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Executive Summary

This deliverable describes and analyzes the exercises on the pidpasehmark cases in t?ﬂ%
period of time M12-M18. These benchmark cases are described in RdliedD6.3.1 and mode
and additional information can be found in the Virtual Portal: the heat sydteenfour tank
system, an electric power system, and the chemical benchmark case.

The two-dimensional heat system benchmark is used to compare varicestrdéized Kalmar
filters in Chapter 1. The methods that are compared are:

 Centralized Kalman filter (CKF),

* Parallel information filter (PIF),

» Decentralized information filter (DIF),

» Decoupled hierarchical Kalman filter (DHKF),

« Distributed Kalman filter with weighted averaging (DKFWA),
» Distributed Kalman filter with consensus filters (DKFCF),

« Distributed Kalman filter with bipartite fusion graphs (DKFBFG).

Another distributed state estimation scheme (DDKF: Distributed and Decentr&eenan Fil-
ter)is applied to a one-dimensional heat system. The observer perfmeronader additive an
structural disturbance is also studied. Then, in Chapter 3, a combined-RD& MPC formula
tion is tested on the same benchmark.

Concerning the 4-tanks benchmark, different control approaches heen tested and compaied
both in simulation and on the real plant. These approaches are:

» Tracking Control. Control that allows changes in the reference.

— Centralized control for tracking.

— Decentralized control for tracking. Two MPC for tracking are used,stmme as in
the previous case, but applied to each subsystem. The pairing predeztureen thd
inputs is done based on the Relative Gain Array. Two examples are dumwiith the
correct pairing, and the second with the wrong one.

» Regulation controller. To perform the reference changes, onedlentfor each referenc
is designed.

— Centralized control.
— Distributed control Distributed MPC based on a cooperative game

Finally, the last exercise is related to the electrical power system benchandris describe
in Chapter 5. A centralized MPC is formulated for the control of generatiitsu Due to
different time scale of machines dynamics, a two levels time-response-hasacthical structur
is proposed. The proposed control structure involves the interactiongthe centralized MP
and classical voltage and speed regulators.
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Chapter 1

Decentralized Kalman filters for the
heated plate

1.1 Introduction

This chapter presents a comparison of various decentralized Kalmantbltessmate the discretized
states of the heated plate, which is one of the benchmarks within HD-MPCpackage WP6. There
are seven methods that are being compared, they are:

. Centralized Kalman filter (CKF),
. Parallel information filter (PIF),

. Decentralized information filter (DIF),

. Distributed Kalman filter with weighted averaging (DKFWA),

1

2

3

4. Decoupled hierarchical Kalman filter (DHKF),

5

6. Distributed Kalman filter with consensus filters (DKFCF),
7

. Distributed Kalman filter with bipartite fusion graphs (DKFBFG).

This chapter is organized as follows. In Secfiod 1.2 we give a concisgieweof the seven decen-
tralized Kalman filters considered in the comparison. Next, we briefly prélserset-up and model
of the heated plate in Sectibn1l.3. The results of the simulations are then gBeatiorl T.#. Section
[1.3 concludes the chapter.

1.2 Short overview of the decentralized Kalman filter methods

We will first briefly describe the methods that will be applied in the compari&org more extensive
description and details the interested reader is referred to the referatextbelow.

Given a linear system and its measurement model and a set of noisy nmasudata from the
system, &Kalman filter[6] computes the best estimate of the states for the system. Kalman filters are
widely used in many areas of engineering. There are two types of the Kdilteast the continuous-
time Kalman filter and the discrete-time Kalman filter. In this chapter the term Kalmarnréfens to
the discrete-time version.
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In the Kalman filter the measurements can be obtained from several semisiois form together
a sensor network. Each sensor node in the network can measure edtlsantk states or different
ones. For our application, we are interested in the second case. Tharemasts from all sensors at
discrete time instark can be collected into a measurement matrix and used to compute the estimate.
In this case, the method is called the Centralized Kalman Filter (CKF). This is tbmairform
introduced in|[6].

The Kalman filter has a variant which is called the information filter. The informdiiter is also
often be used in decentralized applications. In the information filter the estiav@esmputed based
on the information update which can be determined in a decentralized wag Rathllel Information
Filter (PIF) proposed by Speyér [11], each sensor node has thal glggdiem model and computes the
whole state of the system or the global state. The estimates from the indivioldes are then sent
to a central processor to be summed stochastically with the estimates from theaathe in order to
obtain the fused estimates.

The Decentralized Information Filter (DIF) was proposed by Rao andadtiwhyte [10]. In a
similar way as in the PIF, each sensor node in the DIF also estimates the ghibalEhis method
was derived by decentralizing the information update computation of theatieatt approach to all
sensor nodes. By this approach, the estimation errors of the DIF ar@ngeed to be equal to the ones
obtained by centralized approach, provided that the sensor nodai @anected.

In the Decoupled Hierarchical Kalman Filter (DHKE) [4, 3], each semsate has only a part of
the global system model. This also means that each node only computesttipaiglobal state. The
estimate is then communicated to the other nodes so that all nodes have thegitehal

The Distributed Kalman Filter with Weighted Averaging (DKFWA) was proposgdilriksson
and Rantzer [1]. Similarly to the DIF, each node in the DKFWA also estimatedabalgstate. The
difference is that in the DKFWA the Kalman gain is computed only once at thimtieg and used
for the estimation process. In this way, the computation load at each nodiceck

The Distributed Kalman Filter with Consensus Filters (DKFCF) was propogé&ifhti-Saber([9].
Basically this method is the same as the DIF but with an additional consensu$nstiee consensus
step, each node exchanges information with its neighbors so as to equelestithates.

The Distributed Kalman Filter with Bipartite Fusion Graphs (DKFBFG) propdse&ahn and
Moura [7] divides the network into some connected partitions, each ofhwdan contain one or more
sensors. In each partition, the global state is divided into two parts: the esdiretates and the
unestimated states. The unestimated states that are needed to compute the estiteatade then
obtained from the other partitions.

1.3 Heated plate model and simulation set-up

The model of the heated plate can be expressed as a two-dimensionatttemdnodel. Such models
can be found in standard text books about heat transfer and canittemas follows[[5] B]:
AT 1 [ 02T  9°T  Qi(xyt)
ot oG [ TH e T K ’

(1.1)

whereT is the temperature of the plaie the density of the plat&, the heat capacity per unit mass,
K the thermal conductivityQ; the heater power per unit area, andndy are spatial coordinates of
length and width respectively, amdis a constant. ThK is used to take into account the effect of the
spatial discretization.
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4 (23) (3.3)

(L) EXVENNEET
Figure 1.1: Example of the segmentation of the plate for spatial discretization.
For transient analysis it is necessary to have boundary condition@uF@roblem, we use con-

vective boundary conditions, which are modeled as Robin or third-kinchdery conditions. The
model [1.1) with convective boundary conditions can be writtenlds [5, 8]

OT 1 [ 02T 92T Qs(xy,t) h
F G, K(?XZ +K(9y2 + K +K(Tenv_T) ) (1.2)

whereTgny is the temperature of the environment dnid the convection coefficient.

To simulate the heated plate, we use a state space model that is discretizeceirmaspdime.
Firstly, the model[(T1]2) is discretized spatially by taking sample points of the pigteegular dis-
tance. The temperature at the sample points is taken as the discretized stetplateh\We refer to
the sample points as nodes.

The spatial discretization results a set of ordinary differential equatiOid¥=€) in which each
ODE corresponds to a node. The nodes are indexed as shown [n_Fig\dtd that in the spatial
discretization it is important to take into account the numbering or order ofddles In our case the
node(i, j) is assigned a numbérccording to the following relation

l=(—1)-N+j, (1.3)

whereN; is the number of nodes in each columnFor example, in Fig_1l1 node (1,3) has node
number 3 and node (3,1) has node number 7.
The states of the plate are defined as

Xg(t) = T1,1)(t) Xa(t) = T2,1)(t) x7(t) = Tz 1)(t)
() =Taat)  xs(t) =Tz t)  Xs(t) =Tzt
x3(t) = Ti13)(t) Xs(t) = Ti2.3)(t) Xo(t) = Tiz3)(t) -

Using these states definition, the system equation can be written as

= 4 H

ded)il_<_AKx_AKy_|2>xl+Ayx 2 Ax X4+<Qsé )+KTGHV> (1.4)
pcpdt:(A’;)ZX1+(_AKx_(A2;/<)2+E) +(A’§/) X3+&x +<Qsé )+KTenv> (1.5)
Pded)f _A%X2+ (_A’<X+Af<y_ E)waXxw (Qsé )4 KTenv) (1.6)
Pcpﬁz (A’)(()ZXH (—(2)':)2—&—2)&+A';X5+MX7+ (Qsé )+KTem,) (1.7)
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7—LX + _27K_27K_7 X5 -+ K +—
Pt~ (&%) (Ay)zx4 D2 (ay2 K)oy e ax2 e
5 h
’ (Qsé = KTenv) (18)
de _ K o K (-2 Kk N 0x(6)
P~ a2 Ayx5+< &2 " By K) 2X9+( + T) (1.9)
dx K K K h
Pog = AXX4+<AXAyK>X7+AyX8+< > (1.10)
e __ K, K2 h Q(8)
P =B 7+<Ax (@y)? K) X9+( i T) (1.11)
d K K K 2K Qs()
pCpan)(XGA)/X”(AX*AyK)Xﬁ( K +KTenv , (1.12)

whereQ(i) is the heat input at node In matrix form, the continuous time state equations above can
be written as

X = Ax+Bu
where
_k _k _h Le 0
Ax Ay K Ay
K K 2 + h K
(ay)? Ax (ay)2 T K (By)?
0 _k _k Kk _h
Ay Ax " Ay K
K
N B2 0 0
—_— K
Cy 0 0N 0
0 0 B2
0 0 0
0 0 0
0 0 0
£ 0 0
0 Ax 0
0 0 ﬁ
— 2k _h Le 0
(ax)2 Ay K Ay
K _ 2k __ 2k __ h K
(By)? (&% (ay)?2 K (By)?
0 _k _ 2k 4 kK _h
Ay &2 " Ay K
K
— A% OK 0
0 —Ax 0
0 0 —AK—X
0 0 0
0 0 0
B 0 0
0 B2 0
K ’
0 0 B2
K _ Kk _h K 0
A Ay K Ay
_k K _ 2k _ h K
(Dy)? Ax  (ay? K (Azy)2 h
K K K
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Figure 1.2: Plate set-up for the simulations.
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The input matrixB above assumes a heat source at each ndideremove the heater at notee can
just set the element &8 which corresponds tQs(i) to zero. The continuous-time state model above
can be discretized using available discretization approaches like z#zo+wld.

The heated plate used for the simulations is a 1 m by 1.5 m plate that is discret@edls into
a 10-by-15 grid in the same way as in the example above. The model of théih@ate is then dis-
cretized in time using a zero-order hold approach with a sampling period efdh@& simulated for 20
min. The plate is heated in node (8,6). Six sensors are placed in nodg8333)(3,13), (8,3), (8,8),
and (8,13) to measure the temperature at those nodes. The other pasafidtesimulated states are
listed in Tablé_T1. Anillustration of the plate set-up is shown in[Eid. 1.2. In thedfjghe connection
between two sensors means they can share information to each otherorfteztion topology of
the network is represented by the Laplacian ma#ixThe LaplacianZ for the simulation set-up as

shown in Fig[1.PR is

1 -05 -05 O 0 0
-05 1 0O -05 O 0
-05 O 1 -05 -05 O

0 -05 -05 1 0 -05

0 0O -05 O 1 -05

0 0 0O -05 -05 1

&= (1.13)

To simulate the decentralized Kalman filters in this setup, it is necessary to mergisysiem
model that is used in each sensor node. In the network, each senkoha® its own system model.
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Table 1.1: The parameters of the simulated plate used for the simulations.

| Parameters | Notations| Values | Units |
Density of the plate o 2700 | [kg/m3]
Thermal conductivity K 300 [W/m-K]
Heat capacity per area unit  C, 150 [J/K-kg]
Power of the heaters Qs 7200 | [W/m?]
Convection coefficient h 10 [W/m?.K]
Environment temperature Tenv 298 K]
Constant K 0.0067 | [m]

Table 1.2: Connectivity of the nodes in the various estimation methods.

| Methods | Connectivity \

PIF All nodes are connected to central processor
DHKF All nodes are neighbors to the others
DIF All nodes are neighbors to the others

DKFCF | Using Laplacian matrix
DKFBFG | Unestimated states are accessible
DKFWA | Using Laplacian matrix

The system model in a node can be the same or different from that of thes@hd it depends on
the estimation methods. However, the measurement matrix in each node isndiffere one to the
other, namely each node measures only the state on which it is located ontéhe pla

Not all of the decentralized Kalman filters use the topology of the network in¢dbeputations.
The methods that explicitly use the Laplacian matrix are the DIF, DKFCF, anBVidX For the
PIF, the most important assumption is that all nodes are connected to thal peotessor where the
estimates of the nodes are added up stochastically. The DHKF also dagseribe Laplacian matrix.
Since the estimates are computed separately in each node, then it is assunoetbthere connected
to communicate the estimates. In other words, all nodes are neighbors to éns. ofithe DIF is
originally derived with the assumption that all nodes are neighbors to thesofft@s means there are
no zero elements in the Laplacian matrix. In the simulation we do not use the dbaggwmnption and
use the connectivity based dn (1.13) instead. As a result we expethéhatror of the DIF will be
higher. The DKFBFG also does not use the Laplacian matrix in the computabisiris assumes that
the unestimated states are accessible from the other nodes. Sele Tabieak@rfunary.

1.4 Simulation results

The temperature profile of the plate at the end of simulation time is shown i Hignd tBa estima-
tion errors, also at the end of simulation time, of all the compared methodsawe snFigs[1.b and
[1.8. The estimation errors of the states are plotted for each row for claaispme In the figures, the
sensor locations are marked with the letter 's’ in ¥haxis. We also present the estimation errors of
the DKFBFG separately since they are much larger than that of the otherdsethading the errors
of the DKFBFG to the same plot as the others would make the errors of thenotileods less visible.
Fig.[1.4 shows the estimation error of the DIF at node 2 as a function of tbeetidime stej.

From the estimation errors plots, we can see that the estimation errors of atidaette com-
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Figure 1.3: Temperature profile at the end of the simulation.
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parable and also have a similar tendency. In general, the DKFCF and tK& DiMe smaller errors
compared to the others. But the DHKF yields more variations than the DKFE$ diee to the con-
sensus process, which tries to equalize the estimates of the nodes.

Interestingly for all methods except the DKFBFG, it seems that the errermaer at the mea-
surement point. We can see this in Hig._1.5c[and]1.6b at state index 3, 8 .aftldse locations are
the locations of the sensor nodes. For the DKFBFG however, the @m®farger for larger indices.
But it can be seen that the errors are smaller at the sensor nodesgys€E T an@ 1.8b. It is still an
open question why this is happening. One possible direction of explanatidd maybe be found in
the way the information from the neighbors is collected and added to obtaivéhalcstate.

1.5 Summary

In this chapter we have compared several decentralized Kalman filtevaaghy@s using the heated
plate as benchmark. In general, the DKFCF and the DHKF gives the snaltest. Of these two,
the DHKF yields more variation than the DKFCF.
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Figure 1.5: The estimation errors in rop= 1 to j = 6 for all methods except the DKFBFG at time
stepk = 6000. In subfigure (c) the sensor positions are indicated by the lettethe oraxis.
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Figure 1.6: The estimation errors in rgw= 7 to j = 10 for all methods except the DKFBFG at time
stepk = 6000. In subfigure (b) the sensor positions are indicated by the lettethe oraxis.
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Figure 1.7: The estimation errors in roj= 1 to j = 6 for the DKFBFG at time steg = 6000. In
subfigure (c) the sensor positions are indicated by the letter s on the.x-axis
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Figure 1.8: The estimation errors in rope= 7 to j = 10 for the DKFBFG at time stek= 6000. In
subfigure (b) the sensor positions are indicated by the letter s on the.x-axis
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Chapter 2

A distributed state estimation scheme
applied to the heat conduction and
convection benchmark

In this Section, a distributed state estimation scheme (DDKF-Distributed anch&ceed Kalman
Filter) based on the contribution ¢f [29] is applied to one of the proposedhmearks|[4B]. An exten-
sion to spatially-distributed systems is proposed. This DDKF is originally ¢eades a counterpart
of a DKF (Decentralized Kalman Filter) which is a set of fully decentralizedr§ilgich that they
estimate the whole dynamics at each node.

If the DDKF scheme is seen as it was proposed in [48], the first stepst@amshoosing a set of com-
putational nodes such that each resulting local filter achieves a locht{ioa and at the same time
the communication among nodes does not become a bottleneck for the estimagiores©nce the
computational nodes are defined, the following step deals with finding thedadalrtransformations
such that each local model can be derived from the centralized one.

Hence, the DDKF online computations are performed as the classic Kalmardikeliction step, and
estimation step. However, these computations must be made taking into acelacairestimation,
internodal communication, and assimilation in order to produce a right estimaig@aclanode.

2.1 Prediction step

Consider a linear state-space model for the whole large-scale system as:

pas
—~~

=
N~—

I

F(K)x(k— 1) + B(k)u(k — 1) + w(k— 1)

(2.1)
z(k) = H (k)x(k) + v(k)

wherex € 0" is the system stat&, € """ is the transition matrix@ € 0"™™M is the input matrixuy €

[0™Mis the input vector andl € 1" is the state uncertainty vector. Moreoveg [P is the observation

vector,H € [0"*P is the observation matrix ande [IP is the measurement noise.
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The prediction of the state and error covariance is performed at eaeh ae in the classic Kalman
filter using reduced models. Hence, the state and covariance prediaiobg computed as follows:

% (Kk— 1) = R (k)R (k— 2k — 1) + Bi(K)ui (k— 1)

; (2.2)
R(kk—1) =FR(kR(k-1k-1)F" (k) +Qi(k)

whereQ is the covariance matrix associated with the state uncertainty.

2.2 Estimation step

Once the prediction step is performed, the interconnected nodes sendtéteiestimations of the
neighbor nodes based on its own local measurements. Also the erroiaoaesand state estimation
of each node due only to its sensor information must be computed and Igrdis¢ributed. Finally,
when the estimation is exchanged, each node must assimilate the receivedi@ssinmaorder to
perform the local estimation.

Consider the error covariance and state estimation of ndde to the information of each neighbor
node as:

R(Kizj(k)) = Ti(K)[T}" (WP} (kizj (k) Tj (K] T (k)
%i(klzj(k)) = Vii (k)% (Kzj (k)

whereR (k|zj(k)) is the error covariance at nodéue only to the information concerned to senjor
Ti, andT; are transformation matrices, aﬁ’gj(k|zj(k)) is the Moore-Penrose generalized inverse of
the error covariance at nogelue only to the availability of the information provided by the serjsor
Note that(-)" is referred as the Moore-Penrose generalized inverse [29]. Fdlly is an internodal
transformation matrix defined as:

(2.3)

Vii(k) = Ti(K)T;" (k) (2.4)

Then, assuming only orthonormal transformation matrices, the errorianeas and state estimation
of each node due to its local information can be defined as:

Py (Kizj(k) = [HTRIH]]
%4 (kizj(K)) = Py (Kizi(k)) [HT R | 2 (k)

Once the communications are performed, the assimilation procedure takesapldlee following
equations:

(2.5)

N

Ri(klk) = [Pil(k!k— D+ Y Ri(kizj(k))

=

N (2.6)
%i (klk) = (k\k){ (klk—1)%i(klk—1) + ZF’*k\ZJ )Xi( k!ZJ())}}
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Figure 2.1: A Rod. One dimensional heat exchange.

2.3 A note on the application of the DDKF on spatially distributed sys-
tems

The methodology presented in [48], [37], and|[28] is mainly focused ayetacale systems which
are not distributed in space. The heuristic procedure for the partitioneofatiye-scale system in
a given number of subsystems uses a separation of the state variablestatés ‘Of interest” and
“overlapping” states. States of interest are those present at eaglanddvhich are not communicated
to other node(s). Instead overlapping states are communicated to otlegsniodorder to calculate
their own local estimates. Consider a partition of the rod into two rods as itvarsimoFig.[2.1. There
is no explicit relationship between the subsystem one and two. Then thaatmrdand convection
phenomena in one side can not be seen in the other side. This deficiemeydaroe adding to the
prediction model of each node the term associated to the interaction betweEssistems:

%i(k) = Fi(k)%i(k— 1) + Bi(K)ui(k— 1) +-wi(k— 1)

N 2.7
+ 3 Al (k-1 &7
=

whereN,; is the number of interacting nodes, aidk) with j = 1,...,N; the interaction matrices.

2.4 Simulation results

In order to test the modified DDKF formulation for the Heat Conduction andv€ction System,
the following parameters and assumptions are used in order to perforrmthkatsons: First, it is
assumed a solid rod of aluminum whose parameters are presented in ¥®tod is inside a room
with a given environment temperature of 2a8The length of the rod isr, and 20 partitions are
considered. Then a state-space model composed by 20 states is obthiseksumed only mea-
surements from partitions 5 and 15. These measurements are corrupteddéopoise with unknown
standard deviation. On the other hand two heated points are assumed indide al points 5, and 15
as manipulated variables. The continuous time system is discretized with a satimpéireg Ts = 0.1s.
The discrete time matrices do not change their sparse structure and théstribettbn process can
be applied.
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Temperature in the Rod
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Figure 2.2: Dynamic response of the plant

As there is a spatially distributed system, the methodology presented|in [48lotdoe applied di-

rectly to make a partition of the system. In this case two nodes of 10 partitiorzsswened due to
the available sensors, that is, there is a node from the beginning to thedrittop and the other
from this partition to the end of the rod. It can be easily demonstrated thab8e\a@bility of each

subsystem is guaranteed even if there is only one temperature senachatogle. The control ac-
tions are distributed in the same way. The original and the extended algoriterap@ied to show

the deficiency of the first one with respect to spatially-distributed systems.

As statistical parameters of the observers it is considered a model untgetavariance ofQ; =

Q2 = 0.05% In/z, and a noise covariance Bf = R, = 100, where the subindex 1 and 2 correspond to
each node, anly , is the identity matrix of orden/2, with n the global number of states. The initial
conditions of the observer and the controller are set to be a random nantlbed the environment
temperature.

Consider the temperature profile of the rod as it is shown in[Eig. 2.2. Theiplarcited by means
of the heaters applying step inputs. The estimated profile of temperaturetiisibgdly conditioned
observer is shown in Fi§.2.3. The bad estimation is caused at each ndhe lack of important
information as it was stated in Section IV. The complete estimate, using the modifieeldpre is
fused and it is shown in the Fif._2.4, where an improved estimation is achiéleslbehavior of
the distributed observers are shown in [Fig] 2.5. Note the good perfoenwdribe filters even with
measurement noise.

As it can be seen from Figs._2.2 ahd]2.4 the modified DDKF tackles the estimatiblem in a
distributed procedure, filtering the measurement noise and reaching gleddperformance. The
error in the estimate can be seen in Figl 2.6. The bad estimation at the begihtiiegsnulation is
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Estim. Temperature in the Rod (distributed filter)
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Figure 2.3: Distributed Observer, complete reconstruction of the systéen(aiizh the original pro-
cedure)

Temperature estimation in the Rod (distributed filter)
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Figure 2.4: Distributed Observer. Complete reconstruction of the systéen(gtacedure with modi-
fications)
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Temperature estimation in the first Rod Temperature estimation in the second Rod
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Figure 2.5: Distributed Behavior of the Observer

due to the different initial conditions. Hence, the errors are lower tiaim B2K, showing the good
performance of the designed scheme.

2.5 About disturbance rejection

In this section, the observer performance under disturbances is studied

2.5.1 Additive disturbances

Consider an additive disturbance to the plant input. The disturbancestsimsa variation of the 10%
of the input at 5008 The plant and the observer responses are shown if Flg. 2[7 and Eig.[P.9
the estimation error is shown. Notice an error fluctuating betwéerartd 1X, that is, a maximal
error of approximately 4%.

2.5.2 Structural disturbances

Structural or model disturbances deal with inaccuracies on the state mibdekind of disturbances

are simulated as an added term to the state equation (in this case is a term whiasrtiaprediction
model in the prediction step). This term is a white noise with an unknown meacavagiance.
This kind of disturbance is quite important for two reasons: the modeling umacies are taken into
account with this term, and second it can emulate some error in the communidapoms stated
before, any inaccuracy in the communication step meaningfully deterioragstimeation process.

A set of simulations are made with a set of white noises added to the obsergietsm&etting the
covariances with a magnitude ofl0of the random value the estimation task becomes inaccurate. The
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Estimation Error (distributed filter)
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Figure 2.6: Distributed behavior of the Observer
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Figure 2.7: Plant response
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Estim. Temperature in the Rod (distributed filter)
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Figure 2.8: Observer response
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Figure 2.9: Estimation Error
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Temperature estimation in the Rod (distributed filter)
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Figure 2.10: Observer response with a model uncertainty.

estimation response and the estimation error with this covariances can be 5egsi2.10 and@2.11.
Note that the largest error is aboutklLEhat produces an estimation error of 5%.

2.5.3 Noise filtering

In this subsection the noise tolerance of the filtering scheme is tested. Thetsimplrformed to

test the distributed filter performance was made considering a Gaussianrereast noise with zero
mean and a covariance of one. Simulations were performed with covasi@nge= Cnz = 10 for
each noise respectively, with similar results as presented before. @haempractical noise whose
covariances ar€y; = Cn2 = 100 are applied. Notice, although the noise magnitude is high, the filter
was designed to overcome this kind of noises. In Higs]2.12 anél 2.13, skevebresponse and the
observation error are shown. The last Figure shows an errd¢ @i 805K, or in other words an error

of 1.31% of observation.
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Figure 2.11: Observer Error with a model uncertainty
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Figure 2.12: Observer response when a Gaussian nois€pith Cyo = 10
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Estimation Error (distributed filter)
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Figure 2.13: Observer Error when a Gaussian noise @gth= Cn2 = 10
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Chapter 3

A distributed model predictive control
formulation

Consider a system with subsystems, where each of them is influenced by other subsystems. Then
the linear approximation to each subsystem is given by:

(K 1:n...k Biiui (K
Xi(k+1) ;l[AuXJ( )+ Bijuj (K)] (3.1)

Vi (k) = CiXi(k) + Dy, (k)
wherex; € R, u; € R™, i =1,2,...,n, beingk the sample time. In this Equatiof(k) is the current

state,y; (k) is the outputy;(k) is the input at nodé, A;j, andB;; the interaction matrices. From the
subsystems representation {3.1), the model of the whole system becomes

X(k+ 1) = Ax(k) + Bu(k)
y(k) = Cx(k) 4 Du(k)
whereA = [A;, Ay, ..., A)", B=[B1,By,...,By|",C=[C1,Cp,...,Cq|T, D = [D1,Dp,...,Dp], being

A = [A1,A2, ..., Anl, B = [Bi1,Biz,...,Bin]. Based on the model of the whole systdm1(3.2), the
formulation of the model predictive control in a centralized fashion carrégsepted as:

(3.2)

mindx(k). u(k)

st x(k+1) = Ax(k) + Bu(k) (3.3)
y(k) = Cx(k) + Du(k)
operational constraints

Commonly, it is used as cost functidf.) the following quadratic expression:

Np
J[x(kt), u(k,t)] = Z)[Yref(k+t+ 1) —y(k+t+1)] Qlyrer (k-+t-+1) —y(k+t+1)]
= (3.4)

+ti[u(k+t)TRu(k+t)]
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whereN,, N, € 0 are the prediction and control horizons respectiidly> Ny, Yret € 0P is the output
of the system, an@,R > 0.
Taking into account each subsystem mof@dell(3.1), the quadratic casioiuf3.4) becomes:

n

J[x(k), u(k)] = ;[mei(k,t),ui(k,t))} (3.5)
with 3% (k,t), Ui (k. t)] = S%Virer (Kt +1) — yi(k -+t + 1)]TQilyirer (k+t + 1) — yi(k+t +1)] +
5 s lui (K+ ) TR (k+1)].

Since the global cost function can be decomposed as the sum of lotdlieosons, then the cen-
tralized model predictive control problem can be solved as a sum of ditgdlones. Thus model
predictive control can be written as:

[P(ikr)\ii.li (K, t), Ui (K, t)]

stix(k+t+1) = Z [Ainj(k+t)+BijUj(k+t)] (3.6)
=1
Vi(k+1t) =Cix(k+t) +Djui(k+1t)
operational constraints

3.1 Simulation results

Now, in order to test the combined DDKF and DMPC formulation for the HeatdDotion and
Convection System, the following parameters and assumptions are useditoopérform the simu-
lations: the system is controlled in a constant set point oK3@Hve heated points are assumed inside
the bar at points 1, 5, 10, 15, and 20 as manipulated variables. Thelmmtomsiders the follow-

ing constraint on the manipulated variables:<{(@; < 2000/ /m?). The continuous time system is
discretized with a sampling time @t = 0.1s. The discrete time matrices do not change their sparse
structure and then the distribution process can be applied.

The designed DMPC are composed by two local MPC Wigh= 20, andH. = 2, whereH,, andHc
are the prediction and control horizons respectively. As it was pointédconstraints are imposed
over the control actions.

The temperature profile of the rod can be seen in[Eig. 3.1. Notice that therttomees controlled
around the set point at those points in which there is a heater. The figoune shat the temperature
goes down between two nodes caused by the heat transferred to trenemant by means of the
convection phenomenon. On the other hand, [Fid. 3.2 shows the contrifermpance assuming all
the states are measured without noise. Note that the performance with aodtwibiserver becomes
indistinguishable, even with measurement noise.

The behavior of each observer is shown in Flgs] 3.3[and 3.4, and thdeteropserver in Fig_3l5.
Note, the performance of the filters even with measurement noise. Oncketsetfas their estimate,
they are used by the DMPC to find the control that minimizes the proposetlioctibn. The applied
control actions are shown in Fig._8.6. In these figures the control aatfoesch local controller are
presented. Note that the constraints of the control inputs are satisfied.
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Figure 3.1: Controlled plant with observer. Measures with noise.
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Figure 3.2: Controlled plant assuming that all the states are measuredurgleathout noise.
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Figure 3.3: Observer behavior of the node one
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Figure 3.4: Observer behavior of the node two
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Figure 3.5: Distributed Observer (complete reconstruction of the systée) sta
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Figure 3.6: Control Actions at each node executed by the DMPC. Eabh Imas one heater as it is

presented
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3.2 About this implementation

A distributed estimation procedure is applied to a benchmark case due to its enapfiication and
its reported results. Itis also shown that the scheme is able to estimate the stage-sckle systems
with explicitly interaction. When this procedure is applied to a spatially distribugetem, there is
certain missing information that hinders the local and hence the global penfice of the estimation
scheme. In this paper a modification to the selected scheme is proposeddonosehe discussed
drawback and then it is demonstrated in simulation by means of an examplezsttis show a good
performance of the distributed filters, even if the available measurementsraupted by noise. A
gualitative analysis is made to different kind of disturbances: structachhdditive to the input. As
future work, there is a need to extrapolate the linear results on distribusedvalos to the nonlinear
framework, using the tools as the unscented transformation or particle fteosg others. Moreover,
computational and communication issues must be discussed in those stratedidse approach to
the centralized optimal as it has been published in the linear case.

In this work a coupled estimation and control system is tested in simulation in allypais&ibuted
system (benchmark system). It can be seen that the global estimation ranal pooblem can be
partitioned in a lower number of subsystems without loss of system perfoanéiis is due to the
fact that the global cost function can be decomposed in several nuhloeal cost functions. It was
also shown that the controller hold its global optimality once the problem is paditioNloreover,
the modified DDKF was able to tackle the global estimation problem leading to theoltenan
acceptable performance based on the noisy information available.
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Part Il

Four-tanks system benchmark
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Chapter 4

Control schemas applied to the
four-tanks real plant

4.1 Introduction

The four tanks plant is a multivariable laboratory plant of interconnectdataith nonlinear dynam-
ics and subject to state and input constraints. One important property pfahiss that the dynamics
present multivariable transmission zeros which can be located in the rigtitside of thes plane for
some operating conditions. This plant is based on the well known quaelankerocess [12], and its
scheme can be seen in Hig.]4.1(a). In the original plant, the inputs areltagesof the two pumps
and the outputs are the water levels in the lower two tanks.[Eiy. 4.1(b) shewstieme of the real
plant. The main difference is that a control valve regulates the inlet flomaf &ank. The three-way
valve ratio is imposed by a suitable choice of the references of the flows.

- I Flowneter
"’:1: /% 71} {354 Pneumatic control valve
‘%7‘ ‘%7‘ B Xt Duttet cantrol Volve
2K veuve
o z [
L 7 @Pump
h / " {>WQ} Recirculation volve
A
2 v AR
g ? T 7 iy V—W Fill up yater system

(@)

Figure 4.1: (a) Scheme of the quadruple tank process, (b) schemerefti@ant and (c) picture of
the real plant.

A state space continuous time model of the quadruple tank process sy&poaiilbe derived
from first principles as follows
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% = —:—i 29h1+2—j 29ha+Aqua (4.1)
% —2—2 Zgh2+% 29?’\4-1-%;%

% = —%z 29h3+(1;3VD)Qb

= aghe g,

The estimated parameters of the real plant and the considered intervelmigEile variation of
the levels and flows are shown in the following table:

] | Value | Unit | Description \

H1imax 1.36 m Maximum level of the tank 1
Homax 1.36 m Maximum level of the tank 2
H3smax 1.30 m Maximum level of the tank 3
Hamax 1.30 m Maximum level of the tank 4
Hmin 0.2 m Minimum level in all cases

Qamax| 3.26 | m®/h | Maximal flow of pump 'a’
Qomax | 4.00 | m¥/h | Maximal flow of pump 'b’

Qmin 0 m?/h | Minimal flow of both pumps
Q? 1.63 | m*/h | Equilibrium flow

QP 2.00 | m*/h | Equilibrium flow

a 1.310e-4| n? Discharge constant of tank 1
a 1.507e-4| n? Discharge constant of tank 2
as 9.267e-5| n? Discharge constant of tank 3
a 8.816e-5| n? Discharge constant of tank 4
A 0.06 | m? | Cross-section of all tanks

Va 0.3 Parameter of the 3-ways valve
Vb 0.4 Parameter of the 3-ways valve
h? 0.6534 | m Equilibrium level of tank 1

h9 0.6521 | m Equilibrium level of tank 2

hd 0.6594 | m Equilibrium level of tank 3

h9 0.6587 | m Equilibrium level of tank 4

Tm 5 S Sample time

The minimum level of the tanks has been taken greater than zero to prednefects in the
discharge of the tank. The values yfand y, have been chosen in order to obtain a system with
non-minimum phase multivariable zeros.

Linearizing the model at an operating point giveniyand defining the deviation variablgs=
hi —h anduj = q; —d wherej =a,bandi =1,--- ,4 we have:

-1 A Ya
o O an O Ao D
dx oo 0 gkl 0 R
dt ~— | o 0o £ 0 o L "
O 0O O %41 (1;4)’&) 0

Page 3875




HD-MPC ICT-223854 Report on implementation for selected beohmarks

_[100 0]
Y= 10100

0
wherert; = g\/% >0,i=1,---,4, are the time constants of each tank.

The main sources of deviation between the nonlinear model and the red@di) the lineariza-
tion error; (ii) the hypothesis that parameteysdo not depend on the levels of the tank; (iii) the
actuator dynamics since the modeled input to the plant is the reference dittied® controls the
flow of each pipe.

4.1.1 Control configurations
Four different control configurations are going to be used that cgndagoed in two classes:
» Tracking Control. Control that allow changes in the reference.

— Centralized control for tracking. In this case the control decides botrsfind reads all
the variables of the process. The used controller is a Centralized MR@ad¢&ing [13].

Y1

u1

y
A

Subsystem 1

A

MPC

\

> Subsystem 2

uz

Y2

Figure 4.2: Centralized Control.

— Decentralized control for tracking. Two MPC for tracking are used,stm@e as in the
previous case, but applied to each subsystem. The pairing procestureelm the inputs
is done based on the Relative Gain Array. Two examples are done, ontheritiorrect
pairing, and the second with the wrong one.

» Regulation controller. To perform the reference changes, Oneatlentfor each reference is
designed.
— Centralized control.
— Distributed control Distributed MPC based on a cooperative gafhé]
In a future work, a distributed controller for tracking will be developed,andecentralized MPC

controller for regulation will be implemented over the plant to compare the pegioce with the
distributed and centralized schemes.
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Figure 4.3: Decentralized Control.
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Figure 4.4: Distributed Control.

4.1.2 Benchmark

Four reference changes are performed during the benchmarkragpér These references are chosen
from the available set of references provided by the Centralized MPigaftking. The references are
the following:

« ref; =[0.65;065]. The first reference is provided to setup the plant at the working point.
« ref, =[0.30;030]. This reference is close to lower limit of the levels of the plant.

» ref; = [0.50;075. This reference is provided to perform the following change of setpoint
(where only one reference level is changed).

* ref, =[0.90;0.75. To perform this change the tank 3 and 4 have to be emptied and filled.

The performance criterion is the integral of the square error of the ta§#ti.

SEl= /Otf ((ha(7) = har(1))? + (ha(T) — har (7)) ?)dT
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Figure 4.5: References.

4.2 Centralized MPC for tracking

In this section we present the MPC for tracking proposed_ih [13].

Notation: vector(x,t,r) denotegx’,t7,rT]T; for a givenA, AX = {Ax: x € X}; int(X) denotes
the interior of sefX; a matrixT definite positive is denoted & > 0 andT > P denotes thal —
P> 0. For a given symmetric matri® > 0, ||x|[p denotes the weighted Euclidean normxofi.e.
[IXllp = VXTPx. Matrix O, m € IR™™ denotes a matrix of zeros. Consigee IR™, b € IR™, and set
I C IR"*™ then projection operation is definedR®j,(M) = {a€ IR™:Jbe IR™, (a,b) e '},

Let a discrete-time linear system be described by:

xt = Ax+Bu

y = Cx+Du (4.2)

wherex € IR" is the current state of the systemg IR™ is the current inputy € IRP is the current
output andk™ is the successor state. The state of the system and the control input apsizedpling
timek are denoted ag k) andu(k) respectively. The system is subject to hard constraints on state and
control:

(x(k),uk) ez = {ze R™M:Az<b,},vk>0 (4.3)

where the seZ is a compact convex polyhedron containing the origin in its interior.
The problem we consider is the design of an MPC controller to track a presseconstant se-
qguence of set points or referencgk) in such a way that the constraints are satisfied at all times.

Characterization of the steady states

Consider the nominal model of the plaht {4.2) subject to the constraints oothi@al state and input
given by [4.8). Every nominal steady state and irmut (X, Us) is a solution of the equation

[A=In B] [ - } =0On1 (4.4)

S
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and hence it is an element of the null space of the linear transformation ywenatrix [A— I, B].
Since itis assumed théA, B) is controllable, the dimension of this null space is equahtdherefore,
there exists a matriklg € IR™™*M sych that every nominal steady state and input can be posed as

Zs = Mgb (4.5)
for certain@ € IR™. The subspace of nominal steady outputs is then given by
Ys = Ngb (4.6)

whereNy = [C D]Mg.
The existence of constrainfs (4.3) limits the set of admissible nominal steadyaateputs and
the set of admissible nominal controlled variables, which are given by

Zs
s

{(Xs, Us> S g (A_ In)Xs+ BUS - On7l}
{Cx+Dus: (xs,Us) € Zs}

1>

Invariant set for tracking

Consider that the nominal systen {4.2) is controlled by the following control la
u=K(X—Xxs)+Us=Kx+L6O 4.7)

whereL = [—K In]Mg. If K is such that matriA+ BK is Hurwitz then this control law steers the
system to the steady state and infx us) = Mg6. The existence of constraints limits the set of
initial states and steady states and inputs that can admissibly be stabilized atikisd¢he following
definition.

Definition 1 (Invariant set for tracking) An invariant set for tracking is the set of initial states and
steady states and inputs (characterized®)yhat can be stabilized by the control lalw (¥.7) fulfilling
the constraint§4.3) throughout its evolution.

This set can be computed as an admissible invariant set for the augmemmh@é (x,0) €
IR™™, Then the closed-loop system can be posed as:

ﬁ: [ Aﬁf’f o] [ﬁl @8
Xa Aa Xa

subject to the set of constrainfs (4.3), that can be posed as
22={=(x,0): (x,Kx+L6O) e 2 Mgbec 2}

SetQﬁK C 2% is an admissible invariant set for tracking, for systéml(4.8) constraineti ¥p
if ALQE C QF and QP C 272, See that for anyx(0), 0) € Qf, the trajectory of the systen(i +
1) = Ax(i) + Bu(i) controlled byu(i) = Kx(i) + L8 is confined inQ; x = Projx(QﬁK)l and tends to
(Xs,Us) = Mg#.

1in what follows, superscrim denotes that s@?, is defined in the augmented state, while no superscript denotes that
setQ; k is defined in the state vector spage.e. Qt,K = Projx(QﬁK).
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Although the maximal invariant set is not needed, it is convenient in ordprawide a bigger
region of attraction. The maximal admissible invariant set for sysfem (4.8)nogie finitely de-
termined due to the unitary eigenvalues of the plant. Fortunately, in this c&s® t& constraints
22 ={x=(x,0):(XKx+L08) c Z, Mg € A 2}, the associated maximal admissible invariant
set is finitely determined for any € (0,1), resulting in a polyhedral regiof [15,114]. Thus taking a
A arbitrarily close to 1, the resulting invariant set is arbitrarily close (in thesdatif sense) to the
maximal one.

It is interesting to characterize what will be the set of the steady statedsiapd controlled
variables that could be reached from an initial state contaiied This can be done by defining the
following set of parameter®

OL{6: (xU) =Mgb € Z, Xs€Qix} (4.9)

This set is equal to the projection ﬁ‘ﬁK onto 8. Then the set of reachable steady controlled variables
sis given by
% = Ng® (4.10)

Notice that if the calculation method proposed(in/[15] is used to com@fig then this set’ is
potentially equal to the maximal or# since?; C A % andA can be chosen arbitrarily close to 1.

4.2.1 Optimization problem

In this section the proposed MPC for tracking is presented. As was pidyistated, this predictive
controller is based on the addition of the steady state and input as decisi@les, the usage of a
modified cost function and an extended terminal constraint. To this endyltbeihg assumption is
considered.

Assumption 1
1. Let Qe R™" Re IR™™Mand T e IR™" be positive definite matrices.
2. Let Ke IR™" be a stabilizing control gain such théA+ BK) is Hurwitz.
3. Let Pe IR™" be a positive definite matrix such that

(A+BK)"P(A+BK) —P=—(Q+KTRK)

4. LetQf C IR™™ be an admissible polyhedral invariant set for tracking for sysféi) subject
to (4.3) and a gain controller K.

Consider that the current state of the systemasd the desired steady output to be reachexl is
then the proposed cost function is
N-1
W(X,su,0) = Z) IX(1) = xel[& + [lu(i) — us||&
1=
+[X(N) = Xs[|3 + [lys — slIf

whereu is a sequence adfl future control inputs, i.eu = {u(0),...,u(N—1)}, zs = (xs,Us) = Mg0,
ys = Ng8 , X(i) is the predicted state of the system at tinggven byx(i + 1) = Ax(i) + Bu(i), with
X(0) = x. Note that this cost can be posed as a quadratic function of the decisiablea.
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The proposed MPC optimization proble®(x,s) is given by

VN (X,S) = TienVN (x,5,u,0)
st. x(b) =X,
X(j+1) =Ax(j)+Bu(j)

It is worth noting thatu and 8 are the decision variables ar@nds are parameters of the proposed
optimization problenBy(X,s). Moreover, it turn out to be a standard (parametric) Quadratic Program-
ming problem that can be efficiently solved by specialized algorithms.

Given that the constraints &% (x,s) do not depend og, there exists a (polyhedral) regiofy C
IR" such that for allx € Xy, Pu(X,s) is feasible (for anys € %). Applying the receding horizon
strategy, the control law is given B¢ (X, s) = u(0), whereu(0) is a function ofx ands.

Theorem 1 (Stability) Consider that assumptidd 1 hold. Givane (0,1), suppose tha®?2, is an
admissible invariant set for tracking. Then, for any feasible initial state Xy and for any desired
steady state s %, the proposed MPC controllery{x,s) asymptotically steers the system to s in an
admissible way.

Property 1 The set of admissible steady outputs that can be tracked without off8gt &ince the
evolution of the system remains ig,Xhe system can be steered to any admissible reference. Then,
any sequence of piecewise admissible references can be trackedtwitiseti

If the desired steady output s is not admissible, then it cannot be tragitedut offset and the
controller steers the system to a close admissible steady output.

Property 2 Consider a desired admissible set poirt 8 and design a standard MPC i.e. translating
the system to the corresponding equilibrium steady states using a linear stabilizing local control
law and the maximal admissible invariant g&t(xs) as terminal set. Also consider the proposed MPC
where the local controller gain is the same and the@gt is used as terminal cost. Then:

1. Sinced(xs) € Qf, the domain of attraction of the proposed MPC is larger than that of the
standard MPC.

2. A desirable property of the MPC controllers is that if the unconstraingdl control law is
used as terminal controller, then the MPC is locally optimal. In the proposB& br tracking,
this property is lost due to the terfiys — s||t added in the cost function. However, it can be
proved that if this term is more heavily penalized, then the local optimality afdahgoller is
enhanced.

Thus, taking an arbitrarily large matrix T, the MPC for tracking provides airdomain of attraction
and a control law which is locally nearly optimal.

Property 3 The proposed controller stabilizes the system for any suboptimal solutibrtisat

e The suboptimal cost at each sample time is lower that the one at the psaastant.
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* If the system is irﬂﬁK, the suboptimal cost must be lower than the one obtained by the local
linear controller.

Property 4 If the set point to track is time varying convergent to a steady value, thepriposed
controller makes the system follow it in an admissible way ultimately reachindgadysset point.

4.2.2 Application to the quadruple tank process

The discrete-time model of the plant for the aforementioned parameters is:

+

X1 09705 0 00205 O X1 0.0068 00001
w | 0 09661 0 00195 | x, 0.0002 00091 | [ uy
x| 0 0 09792 0 x| 7| 0 00137 [Uz}
X 0 0 0 09802 | | x4 00160 0
X1
[1000]|x
y = [0 10 o] X3
X4

The defining matrices of the stage cost of the performance criterion levedhosen as
Q=100x1ly R=1xly (4.11)

The terminal control gailK has been chosen as the LQR gain for the matrices](4.11) and matrix
P is the solution of the Ricatti equation. The offset cost weighting mdfrixas been chosen as
T = 10* x |,. Finally the control horizon has been chosemas 5.

—2.2525 —-1.6731 (08413 —8.0546

K= —2.0469 —3.1698 —7.7111 06285

The resulting regions are shown in Hig.14.6.

The derived controller has been tested on the nominal model, and thendamplibe real plant.
Fig.[4.7 shows the simulated evolution of levaisandh,, and the references, the evolution of the
control actions and the evolution of the levhisandh,

Fig.[4.8 shows the same as the previous figure, but applied to the real Iplean. be appreciate
that:

» The behavior of the plant is quite similar to the model, but the model it is not wetdtifik
because there is offset respect the first reference, which is, mtagspthe linearizing point of
the plant. The MPC for tracking may present offset in any change efgr€e due to the error
between the model and the real plant, but not in the linearizing point.

» The integral of the square errBElis
SEI=1742441

This value will be decreased when we get an more accurate model of titeapld when we
introduce the offset cancellation loop that will remove the offset in permiznegime.
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Figure 4.6: Different sets of the MPC for tracking applied to the quadriaplle process
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Figure 4.7: Simulation of the plant controlled by the centralized MPC for trackin
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Figure 4.8: Evolution of the plant controlled by the centralized MPC for tragk

4.3 Decentralized MPC for tracking

4.3.1 Pairing based on the relative gain array

Two controllers are going to be used to control the plant. The pairing batimpets and outputs in
decided based on the relative gain arr@@)

~0.4 138
RGA:[ 1.38 —0.4]

Considering the values of the RGA the correct pairing is comtyabith g, (y1 with up) andhy with

Oa (Y2 with u;). The models of the subsystems are:

e Subsystem 1yq with uy)

(4.12)

x1 |7 [09705 002057 [ x 0.0001
- 0 09792 || xs 0.0137 | 2

no= ol

e Subsystem 2y with uy)
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] [0 s [ ] [Gotea]e

0 09802 | | x4 0.0160 (4.13)

X2
= |10
o= [10] { X }
The matrices that define the stage cost of the performance criterion éanebosen in both cases as:

Q=100x1, R=1xl; (4.14)

The terminal control gaink; andK; have been chosen as the LQR gain for the matr[cesl(4.14) and
matrix P is the solution of the Ricatti equation. The offset cost weighting mdtrhas been chosen
asT = 10* x l1. Finally the control horizon has been chosemas 5.

Ki=[ —2.3445 —8.3902 |
Ko=[ —1.9719 —8.4094 |

The resulting regions are shown in Hig.14.9.

XN, Xeq and QLK of subsystem 1 XN, Xeq and QLK of subsystem 2

14 X, 141 X,
—_X —X
eq eq
1.2f - = =9y 127 - = =Qy
1 1
© 0.8 < 0.8
x x
0.61 067
0.4r 04r
0.2f 0.2¢

0.2 0.4 0.6 0.8 1 1.2 14 0.2 0.4 0.6 0.8 1 12 14

Figure 4.9: Different sets of the MPC for tracking

where
0<u; <400 0<up,<326

The derived controllers has been tested on the nominal model, and tHezdappthe real plant. Fig.
[4-10 shows the simulated evolution of levelsandh,, and the references, the evolution of the control
actions and the evolution of the levélsandh,
Fig.[4.11 shows the same as the previous figure, but applied to the retal pienintegral of the
square erroBElis
SE|=2768838

This value will be decreased when we get an more accurate model of tii@pthwhen we introduce
the offset cancellation loop that may remove the offset in permanent regime.
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Figure 4.10: Simulation of the plant controlled by 2 MPC for tracking with theemmpairing

4.3.2 Wrong pairing

Considering the values of the RGA the wrong pairing is corttalith g, (y1 with u;) andhy with gy
(y2 with uz). The models of the subsystems are:

e Subsystem 1y with uz)

1] -

y1 =

e Subsystem 2y with uy)

M)

Yo =

as:

0.9705 00205][ x, | . [ 0.0068

[ 0 0.9792]{)@}+[ 0 ]“1 (4.19)
X1

1 o}{d

0.9661 00195][ %, | . [ 0.0091

[ 0 0.9802][&;} [ 0 ]”Z (4.15)

o]

The defining matrices of the stage cost of the performance criterion leredhosen in both cases

Q=100x1, R=1xl; (4.14)
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Figure 4.11: Evolution of the plant controlled by 2 MPC for tracking with theect pairing

The terminal control gaink; andK, have been chosen as the LQR gain for the matr[cesl(4.14) and
matrix P is the solution of the Ricatti equation. The offset cost weighting matrhas been chosen
asT = 10* x I1. Finally the control horizon has been chosemMas 5.

Ki=[ —6.3344 —1.4545

Ko=[ —6.6115 —1.1918 |

The resulting regions are shown in Hig. 4.12.
where
0<u; <400 0<uw <326

The derived controllers has been tested on the nominal model, and tHexdappthe real plant. Fig.
[£13 shows the simulated evolution of levelsandh,, and the references, the evolution of the control
actions and the evolution of the levéigsandh,

Fig.[4.13 shows the same as the previous figure, but applied to the retal Pienintegral of the
square erroBElis not calculated because the test is not finished due to the maximum levek & tan
was reached and the security system stopped the pump. It is clear thatfimvenance of centralized
controller is better than the decentralized one. Once we develop the trdckinglation of the
distributed controller the performance of it must be between the centralimbdha decentralized
ones.
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Figure 4.12: Different sets of the MPC for tracking
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Figure 4.13: Simulation of the plant controlled by 2 MPC for tracking with thengrpairing

4.4 Distributed MPC based on a cooperative game

In this section we compare a centralized MPC with the distributed MPC basedamparative game
scheme presented in [16]. We consider the following class of distributed Byegems in which two
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Figure 4.14: Evolution of the plant controlled by 2 MPC for tracking with themwg pairing

subsystems coupled with the neighbor subsystem through the inputs aeddefi

Xl(t +1)=A1xg (t) + B11us (t) + Byoua(t)
X2(t+1) = Apxa(t) + Bagug (t) + Booua(t)
wherex; € R", i = 1,2 are the states of each subsystem@ar@R™, i = 1,2 are the different inputs.

This class of systems are of relevance when identifications techniquaseatd¢o obtain the transfer
function of a process. We consider the following linear constraints in the atal the inputs

(4.15)

XieZziue,i=12

where.Z; and%; with i = 1,2 are defined by a set of linear inequalities.

The control objective is to regulate the system to the origin while guarantd®ihthe constraints
are satisfied. Centralized MPC solves a single optimization problem to decidptihel sequences
of the inputau; andu, with respect to a given performance index based on the full model oy #tera
and on measurements from all the sensors. In distributed and decedtsalimmes two independent
controllers (hereby denoted agents) are defined. Agent 1 hassaodie model of subsystem 1, its
statex; and decides the value of. On the other hand, agent 2 has access to the model of subsystem 2,
its statex, and decides the value ap. This implies that neither agent has access to the full model
or state information and that in order to find a cooperative solution, they comsinunicate. The
proposed controller guarantees practical stability of the closed-lodgrsys

The proposed benchmark is based on a nonlinear model and consisteicl seference steps of
the levels of tanks 1 and 2. In order to test the proposed DMPC schenmeanudre its performance
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with a centralized controller we propose to design a different controliezdoh set-point; that is, we
consider four different linear models with the following state and input béet

wherehs,, hyr, hsr, hae, gar @andgyr define the level and flow of each of the four different set-points
of the benchmark. The linear model for each set-point is obtained lineguttzénnonlinear model of
the quadruple tank process. This implies that during the simulation, we switekdrefour different
controllers for regulation.

The objective of the MPC controllers is to minimize a performance index thatrdkspon the
future evolution of both states and inputs based on the following local anstibns

N—1
Ji(x1,U,Up) = ZO L1(Xek, Urk) + Fr(Xan)

N—1
J(%2,U2,U1) = 5 La(Xok,Uzk) + Fa(X2N)

whereL;(x,u) = X" Qix+u"RuandF (x) = x"Pxwithi = 1,2 are the stage and terminal cost functions
respectively.

Centralized MPC solves a single large-scale problem based on the makelhaifiole system. In
the example section we will compare the performance of the proposedaghpnith a centralized
MPC controller based on the following optimization problem:

{Ug(t),Us(t)} = argUTliJg J1(Xa(t),U1,Uz) + Jo(x1(t),Uz,Uq)

X1 k1 = AaXyk + BraUy k + BioUp k

X10= x1(t)

X1k € Z1,k=0,...N

Uik € ,k=0,...N—1

Xin € Q1 (4.16)
Xo k1 = AoXz k + Baolp k + Bo1Up k

X2 0= Xa(t)

Xok € 25, k=0,...N

Uk € %2, kZO,...N—l

XoN € Qo

whereU; are the decision variables of the optimization problems solved by both agdmxentral-
ized MPC provides in general the best closed-loop performance abubrdy be applied when it is
possible to control the system with a single controller that has access tdltheofiel and state of
the same. Note that this formulation takes into account both a terminal costtenaliaal region
which can be designed to guarantee closed-loop stability. In the benchwedriave used the design
procedure proposed in [16] to obtain matricesPhe? and the set€q, Q,.

The objective of the DMPC scheme is to minimize the performance index in a disttimanner.
At each sampling time, each agent solves a sequence of reduced dimepisimization problems
based on the model of its subsystem and assuming a given fixed inputdrgjiec its neighbor. The
proposed DMPC algorithm is the following:
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1. Attime stept, each agenitreceives its corresponding partial state measuremgnt

2. Each agent minimizesJ; assuming that the neighbor keeps applying the optimal trajectory
evaluated at the previous time step; thatls, = Uy (t). These trajectories are obtained from
the optimal input sequence of ageértt timet — 1, denotedJid (t—1), as follows:

- - d -

d
Uclj,l “5,1
uio U5
S o . S _ .
Uz(t) = , Ug(t) =
ul g Wn_1
| Kixan | | Koxon |

wherex; N, XN are theN-steps ahead predicted state obtained fra(h— 1), x2(t — 1) respec-
tively applying the input trajectorieL@-lld (t— 1),U§‘(t —1) andKj, K; are two known feedback
gains. Agent 1 solves the following optimization problem:

U3 (t) =argmin J10a(t),Us, U3(t))
1

X1 k1 = ArXgk + BriUg k + Brolok

X1,0 = X1(t) (4.17)
X1k € 21, k=0,...N

Uik € %1, k=0,...N—1

XN € Q]_

Agent 2 solves the following optimization problem:

U;(t) =arg rSin Jo(X(1),Uz,U(t))
2

Xo k1 = AxXo k + Boolp k + B2iUg k

X2,0 = X2(t) (4.18)
Xok € 25, k=0,...N

Uzyke%z, k:0,...N—l

X2N € Q2

The set€2; andQ, define the terminal region constraints that are necessary to prove closed
loop practical stability following a terminal region/terminal cost approachteNloat in both
optimization problems the free variablelUswhile the neighbor input trajectoly,; is fixed.

3. Each ageni minimizesJ; optimizing the neighbor input assuming that it applies the input
trajectory computed in the previous optimization problgn Agent 1 solves the following
optimization problem:

Uy (t) =arg ryin Ji(xq(1),Ug(1),Uz)
2

X1 k1 = ArXgk + BriUg k + Brolo k

10 = X1 (t) (4.19)
X1k € ,9//1, kZO,...N

Upk € %, k=0,...N—1

XN € Q1
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Table 4.1: Cost function table used for the decision making.

U3(t) U (t) Uy (t)
Us(t> Jl(xl(t),Uf(t),UZS(t)) Jl(xl(t)vuf(t)vug(t)) Jl(Xl(t),Uf(t),UéN(t))
! +J(%(t),U5(t), US(t)) +J2(X2(t),Us (1), UZ(t)) +R20¢(t),Uy'(t), UL(t))
U*(t) Jl(xl(t)’uf(t)’UZS(t)) Jl(Xl(t),Uf(t),Uék(t)) Jl(Xl(t)7Uf(t),U¥V(t))
! +J2(Xe(t), US(t),Us (1)) +aa(%a(t), Uz (1), U1 (1)) +J2(Xe(t), U5 (1), U1 (1))
UM (o) J(xa(t), Uy (1), U3(1)) J1(xa(t),Uy" (1), Uz (1)) Ji(xa (t), U7 (1), U5'(1))
! +R20e(t),U3(1), U1 (1) | +30e®),Us(1),U7'1) | +J0e(t),U(t),Ur' (1))

Agent 2 solves the following optimization problem:

U (t) = arg rLTJ]in Jo(Xo(t), U5 (1),Uy)
1

X2 k41 = AoXa k + Boolp k 4 Bl k

X2,0 = X2(t) (4.20)
Xok € Z2,k=0,...N

U17k€%1, k=0,..N—-1

XoN € Q,

In this optimization problem the free variableUs; (the input trajectory; is fixed). Solving
this optimization problem, agentefines an input trajectory for its neighbor that optimizes its
local cost functionJ,.

4. Both agents communicate. Agent 1 sebidét) andUJ'(t) to agent 2 and receivés; (t) and
Ui'(®).

5. Each agent evaluates the local cost funclidior each the nine different possible combination
of input trajectories; that i1 € {U3(t),U}"(t),U;(t)} andUz € {U3(t),UJ'(t),Us(t)}.

6. Both agents communicate and share the information of the value of lo¢d@linogon for each
possible combination of input trajectories. In this step, both agents remedwegh information
to take a cooperative decision.

7. Each agent applies the input trajectory that minimizesJ; + J,. Because both agents have
access to the same information after the second communication cycle, both elgeose the
same optimal input sets. We denote the chosen set of input trajectotiégtadJg (t).

8. The first input of each optimal sequence is applied and the procedugeated the next sam-
pling time.

From a game theory point of view, at each time step both agents are playougarative game.
This game can be synthesized in strategic form by a three by three matrixrd@acepresents one of
the three possible decisions of agent 1, and each column represenfdloméhree possible decisions
of agent 2. The cells contain the sum of the cost functions of both agemésgarticular choice of
future inputs. At each time step, the option that yields a lower global cosbsech Note that both
agents share this information, so they both choose the same option. Thessilglfiies are shown

in table[4.].
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At each sampling time, the controllers decide among three different optidwessHifted optimal
input trajectoryUS(t) keeps applying the latest optimal trajectory. BedfishoptionU;*(t) provides
the best improvement ig if the rest of the system’s manipulated variables stay unchanged. The
altruist optionU,"(t) provides the best improvement for the neighbor agent cost fundgiom this
case, the agemtsacrifices its own welfare in order to improve the overall performance.

4.4.1 Design procedure

The distributed controller that has been presented is designed forttegydeoblems. Given that the
benchmark puts to test the controller in four different working points fifierent versions of the
controller were designed, each one linearized in a working point. Wieettle® reference changes the
controller is switched. Next we will reproduce here the results for thieviosking point for the plant.
We omit the results for the rest of working points because the designdunaces the same and the
results are similar.

In this point we have to remark the fact that when the reference is swifcbedone working
point to another one it is precise to reset the valublpfo a feasible solution. This is necessary in
order to assure a decreasing cost and the stability.

The reference is given by (0.65, 0.65). The linearized model of theafijient is:

[ 0.9705 00205 ] [ 0.0068 | [ 0.0001 |

A= 0.9792_"311: 0 ’8122_0.0137_

The model of the second agent is given by:

A _ [ 09661 001957 o [00002] o [ 0.0091]
| o o09802|°"" | 0016 || o0 |

The controller gains were designed for the following weighting matr@@es- Q, = diag(100 0),
Ri1 = R, = 1. The local controller gains for each agent were,

k. _[017 021 [ 000 000
1= 1000 000 |27 | —016 —0.14

These gains and the terminal cost matrieg$» were designed with LMI techniques in order to stabi-
lize both subsystems independently while assuring the stability of the centrajiggm. Following
the procedure detailed previously it is possible to calculate a distributedentaet corresponding to
this gain. We show in Fig§. 4,115 ahd 4.16 the sets corresponding to botts aljémremarkable that
the Chebyshev radius of the distributed invariant set is the same in this easlegtltentralized one.
The centralized gain is given B¢ = diag(K1,K>). The role of the gairK is important because
the option in the game that allows to guarantee closed-loop stability is constsltftdg the last
centralized control action; that is, the first element is dropped after itgbegpin the system and a
term with the valueKxy is added at the end of the horizon control vector. Although we talk here
about the centralized gakanote that centralized here does not require a cooperation between the two
agents because it is constructed in such a way that this cooperation aanided.

4.4.2 Simulation and experiment results

The derived controllers has been tested on the nominal model, and tHexdappthe real plant. Fig.
[£17 shows the simulated evolution of levelsandh,, and the references, the evolution of the control
actions and the evolution of the levéilsandh, for the centralized MPC controller.
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Figure 4.15: Invariant set for agent 1.

Agent 2 invariant set
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Figure 4.16: Invariant set for agent 2.
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Figure 4.17: Simulation of the plant controlled by the centralized MPC forlatign

Fig.[4.18 shows the same as the previous figure, but applied to the real fnintegral of the
square erroSElis 92.9616.

Fig.[4.19 shows the simulated evolution of leveisandh,, and the references, the evolution of
the control actions and the evolution of the levejsandh, for the distributed MPC controller based
on a cooperative game.

Fig.[4.20 shows the same as the previous figure, but applied to the retal Penintegral of the
square erroSElis 200.3820.

During the simulations the distributed controller switches between the diffecgntol options.
Fig.[4.21 shows the different option chosen at each time step.

The proposed distributed MPC controller only needs two communication stepdento obtain
a cooperative solution to the centralized optimization problem, has low communiatt com-
putational burdens and provides a feasible solution to the centralizeteprofihe simulation and
experimental results show that the distributed scheme is able to control teensyote that in this
case, because the control input is decided by consensus, the paieésgoaot affect the performance
of the distributed control scheme if the states are grouped correctly.

In a future work we will apply a distributed MPC scheme for tracking includingntegral term
in order to reduce the steady state error and the effect of the model mismatch
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Figure 4.18: Evolution of the plant controlled by the centralized MPC fouleggpn
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Figure 4.19: Simulation of the plant controlled by the distributed MPC for reigula
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Figure 4.20: Evolution of the plant controlled by the distributed MPC for lagn

Figure 4.21: Options chosen at each time step by the distributed MPC controller
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Part Il

Control scheme applied to the electrical
generation units benchmark
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Chapter 5

Model predictive control for generation
units

5.1 Introduction
It is well know that generation units has two main dynamics:

1. Mechanical Dynamics: these dynamics depict the load angle, the mealhamieer and the
rotor speed behavior.

2. Electrical Dynamics: these dynamics depict the voltage at terminal butharfield voltage
behavior

The mechanical and electrical dynamics have different time-scale respobeing mechanical dy-
namics slower than electric ones. Then in order to design a MPC for diemeuaits, a multi-model
controller is necessary. Moreover taking into account that in the retds\s classic speed and voltage
regulators cannot be modified, these dynamics must be included in the medebysredict voltage
and speed trajectories.

In this report, a centralized MPC is formulated for the control of generatiitis. Due to different time
scale of machines dynamics, a two levels time-response-based hierbstiicare is proposed. The
proposed control structure involves the interaction among the centraliiB€ei and classical voltage
and speed regulators.

5.2 Controller design

In order to implement an MPC for generation units, a third order model dejpigteequation[(5J1)
was selected.

5 = wp(w—1)
: 1
Ef= TZ-O[_Eq_ (Xa —Xg)ld + E]
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whered, w, E& denote the angle, speed and electromotive force in the quadrature akis gén-
erator, respectivelygn, M, D, Ty, X4, X5 represent the nominal speed, the inertia, the damping, the
transient time constant, the reactance and the transient reactance, ehénatgpn unit, respectively;
Pm, Pe, Ig, Ef are the mechanical and electric power, the field current in the direct adishe field
voltage, respectively. All values of the variables listed before apeun

This model was used because it is a reduced order model that deskédlsgeed and voltage behavior
in terms of measurable and estimable variables, and its parameters canidegiyvthe machines
manufacturers or can be knew from machine tests.

Additional to the load angle, the speed and the voltage dynamics, the predraimel must include
the dynamics of voltage and speed regulators. Then it is assumed thatdmdsslers have a first
order system behavior given by

Et = —[—Ef +ke(Viet — E})]

1
T (5.2)
Pn= ?[—Pm-i- kg(tret — w)]
g
whereE¢ and Py, are the field voltage and the mechanical power respectiviglyy are the time
constants of the field voltage regulator and the speed regulator reshgckivky are the gains of
the field voltage and speed controllers respectivély;, wret denote the voltage and speed reference

values. Thus the model used to predict the behavior of each machinmégco

&= w(w—1)
o= %[—D(w—lﬂ—Pm—Pe]
Br = - [ Eq— (xg—X)la + Ed]

T (5.3)

Er = = [Er +kelVies — Ep)
Fin= 1P+ (e — )]
g

Lets definex = [, @, Pn, Ef, Ef]T, U= [Viet, Weef]", d = [P, 1], andy = [w,E[]", then the model
given by [5.8) can be written in matrix form as

X = Ax+ Bu-+ Dd
(5.4)
y=CXx

where A, B,C,D are the matrices associated with the continuous time médeél (5.3), each matrix is
defined as follows:

0 1 0 0 0]
D 1
0 oW 0 o0
0O 0 0 -+ =+
lgeo d(:)L
(0 0 0 —¥ —2 |
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v9)
1
flFo o oo

01000
C:[OOOlO]

The A matrix shown before has a block diagonal form, then each machine madbeadecomposed
into two independent subsystems, each one associated with mechaniedéetnd dynamics. To
implement the MPC, all the mechanical and electric dynamics are groupedisundtided by the
Tustin approximation, using two different sampling times (one for each mogéttdd before). Thus
MPC for generation units become

Np Nc
T(g‘ > lmXm(t +K), Yretm(t + K)] + " lom[Um(t + k)] (5.5)

K=1 k=1
st. 1 Xm(t+Kk+1) = AnXm (t +K) + BmUm (t + k) (5.6)
operational constraints (5.7)

Np Nc
rp(gw > lie[xm(t +K), Yrete(t + K)] + 5 l2e[Ue(t +K)] (5.8)

K=1 k=1
st 1 Xe(t+K+1) = AeXe (t +K) + Bele (t +K) (5.9)
operational constraints (5.10)

wherelim[Xm(t +K), Ymret(t +K)] = (Ymret(t +K) — Ym(t + K+ 1)) Qm(Ymret(t +K) — ym(t +k+ 1)),
l1e[Xe(t +K), Yere (t +K)] = (Veret(t +K) — Ye(t +-k+1))T Qe(Yere(t +K) — Ye(t + K+ 1)), lam[um(t +

K)] = Um(t +K) "R, |2¢[Ue(t + k)] = Ue(t + k)T Relle, Xm(K) = [3(K), 6(k), Pm(K)] ", Xe = [E4. E¢]T,
beingym(t+k+1) = w(t +k+1), ye = Eg(t +Kk+ 1), Am, Ae, Bm, Be the matrices associated with each
submodel discretization ar@, Qe, Rm, Re > 0.

Each controller, presented before, works independently and has litsampling time. Also the
information exchange between controllers does not exists due to the bloclof theA matrix of the
prediction model.
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To compute the initial conditions for the states, the steady-state equationseeaslinus

= kgwref — Pred
D+ kg
g0 = —(Xa = Xy)la +Es (5.11)

Ef = ke(Vref —Vmed)
Pn= kg(wref — W)

wherePnheq andVieq are the measured values at generation buses of active power anc:vohiggi-
tude respectively. The direct axis currelgtwas estimated using the following equations

S= \ Pr%ed—'_szed

. __S
d \f3Vmed

lg = glg(cos(éo) +coqd — %n) +coqd + %n))

(5.12)

Since there is no equation available for the computation of the initial conditioredb#d angledy,
we implemented an angle estimator.

Let define the phasor current &s (3.13)

T— (Pmed‘|‘ ]Qmed
\
and applying the Ohm law to the transmission system

)* (5.13)

then knowing the active and reactive power demands at generation amitsheY,,s matrix, an
objective function can be formulated to minimize the eworThus the initial condition of the load
angle can be computed as the solution of the optimization problem givén by.(5.15

min{(1 = YV)TQ(I ~YV)

Pmedthmed)* (5.15)

stil=( Y

Vimed = HVH

wherel andV are the complex values associated with current and voltage phasois,isitite Yy,s
matrix of the system.
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5.3 Simulation results

The control scheme presented in the previous section was implemented imitteniek of Electric
Power System (see Fig. 5.1).
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Figure 5.1: New England Electric Power System

The electric power system presented in ig] 5.1 has ten generationGiits ,G10, thirty-nine
transmission nodes or buses, and nineteen load centers. Each genandtitas its own speed and
voltage regulator. Also it has its own power system stabilizer (PSS). T8teraywas simulated using
Matlab/Simulink software, integration routine ODE23stiff/trapezoidal. Motaitieabout the system
of Fig.[5.1 can be found in the documentation sent by the Universidad Nadale Colombia. In this
documentation it is possible to see the used parameters to tune the controtiezsvét as it is stated
the performance of the controllers becomes acceptable, leading fieldesoliad mechanical powers
of each generation unit to stable values.

After simulate the power system with the classic controllers, the multi-model MpEtdd in the
previous sections was added in order to compute the optimal speed and vefeagaces. The sample
times used for mechanical and electrical models was#@nd 0001s respectively. The prediction and
control horizons were 200 and 90 for the model predictive controllev@ated with the mechanical
dynamics and 500 and 60 for the mode predictive controller associated withettrical dynamics.
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Figs.[5.2 td 5.4 show the field voltage, the mechanical power and the speaddreafter including
the proposed model predictive controller. In this simulation at2three phase fault and at&®line
outage was introduced.

Generators Field Voltage

=)
k=3 A A P T R T T T T T - = G6
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£ —a8
> —_—G9
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oF | 1 i I \ i 7]
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10 20 30 40 50 60 70

time [s]

Figure 5.2: Field voltage of generation units with MPC

In Figs[5.2 t¢ 54 itis possible to see that the addition of an MPC reduce thegtaansient behavior
of the machines. also with the introduction of the MPC, it is possible to obtain @hagmping of
oscillations due to disturbances in the network, and achieve a faster dyataente. This allows to
improve the customers quality of service, because the rejection of dist@bancarry out using soft
control actions. It is shown in Figs. 5.5 andl5.6.

Moreover MPC gives the possibility to take a better mechanical power ¢dindrothe obtained using
only the speed regulator. This fact allows to synchronize the machines s§stem in a shorter time.

Page 6875




HD-MPC ICT-223854 Report on implementation for selected beohmarks
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Figure 5.3: Mechanical power of generation units with MPC

5.4 About this implementation

From this implementation, it is possible to conclude that MPC is a promising cotrotre for the
control of power systems. From the results, notice that the optimal calcutztibe reference of the
generation units allows to give and additional damping to the oscillations duettobdiaces in the
transmission network and during the start-up of the machines. This impravgadlity service given
to the customers. Also the proposed control scheme allows to be closel tiomeeaptimal dispatch.

Moreover the system decomposition shown in this work presents a prededmplement an MPC in

real complex systems, as it was demonstrated in the study case and resdtsgd before. However
it is necessary to improve the performance of the control scheme prbpesere, in order to carry

out real-time applications in real large-scale systems.
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Figure 5.4: Speed of generation units with MPC
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Figure 5.5: Generation buses voltage
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Figure 5.6: Load buses voltage
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