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Executive Summary

This deliverable describes and analyzes the exercises on the proposed benchmark cases in the
period of time M12-M18. These benchmark cases are described in Deliverable D6.3.1 and models
and additional information can be found in the Virtual Portal: the heat system,the four tank
system, an electric power system, and the chemical benchmark case.
The two-dimensional heat system benchmark is used to compare various decentralized Kalman
filters in Chapter 1. The methods that are compared are:

• Centralized Kalman filter (CKF),

• Parallel information filter (PIF),

• Decentralized information filter (DIF),

• Decoupled hierarchical Kalman filter (DHKF),

• Distributed Kalman filter with weighted averaging (DKFWA),

• Distributed Kalman filter with consensus filters (DKFCF),

• Distributed Kalman filter with bipartite fusion graphs (DKFBFG).

Another distributed state estimation scheme (DDKF: Distributed and Decentralized Kalman Fil-
ter)is applied to a one-dimensional heat system. The observer performance under additive and
structural disturbance is also studied. Then, in Chapter 3, a combined DDKF and MPC formula-
tion is tested on the same benchmark.
Concerning the 4-tanks benchmark, different control approaches have been tested and compared
both in simulation and on the real plant. These approaches are:

• Tracking Control. Control that allows changes in the reference.

– Centralized control for tracking.

– Decentralized control for tracking. Two MPC for tracking are used, thesame as in
the previous case, but applied to each subsystem. The pairing procedure between the
inputs is done based on the Relative Gain Array. Two examples are done, one with the
correct pairing, and the second with the wrong one.

• Regulation controller. To perform the reference changes, one controller for each reference
is designed.

– Centralized control.

– Distributed control.Distributed MPC based on a cooperative game

Finally, the last exercise is related to the electrical power system benchmarkand is described
in Chapter 5. A centralized MPC is formulated for the control of generation units . Due to
different time scale of machines dynamics, a two levels time-response-basedhierarchical structure
is proposed. The proposed control structure involves the interaction among the centralized MPC
and classical voltage and speed regulators.
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Part I

Heat conduction and convection
benchmark
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Chapter 1

Decentralized Kalman filters for the
heated plate

1.1 Introduction

This chapter presents a comparison of various decentralized Kalman filtersto estimate the discretized
states of the heated plate, which is one of the benchmarks within HD-MPC workpackage WP6. There
are seven methods that are being compared, they are:

1. Centralized Kalman filter (CKF),

2. Parallel information filter (PIF),

3. Decentralized information filter (DIF),

4. Decoupled hierarchical Kalman filter (DHKF),

5. Distributed Kalman filter with weighted averaging (DKFWA),

6. Distributed Kalman filter with consensus filters (DKFCF),

7. Distributed Kalman filter with bipartite fusion graphs (DKFBFG).

This chapter is organized as follows. In Section 1.2 we give a concise overview of the seven decen-
tralized Kalman filters considered in the comparison. Next, we briefly present the set-up and model
of the heated plate in Section 1.3. The results of the simulations are then given inSection 1.4. Section
1.5 concludes the chapter.

1.2 Short overview of the decentralized Kalman filter methods

We will first briefly describe the methods that will be applied in the comparison;for a more extensive
description and details the interested reader is referred to the references cited below.

Given a linear system and its measurement model and a set of noisy measurement data from the
system, aKalman filter[6] computes the best estimate of the states for the system. Kalman filters are
widely used in many areas of engineering. There are two types of the Kalmanfilters: the continuous-
time Kalman filter and the discrete-time Kalman filter. In this chapter the term Kalman filterrefers to
the discrete-time version.
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In the Kalman filter the measurements can be obtained from several sensors, which form together
a sensor network. Each sensor node in the network can measure either the same states or different
ones. For our application, we are interested in the second case. The measurements from all sensors at
discrete time instantk can be collected into a measurement matrix and used to compute the estimate.
In this case, the method is called the Centralized Kalman Filter (CKF). This is the original form
introduced in [6].

The Kalman filter has a variant which is called the information filter. The information filter is also
often be used in decentralized applications. In the information filter the estimatesare computed based
on the information update which can be determined in a decentralized way. In the Parallel Information
Filter (PIF) proposed by Speyer [11], each sensor node has the global system model and computes the
whole state of the system or the global state. The estimates from the individualnodes are then sent
to a central processor to be summed stochastically with the estimates from the other nodes in order to
obtain the fused estimates.

The Decentralized Information Filter (DIF) was proposed by Rao and Durrant-Whyte [10]. In a
similar way as in the PIF, each sensor node in the DIF also estimates the global state. This method
was derived by decentralizing the information update computation of the centralized approach to all
sensor nodes. By this approach, the estimation errors of the DIF are guaranteed to be equal to the ones
obtained by centralized approach, provided that the sensor nodes areall connected.

In the Decoupled Hierarchical Kalman Filter (DHKF) [4, 3], each sensornode has only a part of
the global system model. This also means that each node only computes a partof the global state. The
estimate is then communicated to the other nodes so that all nodes have the globalstate.

The Distributed Kalman Filter with Weighted Averaging (DKFWA) was proposedby Alriksson
and Rantzer [1]. Similarly to the DIF, each node in the DKFWA also estimates the global state. The
difference is that in the DKFWA the Kalman gain is computed only once at the beginning and used
for the estimation process. In this way, the computation load at each node is reduced.

The Distributed Kalman Filter with Consensus Filters (DKFCF) was proposed by Olfati-Saber [9].
Basically this method is the same as the DIF but with an additional consensus step. In the consensus
step, each node exchanges information with its neighbors so as to equalize the estimates.

The Distributed Kalman Filter with Bipartite Fusion Graphs (DKFBFG) proposedby Kahn and
Moura [7] divides the network into some connected partitions, each of which can contain one or more
sensors. In each partition, the global state is divided into two parts: the estimated states and the
unestimated states. The unestimated states that are needed to compute the estimatedstates are then
obtained from the other partitions.

1.3 Heated plate model and simulation set-up

The model of the heated plate can be expressed as a two-dimensional conduction model. Such models
can be found in standard text books about heat transfer and can be written as follows [5, 8]:

∂T
∂ t

=
1

ρCp

[

κ
∂ 2T
∂x2 +κ

∂ 2T
∂y2 +

Q̇∗
s(x,y, t)

K

]

, (1.1)

whereT is the temperature of the plate,ρ the density of the plate,Cp the heat capacity per unit mass,
κ the thermal conductivity,̇Q∗

s the heater power per unit area, andx andy are spatial coordinates of
length and width respectively, andK is a constant. TheK is used to take into account the effect of the
spatial discretization.

Page 8/75



HD-MPC ICT-223854 Report on implementation for selected benchmarks

(1,1)

(1,2)

(1,3)

(2,1) (3,1)

(2,2)

(2,3)

(3,2)

(3,3)
j

i

Figure 1.1: Example of the segmentation of the plate for spatial discretization.

For transient analysis it is necessary to have boundary conditions. Forour problem, we use con-
vective boundary conditions, which are modeled as Robin or third-kind boundary conditions. The
model (1.1) with convective boundary conditions can be written as [5, 8]

∂T
∂ t

=
1

ρCp

[

κ
∂ 2T
∂x2 +κ

∂ 2T
∂y2 +

Q̇s(x,y, t)
K

+
h
K

(Tenv−T)

]

, (1.2)

whereTenv is the temperature of the environment andh is the convection coefficient.
To simulate the heated plate, we use a state space model that is discretized in space and time.

Firstly, the model (1.2) is discretized spatially by taking sample points of the plate with regular dis-
tance. The temperature at the sample points is taken as the discretized state of the plate. We refer to
the sample points as nodes.

The spatial discretization results a set of ordinary differential equations (ODEs) in which each
ODE corresponds to a node. The nodes are indexed as shown in Fig. 1.1. Note that in the spatial
discretization it is important to take into account the numbering or order of the nodes. In our case the
node(i, j) is assigned a numberl according to the following relation

l = (i−1) ·Ni + j , (1.3)

whereNi is the number of nodes in each columni. For example, in Fig. 1.1 node (1,3) has node
number 3 and node (3,1) has node number 7.

The states of the plate are defined as

x1(t) = T(1,1)(t) x4(t) = T(2,1)(t) x7(t) = T(3,1)(t)

x2(t) = T(1,2)(t) x5(t) = T(2,2)(t) x8(t) = T(3,2)(t)

x3(t) = T(1,3)(t) x6(t) = T(2,3)(t) x9(t) = T(3,3)(t) .

Using these states definition, the system equation can be written as

ρCp
dx1

dt
=

(

− κ
∆x

− κ
∆y

− h
K

)

x1 +
κ
∆y

x2 +
κ
∆x

x4 +

(
Q̇s(1)

K
+

h
K

Tenv

)

(1.4)

ρCp
dx2

dt
=

κ
(∆y)2 x1 +

(

− κ
∆x

− 2κ
(∆y)2 +

h
K

)

x2 +
κ

(∆y)2 x3 +
κ
∆x

x5 +

(
Q̇s(2)

K
+

h
K

Tenv

)

(1.5)

ρCp
dx3

dt
= − κ

∆y
x2 +

(

− κ
∆x

+
κ
∆y

− h
K

)

x3 +
κ
∆x

x6 +

(
Q̇s(3)

K
+

h
K

Tenv

)

(1.6)

ρCp
dx4

dt
=

κ
(∆x)2 x1 +

(

− 2κ
(∆x)2 − κ

∆y
− h

K

)

x4 +
κ
∆y

x5 +
κ
∆y

x7 +

(
Q̇s(4)

K
+

h
K

Tenv

)

(1.7)
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ρCp
dx5

dt
=

κ
(∆x)2 x2 +

κ
(∆y)2 x4 +

(

− 2κ
(∆x)2 − 2κ

(∆y)2 − h
K

)

x5 +
κ

(∆y)2 x6 +
κ

(∆x)2 x8

+

(
Q̇s(5)

K
+

h
K

Tenv

)

(1.8)

ρCp
dx6

dt
=

κ
(∆x)2 x3−

κ
∆y

x5 +

(

− 2κ
(∆x)2 +

κ
∆y

− h
K

)

x6 +
κ

(∆x)2 x9 +

(
Q̇s(6)

K
+

h
K

Tenv

)

(1.9)

ρCp
dx7

dt
= − κ

∆x
x4 +

(
κ
∆x

− κ
∆y

− h
K

)

x7 +
κ
∆y

x8 +

(
Q̇s(7)

K
+

h
K

Tenv

)

(1.10)

ρCp
dx8

dt
= − κ

∆x
x5 +

κ
(∆y)2 x7 +

(
κ
∆x

− 2κ
(∆y)2 − h

K

)

x8 +
κ

(∆y)2 x9 +

(
Q̇s(8)

K
+

h
K

Tenv

)

(1.11)

ρCp
dx9

dt
= − κ

∆x
x6−

κ
∆y

x8 +

(
κ
∆x

+
2κ
∆y

− h
K

)

x9 +

(
Q̇s(9)

K
+

h
K

Tenv

)

, (1.12)

whereQ̇s(i) is the heat input at nodei. In matrix form, the continuous time state equations above can
be written as

ẋ = Ax+Bu

where

A =
1

ρCp



















− κ
∆x − κ

∆y − h
K

κ
∆y 0

κ
(∆y)2 − κ

∆x − 2κ
(∆y)2 + h

K
κ

(∆y)2

0 − κ
∆y − κ

∆x + κ
∆y − h

K
κ

(∆x)2 0 0

0 κ
(∆x)2 0

0 0 κ
(∆x)2

0 0 0
0 0 0
0 0 0

κ
∆x 0 0
0 κ

∆x 0
0 0 κ

∆x
− 2κ

(∆x)2 − κ
∆y − h

K
κ
∆y 0

κ
(∆y)2 − 2κ

(∆x)2 − 2κ
(∆y)2 − h

K
κ

(∆y)2

0 − κ
∆y − 2κ

(∆x)2 + κ
∆y − h

K

− κ
∆x 0 0
0 − κ

∆x 0
0 0 − κ

∆x

0 0 0
0 0 0
κ
∆y 0 0
0 κ

(∆x)2 0

0 0 κ
(∆x)2

κ
∆x − κ

∆y − h
K

κ
∆y 0

κ
(∆y)2

κ
∆x − 2κ

(∆y)2 − h
K

κ
(∆y)2

0 − κ
∆y

κ
∆x + 2κ

∆y − h
K

















,
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(1,1)

(1,5)

(8,1) (15,1)

(1,10) (15,10)(8,10)

(15,5)

Sensors Heater Connected sensors

Figure 1.2: Plate set-up for the simulations.

B =
1

ρCp


















1
K 0 0 0 0 0 0 0 0 h

K
0 1

K 0 0 0 0 0 0 0 h
K

0 0 1
K 0 0 0 0 0 0 h

K
0 0 0 1

K 0 0 0 0 0 h
K

0 0 0 0 1
K 0 0 0 0 h

K
0 0 0 0 0 1

K 0 0 0 h
K

0 0 0 0 0 0 1
K 0 0 h

K
0 0 0 0 0 0 0 1

K 0 h
K

0 0 0 0 0 0 0 0 1
K

h
K


















and u =








Q̇s(1)
...

Q̇s(9)
Tenv








.

The input matrixB above assumes a heat source at each nodei. To remove the heater at nodei we can
just set the element ofB which corresponds tȯQs(i) to zero. The continuous-time state model above
can be discretized using available discretization approaches like zero-order hold.

The heated plate used for the simulations is a 1 m by 1.5 m plate that is discretized spatially into
a 10-by-15 grid in the same way as in the example above. The model of this heated plate is then dis-
cretized in time using a zero-order hold approach with a sampling period of 0.2s and simulated for 20
min. The plate is heated in node (8,6). Six sensors are placed in node (3,3),(3,8), (3,13), (8,3), (8,8),
and (8,13) to measure the temperature at those nodes. The other parameters of the simulated states are
listed in Table 1.1. An illustration of the plate set-up is shown in Fig. 1.2. In the figure, the connection
between two sensors means they can share information to each other. The connection topology of
the network is represented by the Laplacian matrixL . The LaplacianL for the simulation set-up as
shown in Fig. 1.2 is

L =











1 −0.5 −0.5 0 0 0
−0.5 1 0 −0.5 0 0
−0.5 0 1 −0.5 −0.5 0

0 −0.5 −0.5 1 0 −0.5
0 0 −0.5 0 1 −0.5
0 0 0 −0.5 −0.5 1











. (1.13)

To simulate the decentralized Kalman filters in this setup, it is necessary to mention the system
model that is used in each sensor node. In the network, each sensor node has its own system model.
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Table 1.1: The parameters of the simulated plate used for the simulations.

Parameters Notations Values Units

Density of the plate ρ 2700 [kg/m3]
Thermal conductivity κ 300 [W/m·K]
Heat capacity per area unit Cp 150 [J/K·kg]
Power of the heaters Q̇s 7200 [W/m2]
Convection coefficient h 10 [W/m2·K]
Environment temperature Tenv 298 [K]
Constant K 0.0067 [m]

Table 1.2: Connectivity of the nodes in the various estimation methods.

Methods Connectivity

PIF All nodes are connected to central processor
DHKF All nodes are neighbors to the others
DIF All nodes are neighbors to the others
DKFCF Using Laplacian matrix
DKFBFG Unestimated states are accessible
DKFWA Using Laplacian matrix

The system model in a node can be the same or different from that of the others and it depends on
the estimation methods. However, the measurement matrix in each node is different from one to the
other, namely each node measures only the state on which it is located on the plate.

Not all of the decentralized Kalman filters use the topology of the network in their computations.
The methods that explicitly use the Laplacian matrix are the DIF, DKFCF, and DKFWA. For the
PIF, the most important assumption is that all nodes are connected to the central processor where the
estimates of the nodes are added up stochastically. The DHKF also does notuse the Laplacian matrix.
Since the estimates are computed separately in each node, then it is assumed thenodes are connected
to communicate the estimates. In other words, all nodes are neighbors to the others. The DIF is
originally derived with the assumption that all nodes are neighbors to the others. This means there are
no zero elements in the Laplacian matrix. In the simulation we do not use the original assumption and
use the connectivity based on (1.13) instead. As a result we expect thatthe error of the DIF will be
higher. The DKFBFG also does not use the Laplacian matrix in the computations, but it assumes that
the unestimated states are accessible from the other nodes. See Table 1.2 for a summary.

1.4 Simulation results

The temperature profile of the plate at the end of simulation time is shown in Fig. 1.3 and the estima-
tion errors, also at the end of simulation time, of all the compared methods are shown in Figs. 1.5 and
1.6. The estimation errors of the states are plotted for each row for clarity reason. In the figures, the
sensor locations are marked with the letter ’s’ in thex-axis. We also present the estimation errors of
the DKFBFG separately since they are much larger than that of the other methods. Adding the errors
of the DKFBFG to the same plot as the others would make the errors of the othermethods less visible.
Fig. 1.4 shows the estimation error of the DIF at node 2 as a function of the discrete time stepk.

From the estimation errors plots, we can see that the estimation errors of all methods are com-
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Figure 1.3: Temperature profile at the end of the simulation.
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parable and also have a similar tendency. In general, the DKFCF and the DHKF give smaller errors
compared to the others. But the DHKF yields more variations than the DKFCF does due to the con-
sensus process, which tries to equalize the estimates of the nodes.

Interestingly for all methods except the DKFBFG, it seems that the errors are larger at the mea-
surement point. We can see this in Fig. 1.5c and 1.6b at state index 3, 8, and 15. Those locations are
the locations of the sensor nodes. For the DKFBFG however, the errorsare larger for larger indices.
But it can be seen that the errors are smaller at the sensor nodes, see Figs. 1.7c and 1.8b. It is still an
open question why this is happening. One possible direction of explanation could maybe be found in
the way the information from the neighbors is collected and added to obtain the overall state.

1.5 Summary

In this chapter we have compared several decentralized Kalman filter approaches using the heated
plate as benchmark. In general, the DKFCF and the DHKF gives the smallesterrors. Of these two,
the DHKF yields more variation than the DKFCF.
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Figure 1.5: The estimation errors in rowj = 1 to j = 6 for all methods except the DKFBFG at time
stepk = 6000. In subfigure (c) the sensor positions are indicated by the letter s onthe x-axis.
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Figure 1.6: The estimation errors in rowj = 7 to j = 10 for all methods except the DKFBFG at time
stepk = 6000. In subfigure (b) the sensor positions are indicated by the letter s onthe x-axis.
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Figure 1.7: The estimation errors in rowj = 1 to j = 6 for the DKFBFG at time stepk = 6000. In
subfigure (c) the sensor positions are indicated by the letter s on the x-axis.
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Figure 1.8: The estimation errors in rowj = 7 to j = 10 for the DKFBFG at time stepk = 6000. In
subfigure (b) the sensor positions are indicated by the letter s on the x-axis.
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Chapter 2

A distributed state estimation scheme
applied to the heat conduction and
convection benchmark

In this Section, a distributed state estimation scheme (DDKF-Distributed and Decentralized Kalman
Filter) based on the contribution of [29] is applied to one of the proposed benchmarks [49]. An exten-
sion to spatially-distributed systems is proposed. This DDKF is originally conceived as a counterpart
of a DKF (Decentralized Kalman Filter) which is a set of fully decentralized filters such that they
estimate the whole dynamics at each node.

If the DDKF scheme is seen as it was proposed in [48], the first step consist in choosing a set of com-
putational nodes such that each resulting local filter achieves a local prediction and at the same time
the communication among nodes does not become a bottleneck for the estimation scheme. Once the
computational nodes are defined, the following step deals with finding the internodal transformations
such that each local model can be derived from the centralized one.

Hence, the DDKF online computations are performed as the classic Kalman filter: prediction step, and
estimation step. However, these computations must be made taking into account the local estimation,
internodal communication, and assimilation in order to produce a right estimation at each node.

2.1 Prediction step

Consider a linear state-space model for the whole large-scale system as:

x(k) = F(k)x(k−1)+B(k)u(k−1)+w(k−1)

z(k) = H(k)x(k)+v(k)
(2.1)

wherex∈ ℜn is the system state,F ∈ ℜn×n is the transition matrix,B∈ ℜn×m is the input matrix,u∈
ℜm is the input vector andw∈ ℜn is the state uncertainty vector. Moreover,z∈ ℜp is the observation
vector,H ∈ ℜn×p is the observation matrix andv∈ ℜp is the measurement noise.
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The prediction of the state and error covariance is performed at each node i as in the classic Kalman
filter using reduced models. Hence, the state and covariance predictions can be computed as follows:

x̂i(k|k−1) = Fi(k)x̂i(k−1|k−1)+Bi(k)ui(k−1)

Pi(k|k−1) = Fi(k)Pi(k−1|k−1)FT
i (k)+Qi(k)

(2.2)

whereQk is the covariance matrix associated with the state uncertainty.

2.2 Estimation step

Once the prediction step is performed, the interconnected nodes send theirstate estimations of the
neighbor nodes based on its own local measurements. Also the error covariance and state estimation
of each node due only to its sensor information must be computed and properly distributed. Finally,
when the estimation is exchanged, each node must assimilate the received estimations in order to
perform the local estimation.

Consider the error covariance and state estimation of nodei due to the information of each neighbor
node as:

Pi(k|zj(k)) = Ti(k)[T
T
j (k)P+

j (k|zj(k))Tj(k)]
+TT

i (k)

x̂i(k|zj(k)) = Vji (k)x̂ j(k|zj(k))
(2.3)

wherePi(k|zj(k)) is the error covariance at nodei due only to the information concerned to sensorj,
Ti , andTj are transformation matrices, andP+

j (k|zj(k)) is the Moore-Penrose generalized inverse of
the error covariance at nodej due only to the availability of the information provided by the sensorj.
Note that(·)+ is referred as the Moore-Penrose generalized inverse [29]. FinallyVji (k) is an internodal
transformation matrix defined as:

Vji (k) = Ti(k)T
+
j (k) (2.4)

Then, assuming only orthonormal transformation matrices, the error covariances and state estimation
of each node due to its local information can be defined as:

Pj(k|zj(k)) =
[

HT
j R+

j H j

]+

x̂ j(k|zj(k)) = Pj(k|zj(k))
[

HT
j R+

j

]

zj(k)
(2.5)

Once the communications are performed, the assimilation procedure takes place as the following
equations:

Pi(k|k) =

[

P−1
i (k|k−1)+

N

∑
j=1

P+
i (k|zj(k))

]+

x̂i(k|k) = Pi(k|k)
{

P−1
i (k|k−1)x̂i(k|k−1)+

N

∑
j=1

[
P+

i (k|zj(k))x̂i(k|zj(k))
]

} (2.6)
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Figure 2.1: A Rod. One dimensional heat exchange.

2.3 A note on the application of the DDKF on spatially distributed sys-
tems

The methodology presented in [48], [37], and [28] is mainly focused on large-scale systems which
are not distributed in space. The heuristic procedure for the partition of the large-scale system in
a given number of subsystems uses a separation of the state variables into “states of interest” and
“overlapping” states. States of interest are those present at each node and which are not communicated
to other node(s). Instead overlapping states are communicated to other node(s) in order to calculate
their own local estimates. Consider a partition of the rod into two rods as it is shown in Fig. 2.1. There
is no explicit relationship between the subsystem one and two. Then the conduction and convection
phenomena in one side can not be seen in the other side. This deficiency is overcame adding to the
prediction model of each node the term associated to the interaction between subsystems:

x̂i(k) = Fi(k)x̂i(k−1)+Bi(k)ui(k−1)+wi(k−1)

+
Ni

∑
j=1

A j(k)x̂ j(k−1)
(2.7)

whereNi is the number of interacting nodes, andA j(k) with j = 1, ...,Ni the interaction matrices.

2.4 Simulation results

In order to test the modified DDKF formulation for the Heat Conduction and Convection System,
the following parameters and assumptions are used in order to perform the simulations: First, it is
assumed a solid rod of aluminum whose parameters are presented in [49]. This rod is inside a room
with a given environment temperature of 298K. The length of the rod is 2m, and 20 partitions are
considered. Then a state-space model composed by 20 states is obtained.It is assumed only mea-
surements from partitions 5 and 15. These measurements are corrupted bywhite noise with unknown
standard deviation. On the other hand two heated points are assumed inside the bar at points 5, and 15
as manipulated variables. The continuous time system is discretized with a samplingtime ofTs = 0.1s.
The discrete time matrices do not change their sparse structure and then the distribution process can
be applied.
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Figure 2.2: Dynamic response of the plant

As there is a spatially distributed system, the methodology presented in [48] cannot be applied di-
rectly to make a partition of the system. In this case two nodes of 10 partitions areassumed due to
the available sensors, that is, there is a node from the beginning to the 10th partition and the other
from this partition to the end of the rod. It can be easily demonstrated that the observability of each
subsystem is guaranteed even if there is only one temperature sensor at each node. The control ac-
tions are distributed in the same way. The original and the extended algorithms are applied to show
the deficiency of the first one with respect to spatially-distributed systems.

As statistical parameters of the observers it is considered a model uncertainty covariance ofQ1 =
Q2 = 0.05∗ In/2, and a noise covariance ofR1 = R2 = 100, where the subindex 1 and 2 correspond to
each node, andIn/2 is the identity matrix of ordern/2, with n the global number of states. The initial
conditions of the observer and the controller are set to be a random number around the environment
temperature.

Consider the temperature profile of the rod as it is shown in Fig. 2.2. The plant is excited by means
of the heaters applying step inputs. The estimated profile of temperature usingthe badly conditioned
observer is shown in Fig. 2.3. The bad estimation is caused at each node bythe lack of important
information as it was stated in Section IV. The complete estimate, using the modified procedure is
fused and it is shown in the Fig. 2.4, where an improved estimation is achieved.The behavior of
the distributed observers are shown in Fig. 2.5. Note the good performance of the filters even with
measurement noise.

As it can be seen from Figs. 2.2 and 2.4 the modified DDKF tackles the estimation problem in a
distributed procedure, filtering the measurement noise and reaching the desired performance. The
error in the estimate can be seen in Fig. 2.6. The bad estimation at the beginning of the simulation is
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Figure 2.3: Distributed Observer, complete reconstruction of the system state (with the original pro-
cedure)

Figure 2.4: Distributed Observer. Complete reconstruction of the system state (procedure with modi-
fications)
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Figure 2.5: Distributed Behavior of the Observer

due to the different initial conditions. Hence, the errors are lower than 1K in 320K, showing the good
performance of the designed scheme.

2.5 About disturbance rejection

In this section, the observer performance under disturbances is studied.

2.5.1 Additive disturbances

Consider an additive disturbance to the plant input. The disturbance consists in a variation of the 10%
of the input at 5000s. The plant and the observer responses are shown in Fig. 2.7 and 2.8. In Fig. 2.9
the estimation error is shown. Notice an error fluctuating between 0K and 12K, that is, a maximal
error of approximately 4%.

2.5.2 Structural disturbances

Structural or model disturbances deal with inaccuracies on the state model.This kind of disturbances
are simulated as an added term to the state equation (in this case is a term which modifies the prediction
model in the prediction step). This term is a white noise with an unknown mean andcovariance.
This kind of disturbance is quite important for two reasons: the modeling inaccuracies are taken into
account with this term, and second it can emulate some error in the communication step. As stated
before, any inaccuracy in the communication step meaningfully deteriorate theestimation process.
A set of simulations are made with a set of white noises added to the observer models. Setting the
covariances with a magnitude of 0.1 of the random value the estimation task becomes inaccurate. The
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Figure 2.6: Distributed behavior of the Observer

Figure 2.7: Plant response
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Figure 2.8: Observer response

Figure 2.9: Estimation Error
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Figure 2.10: Observer response with a model uncertainty.

estimation response and the estimation error with this covariances can be seenin Figs. 2.10 and 2.11.
Note that the largest error is about 15K that produces an estimation error of 5%.

2.5.3 Noise filtering

In this subsection the noise tolerance of the filtering scheme is tested. The simulation performed to
test the distributed filter performance was made considering a Gaussian measurement noise with zero
mean and a covariance of one. Simulations were performed with covariances CN1 = CN2 = 10 for
each noise respectively, with similar results as presented before. Then,an impractical noise whose
covariances areCN1 = CN2 = 100 are applied. Notice, although the noise magnitude is high, the filter
was designed to overcome this kind of noises. In Figs. 2.12 and 2.13, the observer response and the
observation error are shown. The last Figure shows an error of 4K in 305K, or in other words an error
of 1.31% of observation.

Page 27/75



HD-MPC ICT-223854 Report on implementation for selected benchmarks

Figure 2.11: Observer Error with a model uncertainty

Figure 2.12: Observer response when a Gaussian noise withCN1 = CN2 = 10
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Figure 2.13: Observer Error when a Gaussian noise withCN1 = CN2 = 10
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Chapter 3

A distributed model predictive control
formulation

Consider a system withn subsystems, where each of them is influenced by other subsystems. Then
the linear approximation to each subsystem is given by:

xi(k+1) =
n

∑
j=1

[Ai j x j(k)+Bi j u j(k)]

yi(k) = Cixi(k)+Diui(k)

(3.1)

wherexi ∈ R
ni , ui ∈ R

mi , i = 1,2, . . . ,n, beingk the sample time. In this Equationxi(k) is the current
state,yi(k) is the output,ui(k) is the input at nodei, Ai j , andBi j the interaction matrices. From the
subsystems representation (3.1), the model of the whole system becomes

x(k+1) = Ax(k)+Bu(k)

y(k) = Cx(k)+Du(k)
(3.2)

whereA = [A1,A2, . . . ,An]
T , B = [B1,B2, . . . ,Bn]

T , C = [C1,C2, . . . ,Cn]
T , D = [D1,D2, . . . ,Dn], being

Ai = [Ai1,Ai2, . . . ,Ain], Bi = [Bi1,Bi2, . . . ,Bin]. Based on the model of the whole system (3.2), the
formulation of the model predictive control in a centralized fashion can be presented as:

min
u(k)

J[x(k),u(k)]

s.t : x(k+1) = Ax(k)+Bu(k)

y(k) = Cx(k)+Du(k)

operational constraints

(3.3)

Commonly, it is used as cost functionJ(.) the following quadratic expression:

J[x(k, t),u(k, t)] =
Np

∑
t=0

[yre f(k+ t +1)−y(k+ t +1)]TQ[yre f(k+ t +1)−y(k+ t +1)]

+
Nu

∑
t=0

[u(k+ t)TRu(k+ t)]

(3.4)
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whereNp,Nu ∈ℜ are the prediction and control horizons respectively,Np ≥Nu, yre f ∈ℜp is the output
of the system, andQ,R> 0.
Taking into account each subsystem model (3.1), the quadratic cost function (3.4) becomes:

J[x(k),u(k)] =
n

∑
i=1

[Ji(xi(k, t),ui(k, t))] (3.5)

with Ji [xi(k, t),ui(k, t)] = ∑Npi

t=0[yire f (k+ t + 1)− yi(k+ t + 1)]TQi [yire f (k+ t + 1)− yi(k+ t + 1)] +

∑Nui
t=0[ui(k+ t)TRiui(k+ t)].

Since the global cost function can be decomposed as the sum of local cost functions, then the cen-
tralized model predictive control problem can be solved as a sum of distributed ones. Thus model
predictive control can be written as:

min
ui(k)

n

∑
i=1

Ji [xi(k, t),ui(k, t)]

s.t : xi(k+ t +1) =
n

∑
j=1

[Ai j x j(k+ t)+Bi j u j(k+ t)]

yi(k+ t) = Cixi(k+ t)+Diui(k+ t)

operational constraints

(3.6)

3.1 Simulation results

Now, in order to test the combined DDKF and DMPC formulation for the Heat Conduction and
Convection System, the following parameters and assumptions are used in order to perform the simu-
lations: the system is controlled in a constant set point of 305K. Five heated points are assumed inside
the bar at points 1, 5, 10, 15, and 20 as manipulated variables. The controller considers the follow-
ing constraint on the manipulated variables: (0≤ ui ≤ 2000W/m2). The continuous time system is
discretized with a sampling time ofTs = 0.1s. The discrete time matrices do not change their sparse
structure and then the distribution process can be applied.

The designed DMPC are composed by two local MPC withHp = 20, andHc = 2, whereHp, andHc

are the prediction and control horizons respectively. As it was pointed out, constraints are imposed
over the control actions.

The temperature profile of the rod can be seen in Fig. 3.1. Notice that the temperature is controlled
around the set point at those points in which there is a heater. The figure shows that the temperature
goes down between two nodes caused by the heat transferred to the environment by means of the
convection phenomenon. On the other hand, Fig. 3.2 shows the controller performance assuming all
the states are measured without noise. Note that the performance with and without observer becomes
indistinguishable, even with measurement noise.

The behavior of each observer is shown in Figs. 3.3 and 3.4, and the complete observer in Fig. 3.5.
Note, the performance of the filters even with measurement noise. Once the filters has their estimate,
they are used by the DMPC to find the control that minimizes the proposed costfunction. The applied
control actions are shown in Fig. 3.6. In these figures the control actionsof each local controller are
presented. Note that the constraints of the control inputs are satisfied.
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Figure 3.1: Controlled plant with observer. Measures with noise.

Figure 3.2: Controlled plant assuming that all the states are measured. Measure without noise.
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Figure 3.3: Observer behavior of the node one

Figure 3.4: Observer behavior of the node two
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Figure 3.5: Distributed Observer (complete reconstruction of the system state)
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Figure 3.6: Control Actions at each node executed by the DMPC. Each node has one heater as it is
presented
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3.2 About this implementation

A distributed estimation procedure is applied to a benchmark case due to its intuitive application and
its reported results. It is also shown that the scheme is able to estimate the state in large-scale systems
with explicitly interaction. When this procedure is applied to a spatially distributed system, there is
certain missing information that hinders the local and hence the global performance of the estimation
scheme. In this paper a modification to the selected scheme is proposed to overcome the discussed
drawback and then it is demonstrated in simulation by means of an example. The results show a good
performance of the distributed filters, even if the available measurements arecorrupted by noise. A
qualitative analysis is made to different kind of disturbances: structural and additive to the input. As
future work, there is a need to extrapolate the linear results on distributed observers to the nonlinear
framework, using the tools as the unscented transformation or particle filters, among others. Moreover,
computational and communication issues must be discussed in those strategies,and the approach to
the centralized optimal as it has been published in the linear case.

In this work a coupled estimation and control system is tested in simulation in a spatially distributed
system (benchmark system). It can be seen that the global estimation and control problem can be
partitioned in a lower number of subsystems without loss of system performance, this is due to the
fact that the global cost function can be decomposed in several numberof local cost functions. It was
also shown that the controller hold its global optimality once the problem is partitioned. Moreover,
the modified DDKF was able to tackle the global estimation problem leading to the controller an
acceptable performance based on the noisy information available.
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Part II

Four-tanks system benchmark
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Chapter 4

Control schemas applied to the
four-tanks real plant

4.1 Introduction

The four tanks plant is a multivariable laboratory plant of interconnected tanks with nonlinear dynam-
ics and subject to state and input constraints. One important property of thisplant is that the dynamics
present multivariable transmission zeros which can be located in the right-hand side of thesplane for
some operating conditions. This plant is based on the well known quadruple-tank process [12], and its
scheme can be seen in Fig. 4.1(a). In the original plant, the inputs are the voltages of the two pumps
and the outputs are the water levels in the lower two tanks. Fig. 4.1(b) shows the scheme of the real
plant. The main difference is that a control valve regulates the inlet flow of each tank. The three-way
valve ratio is imposed by a suitable choice of the references of the flows.

(a) (b) (c)

Figure 4.1: (a) Scheme of the quadruple tank process, (b) scheme of thereal plant and (c) picture of
the real plant.

A state space continuous time model of the quadruple tank process system [12] can be derived
from first principles as follows
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dh1

dt
= −a1

A1

√

2gh1 +
a3

A1

√

2gh3 +
γa

A1
qa (4.1)

dh2

dt
= −a2

A2

√

2gh2 +
a4

A2

√

2gh4 +
γb

A2
qb

dh3

dt
= −a3

A3

√

2gh3 +
(1− γb)

A3
qb

dh4

dt
= −a4

A4

√

2gh4 +
(1− γa)

A4
qa

The estimated parameters of the real plant and the considered intervals of admissible variation of
the levels and flows are shown in the following table:

Value Unit Description

H1max 1.36 m Maximum level of the tank 1
H2max 1.36 m Maximum level of the tank 2
H3max 1.30 m Maximum level of the tank 3
H4max 1.30 m Maximum level of the tank 4
Hmin 0.2 m Minimum level in all cases
Qamax 3.26 m3/h Maximal flow of pump ’a’
Qbmax 4.00 m3/h Maximal flow of pump ’b’
Qmin 0 m3/h Minimal flow of both pumps
Q0

a 1.63 m3/h Equilibrium flow
Q0

b 2.00 m3/h Equilibrium flow
a1 1.310e-4 m2 Discharge constant of tank 1
a2 1.507e-4 m2 Discharge constant of tank 2
a3 9.267e-5 m2 Discharge constant of tank 3
a4 8.816e-5 m2 Discharge constant of tank 4
A 0.06 m2 Cross-section of all tanks
γa 0.3 Parameter of the 3-ways valve
γb 0.4 Parameter of the 3-ways valve
h0

1 0.6534 m Equilibrium level of tank 1
h0

2 0.6521 m Equilibrium level of tank 2
h0

3 0.6594 m Equilibrium level of tank 3
h0

4 0.6587 m Equilibrium level of tank 4
Tm 5 s Sample time

The minimum level of the tanks has been taken greater than zero to prevent eddy effects in the
discharge of the tank. The values ofγa and γb have been chosen in order to obtain a system with
non-minimum phase multivariable zeros.

Linearizing the model at an operating point given byh0
i and defining the deviation variablesxi =

hi −ho
i andu j = q j −qo

j where j = a,b andi = 1, · · · ,4 we have:

dx
dt

=








−1
τ1

0 A3
A1τ3

0
0 −1

τ2
0 A4

A2τ4

0 0 −1
τ3

0
0 0 0 −1

τ4








x+








γa
A1

0
0 γb

A2

0 (1−γb)
A3

(1−γa)
A4

0








u.
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y =

[
1 0 0 0
0 1 0 0

]

x

whereτi = Ai
ai

√
2h0

i
g ≥ 0, i = 1, · · · ,4, are the time constants of each tank.

The main sources of deviation between the nonlinear model and the real plant are (i) the lineariza-
tion error; (ii) the hypothesis that parametersai do not depend on the levels of the tank; (iii) the
actuator dynamics since the modeled input to the plant is the reference of the PID that controls the
flow of each pipe.

4.1.1 Control configurations

Four different control configurations are going to be used that can begrouped in two classes:

• Tracking Control. Control that allow changes in the reference.

– Centralized control for tracking. In this case the control decides both flows and reads all
the variables of the process. The used controller is a Centralized MPC fortracking [13].

Figure 4.2: Centralized Control.

– Decentralized control for tracking. Two MPC for tracking are used, thesame as in the
previous case, but applied to each subsystem. The pairing procedure between the inputs
is done based on the Relative Gain Array. Two examples are done, one withthe correct
pairing, and the second with the wrong one.

• Regulation controller. To perform the reference changes, One controller for each reference is
designed.

– Centralized control.

– Distributed control.Distributed MPC based on a cooperative game[16]

In a future work, a distributed controller for tracking will be developed and, a decentralized MPC
controller for regulation will be implemented over the plant to compare the performance with the
distributed and centralized schemes.
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Figure 4.3: Decentralized Control.

Figure 4.4: Distributed Control.

4.1.2 Benchmark

Four reference changes are performed during the benchmark experiment. These references are chosen
from the available set of references provided by the Centralized MPC for tracking. The references are
the following:

• re f1 = [0.65;0.65]. The first reference is provided to setup the plant at the working point.

• re f2 = [0.30;0.30]. This reference is close to lower limit of the levels of the plant.

• re f3 = [0.50;0.75]. This reference is provided to perform the following change of setpoint
(where only one reference level is changed).

• re f4 = [0.90;0.75]. To perform this change the tank 3 and 4 have to be emptied and filled.

The performance criterion is the integral of the square error of the outputsSEI.

SEI=
∫ t f

0
((h1(τ)−h1r(τ))2 +(h2(τ)−h2r(τ))2)dτ
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Figure 4.5: References.

4.2 Centralized MPC for tracking

In this section we present the MPC for tracking proposed in [13].
Notation: vector(x, t, r) denotes[xT , tT , rT ]T ; for a givenλ , λX = {λx : x∈ X}; int(X) denotes

the interior of setX; a matrixT definite positive is denoted asT > 0 andT > P denotes thatT −
P > 0. For a given symmetric matrixP > 0, ‖x‖P denotes the weighted Euclidean norm ofx, i.e.
‖x‖P =

√
xTPx. Matrix 0n,m ∈ IRn×m denotes a matrix of zeros. Considera∈ IRna, b∈ IRnb, and set

Γ ⊂ IRna+nb, then projection operation is defined asPro ja(Γ) = {a∈ IRna : ∃b∈ IRnb, (a,b) ∈ Γ}.
Let a discrete-time linear system be described by:

x+ = Ax+Bu
y = Cx+Du

(4.2)

wherex ∈ IRn is the current state of the system,u ∈ IRm is the current input,y ∈ IRp is the current
output andx+ is the successor state. The state of the system and the control input appliedat sampling
timek are denoted asx(k) andu(k) respectively. The system is subject to hard constraints on state and
control:

(x(k),u(k)) ∈ Z = {z∈ IRn+m : Azz≤ bz}, ∀k≥ 0 (4.3)

where the setZ is a compact convex polyhedron containing the origin in its interior.
The problem we consider is the design of an MPC controller to track a piece-wise constant se-

quence of set points or referencess(k) in such a way that the constraints are satisfied at all times.

Characterization of the steady states

Consider the nominal model of the plant (4.2) subject to the constraints on thenominal state and input
given by (4.3). Every nominal steady state and inputzs = (xs,us) is a solution of the equation

[
A− In B

]
[

xs

us

]

= 0n,1 (4.4)
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and hence it is an element of the null space of the linear transformation given by matrix [A− In B].
Since it is assumed that(A,B) is controllable, the dimension of this null space is equal tom. Therefore,
there exists a matrixMθ ∈ IR(n+m)×m such that every nominal steady state and input can be posed as

zs = Mθ θ (4.5)

for certainθ ∈ IRm. The subspace of nominal steady outputs is then given by

ys = Nθ θ (4.6)

whereNθ , [C D]Mθ .
The existence of constraints (4.3) limits the set of admissible nominal steady states and inputs and

the set of admissible nominal controlled variables, which are given by

Zs
∆
= {(xs,us) ∈ Z : (A− In)xs+Bus = 0n,1}

Ys
∆
= {Cxs+Dus : (xs,us) ∈ Zs}

Invariant set for tracking

Consider that the nominal system (4.2) is controlled by the following control law:

u = K(x−xs)+us = Kx+Lθ (4.7)

whereL = [−K Im]Mθ . If K is such that matrixA+ BK is Hurwitz then this control law steers the
system to the steady state and input(xs,us) = Mθ θ . The existence of constraints limits the set of
initial states and steady states and inputs that can admissibly be stabilized. This leads to the following
definition.

Definition 1 (Invariant set for tracking) An invariant set for tracking is the set of initial states and
steady states and inputs (characterized byθ ) that can be stabilized by the control law (4.7) fulfilling
the constraints(4.3) throughout its evolution.

This set can be computed as an admissible invariant set for the augmented systemxa ∆
= (x,θ) ∈

IRn+m. Then the closed-loop system can be posed as:

[
x
θ

]+

︸ ︷︷ ︸

x+
a

=

[
A+BK BL

0 Im

]

︸ ︷︷ ︸

Aa

[
x
θ

]

︸ ︷︷ ︸

xa

(4.8)

subject to the set of constraints (4.3), that can be posed as

X
a = {xa = (x,θ) : (x,Kx+Lθ) ∈ Z , Mθ θ ∈ Z }

SetΩa
t,K ⊂ X a is an admissible invariant set for tracking, for system (4.8) constrained toX a,

if AaΩa
t ⊆ Ωa

t andΩa
t,K ⊆ X a. See that for any(x(0),θ) ∈ Ωa

t,K , the trajectory of the systemx(i +
1) = Ax(i)+ Bu(i) controlled byu(i) = Kx(i)+ Lθ is confined inΩt,K = Pro jx(Ωa

t,K)1 and tends to
(xs, ūs) = Mθ θ .

1In what follows, superscripta denotes that setΩa
t,K is defined in the augmented state, while no superscript denotes that

setΩt,K is defined in the state vector spacex, i.e. Ωt,K = Pro jx(Ωa
t,K).
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Although the maximal invariant set is not needed, it is convenient in order toprovide a bigger
region of attraction. The maximal admissible invariant set for system (4.8) maynot be finitely de-
termined due to the unitary eigenvalues of the plant. Fortunately, in this case, taking as constraints
X a

λ = {xa = (x,θ) : (x,Kx+ Lθ) ∈ Z , Mθ θ ∈ λZ }, the associated maximal admissible invariant
set is finitely determined for anyλ ∈ (0,1), resulting in a polyhedral region [15, 14]. Thus taking a
λ arbitrarily close to 1, the resulting invariant set is arbitrarily close (in the Hausdorff sense) to the
maximal one.

It is interesting to characterize what will be the set of the steady states, inputs and controlled
variables that could be reached from an initial state containedΩt,K . This can be done by defining the
following set of parametersΘ

Θ ∆
= {θ : (xs,us) = Mθ θ ∈ Z , xs ∈ Ωt,K} (4.9)

This set is equal to the projection ofΩa
t,K ontoθ . Then the set of reachable steady controlled variables

s is given by
Yt = Nθ Θ (4.10)

Notice that if the calculation method proposed in [15] is used to computeΩa
t,K , then this setYt is

potentially equal to the maximal oneYs sinceYt ⊆ λYs andλ can be chosen arbitrarily close to 1.

4.2.1 Optimization problem

In this section the proposed MPC for tracking is presented. As was previously stated, this predictive
controller is based on the addition of the steady state and input as decision variables, the usage of a
modified cost function and an extended terminal constraint. To this end, the following assumption is
considered.

Assumption 1

1. Let Q∈ IRn×n, R∈ IRm×m and T∈ IRn×n be positive definite matrices.

2. Let K∈ IRm×n be a stabilizing control gain such that(A+BK) is Hurwitz.

3. Let P∈ IRn×n be a positive definite matrix such that

(A+BK)TP(A+BK)−P = −(Q+KTRK)

4. LetΩa
t,K ⊆ IRn+nθ be an admissible polyhedral invariant set for tracking for system(4.2)subject

to (4.3)and a gain controller K.

Consider that the current state of the system isx and the desired steady output to be reached iss,
then the proposed cost function is

VN(x,s,u,θ) =
N−1

∑
i=0

‖x(i)−xs‖2
Q +‖u(i)−us‖2

R

+‖x(N)−xs‖2
P +‖ys−s‖2

T

whereu is a sequence ofN future control inputs, i.e.u = {u(0), . . . ,u(N−1)}, zs = (xs,us) = Mθ θ ,
ys = Nθ θ , x(i) is the predicted state of the system at timei given byx(i + 1) = Ax(i)+ Bu(i), with
x(0) = x. Note that this cost can be posed as a quadratic function of the decision variables.
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The proposed MPC optimization problemPN(x,s) is given by

V∗
N(x,s) = min

u,θ
VN(x,s,u,θ)

s.t. x(0) = x,

x( j +1) = Ax( j)+Bu( j),

(x( j),u( j)) ∈ Z, j = 0, · · · ,N−1

(xs,us) = Mθ θ ,

(x(N),θ) ∈ Ωa
t,K .

It is worth noting thatu andθ are the decision variables andx ands are parameters of the proposed
optimization problemPN(x,s). Moreover, it turn out to be a standard (parametric) Quadratic Program-
ming problem that can be efficiently solved by specialized algorithms.

Given that the constraints ofPN(x,s) do not depend ons, there exists a (polyhedral) regionXN ⊂
IRn such that for allx ∈ XN, PN(x,s) is feasible (for anys∈ Yt). Applying the receding horizon
strategy, the control law is given byKN(x,s) = u(0), whereu(0) is a function ofx ands.

Theorem 1 (Stability) Consider that assumption 1 hold. Givenλ ∈ (0,1), suppose thatΩa
t,K is an

admissible invariant set for tracking. Then, for any feasible initial state x0 ∈ XN and for any desired
steady state s∈ Yt , the proposed MPC controller KN(x,s) asymptotically steers the system to s in an
admissible way.

Property 1 The set of admissible steady outputs that can be tracked without offset isYt . Since the
evolution of the system remains in XN, the system can be steered to any admissible reference. Then,
any sequence of piecewise admissible references can be tracked without offset.

If the desired steady output s is not admissible, then it cannot be trackedwithout offset and the
controller steers the system to a close admissible steady output.

Property 2 Consider a desired admissible set point s∈Yt and design a standard MPC i.e. translating
the system to the corresponding equilibrium steady state xs to s, using a linear stabilizing local control
law and the maximal admissible invariant setO∞(xs) as terminal set. Also consider the proposed MPC
where the local controller gain is the same and the setΩa

t,K is used as terminal cost. Then:

1. SinceO∞(xs) ⊆ Ωa
t,K , the domain of attraction of the proposed MPC is larger than that of the

standard MPC.

2. A desirable property of the MPC controllers is that if the unconstrained optimal control law is
used as terminal controller, then the MPC is locally optimal. In the proposed MPC for tracking,
this property is lost due to the term‖ys− s‖T added in the cost function. However, it can be
proved that if this term is more heavily penalized, then the local optimality of thecontroller is
enhanced.

Thus, taking an arbitrarily large matrix T , the MPC for tracking provides a larger domain of attraction
and a control law which is locally nearly optimal.

Property 3 The proposed controller stabilizes the system for any suboptimal solution such that

• The suboptimal cost at each sample time is lower that the one at the previous instant.
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• If the system is inΩa
t,K , the suboptimal cost must be lower than the one obtained by the local

linear controller.

Property 4 If the set point to track is time varying convergent to a steady value, then the proposed
controller makes the system follow it in an admissible way ultimately reaching the steady set point.

4.2.2 Application to the quadruple tank process

The discrete-time model of the plant for the aforementioned parameters is:







x1

x2

x3

x4







+

=







0.9705 0 0.0205 0
0 0.9661 0 0.0195
0 0 0.9792 0
0 0 0 0.9802













x1

x2

x3

x4







+







0.0068 0.0001
0.0002 0.0091

0 0.0137
0.0160 0







[
u1

u2

]

y =

[
1 0 0 0
0 1 0 0

]







x1

x2

x3

x4







The defining matrices of the stage cost of the performance criterion have been chosen as

Q = 100× I4 R= 1× I2 (4.11)

The terminal control gainK has been chosen as the LQR gain for the matrices (4.11) and matrix
P is the solution of the Ricatti equation. The offset cost weighting matrixT has been chosen as
T = 104× I2. Finally the control horizon has been chosen asN = 5.

K =

[
−2.2525 −1.6731 0.8413 −8.0546
−2.0469 −3.1698 −7.7111 0.6285

]

The resulting regions are shown in Fig. 4.6.
The derived controller has been tested on the nominal model, and then applied on the real plant.

Fig. 4.7 shows the simulated evolution of levelsh1 andh2, and the references, the evolution of the
control actions and the evolution of the levelsh3 andh4

Fig. 4.8 shows the same as the previous figure, but applied to the real plant.It can be appreciate
that:

• The behavior of the plant is quite similar to the model, but the model it is not well identified
because there is offset respect the first reference, which is, more or less, the linearizing point of
the plant. The MPC for tracking may present offset in any change of reference due to the error
between the model and the real plant, but not in the linearizing point.

• The integral of the square errorSEI is

SEI= 174.2441

This value will be decreased when we get an more accurate model of the plant and when we
introduce the offset cancellation loop that will remove the offset in permanent regime.
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Figure 4.6: Different sets of the MPC for tracking applied to the quadrupletank process
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Figure 4.7: Simulation of the plant controlled by the centralized MPC for tracking
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Figure 4.8: Evolution of the plant controlled by the centralized MPC for tracking

4.3 Decentralized MPC for tracking

4.3.1 Pairing based on the relative gain array

Two controllers are going to be used to control the plant. The pairing between inputs and outputs in
decided based on the relative gain array (RGA)

RGA=

[
−0.4 1.38
1.38 −0.4

]

Considering the values of the RGA the correct pairing is controlh1 with qb (y1 with u2) andh2 with
qa (y2 with u1). The models of the subsystems are:

• Subsystem 1 (y1 with u2)

[
x1

x3

]+

=

[
0.9705 0.0205

0 0.9792

][
x1

x3

]

+

[
0.0001
0.0137

]

u2 (4.12)

y1 =
[

1 0
]
[

x1

x3

]

• Subsystem 2 (y2 with u1)
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[
x2

x4

]+

=

[
0.9661 0.0195

0 0.9802

][
x2

x4

]

+

[
0.0002
0.0160

]

u1 (4.13)

y2 =
[

1 0
]
[

x2

x4

]

The matrices that define the stage cost of the performance criterion have been chosen in both cases as:

Q = 100× I2 R= 1× I1 (4.14)

The terminal control gainsK1 andK2 have been chosen as the LQR gain for the matrices (4.14) and
matrix P is the solution of the Ricatti equation. The offset cost weighting matrixT has been chosen
asT = 104× I1. Finally the control horizon has been chosen asN = 5.

K1 =
[
−2.3445 −8.3902

]

K2 =
[
−1.9719 −8.4094

]

The resulting regions are shown in Fig. 4.9.
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Figure 4.9: Different sets of the MPC for tracking

where
0≤ u1 ≤ 4.00 0≤ u2 ≤ 3.26

The derived controllers has been tested on the nominal model, and then applied on the real plant. Fig.
4.10 shows the simulated evolution of levelsh1 andh2, and the references, the evolution of the control
actions and the evolution of the levelsh3 andh4

Fig. 4.11 shows the same as the previous figure, but applied to the real plant. The integral of the
square errorSEI is

SEI= 276.8838

This value will be decreased when we get an more accurate model of the plant and when we introduce
the offset cancellation loop that may remove the offset in permanent regime.
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Figure 4.10: Simulation of the plant controlled by 2 MPC for tracking with the correct pairing

4.3.2 Wrong pairing

Considering the values of the RGA the wrong pairing is controlh1 with qa (y1 with u1) andh2 with qb

(y2 with u2). The models of the subsystems are:

• Subsystem 1 (y1 with u1)

[
x1

x3

]+

=

[
0.9705 0.0205

0 0.9792

][
x1

x3

]

+

[
0.0068

0

]

u1 (4.15)

y1 =
[

1 0
]
[

x1

x3

]

• Subsystem 2 (y2 with u2)

[
x2

x4

]+

=

[
0.9661 0.0195

0 0.9802

][
x2

x4

]

+

[
0.0091

0

]

u2 (4.15)

y2 =
[

1 0
]
[

x2

x4

]

The defining matrices of the stage cost of the performance criterion have been chosen in both cases
as:

Q = 100× I2 R= 1× I1 (4.14)
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Figure 4.11: Evolution of the plant controlled by 2 MPC for tracking with the correct pairing

The terminal control gainsK1 andK2 have been chosen as the LQR gain for the matrices (4.14) and
matrix P is the solution of the Ricatti equation. The offset cost weighting matrixT has been chosen
asT = 104× I1. Finally the control horizon has been chosen asN = 5.

K1 =
[
−6.3344 −1.4545

]

K2 =
[
−6.6115 −1.1918

]

The resulting regions are shown in Fig. 4.12.
where

0≤ u1 ≤ 4.00 0≤ u2 ≤ 3.26

The derived controllers has been tested on the nominal model, and then applied on the real plant. Fig.
4.13 shows the simulated evolution of levelsh1 andh2, and the references, the evolution of the control
actions and the evolution of the levelsh3 andh4

Fig. 4.14 shows the same as the previous figure, but applied to the real plant. The integral of the
square errorSEI is not calculated because the test is not finished due to the maximum level of tank 3
was reached and the security system stopped the pump. It is clear that the performance of centralized
controller is better than the decentralized one. Once we develop the trackingformulation of the
distributed controller the performance of it must be between the centralized and the decentralized
ones.

Page 50/75



HD-MPC ICT-223854 Report on implementation for selected benchmarks

0.2 0.4 0.6 0.8 1 1.2 1.4

0.2

0.4

0.6

0.8

1

1.2

1.4

x
1

x 3

X
N

, X
eq

 and Ω
t,K

 of subsystem 1

 

 
X

N
X

eq

Ω
t,K

0.2 0.4 0.6 0.8 1 1.2 1.4

0.2

0.4

0.6

0.8

1

1.2

1.4

x
2

x 4

X
N

, X
eq

 and Ω
t,K

 of subsystem 2

 

 
X

N
X

eq

Ω
t,K

Figure 4.12: Different sets of the MPC for tracking
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Figure 4.13: Simulation of the plant controlled by 2 MPC for tracking with the wrong pairing

4.4 Distributed MPC based on a cooperative game

In this section we compare a centralized MPC with the distributed MPC based on acooperative game
scheme presented in [16]. We consider the following class of distributed linear systems in which two
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Constraint violation stops the pump

Figure 4.14: Evolution of the plant controlled by 2 MPC for tracking with the wrong pairing

subsystems coupled with the neighbor subsystem through the inputs are defined

x1(t +1) = A1x1(t)+B11u1(t)+B12u2(t)
x2(t +1) = A2x2(t)+B21u1(t)+B22u2(t)

(4.15)

wherexi ∈ R
ni , i = 1,2 are the states of each subsystem andui ∈ R

mi , i = 1,2 are the different inputs.
This class of systems are of relevance when identifications techniques areused to obtain the transfer
function of a process. We consider the following linear constraints in the state and the inputs

xi ∈ Xi ,ui ∈ Ui , i = 1,2

whereXi andUi with i = 1,2 are defined by a set of linear inequalities.
The control objective is to regulate the system to the origin while guaranteeingthat the constraints

are satisfied. Centralized MPC solves a single optimization problem to decide theoptimal sequences
of the inputsu1 andu2 with respect to a given performance index based on the full model of the system
and on measurements from all the sensors. In distributed and decentralized schemes two independent
controllers (hereby denoted agents) are defined. Agent 1 has access to the model of subsystem 1, its
statex1 and decides the value ofu1. On the other hand, agent 2 has access to the model of subsystem 2,
its statex2 and decides the value ofu2. This implies that neither agent has access to the full model
or state information and that in order to find a cooperative solution, they mustcommunicate. The
proposed controller guarantees practical stability of the closed-loop system.

The proposed benchmark is based on a nonlinear model and consists of several reference steps of
the levels of tanks 1 and 2. In order to test the proposed DMPC scheme andcompare its performance
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with a centralized controller we propose to design a different controller for each set-point; that is, we
consider four different linear models with the following state and input variables

x1 =

[
h1−h1r

h3−h3r

]

u1 =
[

qa−qar
]

x2 =

[
h2−h2r

h4−h4r

]

u2 =
[

qb−qbr
]

whereh1r ,h2r ,h3r ,h4r ,qar andqbr define the level and flow of each of the four different set-points
of the benchmark. The linear model for each set-point is obtained linearizing the nonlinear model of
the quadruple tank process. This implies that during the simulation, we switch between four different
controllers for regulation.

The objective of the MPC controllers is to minimize a performance index that depends on the
future evolution of both states and inputs based on the following local cost functions

J1(x1,U1,U2) =
N−1
∑

k=0
L1(x1,k,u1,k)+F1(x1,N)

J2(x2,U2,U1) =
N−1
∑

k=0
L2(x2,k,u2,k)+F2(x2,N)

whereLi(x,u)= xTQix+uTRiuandFi(x) = xTPix with i = 1,2 are the stage and terminal cost functions
respectively.

Centralized MPC solves a single large-scale problem based on the model ofthe whole system. In
the example section we will compare the performance of the proposed approach with a centralized
MPC controller based on the following optimization problem:

{Uc
1(t),Uc

2(t)} = arg min
U1,U2

J1(x1(t),U1,U2)+J2(x1(t),U2,U1)

x1,k+1 = A1x1,k +B11u1,k +B12u2,k

x1,0 = x1(t)
x1,k ∈ X1, k = 0, . . .N
u1,k ∈ U1, k = 0, . . .N−1
x1,N ∈ Ω1

x2,k+1 = A2x2,k +B22u2,k +B21u1,k

x2,0 = x2(t)
x2,k ∈ X2, k = 0, . . .N
u2,k ∈ U2, k = 0, . . .N−1
x2,N ∈ Ω2

(4.16)

whereUi are the decision variables of the optimization problems solved by both agents. The central-
ized MPC provides in general the best closed-loop performance, but can only be applied when it is
possible to control the system with a single controller that has access to the full model and state of
the same. Note that this formulation takes into account both a terminal cost and aterminal region
which can be designed to guarantee closed-loop stability. In the benchmarkwe have used the design
procedure proposed in [16] to obtain matrices theP1,P2 and the setsΩ1,Ω2.

The objective of the DMPC scheme is to minimize the performance index in a distributed manner.
At each sampling time, each agent solves a sequence of reduced dimensionoptimization problems
based on the model of its subsystem and assuming a given fixed input trajectory for its neighbor. The
proposed DMPC algorithm is the following:
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1. At time stept, each agenti receives its corresponding partial state measurementxi(t).

2. Each agenti minimizesJi assuming that the neighbor keeps applying the optimal trajectory
evaluated at the previous time step; that is,Uni = Us

ni(t). These trajectories are obtained from
the optimal input sequence of agenti at timet −1, denotedUd

i (t −1), as follows:

Us
1(t) =










ud
1,1

ud
1,2
...

ud
1,N−1

K1x1,N










, Us
2(t) =










ud
2,1

ud
2,2
...

ud
2,N−1

K2x2,N










wherex1,N,x2,N are theN-steps ahead predicted state obtained fromx1(t −1),x2(t −1) respec-
tively applying the input trajectoriesUd

1 (t −1),Ud
2 (t −1) andK1, K2 are two known feedback

gains. Agent 1 solves the following optimization problem:

U∗
1 (t) = argmin

U1
J1(x1(t),U1,Us

2(t))

x1,k+1 = A1x1,k +B11u1,k +B12u2,k

x1,0 = x1(t)
x1,k ∈ X1, k = 0, . . .N
u1,k ∈ U1, k = 0, . . .N−1
x1,N ∈ Ω1

(4.17)

Agent 2 solves the following optimization problem:

U∗
2 (t) = argmin

U2
J2(x2(t),U2,Us

1(t))

x2,k+1 = A2x2,k +B22u2,k +B21u1,k

x2,0 = x2(t)
x2,k ∈ X2, k = 0, . . .N
u2,k ∈ U2, k = 0, . . .N−1
x2,N ∈ Ω2

(4.18)

The setsΩ1 andΩ2 define the terminal region constraints that are necessary to prove closed-
loop practical stability following a terminal region/terminal cost approach. Note that in both
optimization problems the free variable isUi while the neighbor input trajectoryUni is fixed.

3. Each agenti minimizesJi optimizing the neighbor input assuming that it applies the input
trajectory computed in the previous optimization problemU∗

i . Agent 1 solves the following
optimization problem:

Uw
2 (t) = argmin

U2
J1(x1(t),U∗

1 (t),U2)

x1,k+1 = A1x1,k +B11u1,k +B12u2,k

x1,0 = x1(t)
x1,k ∈ X1, k = 0, . . .N
u2,k ∈ U2, k = 0, . . .N−1
x1,N ∈ Ω1

(4.19)
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Table 4.1: Cost function table used for the decision making.

Us
2(t) U∗

2 (t) Uw
2 (t)

Us
1(t)

J1(x1(t),Us
1(t),U

s
2(t))

+J2(x2(t),Us
2(t),U

s
1(t))

J1(x1(t),Us
1(t),U

∗
2 (t))

+J2(x2(t),U∗
2 (t),Us

1(t))
J1(x1(t),Us

1(t),U
w
2 (t))

+J2(x2(t),Uw
2 (t),Us

1(t))

U∗
1 (t)

J1(x1(t),U∗
1 (t),Us

2(t))
+J2(x2(t),Us

2(t),U
∗
1 (t))

J1(x1(t),U∗
1 (t),U∗

2 (t))
+J2(x2(t),U∗

2 (t),U∗
1 (t))

J1(x1(t),U∗
1 (t),Uw

2 (t))
+J2(x2(t),Uw

2 (t),U∗
1 (t))

Uw
1 (t)

J1(x1(t),Uw
1 (t),Us

2(t))
+J2(x2(t),Us

2(t),U
w
1 (t))

J1(x1(t),Uw
1 (t),U∗

2 (t))
+J2(x2(t),U∗

2 (t),Uw
1 (t))

J1(x1(t),Uw
1 (t),Uw

2 (t))
+J2(x2(t),Uw

2 (t),Uw
1 (t))

Agent 2 solves the following optimization problem:

Uw
1 (t) = argmin

U1
J2(x2(t),U∗

2 (t),U1)

x2,k+1 = A2x2,k +B22u2,k +B21u1,k

x2,0 = x2(t)
x2,k ∈ X2, k = 0, . . .N
u1,k ∈ U1, k = 0, . . .N−1
x2,N ∈ Ω2

(4.20)

In this optimization problem the free variable isUni (the input trajectoryUi is fixed). Solving
this optimization problem, agenti defines an input trajectory for its neighbor that optimizes its
local cost functionJi .

4. Both agents communicate. Agent 1 sendsU∗
1 (t) andUw

2 (t) to agent 2 and receivesU∗
2 (t) and

Uw
1 (t).

5. Each agent evaluates the local cost functionJi for each the nine different possible combination
of input trajectories; that isU1 ∈ {Us

1(t),U
w
1 (t),U∗

1 (t)} andU2 ∈ {Us
2(t),U

w
2 (t),U∗

2 (t)}.

6. Both agents communicate and share the information of the value of local cost function for each
possible combination of input trajectories. In this step, both agents receiveenough information
to take a cooperative decision.

7. Each agent applies the input trajectory that minimizesJ = J1 + J2. Because both agents have
access to the same information after the second communication cycle, both agents choose the
same optimal input sets. We denote the chosen set of input trajectories asUd

1 (t),Ud
2 (t).

8. The first input of each optimal sequence is applied and the procedureis repeated the next sam-
pling time.

From a game theory point of view, at each time step both agents are playing a cooperative game.
This game can be synthesized in strategic form by a three by three matrix. Each row represents one of
the three possible decisions of agent 1, and each column represents oneof the three possible decisions
of agent 2. The cells contain the sum of the cost functions of both agents for a particular choice of
future inputs. At each time step, the option that yields a lower global cost is chosen. Note that both
agents share this information, so they both choose the same option. The nine possibilities are shown
in table 4.1.
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At each sampling time, the controllers decide among three different options. The shifted optimal
input trajectoryUs

i (t) keeps applying the latest optimal trajectory. TheselfishoptionU∗
i (t) provides

the best improvement inJi if the rest of the system’s manipulated variables stay unchanged. The
altruist optionUw

i (t) provides the best improvement for the neighbor agent cost functionJ2. In this
case, the agenti sacrifices its own welfare in order to improve the overall performance.

4.4.1 Design procedure

The distributed controller that has been presented is designed for regulation problems. Given that the
benchmark puts to test the controller in four different working points fourdifferent versions of the
controller were designed, each one linearized in a working point. Whenever the reference changes the
controller is switched. Next we will reproduce here the results for the first working point for the plant.
We omit the results for the rest of working points because the design procedure is the same and the
results are similar.

In this point we have to remark the fact that when the reference is switchedfrom one working
point to another one it is precise to reset the value ofUs to a feasible solution. This is necessary in
order to assure a decreasing cost and the stability.

The reference is given by (0.65, 0.65). The linearized model of the first agent is:

A1 =

[
0.9705 0.0205

0 0.9792

]

,B11 =

[
0.0068

0

]

,B12 =

[
0.0001
0.0137

]

The model of the second agent is given by:

A1 =

[
0.9661 0.0195

0 0.9802

]

,B11 =

[
0.0002
0.016

]

,B12 =

[
0.0091

0

]

The controller gains were designed for the following weighting matricesQ1 = Q2 = diag(100,0),
R1 = R2 = I . The local controller gains for each agent were,

K1 =

[
0.17 0.21
0.00 0.00

]

,K2 =

[
0.00 0.00
−0.16 −0.14

]

These gains and the terminal cost matricesP1,P2 were designed with LMI techniques in order to stabi-
lize both subsystems independently while assuring the stability of the centralizedsystem. Following
the procedure detailed previously it is possible to calculate a distributed invariant set corresponding to
this gain. We show in Figs. 4.15 and 4.16 the sets corresponding to both agents. It is remarkable that
the Chebyshev radius of the distributed invariant set is the same in this case that the centralized one.

The centralized gain is given byK = diag(K1,K2). The role of the gainK is important because
the option in the game that allows to guarantee closed-loop stability is constructedshifting the last
centralized control action; that is, the first element is dropped after it is applied in the system and a
term with the valueKxN is added at the end of the horizon control vector. Although we talk here
about the centralized gainK note that centralized here does not require a cooperation between the two
agents because it is constructed in such a way that this cooperation can beavoided.

4.4.2 Simulation and experiment results

The derived controllers has been tested on the nominal model, and then applied on the real plant. Fig.
4.17 shows the simulated evolution of levelsh1 andh2, and the references, the evolution of the control
actions and the evolution of the levelsh3 andh4 for the centralized MPC controller.
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Figure 4.15: Invariant set for agent 1.
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Figure 4.16: Invariant set for agent 2.
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Figure 4.17: Simulation of the plant controlled by the centralized MPC for regulation

Fig. 4.18 shows the same as the previous figure, but applied to the real plant. The integral of the
square errorSEI is 92.9616.

Fig. 4.19 shows the simulated evolution of levelsh1 andh2, and the references, the evolution of
the control actions and the evolution of the levelsh3 andh4 for the distributed MPC controller based
on a cooperative game.

Fig. 4.20 shows the same as the previous figure, but applied to the real plant. The integral of the
square errorSEI is 200.3820.

During the simulations the distributed controller switches between the differentcontrol options.
Fig. 4.21 shows the different option chosen at each time step.

The proposed distributed MPC controller only needs two communication steps inorder to obtain
a cooperative solution to the centralized optimization problem, has low communication and com-
putational burdens and provides a feasible solution to the centralized problem. The simulation and
experimental results show that the distributed scheme is able to control the system. Note that in this
case, because the control input is decided by consensus, the pairing does not affect the performance
of the distributed control scheme if the states are grouped correctly.

In a future work we will apply a distributed MPC scheme for tracking includingan integral term
in order to reduce the steady state error and the effect of the model mismatch.
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Figure 4.18: Evolution of the plant controlled by the centralized MPC for regulation
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Figure 4.19: Simulation of the plant controlled by the distributed MPC for regulation
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Figure 4.20: Evolution of the plant controlled by the distributed MPC for regulation
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Figure 4.21: Options chosen at each time step by the distributed MPC controller.
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Part III

Control scheme applied to the electrical
generation units benchmark
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Chapter 5

Model predictive control for generation
units

5.1 Introduction

It is well know that generation units has two main dynamics:

1. Mechanical Dynamics: these dynamics depict the load angle, the mechanical power and the
rotor speed behavior.

2. Electrical Dynamics: these dynamics depict the voltage at terminal bus andthe field voltage
behavior

The mechanical and electrical dynamics have different time-scale responses, being mechanical dy-
namics slower than electric ones. Then in order to design a MPC for generation units, a multi-model
controller is necessary. Moreover taking into account that in the real systems classic speed and voltage
regulators cannot be modified, these dynamics must be included in the model used to predict voltage
and speed trajectories.

In this report, a centralized MPC is formulated for the control of generationunits. Due to different time
scale of machines dynamics, a two levels time-response-based hierarchical structure is proposed. The
proposed control structure involves the interaction among the centralized MPC and classical voltage
and speed regulators.

5.2 Controller design

In order to implement an MPC for generation units, a third order model depicted by equation (5.1)
was selected.

δ̇ = ω0(ω −1)

ω̇ =
1
M

[−D(ω −1)+Pm−Pe]

Ė′
q =

1
τ ′

d0
[−Eq− (xd −x′d)Id +Ef ]

(5.1)
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whereδ ,ω ,E′
q denote the angle, speed and electromotive force in the quadrature axis ofthe gen-

erator, respectively;ω0,M,D,τ ′
d0,xd,x′d represent the nominal speed, the inertia, the damping, the

transient time constant, the reactance and the transient reactance, of the generation unit, respectively;
Pm,Pe, Id,Ef are the mechanical and electric power, the field current in the direct axis and the field
voltage, respectively. All values of the variables listed before are inp.u.

This model was used because it is a reduced order model that describesthe speed and voltage behavior
in terms of measurable and estimable variables, and its parameters can be provided by the machines
manufacturers or can be knew from machine tests.

Additional to the load angle, the speed and the voltage dynamics, the predictionmodel must include
the dynamics of voltage and speed regulators. Then it is assumed that thesecontrollers have a first
order system behavior given by

Ėf =
1
τe

[−Ef +ke(Vre f −E′
q)]

Ṗm =
1
τg

[−Pm+kg(ωre f −ω)]
(5.2)

whereEf and Pm are the field voltage and the mechanical power respectively;τe,τg are the time
constants of the field voltage regulator and the speed regulator respectively; ke,kg are the gains of
the field voltage and speed controllers respectively;Vre f ,ωre f denote the voltage and speed reference
values. Thus the model used to predict the behavior of each machine becomes

δ̇ = ω0(ω −1)

ω̇ =
1
M

[−D(ω −1)+Pm−Pe]

Ė′
q =

1
τ ′

d0
[−Eq− (xd −x′d)Id +Ef ]

Ėf =
1
τe

[−Ef +ke(Vre f −E′
q)]

Ṗm =
1
τg

[−Pm+kg(ωre f −ω)]

(5.3)

Lets definex = [δ ,ω ,Pm,E′
q,Ef ]

T , u = [Vre f ,ωre f ]
T , d = [Pe, Id]T , andy = [ω ,E′

q]
T , then the model

given by (5.3) can be written in matrix form as

ẋ = Ax+Bu+Dd

y = Cx
(5.4)

whereA,B,C,D are the matrices associated with the continuous time model (5.3), each matrix is
defined as follows:

A =










0 1 0 0 0
0 − D

M − 1
M 0 0

0 − kg

τg
− 1

τg
0 0

0 0 0 − 1
τ ′d0

1
τ ′d0

0 0 0 − ke
τe

− 1
τe









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B =










0 0
0 0

0 kg

τg

0 0
ke
τe

0










D =











0
0

− 1
M

0
−(xd −x′d)

0











C =

[
0 1 0 0 0
0 0 0 1 0

]

TheA matrix shown before has a block diagonal form, then each machine model can be decomposed
into two independent subsystems, each one associated with mechanical andelectric dynamics. To
implement the MPC, all the mechanical and electric dynamics are grouped and discretized by the
Tustin approximation, using two different sampling times (one for each model depicted before). Thus
MPC for generation units become

min
u(t)

Np

∑
k=1

l1m[xm(t +k),yre f m(t +k)]+
Nc

∑
k=1

l2m[um(t +k)] (5.5)

s.t. : xm(t +k+1) = Amxm(t +k)+Bmum(t +k) (5.6)

operational constraints (5.7)

min
u(t)

Np

∑
k=1

l1e[xm(t +k),yre f e(t +k)]+
Nc

∑
k=1

l2e[ue(t +k)] (5.8)

s.t. : xe(t +k+1) = Aexe(t +k)+Beue(t +k) (5.9)

operational constraints (5.10)

wherel1m[xm(t + k),ymre f(t + k)] = (ymre f(t + k)− ym(t + k+ 1))TQm(ymre f(t + k)− ym(t + k+ 1)),
l1e[xe(t + k),yere f(t + k)] = (yere f(t + k)− ye(t + k+ 1))TQe(yere f(t + k)− ye(t + k+ 1)), l2m[um(t +
k)] = um(t + k)TRmum, l2e[ue(t + k)] = ue(t + k)TReue, xm(k) = [δ (k),ω(k),Pm(k)]T , xe = [E′

q,Ef ]
T ,

beingym(t +k+1) = ω(t +k+1), ye = E′
q(t +k+1), Am,Ae,Bm,Be the matrices associated with each

submodel discretization andQm,Qe,Rm,Re > 0.
Each controller, presented before, works independently and has its own sampling time. Also the
information exchange between controllers does not exists due to the block form of theA matrix of the
prediction model.
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To compute the initial conditions for the states, the steady-state equations was used. Thus

ω0 =
kgωre f −Pmed

D+kg

E′
q0 = −(xd −x′d)Id +Ef

Ef = ke(Vre f −Vmed)

Pm = kg(ωre f −ω0)

(5.11)

wherePmed andVmed are the measured values at generation buses of active power and voltage magni-
tude respectively. The direct axis current,Id was estimated using the following equations

S=
√

P2
med+Q2

med

Ig =
S√

3Vmed

Id =
2
3

Ig(cos(δ0)+cos(δ0−
2
3

π)+cos(δ0 +
2
3

π))

(5.12)

Since there is no equation available for the computation of the initial condition of the load angle,δ0,
we implemented an angle estimator.

Let define the phasor current as (5.13)

I = (
Pmed+ jQmed

V
)∗ (5.13)

and applying the Ohm law to the transmission system

I = YbusV +ν (5.14)

then knowing the active and reactive power demands at generation units,and theYbus matrix, an
objective function can be formulated to minimize the errorν . Thus the initial condition of the load
angle can be computed as the solution of the optimization problem given by (5.15).

min
V

[(I −YV)TQ(I −YV)]

s.t : I = (
Pmed+ jQmed

V
)∗

Vmed= ‖V‖

(5.15)

whereI andV are the complex values associated with current and voltage phasors, andY is theYbus

matrix of the system.
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5.3 Simulation results

The control scheme presented in the previous section was implemented in the Benchmark of Electric
Power System (see Fig. 5.1).

Figure 5.1: New England Electric Power System

The electric power system presented in Fig. 5.1 has ten generation unitsG1, . . . ,G10, thirty-nine
transmission nodes or buses, and nineteen load centers. Each generation unit has its own speed and
voltage regulator. Also it has its own power system stabilizer (PSS). The system was simulated using
Matlab/Simulink software, integration routine ODE23stiff/trapezoidal. More details about the system
of Fig. 5.1 can be found in the documentation sent by the Universidad Nacional de Colombia. In this
documentation it is possible to see the used parameters to tune the controllers. Moreover as it is stated
the performance of the controllers becomes acceptable, leading field voltages and mechanical powers
of each generation unit to stable values.

After simulate the power system with the classic controllers, the multi-model MPC depicted in the
previous sections was added in order to compute the optimal speed and voltagereferences. The sample
times used for mechanical and electrical models was 0.1sand 0.001s respectively. The prediction and
control horizons were 200 and 90 for the model predictive controller associated with the mechanical
dynamics and 500 and 60 for the mode predictive controller associated with the electrical dynamics.
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Figs. 5.2 to 5.4 show the field voltage, the mechanical power and the speed behavior after including
the proposed model predictive controller. In this simulation at 20sa three phase fault and at 50sa line
outage was introduced.
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Figure 5.2: Field voltage of generation units with MPC

In Figs. 5.2 to 5.4 it is possible to see that the addition of an MPC reduce the start-up transient behavior
of the machines. also with the introduction of the MPC, it is possible to obtain a higher damping of
oscillations due to disturbances in the network, and achieve a faster systembalance. This allows to
improve the customers quality of service, because the rejection of disturbances is carry out using soft
control actions. It is shown in Figs. 5.5 and 5.6.
Moreover MPC gives the possibility to take a better mechanical power control than the obtained using
only the speed regulator. This fact allows to synchronize the machines of the system in a shorter time.
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Figure 5.3: Mechanical power of generation units with MPC

5.4 About this implementation

From this implementation, it is possible to conclude that MPC is a promising control structure for the
control of power systems. From the results, notice that the optimal calculationof the reference of the
generation units allows to give and additional damping to the oscillations due to disturbances in the
transmission network and during the start-up of the machines. This improves the quality service given
to the customers. Also the proposed control scheme allows to be closer to real time optimal dispatch.

Moreover the system decomposition shown in this work presents a procedure to implement an MPC in
real complex systems, as it was demonstrated in the study case and results presented before. However
it is necessary to improve the performance of the control scheme proposed before, in order to carry
out real-time applications in real large-scale systems.

Page 69/75



HD-MPC ICT-223854 Report on implementation for selected benchmarks

0 10 20 30 40 50 60 70
0.99

0.995

1

1.005
Generators Speed

time [s]

S
pe

ed
 [p

u]

 

 
G1
G2
G3
G4
G5
G6
G7
G8
G9
G10

0 10 20 30 40 50 60 70
0.95

0.96

0.97

0.98

0.99

1

1.01
Generators Reference Speed

time [s]

S
pe

ed
 [p

u]

 

 
G1
G2
G3
G4
G5
G6
G7
G8
G9
G10

Figure 5.4: Speed of generation units with MPC
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Figure 5.5: Generation buses voltage
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Figure 5.6: Load buses voltage
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