — Xz (t— N, Xo) || < € ¥t > N. Also, NDMHE iscollectively asymptotically stabliéit is stable
and asymptotically convergente.

t—oo

[X—njt —Xz(t—=N,Xo)|| — O (2.24)
O

Notice that the condition (2.24) is equivalentingividual convergence for all the nodes estimates,

1% _n 0 — Xe(t = N,x0)[| =3 0 (2.25)
forallie 7.
Moreover, as in [40], convergence is defined assuming that the medetafing the data is noise-
less, but the possible presence of noise is taken into account in the sitatties algorithm.
Before to state our main result, we need to introduce the following dynamistdray describing the
dynamics of the variablg, € R™M

N, = PupK [f (|5(nt_1+ PoXs(t—N—1,%) +ay ;),0) +a}'] + Pypay (2.26)

wherealV, af, at andxs(t — N — 1,%o) are input terms. In the following we resort to the definition
of incremental input-to-state stability [6].

Definition 4 System(2.26) is incrementally input-to-state stabl®ISS) with respect to the input
triplet (a¥,al, af), if there existB € # %, g4 € 4 such that, for any t 0, any pair of initial
conditionsn o, j = 1,2 and any pair of input triplets‘?a]{t,ag{t, ait), j=1,20ne has
11— M2l <B(IM1o—Naol O+ 2.27)
+0a ([ (a7 aTy: A7) — (@5, AZ4: a5 ) [l o)

We are now in the position to state the main result.

Theorem 1 Under Assumptions| 2 and 3, if the systgh®6)is 1SS with respect to the input triplet
(a¥, al,at) then NDMHE is collectively asymptotically stable.

Note that, if the system is regionally MHE detectable by any serﬁ%@r,: Onxn foralli € ¥, and
hencePyp = Onvxnm- Therefore, from equation (2.26) one has that= 0, and thedISS condition
required by Theorem 1 is trivially satisfied.

As shown in the proof of Lemma 2 in the Appendix, the dynamics (2.26) gevéra regionally
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undetectable components of the state estimates. Thei@®&of (2.26) implies that the regionally
undetectable components of the estimation error vanish ifnaX, at) tends to zero.

For linear constrained systemd$SS of (2.26) is implied by the much simpler condition that a suitably
defined matrix (matrixp in (23) of [14]) is Schur. In the nonlinear context, a sufficient conditon
provided in the next section.

2.4.2 A sufficient condition for asymptotic stability of NDMHE

In this section we will provide a sufficient condition which implies @SS property of((2.26). In

the nonlinear context, the system (2.26) can be viewed as the intercomnafdtiiodynamically cou-
pled subsystems. The small gain theorem for networks [10] can be apptiggiaranteein@ISS

of (2.26) on the basis of th8ISS properties of individual sensors and suitable conditions on their
interconnections. Similar arguments lead to the result stated in the followingetheor

Theorem 2 Define Gj = R, PIR} P! and let” be a Mx M matrix whose elementg i, j € ¥ are
¥i = kij|IGij HI){ ifi £, andyj = kiil;. Assume that one can assign matrix K compatible with the
graph¢ in such a way that the matrik with elements; is Schur. Then, if Assumption 1 is verified,

systen(2.26)is JISS.

Notice that, in general, the problem of providikgs such that, at the same tirfig K is compatible
with the graph, i.e. it satisfies|(2/4)(ii) I is Schur, may not have a solution. If this occurs, the
OISS property of system (2.26) may be guaranteed by using a “globalysamapproach, see for
example [6]. However, for many classes of systems, Theorem 2 peogigewerful design tool for
assigning weights;; even without computing the system’s Lipschitz constaptsvhich is not, in
general, a trivial task.

For example, consider the case whefgis not empty and where, for each node’ip, there
exists an incoming directed path stemming from a regionally MHE detectable nidue latter is
satisfied, for instance, when the graph is strongly connected (i.e., tkiste & direct path from each
node and any other node). In this case it is possible to shoKthatifying (i) and(ii) always exists,
and that its design can be carried out by the following algorithm.

Algorithm 1
1) for eachie 7p, setk =1,
2) for each ie #)p, selectk =0;

3) for each i€ #{,p select a node ¢ 7p and a path from j to i, in such a way that each node in the
path has at most one neighbor. We denote Withthe set of edges selected in this way;

4) for all edgeq(i, j) € &*, choose k = 1, while for all edgesi, j) € &\ &*, setk =0. O
By selectingk according to Algorithm 1 the following result holds.

Corollary 1 Assume that Assumption 1 holds, th@tis non-empty and, for all € ¥{p, there ex-
ists an incoming directed path stemming from a node&fin Then, if K is selected according to
Algorithm/ 1, systen2.26)is d1SS.
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Some comments are in order. First, notice that Algorithm 1 is equivalent to ifgor in [15],
which is devised in the context of linear distributed MHE. Interestingly, blgbréthms are based on
the detectability/observability properties of one or more “leading sensoosles in?p) and on graph
topological properties. The conditions for their application are therefoagghtforward to verify, and
their application guarantees convergence to zero of the estimation erteg ahobservable part of
the state, for all sensors (see also Corollary 2 in [15]).

Second, observe that Algorithm 1 implicitly provides a rule for connectingva regionally MHE
detectable/MHE undetectable sensor to the network without spoiling stabilitptHE, allowing

for reconfigurability of the estimation scheme when new sensors are.added

Finally note that, using the same argument as in [15], it is possible to prove it the assumptions

of Corollary! 1, the choice of a matri is not unique and the available degrees of freedom in the
definition of a suitableK can be used to reduce the conservativeness imposed by Algorithm 1. In
fact the generated matrik is lower triangular, up to a permutation of the node indexes. However,
the same results can be obtained by any stochastic matcompatible with with: (a) the same
diagonal elements of the matrk obtained with Algorithm 1;(b) non-zero elements in the lower
triangular part;(c) sufficiently small elements in the upper triangular part. This choice allows for
a full exploitation of the communication links and hence faster convergehteecestimates to a
common value is expected. Moreover, the presence of more links resutisimeraased reliability
against communication faults.

2.5 Generalization

In general, the system (2.1), (2.3) cannot be written in the form (2.6& gﬁmeral case is the case

where we assume that there exists a diffeomorpfisi” — R", T"1: x +— & = T.7*(x) such that,
by changing coordinates, and beifig= (& ub, ', tD’i) the state of the equivalent system, one has
Etuﬁl = fUD’i(EtUDthD’iaVV{) (2.28a)

Eor = P& W) (2.28b)

Vi =h(EPY) +v (2.28¢)

where the subsystem (2.280), (2.28c) is MHE detectable. It follows&fhae R™ and &P e
R denote regionally MHE detectable and regionally MHE undetectable comisonie, respec—
tively.

LetRp andPD be then x n orthonormal projection matrices defined in such a way Iﬂ’]gt{t
(& ubi 0) andPL ¢/ = (O, & "), respectively. Note that, differently from the previous case, R§fe
and I5D are diagonal matrices. Furthermore, let the rfapRM™ — RM™ pe such that, fo, =
(&....&"), one had (&) = (Tu(&1), ..., Tm(&")).

One can prove that Theorems 1 and 2 and Corollary 1 still hold under Hogvifag Lipschitz
assumption off; andT, ™.

Assumption 4 For all i € 7, there existrr, a;-1 > 0 such that

agifw <ab (2.29a)
Ei

oT i

H 0X(X) s ar (2.29b)
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for &' = T,7%(%), forall k€ R", andat < ar,al , <ariVie V.
In the general case equation (2.26) becomes

Ny =PupT H{K[(T(N_1+Pp&s(t—N—1x)+

+af_l) ,0) + aﬂ + a?} (2.30)
where& s (t,x0) = T 1(xs(t,%o)). For more details see [18].
2.6 Example
Consider the system, composed by four Van der Pol oscillators:
(X = X +0.08D¢ + (¢ —0.020¢)3)] + keond X —X{) + W
Xy = X —006¢ +wf
X1 = % +0.072x +1.10¢ —0.0150¢)%)] +Keons X —X¢) + WP

X, = X0 +0.09x+0.8(x° —0.01()%)] + Keond ¢ — XP) + WP
W= ¥ —0.09¢+wp

X1 X! -+0.096)¢ + 0.9(x{ — 0.013(/)*)] + Keond X — X{) + W/
By o= x—0096¢ +w

where we assume that is a white noise with uniform distribution in the interviat0.5,0.5].
Note that, ifkeons= 0.2 the oscillators are coupled and they are uncoupléghif= 0. Assume that
four sensors are providing measures and are transmitting both estimategasiirements according
to the graph in Figure 2.1.

Figure 2.1:Scheme of the network in the example.

The individual sensing models of the four sensors are

o= X+v
2 _ AR
5% - gwtg (2.32)
o= R+
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wherev{ are Gaussian random variable with zero mean and variance eq@attbforalli =1,...,4.
Note that the collective sensing model is

0100000Q[X| [¢

R 0001000 Qx| (¥

Y =h00+v%=10 0000 1 0 RN (2.33)
0000000 1| [V

We can easily verify that the graph is collectively uniformly observabléadh the observability map
O (x) of the collective system (2.31), (2.33) is

700~ 150

Up to a permutation of the rows @f(x ), one obtains the matrix

0 1 0 0 0 0 0 Q¢

006 1 0 O O O 0 0Qfx

0o 0 0 1 0 0 0 Q]I

o= | O 000721 0 0 0 g o
o 0 0O O0 0 1 0 Q]Il¥

0O 0 O 0-0091 0 0]Is

o 0o o o0 o0 o0 0 1|¥

. 0 0 0 0 0 0-009 1] [x

which is globally invertible for all values dons

To guarantee the incremental input-to-state stability of system (2.26) we saditro the sufficient
condition provided by Theoremm 2. In genetal>> 0 for alli € 7. Note that the regional measurement
of sensors 1 and 2 includg,y?), and the regional measurement of sensors 3 and 4 in¢iddg).
Therefore, being the system collectively observable (from the colkentiwasuremertyt, y2, 2, vi)),

it is easy to show thats;, = 0 andCy4 = O.

We assigrkij = 0foralli € 7, andkio =0, kia = 1,ko; = 1, k3o = 1, kg = 0, kg3 = 1, resulting in

[eNeN e
O, OO
= O OO
O O O

Recall that the non-diagonal entrieslofy;; i # j are equal tof; = kij||Cij ||I>‘;. In view of the previous
choice ofK, we obtain that

0 0 0 [Cult? o 0 o0 O
r_ |ICalllx 0 0 0 | _|lCally 0 0 O
0 HC32H|)% 0 0 0 0 0 0
0 0 ICaflf O 0 0 |Cuall} O

which is Schur for all values ofCpq||l+ and ||C43/l3. Furthermore, Assumption 1 is verified fisr
bounded such that all the state trajectories are contain€dird therefore Theorem 2 guarantees that
system|(2.26) i®ISS.
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Figure 2.2:Components of the estimation ernqr— >‘<{/t of the different sensors, witkeons= 0.2. The com-

ponents with even index (corresponding to the stages¢', x¢, xf) are depicted with dashed lines, and the
components with odd index (corresponding to the steteg’, x> andx/) are depicted with solid lines.

We setN = 2, L1 (|, W) = 2 wh|| (g + 3Vl ()2 whereQ' = Ig, R = 1 and the regularization term
weight and the consensus term weight are equBlty, = Ig andn<' = 0.2-Ig foralli=1,...,4,
respectively.

The estimation errors produced by all sensors are shown,kggth= 0.2 and withKeons= 0, in
Figure 2.2 and in Figure 2.3, respectively. Notice that, in both cases,tthaéen errors of the states
which are directly observed by each sensor converge to zero \&ryhile the estimation errors of
the states which are not directly observed by each sensor asymptoticalljoterro thanks to the
consensus action embodied in the NDMHE scheme.

2.7 Proofs

Proof of Theorem[1

Under (2.23) the first step towards the convergence of the NDMHE estinisatbe following
lemma.
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Figure 2.3:Components of the estimation ernqr— >“<{/t of the different sensors, witkeons= 0. The com-

ponents with even index (corresponding to the stages¢', x¢, xf) are depicted with dashed lines, and the
components with odd index (corresponding to the steteg’, x> andx/) are depicted with solid lines.

Lemma 1 If Assumption B holds then

t
Y L( (Vi Wi ) )=%0 (2.34a)

k=N
Yo (I%e-nye — KRt ) =20 (2.34b)
Yo ([Ke—nje = Xenje— =20 (2.34c)

For the sake of clarity the proof of Theorem 1 is split in the proof of the tvea lemmas.

Lemma 2 Under Assumptions 2 and 3, if the systgh®?6)is 1SS with respect to the input triplet
(a¥,al, af) then NDMHE is asymptotically convergent.

Finally, the following lemma deals with collective stability of the estimates.
Lemma 3 Under the assumptions of Lemma 2 then NDMHE is collectively stable.

Proof of Lemmall
The proof is similar to the one in Proposition 5in [40]. Fortalt 0 one has, from (2.23)

6 -6, > z}(:t—NL(\?k/taVAVk/t)‘*’ZO(H)A(t—N/t_K)A(t—N/t—ln)"'

. R 2.35
Ty (R~ Fnal) (2.35)
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showing that the sequen@; is increasing. Note that sinsg(t,xo) € X, the transit cosE; _p ;11 (Xs(t —
N,Xp)) is well definedyt > N, i.e.,xs(t,x0) € Z.
By optimality ©; < Z;_n.1t(Xs(t =N+ 1,%0)), Vt. Moreover, from Definition 3

Et—N+1/t(XZ(t —N + 17X0)) S ‘J(t - N7t7XZ<t - N7X0)70707 rt—N)
From (2.16), one has
J(t — N,t,Xz(t — N,Xo),o, 0, Ft,N) = rt,N(Xz(t — N,Xo))

and in view of (2.23)
Of <Zi np-1(Xs(t—N,x0))

We can iterate this procedure and prove that

©; <To(Xo) (2.36)

for all t, for anyxo € XM. From (2.36) and (2.13b)-(2.13c), the seque®¢ds bounded. Therefore,
the sequenc®; converges and from (2.85) the equations (2.34a)land (2.34b) and)o8dw. B

Proof of Lemmal/2 o
Next we create, for each sensor noda single estimate sequem;e:_f({/HN by concatenating MHE

sequences for the systemz_.l). This gives the state sequ:égmed the corresponding augmented
disturbance sequencéb = (W, W)

Xp = FO5 WY + w2 (2.37a)
¥i = () + Vi (2.37b)
where
W =W (2.38a)
2 ~
Wp© = Xt|+1/t+N+1 - X’I£+1/t+N (2.38b)
Define a sequence
o = Ph (% N —xe(t =N, X)) (2.39)

In view of (2.6) and Definition 1, one has

o' | < Bo(|I% — Xoll,t = N) + v (W ox_n-1)) + Vol iy il 02-ny) (2.40a)
This, according to (2.38), implies that there exist functignsyi» € .#” such that
o || <Bo ([1% — Xoll,t = N)+

+ Vll(H%/km lot—n—1) + VZ(HOL/M-N lfot—n)+

+ V2% 1 een1 — R ajenllor-n-1) (2.40b)
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We definexs (t,Xo) = Iy ®Xs (t,%0), X = (%, ..., XM) andaX = (ai*,..., af™). Collectively (2.39)
results in

af =Pp (XN — Xz (t —N,Xo)) (2.41)

Furthermore, applying the mean value theorem for vector functions (spenlix A in [43]), we
can write

i1 = F (R, 0) + aﬁﬁ (2.42)
where
lagiell < VIl (2.43)

| being the Lipschitz constant in (2.2a). We defmg = (o,* N 110 ,at"";'\,ﬂfl/tfl) andf(Xx) =
(f(&Y),..., f(R)). Collectively we write|(2.42) as

Kinjt—1 = F(Re-n—1t-1,0) + @y (2.44)

From Lemm@lj (2 34a) holds and together with (2.22) one haﬁ@ﬁ@t,\,/t,vt nyt) || — 0 ast — +oo.
Hence, || (W, Ny Ve N/t)H — 0 ast — +o for all i € ¥. Similarly, from (2.34c), ||xt+1/t+N+1

xt+1/t+N|] — 0 ast — +o foralli € #. Inview of (2.40b) and Proposition 4.2 in [43] (convergence
of the state undedlOSS, see Definition 1), this implies tI'\a{i"i — 0 ast — 4o, i.e.

t—+o

P (% N —X(t—N,xp)) — 0Vie ¥ (2.45)
Moreover
t—+4o0
a’—0 (2.46)
Finally, from (2.34b) and (2.23), we obtain that
Xe-nj = KR nj—1+ ay (2.47)

wherea® — 0 ast — +oo.
According to|(2.44) and (2.47) we can write

PuoXi—n = Pup (K&_nj—1+ Q)
=Pup [K (f(x n-1,0)+a") +af]
where, using (2.41) we can write
Xt—N—1= P(Ppxz(t —N—1,X0) + PupXt—n-1+ a7} ;)

Hence, we obtain that the dynamics Bfpx;_n evolves according ta (2.26). By direct calcula-
tion the dynamics of variablBypxs (t — N, o) is given by (2.26), witha}", aX, at = 0. We define
N = PupX_n andns(t,xo) = PupXs(t — N, Xg). We introduce the functioR, so that the dynamical
equations fom, andns(t,X) can be written as

Ny =F(N_1,Poxs(t—N—1,%),af |, af aat) (2.48a)
Ns(t,x) =F(Ns(t—1,X%),PpXs(t —N—1,%9),0,0,0) (2.48b)
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According to Definition 4, if the system (2.48a)3SS, then there exi# ¢ 7., 04 € #s such
that

1A — N5 (t.%0)l| <B([1Ao—N5(0,%0)|,t) + oa | (a, i, ai) ljon) (2.49)
If (2.49) holds then, using Proposition 4.2/in [43] one igs— N5 (t,%o) || — 0 becauséa},a)’, af) —
0 ast — 4. This, together with (2.46) implies th&t y; — Xz(t —N,Xo) ast — +-oo. [

Proof of Lemma[3

For the sake of clarity, the proof is split in four parts.

1) We choose > 0 such that

t
> LVige W) <p (2.50a)
k=N
MY N (Reonye K&nje1) < P (2.50b)
M N (ReonjiRenio1) <P (2.50c)

From (2.50a), in view of (2.22), we obtain thiaky || < [Ll(p) andH\7k/tH < [Ll(p). Further-
more, from((2.50c) and in view of (2.23)&_n/; — Xi-nji-1ll < El(p). Then, from|(2.40b)
there existy; € 7, Bp € # ¢ such thai} in (2.41) satisfies

laf]l < y3(p) + Bp([[Xo—Xoll,0) (2.51)
Similarly, from (2.43), we obtain that there exists a functigne 7" such thatr” satisfies

el < Yw(p) (2.52)

Furthermore, from[ (2.50b), in view of Assumption 3 and equation (2.4&)pktain thair
satisfies

latll < y,*(p) (2.53)
2) Inview of (2.41)

[IPo (Xt~ —Xz(t =N, X0))) | < y3(p)+

+Bp(lX0 —*2(0,%0)[,0) (2.54)
Note that, in view of((2.47)
%0 —Xz(0,%0) || = [[KRo/n—_1+ aF — Xol|
< |IKXo/n-1 — Xol| + a$| (2.55a)

From (2.53) there exist functiory, ,, y3 € % such that

IPp (Xt-N — X5 (t =N, %0)) [| < y3(p)+
+Bp x([IXo/n-1—Xol|) (2.56)
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Furthermore, in view of (2.49), recalling thAt = PypX;_n andns(t,Xo) = PupXs(t — N, Xo),

one has _
IPup (Xt—n —Xz(t =N, o)) || <
< B ([[Pub (Xo—Xz(0,%0)) [[,t) + (2.57)
+0a (|| (af, a¥,ap) o)
Note that

[IPup (X0 —Xz(0,%0)) [| < [[Xo —X=(0,%0) |
From (2.53),/(2.49) and (2.55a) one concludes that
[Pup (Xt—n — Xz (t =N, X)) || <

< B(2lIK (Xo/n-1—X0)[|.0) + B(2l| @, 0)+
+0a([(af, ay’, o) z.) (2.58)

and so, there exist a functiodg € .% such that

[Pup (Xt-N —Xz(t =N, Xo)) || <
< B(2||K (Xo/n—1 —X0)[,0) + Ga(p) (2.59)

3) From equation (2.36) it follows that, for all> 0, ©; < y(xo) = MNo(KXp), where the last

equality holds because = 1y ® Xp. If we defined = )A(O/N—l — Xo, then there existy, € 7
such that, in view of (2.13b)

t

> L (Vijt, Wit) < Yo(9) (2.60a)

k=N
FE N (Koo KRenje-1) < Yo(9) (2.60b)
M N (Ren/oRenji-1) < Yo(d) (2.60c)

We defined = yal(p), the functionyg1 being a7, function as well, see [41]. From equa-
tion (2.59) one concludes that there exists a funcfipa % such that

[Pup (Xt-N — Xz (t —N,X%0)) || < Ya(P) (2.61)
From (2.56) and (2.61), we obtain that there exists a fungtion %, such that
1%~y —X2(t =N, X0) || < ¥5(P)

Let € = y5(p), one can computé = y,* (;gl(e)) and the condition for collective stability is
verified.
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Proof of Theorem[2

System|(2.26) can be viewed as the interconnectidvl etibsystems having' as state variables,
i=1,...M,with n, = (n,...,nM). The dynamics of) is described by the subsystem

o {5 [ (9ot 0) ] -
=Rl {ki [ (B (1s+Phxs(t—N—1x0) +a; ) ,0) + "] + 51k F (x5t =N —1:0),0)+

+ ki [ ( ' (’h LRt -N -1 Xo)+0fti1> ,0) —f (Xz(t—N—1:Xo),0)+atW’j} +O&C’i}
. _ _ (2.62)
Recall thatn; (t,xo) is the solution to systen@&) with inputs | = R)pxs(t — N —1,%9), j #1,
and with zero input terme;*’, ay" M1 aSl. DenoteAn; = ni — ni(t,x) foralli=1,...,M. It results
that the dynamics akn; is given by the system

A} =R {ki [ T (Xt =N=130) + P (An_y + 0, ) ,0) — f (xs(t = N = 1,x0),0) + "' | +
5 ki | £ (xe(t=N=1,%0) +P1 (An); + ) ) ,0) = f (xe(t =N = 11x0).0) + ™! + '}

(2.63)
For simplicity, we denoté{ = 3. k;R)p (o) + o) and
g.J(Ant LXs(t—=N=1),0 l) = (2.64)
Ao [f (xz(t ~N—1,%)+PI <Antj_l+ at;1> ,0) —f (xs(t— N — 1;%), ] (2.65)
in such a way that
Ani = @(Bni {0 }ia, o 1>O’t) . (2.66)

k"g,,(AI"It pXs(t—=N-1), at 1)+ZjaélkllglJ(A’7t pXe(t—=N-1), Crt 1)+a'

We have shown thadISS of {2.26) is equivalent to ISS from; = (a,...,aM) and froma} to
An, = (And,...,AnM) for the collection of systems (2.66).

By resorting to the Lipschitz Assumption 1 on the functibnpfunctionsg;; in (2.65) can be
analyzed more into details. For brevity we writéx) = f(x,0). For notational simplicity we will
denote (when clear from the context) as a short-hand fots(t — N — 1,%g). In view of the mean
value theorem

fox+P(an) +a)) = foxx+Pan) ) +o(xs+Pan) | xs+Plan)  +a)Par)
(2.67)

where®(xq,X2) = fl‘” () I+ ( X2 x)sds In view of Assumption 1¢p(xs + P (Ant 1), Xs +PI (Ant 1+
o) ))Pial is bounded ifo*); is bounded. Furthermore

- S - fUPI(UP 1 An?01 X2 0 fUD.i(ID x2 0
oot = ([ I 0] [ )
= P! [fUD’j(XUD"‘A”t g, O>—fUD’j()§D7XZvO)] (2.68)
0
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By further applying the mean value theorem we obtain that

fUD,j()(I‘ZJD +Ar’tu—[])_]’xg70) - fUD’jO(LZJDvX?uO)

" ] = OYP (x5, x5 + Antj_l)Ar;tj_l (2.69)

where 000 30
1 YD (P,
@UP T (xq,%p) = [ o 5o )0 0]
’ 0 0

In the sequel, for notational simplicity, if possible and when clear from théesd, function arguments
will be omitted. In view of its structure, note tha@'PJ = R}, PI®YPJ for all j € 7. Let us define

Gij = R)pPIR) ,Pi. In view of (2.67),(2.68) and (2.69) we rewrite (2.66) as

Ami o = P 3k RipPIeYPian ol =
ki @AMy + 3 i ki G OV AR + ay
. . (2.70)
wherea; is bounded ifa,"); is bounded. From (2.70) we obtain that
Ian < KilIAn 4]+ 3 ki IG A 4]+ &) @.71)
Now define the matrix as specified. We writa = (||And|, ..., [|AnM|]) anda; = (||ad],. .., |laM]).
From (2.71) & < F'e_1+ a; element-wise. Define the sequergesuch thag), = e, and
e =re_,+a (2.72)

Sincer is a positive matrix then, for atl> 0, 0< & < g'. Then, ifr is Sc_hur, the system (2.72) is
ISS froma to €. Therefore the overall system is ISS frgoy"';, &) toAn{,i € 7. [ |

Proof of Corollary 1
First notice that, by assigning according to Algorithm 1K is compatible with¢ andk;l = 0 for
alli € 7. In fact, for alli € ¥p, Ij( =0 and, for alli € #p, ki = 0 according to step 2 of Algorithm 1.
From the graph7,&’), we derive a subgrapld* = (¥',&*), by selecting edge§, j) € &* C &
according to step 3 of Algorithm 1. By construction, the gré&fshis a maximal forest [7], i.e. a graph
composed by a number of mutually disjoint trees and covering all the nodeseoler, the root of
each tree is a regionally MHE detectable node while all other nodes areadlgidMHE undetectable.
It follows that each row of the matriK produced by Algorithm 1 has only one off-diagonal element
that is different from zero.
Up to a permutation of the node indexésjs lower triangular. It follows that the matrik = {y;}
enjoys the following properties(i) its diagonal entries are equal to ze(d) it is lower triangular.
Therefore is Schur. Finally, resorting to Theorem 2, it is possible to provedilss of (2.26). W
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Chapter 3

Partition-based moving horizon
estimation for nonlinear systems

3.1 Introduction

Many industrial processes and physical systems are composed by alarper of interconnected
units, each one described by a dynamic model. In these cases, the comjalitasid associated to the
design of a unique centralized controller can be high; moreover, a tizettapproach does not take
advantage of the sparsity of the system. For these reasons, resagaeed@sign of distributed control
systems, in particular with Model Predictive Control (MPC), has produnany significant results
and is going to play an ever increasing role, see e.g. the results achidvedHiD-MPC project, the
review [46] and the references therein. However, most of the distdtmaetrol methods proposed so
far are state-feedback, so that in order to guarantee a fully distribatécbtdesign, also distributed
state estimation algorithms dealing with constraints are needed. The availabiligtrdiuted state-
estimation algorithms is of paramount importance in many different enginegpiigations, such as
process control [51], power networks [48] and transport nets/ftk].

Early works in distributed estimation were aimed at reducing the computationgdlegity of cen-
tralized Kalman filters by parallelizing computations, see e.g. [22, 37], uhderssumption that each
subsystem has full knowledge of the whole dynamics. Subsequent]yp{@fosed a solution based
on the use of reduced-order and decoupled models for each subsydiite subsystems with overlap-
ping states were considered in [25, 50, 49, 51]. While the estimation sclpeopesed in [51] require
an all-to-all communication among subsystems, in[25, 50, 49] the topology ofetwork is defined
by dependencies among the states of the subsystems resulting in a fully thstdoheme. More
recently, distributed state estimators for sensor networks where eadr segasures just some of the
system outputs and computes the estimate of the overall state have beenist{li&] 24, 34]. In
these methods, convergence of the estimates to a common value is achieugd ttonsensus algo-
rithms under weak assumptions on the topology of the communication networkg fle same lines
and in order to cope with constraint on noise and state variables, in the PO-{oject distributed
MHE algorithms for sensor networks have been proposed, see agligdd5.2 and [13, 15, 16] .
Three partition-based MHE algorithms (PMHE) for linear constrained syst#ecomposed into in-
terconnected subsystems without overlapping states have also bekpdevra the HD-MPC project
and described in [17]. In these algorithms, which differ in terms of commtioitaequirements,
accuracy and computational complexity, each subsystem solves a deaidse MHE problem in or-
der to estimate its own states based on the estimate of the other subsystems’sstataisted by its
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neighbors.

The results of [17] are here extended to the case of nonlinear systeasg@cope with the ma-
jority of problems arising in process control, where the nonlinear dynangagiena have often to
be considered in order to guarantee the accuracy of the solution. Tkiergence properties of the
method are investigated and sufficient conditions are given. Thesé&ioosdurn out to be automati-
cally satisfied when the directed graph describing interconnections arabsgssems is acyclic.

The proposed partition-based MHE is applied to the problem of estimating s kavd flow rates in
the model of three cascade river reaches, which represent a sighjfiart of the Hydro Power Valley
benchmark extensively studied in the project (see the workpackagéaWidPNVP7). Interconnections
between successive reaches are due to the dependence of theinpatdlof the downstream reaches
to the level of the final section of the upstream ones, which cannot beunegladbut just estimated
from the available measures collected along the reach.

The chapter is structured as follows. Section 3.2 introduces nonlingérqueed systems and the
main assumptions concerning their dynamics. Section 3.3 describes thesguddblE algorithm,
while convergence results are provided in Section 3.4. The illustrative@ras considered in Sec-
tion[3.5. For the sake of readability, the proofs of the main results are callattthe end of the
chapter.

Notation. In the chapter, the following notation is adopteg.and 0 denote tha x n identity
matrix and the matrix of zero elements whose dimensions will be clear from tiextomhe notation
|Z||2 stands forz'Sz whereSis a symmetric positive-semidefinite matrix. Given a set of scalar
variablesv = {V1,... v}, i; <ip < --- < iy, we use the short-han@) or (V1,...,v") to denote
the vector[V1,...,vin|]T. By extension, ifV'1,...,vin are sets of scalar variable@) or (V1,...,v)
denote((V1),..., (vin)). With a little abuse of notation, and when clear from the context, we willuse
instead of(v) i.e., identify sets of variables with the corresponding column vectors. Gifanction
f(x1,...,%) : D CR"— R™we define ar¢f) = {x; : f is not constant inx; onD}.

For a discrete-time signak anda,b € N, a < b, we denotéwa, Wa1, .. ., Wh) With Wiy,. For the
definition of positive-definite,?", %, and.# ¢ functions we defer the reader to [43]. Finally, given
Xk, X € R", we define]|xx — X¢|[japn = Ma%cab 1% — X, where|| - || denotes the Euclidean norm.

3.2 Nonlinear large-scale systems

Consider the discrete-time nonlinear system
X1 = F(Xt, Ur) + W, (3.1)

wherex; = (%¢,...,x") € R" is the statew; € R" is the process noise angd € R™ is the input.
Measurements are performed according to the sensing model

yi = h(X,Ur) + vt (3.2)

wherev; € RP is the measurement noise.
We assume thdtx;, ut) has continuous partial derivatives with respect to the argumemtd also
satisfies the following Assumption.

Assumption 5 Functionf is globally Lipschitz with respect te. i.e.,, dlx > 0 :VX1,%o € X, for all
ueRMand

||f(X1,U)—f(X2,U)|| S IXHXl_XZH (33)
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We split system (3/1) intM interconnected submodels by choosing a time-invariant partition of

elements ok; into the setsqm xt[M] M < nso thatx; = (xtm, ,xt“v']) up to an index permutation,
wherex!| € R™ for all i = 1,...,M. Accordingly, we defind(x;,u;) = (f¥(x,up), ..., FM(x;, u)),
andw; = (wt[l],.. [M]) S0 that the dynamics of subsystéis
li] — f[l] [i] 3.4
X1 (Xt, Ut) + W, (3.4)

wherewtm e R"foralli=1,...,M. The partition induces an interconnection network in the form of a

directed graply = (7,&) where nodes iy’ = {1,...,M} are subsystems arid,i) € & if and only
[i]

if i £ and3Ix carg(fl(-,up)) i e x!.
Defining A4 = {j : (j.i) € &}, '™ = (%, € A4} andu = (U U carg(fll(x.-))} € R™

model[(3.4) can be writtenas S _
= 104 )+ @5)

We assume that the state of subsystdiffills the constraianm € Xj, whereX; is a convex set. If
X = R" we say that the system is unconstrained amd i 1 we say that the partition is trivial.
In view of Assumption 5 we have that, for @l=1,...,M, there exist Lipschitz constari{g > 0 :

v i e X, j e AU i}, forallull € RM, such that

1004, g ,u“b—f“](xz,uz ully)|
<lilx =g+ 3 hilbe =) (3.6)
JEN

We denote a¥# the matrix whosé-th row,i =1,...,M, is composed by the elemetisif j € 4 U{i}
and 0 otherwise. Note that we can interpret matixn (3.6) as a weighted adjacency matrix for the
graph (more specifically, the elememigi, j = 1,...,M of the adjacency matrix7 verify aj =1 if

lii >0 anda; = 0 otherwise).

As for the outputs of subsystems, we assume that theyt@ets. , yt[M] are a time-invariant partition
of variables iny; and, analogously, the set@, vt[w are a time-invariant partition of variables in
Vi, SO that _

y[] h[l](xt[l] utH) H (3_7)

for suitable functiondl. Note that[(3.7), besides excluding the case of outputs shared by multiple
subsystems, also assumes tﬂ%tonly depends upon the local variabbéié and utm. We highlight
that these structural assumptions are made only for the sake of simplicityenthth results can be
generalized to the case where they do not hold.

From now on, we assume that the system partitioning and the input sequencare such that
the following observability assumption on the local subsystems is satisfiefd@der M = 1).

Assumption 6 For alli =1,...,M and j€ .4, there exists he N\ {0} and functions,é\i,] ), ¥i (),
Mﬁ] ) € 2 such that for every initial state%& Il for any feasible sequence%]lg( 1 [0“& 1 and
for any disturbance sequencel%w 1 *CE'L 1
126 =61 < (! o1 8
+5 (IR - ¥ I]H[Ok)"'zje/VVJ(”Xt —x [jox-1)
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where k>n?, and Y/ and Wi are the output sequences stemming feaft, o, Uy and (w1, iyl
with initial conditions >g} and %['], respectively.

3.3 A non-iterative moving horizon partition-based algorithm

Our aim is to design, for each subsystem, a non-iterative distributed estinsati@me based on
neighbor-to-neighbor communication for computing a reliable estixatef X'/ based on the mea-
surementy!!! and on the crosstalk term&* provided by the estimators associated to the other sub-
systems. Specifically, by extending to nonlinear systems the results desicrifi€], we propose a
moving horizon estimation (MHE) scheme, which is denoted NPMHE.

3.3.1 Model for estimation and information transmission grgph

We denote with{f Tt the estimate ofq“l] performed at timé; by subsysteni and we define, ;, =

(>2t[11]/t2 ,)‘(t[Mt ). At each instant we assume that an estimate of the crosstalk ta&]rﬁ k=t-—

N,...,tis prowded by the neighbors at tinhe- 1, therefore allowing for decentralization of the state
estlmatlon algorithm. At timéthe estimation model is, fdce=t—N,...,t—1

sl Ali]x

)”(L']H_f (%0 Gy 3 Ug) + W (3.92)
Y =hR), ud) +9) (3.9b)

and defines constraints of the NPMHE estimation problem given below.

In (3.9), uk']t’i is the set of vanable«éxk 1, ] € A}, denoting the estimates of the system’s states
available to subsyster’rs neighbors at tlme Therefore, subsystems communlcate over a network that

has the same topology of the interconnection graph an,iife &, thenxk/t Jfork=t—N,...;t-1
are transmitted to subsysteém

Finally, note that the noise estimawg éndvﬂ] in (3.9) encompass both the noise appearing in the
equations/ (3.5); (3.7) and the estimation error due to the uncertaim&’t’éq. "

3.3.2 The NPMHE estimation problems

Given an estimation horizoN > 1, in order to perform the NPMHE algorithm, each naode”? at
timet solves the constrained minimization problem NMH&efined as

ol = min 30—t LIV URIR U (3.10)
KW
wherewf!! andwt! stand forw[t] N andv[t] ny» respectively, under the constraints imposed by sys-
tem (3.9) and
X k=t—N,...t (3.11)

The local cost functiodl! is given by
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J[I](t_th’)zt['lN’W[l}’g[l]’rt['lN): )3 L[l](wl[('}’ l[(])
k=t—N

RN R ) (3.12)

In (3.12), the function&!! andr!!  are thestage cosand theinitial penalty, respectively, and must
be defined in order to satisfy the following assumption.

Assumption 7 LIl and FPlN are continuous, bounded, positive definite and satisfy the following in-
equalities for all W/ e R, vil e RP, % xl! e R

YL(”(W“] m)ll)é [H(W[i} [i]) (3.13a)
Mo 04'3) < v(lhd —351) (3.13b)

wherey, andy, are suitable %, functions.
The quantities{’i,\l/t and{wﬂ]/t} are the optimizers to (3.10) arx&/tﬁ k=t—N+1,....tisthe
local state sequence stemming me‘N/t' {OL'/t SN and{ i }k N

k/t

3.3.3 The collective minimization problem

Denote byd the sum of the local cost functiodd!, given by (3.12), i.e.

J= ZJ“](I Nl e ) (3.14)
Define the collective vectosg = ()2[[1],... xt[M]) eR" % = (vm . M) eRP, W = (w{“,...,wiw) €
R" and rewriteJ as
t
= Z L(Wk,\?k) +rt_N(5\(t_N;5\(t_N/t_1) (315)
k=t_N

whereL andl;_y are given by

L (W, Uk) = ZL[' (o) (3.16a)
N (Xe-Ns Xe-njt-1) ZF[' (R R Nt-1) (3.16Db)
We define the function
f(>A<|<,>A<|</t—1vuk) = (f[ ](*L],ULl/]txlyuL])

MR, a7 u)
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so that constraints (3.9) and (3.11) can be written in the collective form

Ricr1 = (R Rt 1. Uk) + Wi (3.17a)
Yk = h()“(k, Uk) —|—\7k (3.17b)
Xk € X (3.17¢)
with k=t —N,...,t. The solution to
AminAJ(t—N,t,)?t_N,\iv,V,Ft_N) (318)
Xt—N,W

wherew andV are short-hand notation far; . andv_y. respectively, is equivalent to the solution

to the MHE1 problems|(3.10), in the sense th&tN“/t, {WE]/t}{(:th is a solution to|(3.10) if and only

if Re_nyts {Wiet et IS @ solution to/ (3.18), whens ; = (vT/Ll/]t, s ,vAvl[('\/"t]). In fact, at timet, variables

Xi/1—1 are fixed inputs for the system (3.17).
We define the transit cost for subsysteas

:[t—N+lI]/t (ZHJ—N—}—L’[]) = )?{mlr\}l' {‘][I] (t - Natv)zt[l]_NaW[iL\?[i]a rt[l]_N)
N>
subject to[(3.9)/(3.11) an<£]“: zL” fork=t—N+1,... ,t} (3.19)

The collective transit cost in a generic sequence (le} ey ZLM]) eR"k=t—N+1,....t,isdefined

as

SN (ZpoNg1y) = RTJF\}V{J(t — N, t, XN W, 0, T n)

subject to[(3.17) ang =z« fork=t —N+1,... t} (3.20)
and it holds that
SNt (Z—Ns1y) = iizg]N+1it]/t(ZE]N+1iﬂ) (3.21)
From (3.16) and in view of Assumption 7 there exist suitalsle functionsy;” andy; such that
Y (lw,v)]) < L(w,v) (3.22a)
Fo(x1;X2) < ¥ (|1 —X2l]) (3.22b)

forallw € R", v e RP andxy, x> € R".

We discuss now the choice of the initial penallﬁ%ié,\,. As it will clear in the next section, for
convergence of the NPMHE scheme they must fulfill the following assumption.

Assumption 8 Given a state sequen@ € X, k=1t —N,...,t — 1, the following inequalities are
verified
O 1 < TMn(z—N;Re—Njt-1) (3.23)
t—1

L (F(zx, 2z, i) — T(2zw, Rupr—1, U), 0)+ (3.24)
kN

+ M N(Z-N Reengi-1) < Zpeni-1/-1(Z-ne-1)

where®; ; =M, o/
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Remark 1 Note that Assumpti(ﬂ 8 is the most critical one. Currently, even in casérivia par-
tition where one has tha} 1 L (f(z«, z«, uk) — f(z«. Rkt_1,Uk),0) = O, there are just approximate
methods for computing initial penalti€s_y # ©;_; verifying(3.23)and (3.24) see [43].

Note however thag;_ni_1 = Xjg_nt—1t—1 are minimizers o=y _n:_1j4-1(Z—ni—1) and yield
Ziont-1/t-1(Zg-nit-1) = ©f_1. Hence(3.23)(3.24)imply thatX_n.—1j,1—1 IS @ minimizer of ¢
and thatle N (X—njt—1:%-nj-1) = Of_1.

fAs in_ [17], a choice foi.ll and Ft[ilN fulfilling Assumption 7 and((3.23) is to consider the quadratic
unctions

Ll *HKHZ 1+*HVk||2 (3.25)

iy =58 - XP] vl N/H),l+erﬂa (3.26)

where2lll and#!! are suitable symmetric and positive-definite matrices IT:{HQI 11 IS @ symmetric
semi definite-positive matrix.

It is easy to prove that, under Assumptidn 5 and if the stage cost and thepeitialty are defined
as in (3.25) and (3.26), respectively, Assumption 8 is verified if, fohesabsysten, the following
inequality is satisfied, for all sequencﬁ%e Xi,k=t—N,...;t—1

,\[| 2 +
ZK_Z_N%H — Rl HZt N/t P Mot
=[i] [i]
< Znt-1t-1Ge N 1) (3.27)
where, for alli, g = z'j\":lfji, i = 212 Oax ((2) 1) if j € A andli; = 0 otherwise, an@max(-)

denotes the maximum singular value of its argument.

Note that|(3.27) is indeed a local re-formulation of Assumption 8 and realhklko the cost (3.12)
and the constraints (3.9) depend only upon local variables. In view ofttiesmplementation of the
NPMHE estimation scheme results to be completely decentralized.

3.4 Convergence properties of the proposed estimators

In this section the convergence results reported in [41] for centraligiéahagors (corresponding to
the trivial partition) are extended to the proposed NPMHE scheme. Similadyiipthese properties
are analyzed in a deterministic setting.

Definition 5 Let X be systen{3.1) with w; = 0 and denote bys(t,xo) the state reached b¥ at
time t starting from initial conditiorxg with input sequence, k=0,...,t — 1. Assume that the
trajectoryxs(t,xp) is feasiblej.e.,xs(t,xp) € X for all t. Then, NPMHE is asymptotically convergent

. ~ t—o0
if ||xt/t —Xs(t,Xo)|| — O.
Moreover, in order to state the main convergence result, some furtheitidef are required.

Definition 6 Letn > 0andr be areal and an integer number respectively. TR€n, r) is a function
defined as

r]r

A(n,r) = ]i__ ifn#1, andA(n,r)=r,ifn=1
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Figure 3.1: River scheme.

Definition 7 The.#,-functionsy; are defined as

Fim =, max (K0 + 1A (i k- (€N))n)

3.28
ke[t—N-+1:t ( )

Definition 8 Given a vectod € RM, with component§m >0,i=1,...,M, define the gain map

2ien i (5[”)
rd)= : (3.29)
ZJE'VM Wl(ém)
and the diagonal operator DRM — RM such that

(1d+dy) ()
D(8) := :
(Id+dw) (M)
whereld is the identity function andi& 75, i=1,...,M.

Finally we need to introduce small gain condition which will be fundamental to guarantee
convergence of NPMHE and is derived from [10]. Specifically, we vétjuire that, for alld # 0,
with componentsl! > 0,i=1,...,M one has

FoD#1d (3.30)

In a few words, inequality (3.30) requires that, for all there is at least one component of vector
I"(D(d)) which strictly decreases.

Theorem 3 If Assumptions 5, 6,17 and 8 hold and if, for &I+ 0, with component$l! > 0, | =
1,...,M, (3.30)is verified, then the NPMHE scheme is asymptotically convergent.

Recall that a Directed Acyclic Graph (DAG) is a directed graph with no sycdamely,¥ is
a DAG if, for all subsystems and j, when there is a path fromnto j, then there does not exist a
path fromj toi. After a suitable permutation of the node indexes, the adjacency matrix ofai® A
triangular.

Corollary 2 If Assumptions 5, 6, 7 and 8 hold and if the interconnection graph is a D&, the
NPMHE scheme is asymptotically convergent.
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3.5 An application: three cascade river reaches

In this section we apply the NPMHE algorithm to a system composed by thiexereigches, which

are part of a larger system describing a Hydro Power Valley (HP\é)[£2]. The development of

distributed predictive control techniques for the HPV requires propémation of the states of the
reaches, i.e. levels and flow rates at different points, as well as ofshelthnces, which correspond
to unknown input/output terms (e.g., creeks, rain, leakages).

3.5.1 Model of the reaches

Each reach is endowed with a power house placed in a lateral chaneet whurbine generates the
electric power, and with a weir along the main natural river course, se&BigThe model of a single
reach is based on the classical de Saint Venant equations, i.e. massrapdtom equations, see e.g.
[44], [21], [26], [27]. Lettingx € R be the main spatial coordinate defined by the flow directiontand
be the continuous time, in order to simplify the model, the assumptions of constmiidth W (x)

and rectangular cross sectifx, T) are made. Furthermore, we assume that the river friction slope is
given by the Manning-Strickler equation [26].

According to the previous assumptions and denoting Witk 7) andQ(x, 7) the river height and the
flow rate, respectively, the de Saint Venant dynamic equations canitbennas

2 --a%
T ~ Wox
2
d 204 1 AH
5 :WS0§+<(S) W—QWH>ax+9W'0H (3.31)
WH /W-2H\4/3 2
—9EH ()9 ()

where the dependence of the varialleandH uponx andt has been omitted for simplicitg, is the
gravitational acceleratiothy is the bed slope ank:(x) is the Strickler coefficient.

For simulation, control and estimation purposes, the model has been dsdrietiaN. sections
along the flow direction, each one with lendtk = X /N, whereX is the total length of the reach. To
avoid unnecessary stiffness, the crossing sections of the diffesgables are overlapped. The flow
ratesQ are computed at the crossing of each section while the hdiglar® computed in the middle
of the section, see Fig. 3.2 and the references [44], [21]. The dizatien is made by the finite
difference method by approximating the derivatives with the first term in éyéoll series expansions
of Q andH around any poing;:

0Qi  _  QX2:2)—QXa)

I Xai - Xoit2—X2i
OHzi1  _ H(Xaw1)-H(Xai 1)
OXai-1 X2i+1—X2i-1

The boundary conditions are given by the inlet flow rate at the firstr&gcand by the output
flow rateQoyut, Which is a function of the level at the end of the third reach,Q&« = Qout(Han.+1)-
For the second and third reaches, the inlet flow rates coincide with the fhotletate of the upstream
reach.
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Figure 3.2: Spatial discretization of each reach. The portion of the exaddbsed in the dashed frame
corresponds to the portion of each reach enclosed in the dashed fradige $11. w1, w» are flow
disturbances andy, = 0 for reaches 1 and 3.

In view of these assumptions, the ODE model of each reach is

dH _ 1 Q-Qin
dr - W Ax/2 5
dQ — _ 2Q Q—Qin Q Hz—H
T iR (g - owh)
4/3 2
(22" () rower
Hoj1 1 Qj—Qj-2
dr - W Ax
% _ —VZ\/Qszjj Q2 _A%FZ + <\/\(/?E|1221 —gw HZ]> H2j+1A—XH2171 (3.32)
WHy (W-+2Hy \ 43 1 Q) \2
_gkg:bj ( thsz1> (v\(/gféj) +gWhHz;,
j - 27 ey NC
dHangt1 1 Qang—Qout
dr - W  Ax/2
where the dependence erhas been omitted and the heightg, i=1,...,N, are computed as a
linear combination of the adjacent heights, i.e.
Hai Hoi :
Hoi — % =1 N
The output flow rate of each reach is defined as
Qout = Q¢ + Qb (Han11) (3.33)
where
Qb (Hane+1) = KweirAweir/ 29(Han+1) (3.34)

kweir is @ parameter that depends of the characteristic of the Algginjs the weir cross-sectional area,
Qp is the flow rate through the weir of the dam a@dis the flow rate through the channel and the
power house, assumed constant in the considered state estimation problem.

In the following each reach has been divided iNto= 5 cells.
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Length of each reach 4000m|
Width of each reachv 10Qm|
Strickler coefficienks, 30/m‘/3/s|
Slope of the bed of each reakh 0.0033—]
Section of the weir of the daf\eir 18.26[n¥]
Discharge coefficient, weir of the damyeir 0.6[—]
Nominal flow rate through the turbir@ 100m3/s|

Table 3.1: Reach Data

3.5.2 Disturbances model

In order to test the capability of the proposed MHE scheme to estimate unkgistunbances, it is

assumed that each reach is affected by unmeasurable inlet flows. Gdlgeifis shown in Fig. 3.2, a

flow ratecy is forced at the beginning of each reach and represents the variatimmioflowQ;, due

to the variations of the concession level of an upstream dam. Moreaovadditional flow ratey is

placed at the input of the third cell of the second reach to model the peséan unknown affluent.
Both w; and w, are generated as the sum of a constant teaomdnd w,) and the statedy

andd,) of a first-order stable system fed by zero-mean White Gaussian No@88sl§) wi (k) and

wo(K) with variancesqi2 andaz?, respectively. Saturation constraints are included to impose that these

disturbances are non negative.

3.5.3 River data and available measurements

The three reaches have the same geometric characteristics, summarizele i8.Taln nominal sta-
tionary conditions, the considered constant flow ra@ is 300m?/s], while the values of the height
areH; = 3.83Im|, Hz = 7.11]m|, Hs = 10.4|m|, H; = 13.7[m|, Hg = 17[m]. As for the disturbances,
the following values have been use; = 10[m®/s|, @, = 30[m*/s], 02 = 0% = 5, while the filters
have gain equal to 0.5 and time constant[¢0 Moreover, it is assumed that the infla@y, of the
first reach is known, as well as the flow rates through the turbines, wdiilestimation and control
purposes three measurements are available for any reach, namely teédlesadHs and the flow
rateQg in the first and third reaches, and the varialtlesH; andQ in the second reach. These mea-
surements are also affected by noise; specifically, a WGN with zero melvagianceo? = 0.1 is
added to the level measures, while a zero mean WGN with unitary varianmcgtsothe flow measure.
Remarkably, the measured fla@g does not correspond to the inflow of the downstream reach, see
egs. [(3.33) and (3.34), so that there is an effective coupling betweegstimation problems. This
motivates the use of the NPMHE scheme presented in the previous sections.

3.5.4 MHE and simulation results

The NPMHE algorithm described in Sections 2-4 is applied to the three rea@wed as a system
with a cascade structure; therefore, Corollary 2 is automatically verifieel rdaches are described by
the equations (3.32), while the mutual influences are due to the relation} é8383.34). As such,

the state of the subsystems afle= (H{'],Qg], Hg],QE],Hé'],Qg], H;'],Qg], Hg[,']), i =1,2,3, while the
inputs areu“_] =Q, 1i=12 3. Positivity constraints on all the estimated states have been imposed
and rostE'] (i=1,2,3, =2 4,6,8) are constrained to be smaller than #b's].

The models of the reaches have then been discretized with a samplindztim&0[s| to implement
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the distributed MHE algorithm, that assumes discrete-time systems. In the discretsmodel so
obtained, it has been assumed that the state disturar(see((3.1)) acts on the statds, Q, for the
first and third reaches, and 1, Q», Hs, Qg for the second reach.

The stage cost and the initial penalty (see (8.12)) are given by equé8diy and((3.26). where
I‘It[']_N/t_1 = 10lg, i = 1,2,3. The matrices2l! are diagonal with elements equal t®3. 10* cor-
responding to the non-zero components of the disturbapncand equal to very small values corre-
sponding to the zero components. Also the matrigéshave been chosen as diagonal, with elements
equal to 200 for the level estimation errors and ta@ for the flow rate estimation errors.

The simulation experiments have been performed with MATLAB and optimizaticmsaried out
with the TOMLAB optimization environment [23]. We add a sinusoidal variatiéramplitude
+30[m?/s] and period of about.3[h] to the nominal inlet flow rat&;,. With reference to the first
reach, Fig. 3.3 shows the true and estimated values of the floQsadad of the level$d; andHg at
the beginning and at the end of the reach. Figl 3.4 depicts the true and edtdisatebance acting
on the initial section of the reach. These results clearly show that, afteitiahmegligible transient
mainly due to the optimization procedure, all the estimates converge to the tres.valu

280 1 1 1 1 1 1 1 1
2000 4000 6000 8000 10000 12000 14000 16000
4.8 =
= 4.6 1
Eé 4.4 .
— . .
L1 4o estimation
4 ‘ : ‘ ‘ ‘ .| = = —simulation
0 2000 4000 6000 8000 10000 12000 14000 16000
18 3
5 1 ‘
>_o —n
LT 174 .
172 1 1 1 1 1 1 1 \'
0 2000 4000 6000 8000 10000 12000 14000 16000

time [s]

Figure 3.3: Level#d;, Hg and flow rateQ, of the first reach.

Fig.[3.5 illustrates the results for the second reach, in particular the valdestimates of,, H;
and ofQg, which is the flow rate of the reach after the additional inlet flow descriseddisturbance
term (see Fig.3.2). The values of the true and estimated disturbances actimg second reach are
shown in Figs.3.6 and 3.7. It is apparent that the proposed scheme is ablegctly determine the
state and disturbance estimates even though the additional input flow ratelisectly measured, but
computed on the basis of the estimates performed for the first reach.
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Figure 3.4: Disturbance at the beginning of the first reach.

Finally, in Fig.[3.8 and in Fig. 3.9 the estimates@f, Hi, Hg and of the disturbance acting at
the initial section of the third reach are depicted, showing estimation perfeeaaomparable with
those obtained on the previous reaches.

3.6 Proofs

Since system (3.5) is time-invariant, fidr> n° = max{n°}, Assumption 6 guarantees that

Il < W o) 235
W[l] i *[| (il (3.39)
+¥% (Y = Yie M= Nt)+Zj€/VVJ(”Xk — % t—nit—1))

Whereyl[(] andyk” are the output sequences stemming fr(wvfﬁ‘ ilx ul[(i}) and(w*['] uk['] X E]) with
initial condltlonsxt_N andxt_N, respectively.
The first step towards the convergence of the NPMHE scheme is the faljdarimma.

Lemma 4 If Assumptions 7 and 8 hold then

t~>oo

t
z L Wk/taVk/t —0 (336)
k=t—

N
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Figure 3.5: LeveH; flow ratesQ, andQg of the second reach.
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Figure 3.6: Disturbance at the beginning of the second reach.
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Figure 3.7: Disturbance in the middle of the second reach.

Proof of Lemmal/4 The proof is similar to the one in Proposition 5 in [40]. Fortalt 0, in view

of (3.23) one has
t

-0 ;> z (Wit Virt) (3.37)
k=t—
Note that, by optimality®; < :[t,NH;t]/t({xz(k,xo)}k:t_NH) vt > N. The trajectory stemming
from xs (t — N,Xo), Wy = f(xs(k,X0), Xz (K,X0), Uk) — f(Xz (K, X0), Rkt_1.Uk) for k=t =N, ...,t =1
andw; = 0isxz(k,Xo) for k=t —N+1,....t, and hence it is feasible. Singg_y. corresponds to
the deterministic system output (see Definition 5), it follows fhat yx — h(xz (k,xo),ut) = 0 for all
k=t—N,...,t. Moreover, by optimality

SN2t (X2 (K X0) oo —ns)
S ‘](t - N7t>Xz(t - N7X0)>W*>Ov rth)

From (3.15), one has

J(t — N,t,Xz(t — N,Xo),w*,o, I't,N) =
t—1

= > LW, 0)+Fen(xz(t—N,X0); X—n/i-1),
TN

and in view of (3.24)0; < Zj_n:—1i-1({xs(k, Xo)}k n)- We can iterate this procedure and prove
that
©; < To(X0;Mo) < Yo([[Xo —Mol|) (3.38)
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Figure 3.8: Level$d;, Hg and flow rateQ, of the third reach.

for all t, for anyxp € X, wheremg € X is the prior estimate okg and wherey; is a suitable,
function, in view of|(3.22b), which derives from Assumption 7.

Finally, from (3.37) the sequend@®; is increasing and from (3.838) it is bounded. Therefore, the se-
quenced; converges and, from (3.37), equation (3.36) follows. [

In view of Lemma 4, the proof of Theorem 3 can be devised.

Proof of Theorem|3Since Assumptions 7 and 8 hold, by Lemma 4 equation (3.36) is guaranteed. In
view of (3.22a), it implies that

t—oo
) 3.39
max (g e ) = (3:39)

Notice that, in the noiseless cas&z']((k) =0 for all k andi = 1,...,M), for anyt, the trajectory
Xz (t,Xo) is generated by the system

Xs (t+1,Xo0) = f(Xs(t + 1,%0), Xz (t + 1,X0), Uy) (3.40)
and the output signal, for each sub-system, is
e = 0l 0g! (k xo). )
andvk]/t —hfl (xk/“uk ). Recalling[(3.35), we obtain that

HA['( J(t—Nxo)ll < W HW[z' ez

0 (3.41)
+%( !Vk/t\l[t—N:t])+Zje,MV|j(||Xk/t 1~ %5 (KX0) [l t—nit—17)
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Figure 3.9: Disturbance at the beginning of the third reach.

From (3.39) we obtain that, for dlk=1,..., M there exists a positive sequeraﬂe1 satisfyingortm =20
such that

[N y (=N, xo)|| <

[i]

i (3.42)
< Zja/I/ Yij (HXk/t,l - XZ

(K, %0) [ t—N:t—1) + atl]

[i],x

Recall thatu, ;" ; = kt 1»J € A} and, in the noiseless settlnd< = {xz (k,Xo), j € A}. For
k>t—N, |nV|ewof(39

Reean = 118 Ui, W)+ (3.43)
while xg] (k,Xo) stems from/(3.40), that is

W (k+1,%0) = £ (K, x0), Ul ully (3.44)
DefiningAL']/k = xL'l/k m(kl,xo), we obtain, from/[(3.43) and (3.44)

Al[g-l/t =10g (k. X0)+Ak/t’{XZ (k, XO)+Ak/t e+
— 110! (i, x0), D) (k. X0) e U) + Wy (3.45)
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From (3.45) and (3.6) (which derives from Assumption 5) it follows that:

I, +1/tH <IIf70g (k. X0)+Ak/t7{x (k, X0)+Ak/t Jieoud)
— fl(x ['](k Xo), {x (k xo)},e//,uk H+Hw['tH
<I“HA /t||+ Z I'JHAk/t 1‘|+HW /tH (3.46)

i<
Iterating equation (3.46) we obtain that, fo=t—N+1,....t

k—(t-N)-1

N)
HAk/tH §I|| - HA[ N/t”+ z IIJ Z) IIIHAk 1-r/t— 1”)
r=

JEX
el
+ r; lﬁHWk,l,r/tH (3.47)

wii]

Defining 5[“] = MaA%cft—N+11] ||A|[(”/t | anday™ = maXe-nt-1 ||vT/|[(”/t || we can write, from (3.47)

gl <MY 4 S A G k= - N)) gy
JEM
+ A (i k= (t=N))o™" (3.48)

whereA (-, -) is given in Definition 6. In view of (3 42)||At' N/t|| < Sien Vi (6@1) +atm, from which
it follows that

I /t” <2 (lili(i(tiN)Wj(dt[ﬂl)+|ij)\(|ii,k—(t_N))5t[ﬂl>

jeM
A (li,k— (= N)) a4 1N gl (3.49)

Therefore one concludes that

U< k=) sl
¥ je,/VkG[tTNaJ)r(l:t}( i ¥i(&-1)
+IIJA(|”’ q[]] (3.50)
e (f W[l] !.(,(th) ]
TNy (A (k= (t =)o+ 1 Vaf')
We define | -
~ i wi " |
atH - kE[thHt} (A (li, k= (t=N))ay I +13 ( )atH>

which, in view of (3.39), is an asymptotically vanishing term. Furthermore, iw agDefinition 7,
we can write[(3.50) as

&' <y @) +a (3.51)

JEN

The stability of the system of interconnected equations (3.51) can be addlyzmeans of the small
gain condition given in [10]. _
Define a vectod € RM, with componentﬁ['] >0,i=1,...,M. Since, by definition, for all, thei-th
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component of (&) does not depend abi' and is a’., function of 3lll, j € 4, it is easy to see that

the system of equations (3/51) is asymptotically stable @%.ﬁ Oast w oo foralli=1,....M) if
the mapl” satisfies the small gain condition (3.30). |

Proof of Corollary 2/

Recall that? is defined in Section 3|2 as the matrix collecting the Lipschitz conskantefined
in (3.6). If the system partition induces a DAG and since Assumption 5 héfds,(lower) triangular,
after a suitable permutation of the subsystem indexes. Therefore, wittssutf generality, we have
lij =0if j >i. Also, since Assumption 6 holds, similar arguments apply to_#i€unctions y;
in (3.8)i.e., foralli=1,...,M, y; is defined only forj < i. This, according to (3.28), gives rise to a
mapfl (&) whosei-th element depends only updf!, with j <i, foralli =1,..., M.

Now we prove that, sincE has such a structure and its entries afefunctions, the small gain
condition is verified. Notice that, by definitioal! > 0 for alli = 1,...,M. Note that any admissible
d satisfies the following: there exists an indesuchdlil = 0 for all j < i anddl! > 0 (if i = 1 this
corresponds only to the conditiai! > 0). In view of its structure, thieth entry off is equal to zero
i.e.,[; = 0. Therefore, for alB, there exists an indexsuch thaf (D(8)); < dl'. This corresponds to
the small gain condition (3.30). Being Assumptions 56,7, 8 verified, wetres@heorem 3 which
guarantees asymptotic convergence of the NPMHE scheme. |
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Chapter 4

Variance estimation - adaptive tuning of
moving horizon estimators

4.1 Introduction

The distributed estimation algorithms based on the MHE approach developedHiDtMPC project
and partially described in the previous chapters of this deliverable eethéra-priori knowledge of
the covariances of the noises affecting the system states and outputs,amhigenerally unknown.
This is a serious drawback which could prevent one from achievindaetisy results, and particular
attention must be placed to the tuning phase.

Algorithms for covariance estimation have been already proposed in thedieramong them,
the most significant and promising ones have already been reviewedstéed ite deliverable D5.2.
Specifically, reference has been made to the so-called correlatioragppmteveloped by Mehra, see
[28, 29], and to the Autocovariance Least Squares (ALS) methodibdeddn [31], which has proved
to be the most effective one, since it outperforms significantly the oneopeajin [28].

For all the above reasons, in this chapter a simple adaptive covarigimoatem algorithm based on
the ALS approach is developed and used for the on-line tuning of the tseiglked in MHE. Basi-
cally, starting form the estimation error computed on-line, this algorithm adsdptiypdates the noise
variances, which are actually used as weights in the MHE performance ifide method is then ap-
plied to a couple of significant test cases with excellent results, so thataliéved that the proposed
approach can be successfully used in the majority of cases.

The chapter is organized as follows. First, the problem is stated, themearice index used in MHE is
recalled and some preliminary definitions are reported. Then the ALS algoriheady extensively
presented in deliverable D5.2 is briefly summarized. The adaptive methdldefon-line update of
the MHE tuning parameters is then given and tested in the considered simulatioples.

4.2 Problem Statement
Consider a linear, time-invariant, discrete-time model:

X+1 = FX + Bu + Gw

4.1)
Z = HX +Ww
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wherex € R" is the system stat&; € R™" is the transition matrixB € R™™ is the control matrix,

G € R™9 s the disturbance matriz,e RP is the observation vector, aftlc RP*" is the observation
matrix. Note thafu, }1¢,, {w }1¢,, and{w }1¢, are the control, the state uncertainty vector (or process-
noise), and the measurement noise sequences respectivelpgnttlie size of the sequences. The
disturbances andw are zero-mean Gaussian white noises W{hand Q,, as covariance matrices,
respectively.

Now assume that the state estimates are computed using the linear, time-intateaessmator:

%1t = F&e +Bu

N R R (4.2)
e = Kejo1 + L [2 — HRge_q]

whereL is the observer gain. From (4.1), (4.2) it follows that the dynamics of the s&timation
eITor &1 = X — X1—1 IS given by:

£t+l\t =Fx+Bu+Gw—F [)?ﬂt 1+L(Zt — H)?t\tfl)] —Bu
=Fx+Gw —F(l —LH)%;;_1—FLz (4.3)
=Fx+Gw —F(I —LH)% i1 —F(Hx +w)

leading to
gt-‘rl‘t == F(I —LH)st‘t_l—i-GV\& —FLVt (44)

Moreover, assuming th&{&;_1} = 0, whereE{-} denotes the statistical expectation, the prediction
error covariance is defined as:

M, = E {em,lat{t,l} (4.5)

A very well known and effective way to compute the gairis to resort to the Kalman filtering ap-
proach, which requires to know the true covariance mati@geandR,. In the following, we denote
asM the stationary value d¥1(t), computed through the algebraic Riccati equation.
As already shown in deliverable D5.2, the use of wrong covariancds teaa suboptimal estimation.
Define the L-innovations as follows

Zi=7z—HX 1 (4.6)

The variance estimation problem reduces to find the true matiges1dR, using real data from the
innovations|(4.6), with the final goal of computing the optimal prediction exogariance matrix and
the optimal filter gain.

An analogous problem is related to the use of MHE, which are based oolthi®s of the following
minimization problem:

t—1
min D[22 s+ (RN — Ry anee N1 |5
%en A k:tZN v Q : Iy
S.t. ~ ”
W = zZ—HX
st. xeX, weW, veV, and|4.1)

whereX, W, andV are polyhedral and convex sets witleGW, and Oc V, N is the moving horizon
window, % N andwi, k=t —N,...,t —1 are the optimization variables which correspond to the initial

Page 48/61




| HD-MPC ICT-223854 New methods for distributed state and coveaance estimation|

condition of the state in the moving window and to the model disturbance sezjtesmectivelyt is
the current time. Finally, the term

= N(Ron) = [%n — Ronjpanenogl3

is denotedarrival cost[40], wherex;_y;—an:t—n-1] IS given as the result of the optimization prob-
lem (4.7) solved at time— N with available data_»n, ...,z N_1.

For linear systems, in the unconstrained case, and by a proper chdlee arfrival cost, it has been
shown the equivalence between the Kalman predictor and MHE, see4@1} In this scenario
the tuning matrice®R, and Q,, must be chosen as the covariances of the naisaad w, respec-

tively. Therefore, the problem of properly tuning these matrices is funeeial for obtaining suitable
estimation performance for MHE methods as well.

4.2.1 Autocovariance Least Squares -ALS

The ALS method presented in [31] and already extensively describedlivedable D5.2 is now
briefly summarized.
Consider the dynamic evolution of the state prediction egos x — %1, from (4.4):

gr1=(F—FLH)g+[ G —FL | [ V\Zt ] (4.8)
F G —
We

Then, the state-space model of thannovations is defined as:

&1 =F&+GWw

(4.9)
Zi=He&+w
In the sequel, the following conditions are assumed to hold:
e The pair(F,H) is detectable.
e The transition matrix of the estimation error dynamics is stable.
e E(5) =0, Cov(&)=Mp
Under stationarity conditions, we have that
E{Z2 } =HMHT +R, (4.10)
E{%i %"} =HF'MHT ~HFI'FLR,, j>1 '
We define the autocovariance matrix (ACM) as:
Co - Cnoa
Z#Z(N)=E : : (4.11)
Clq Co
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whose elements are derived from data according to

1
Ck_
Ng £

andN is a user-defined parameter. Using (4.10) and (4.11) the ACM oL timmovations can be
written as:

gf,fz@ ’ (4.12)

N N N
RAN) = On M~ Of s+T @GQWGT M+¥ PR |+ |PR Y+ |PR (4.13)
i=1 j=1 =1 =1
where,
H 0 0 00
HF H 0 00 N
Ops= , I= : : r|ep-F ]

K - : : j=1
HFN-1 HFN-2 ... H 0

Also, the covariance of the noise is given by

e[0T - G=| G o |

In order to show the problem formulation as a Least-Squares problerati@q4.13) is given in
stacked form. Hencefortlj;)s denotes the outcome to apply thecoperator to(-). Equation|(4.13)
is written in a stacked way using the standard definitions [31] of the Kr@vemkma®, Kronecker

product®, and direct sundp as:

[Z(N)]s= [(Oas® OnLs) (e —F @ F) 1+ (T @) Sn] (G2 G)(Qu)s

+{[(OaLs® OnLs)(lp —F @F) 1+ (T @T) Ion] (FLOFL) + [WB W+ 1 2n2] Fpn} (R)s
(4.14)

Equation/(4.14) can be written as a LS problem, consideringtilt)s can be estimated from (4.11)
using the acquired data.

Given.a/x = b, with

D= [ (Oas® Oais(le —F ©F) 1+ (T @) An) |
o =[ D(G®G) DFLOFL)+[Wa&W+Ipe] Fon |
X= [ (Qw T F\)v ]

b=%(N)s
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where 7, is a permutation matrix to convert the direct sum to a vectorZpg is the (pN)? x p?
matrix of zeros and ones satisfying:

(@ Rv) =7 p, N Rv)

We define the ALS estimate as follows:

% = argmin||./x— b||3
X (4.15)
st Qu.R, >0

inwhichXx=[ (Qw){ (R4 ]T, andb = % (N)s. These steps are summarizechigorithm 1.

Algorithm 1 ALS Algorithm
for j _1toN ldo

J e Jsz Jo@fﬁeT
endfor
Computeb = Z(N)s from Eq. (4.11)
. 2
Solve{Q""}:argmin d[(Q‘”)S}—B st. Qu>0, R >0
Rv v (RV)S 2

The existence, uniqueness and unbiasedness nature of the estimatdedaproved in [31] and
already discussed in deliverable D5.2.

4.3 Recursive ALS with MHE-based innovations

In order to adaptively tune the noise covariance matrices to be used in tkealddrithms developed
in the HD-MPC project, we now propose a new adaptive ALS scheme todousn-line operations.
It is based on the adaptive update of matri@gsandR, used in the estimation problem (4.7). The
update ofQ,, andRy, is carried out, at each time instant, according to the equations

+ opt

where Q3P and RO™ result from [(4.15). In turn, the tern®, used in|(4.16), are computed and
updated, at each time instant k, using a recursive (simplified) version of (4.12), i.e.

In equations((4.16) and (4.17), the paramefyspr, andpc are suitably defined parameters taking
values in the interval0, 1).

The new algorithm (i.e., Algorithm 2) for covariance estimation is more formalhpmed below,
whereN is the MHE time windowNsim, is the simulation timeNa_s is the ALS tuning parameter,
tstart IS the time at which the adaptation staf@s,; andRi,; are the initial guesses for the covariances.
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Algorithm 2 Adaptive Autocovariance Least Squares (AALS)

DefineN, Nsim, NaLs, tstart, Qini, Rini
SetQW = Qini andR, = Riyi
Computell;_y as the stationary prediction error covariance matrix through the algebicgatR
equation (ARE).
Initialize the sampled covarianc€g (k=0,...,Na.s— 1).
fort =N-+1toNgim—1do
Solve the MHE problem (417).
if i > NaLs+ 1then
Update the sampled covarian€as(k = 0, ..., Nas— 1) using [(4.17).
end if
if t > tstart then
Solve the ALS problem (4.15).
Update the estimated covariand@g andR, using (4.16).
Updatell;_y.
end if
end for

4.4 Case studies

4.4.1 Van der Vusse reaction system

A non-isothermal Van der Vusse reactor system has been considetext the adaptive algorithm;
this system has already been used as a benchmark in several codtredtanation contributions

[1,9,11, 32].

The reactor is a vessel where an exothermic reaction is given; thesexidesat is removed by means
of a cold flow through a jacket, making this flow rate critical in order to obtaindésred amount
of product. From mass and energy balance equations it is possible ve tegidynamic 4-th order
model of the system [11]:

. F
Cao = f(CAo — CA) — k]_(T)CA — k3(T)Ci

VR
. F
Cg = —\TCB + k]_(T)CA — kz(T)CB
R (4.18)
.1 F kAR o :
T= p—cp(kl(T)cAAHrlJr ko(T)CaAH,2 + ka(T)caAH,3) + \TR(TO T)+ oV (T;—T)
) 1 .
Tj= miCo; (Qj +kwAr(T —Tj))

wherecp andcg are the concentrations of componeAtandB in the effluent stream, respectively,

is the reaction temperature, algis the coolant temperatureyg is the concentration ok in the inlet
streamF is the feed flow ratéyr is the reactor volume ar(dj is the rate of heat addition or removal.
The reaction coefficients, i = 1,...,3 are given by means of the Arrhenius equation:

ki(T) = koie®/T (4.19)
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Table 4.1: Parameters of the Van der Vusse reactor

Symbol Value Symbol Value
koz [h~?] 1.287x 102 AHyq [kJ/mol] 4.2

koo [n72] 1.287x 102  AH;2 [kd/moll —11
koz[l/(mol-h)] 9.043x 10°  AHy [kJ/mol] —41.85
E1[K] —97583 p [kg/l] 0.9342
E2[K] —97583 Cp[kJ/(kg-K)] 3.01
E3[K] —8560 ko [kJ/(h-m?-K)] 4032
AR [P] 0.215 VR [P 0.01

m; (kg 5 Cpj[kJ/(kg-K)] 2

Table 4.2: Nominal steady-state values for the Van der Vusse reactor
Symbol Value  Symbol Value
ca[mol/l] 21402 F3[I/h] 1419

cg[mol/l]  1.0903 QS[kJ/h]  —11135
T3[K] 38734 c3p[mol/l] 51
TS [K] 38606 T5[K] 37805

The model parameters are given in Table 4.1.

A linear, time-invariant, discrete-time model has been obtained by linearizih§)(@round the oper-
ating point presented in Table 4.2, and discretizing it with a sampling Tyre0.01h.

X1 = AgX + BgUt + Bp g Pt + OgW

(4.20)
Ve = CaXe + W
where
CA—CSA
|- _| F-F® _ [ cn—Ci
X= T_TS 9 UI:QJ_QT 9 p* TO_TOS (421)

vk ~ N(0,R,) andwy ~ N(0,Qy) are the noises disturbing the process and the measurements, re-
spectively, andoy = diag([cz,csB,TS, TjSD. Moreover, we assume theg andT are the measured

variables, namely
H— [ 010 0}

0010

For the sake of simplicity, we assume the covariance matrices are diagonabsatre take this as a
further constraint in the optimization problem (4.15)):

Qu=gl, R =Tl (4.22)

wherel are identity matrices of proper dimension. In the data generation processaihvalues of|
andr areg® = 0.8 andr® =0.2.
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Table 4.3: AALS parameters for the Van der Vusse reactor example
Parameter Value Parameter Value

N 10 Nsim 6000
NaLs 10 tstart 1000
q° 0.8 ro 0.2
Olini 3 Fini 0.06
0 0.001

The adaptive ALS algorithm has been used with the parameters specifiadléh4[3, beingj; and

rini the initial guesses fog andr respectively. Figure 4.1 shows the real and estimated values of the
parameterg] andr. Moreover, in Figure 4.2 the true and estimated values of the state vaciable
are reported: it is clear that the estimate is progressively improved aswagarwe matrices, i.e. the
weights in the MHE problem, are more precisely evaluated.

Estimated and real covariances

251 ““““ est

15r-

e L e ek ke e e 1

0 v I I I I I I I I I I}
1000 1500 2000 2500 3000 3500 4000 4500 5000 5500 6000
Samples

Figure 4.1: Convergence of the covariances via the adaptive law.
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10 T

Estimate
Real

Ca (mol/l)
N

1 1 1 1 1
0 1000 2000 3000 4000 5000 6000
Sample

Figure 4.2: True and estimated valuesgfwith the adaptive tuning of the covariances.

4.4.2 Mehra’s example

As a second test case, consider the example presented in [28], i.e. Hretitime-invariant discrete-
time system:

[ 075 —-174 -03 0 -015 0 0 0
009 091 -0.0015 0 -0.008 0 0 0
F= 0 0 095 0 0 , G=]2464 O 0
0 0 0 055 0 0O 0835 O (4.23)
0 0 0 0 0905 0 0 183
H_ 1 0 0 0 1
01010
The data are generated according to the following distributions:
w(k) ~ N (0,0.5l3), v(k) ~N(0O,12), (4.24)

The parameters used in the adaptive tuning algorithm are presented idTébkeheregini and
rini are the initial guesses faf = 0.5 andr® = 1 respectively. Figurie 4.3 shows the outcome of the
Algorithm with p = 0.001; this choice guarantees a smooth and slow convergengamdir. As
expected, using the valyg = 0.1, the convergence is faster, but with an oscillatory response, see
Figure 4.4.

Also in this example, it is apparent that the adaptive tuning algorithm perfeengsvell, so that a

significant improvement of any estimation algorithm requiring the knowledtjeeaioise covariances
can be achieved.
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Table 4.4: AALS parameters

Parameter Value Parameter Value
N 10 Nsim 6000
NALS 10 tstart 1000
qQ° 0.5 ro 1
Gini 4 Fini 0.2
P 0.001
Estimated and real covariances
4 —
"""" Qest
35F B -==Q,
““““ Rest
- = =R
3k
25F
2L
15F
I ] ki
05 == - ‘:_H..,..-u.“..______.___-‘."_"'_"u‘uvu-
]‘.:)000 lE:OO 20‘00 25‘00 3600 3&':00 40‘00 45‘00 5600 55:00 6600
Samples

Figure 4.3: Convergence of the covariances with the adaptive layp an@.001.
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Estimated and real covariances

4c
"""" Qest
35 - -QW
““““ R
est
- -Rv
3k
25
oL
15F %
05k ) it P
| | | J

0 1 1 1 1 1 1
1000 1500 2000 2500 3000 3500 4000 4500 5000 5500 6000
Samples

Figure 4.4: Convergence of the covariances with the adaptive layp anf.1.
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