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Executive Summary

This deliverable consists of two parts. Part I describes the work on the hydro-power valley at EDF,
while Part II presents the HD-MPC demonstration of results using the public hydro-power valley
benchmark.

This part of the deliverable (i.e., Part II) presents the results on the Hydro-Power Valley (HPV)
benchmark. The system is a hydro-power plant composed by several subsystems connected to-
gether. It is composed by 3 lakes and a river which is divided in 6 reaches which terminate with
dams equipped with turbines for power production. The lakes and the river reaches are connected
in three different ways: by a duct, ducts equipped with a turbine, and ducts equipped with a pump
and a turbine. The river is fed by the an upstream inflows and tributary flows.
Six hierarchical/distributed/decentralized schemes have been tested on the HPV benchmark:

• Distributed multiple shooting

• Fast gradient-based DMPC

• Hierarchical infinite horizon MPC

• Game theory based MPC

• DMPC based on agent negotiation

• Decentralized MPC

A power tracking scenario has been used to test the algorithms: the power output of the system
should follow a given reference while keeping the water levels in the lakes and at the dams as
constant as possible.
Economic indexes have been defined to compare the different approaches. Also the performance
with constraints and communications requirements of the distributed approaches have been con-
sidered.
The best results are obtained with the Distributed Multiple Shooting approach,with a nearly per-
fect tracking and a negligible economic cost. Good results are also obtainedwith the fast gradient-
based DMPC approach and the Hierarchical infinite horizon MPC approach.
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Chapter 1

Synopsis

This report is organized as follows. The second chapter introduces thehydro-power valley model. The
system is a hydro power plant composed by several subsystems connected together. It is composed by
3 lakes and a river which is divided in 6 reaches which terminate with dams equipped with turbines
for power production. The lakes and the river reaches are connected in three different ways: by a
duct, ducts equipped with a turbine and ducts equipped with a pump and a turbine. The river is fed
by the an upstream inflows and tributary flows. The models of the differentcomponent of the system
and the proposed subsystem decomposition is presented in the chapter. The following test scenario is
considered: the power output of the system should follow a given reference while keeping the water
levels in the lakes and at the dams as constant as possible.

The third chapter discusses a class of methods applicable for optimal control of large-scale sys-
tems. The proposed approach [19] employs a combination of direct multiple shooting and domain
decomposition and is called Distributed Multiple Shooting. This approach presents the best perfor-
mance results in the application to the hydro-power valley benchmark.

Chapter 4 presents the application of a distributed MPC method based on a distributed accelerated
proximal gradient method for solving the dual optimization problem. We first present a framework of
networked optimization, in which the cost function is a composite of a strongly convex quadratic cost
and a convex non-smooth 1-norm element. We use a dual decomposition approach, the dual problem
is solved using the distributed algorithm proposed recently[7].
The new algorithm is distributed in the sense that each subsystem only needsto communicate with its
direct neighbors, and there is no need for a master controller. The distributed solution converges to the
centralized solution with a fast convergence rate, thus enables real-time implementation in large-scale
systems.
In order to apply the new algorithm to the hydro power valley benchmark, wealso describe the mod-
eling technique to obtain a suitable linear model, a decentralized model reductiontechnique that helps
to reduce the computational cost. The simulation results show that the new algorithm is capable of
solving the power reference tracking problem of the hydro power plant,while respecting the opera-
tional constraints. Interestingly, our distributed algorithm requires much shorter computational time
than a centralized QP approach, even when we compare the total time of computations.

The fifth Chapter presents a hierarchical control structure designed inorder to maintain certain
variables of a hydro power valley into a zone while the whole power plant follows a certain reference.
The controllers use here are Infinite Horizon Model Predictive Control(IHMPC), these controllers
assures stability if the linear system is stable and do not have integrating states. The hierarchical
control structure is composed by IHMPC with zone control (coordinator)as controller that is applied
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over the entire plant, there are eight IHMPC controllers, one for each subsystem. The coordinator
calculates hierarchical input variables and output references that are always into the designed zone,
this information is taken by the controller of each subsystem to generate the input variables that are
going to be applied, in order to achieve the reference that the coordinatorgenerates. A constraint is
added to the IHMPC with zone control formulation, it is used to calculate the power of the system as
a function of output variables, and to assure that the variable follows a reference.

The following chapter proposes the use of the game theory to formulate a distributed model pre-
dictive control scheme to control the hydro-power valley. In this controlscheme the whole system
is decomposed into several subsystems able to communicate between them. For each subsystem a
local MPC controller is formulated, and all local optimization problems are computed at the same
time without using an iterative procedure to determine what control actions should be applied to each
subsystem. Since the decisions of the subsystems depend on the decisions of the others, game theory
is used as a mathematical framework to formulate and to analyze the distributed MPC problem and to
derive a reliable solution.

The last distributed approach is presented in the seventh chapter. The distributed MPC scheme
is based on agent negotiation presented in [9]. This control scheme is tailored for distributed linear
systems composed of subsystems coupled in the inputs. We assume that the subsystems are controlled
by a set of independent agents that are able to communicate and that each agent has access only to
the model and the state of one of the subsystems. These assumptions imply that before the agents
take a cooperative decision, they must negotiate. At each time sample, following a protocol, agents
make proposals to improve an initial feasible solution on behalf of their local cost function, state and
model. These proposals are accepted if the global cost improves the costcorresponding to the current
solution.

Four quantitative indexes has been used to analyze the performance of the approaches:

• Mean absolute tracking error (MAE) inMW

• Mean quadratic tracking error (MQE)MW2

• Power reference tracking index 1 (J1) in Euros: two indexes will be used to assess the economic
performance of the proposed scheme. In first place, an expression inspired in the index proposed
for the power reference tracking scenario is used:

∫ 86400

0
c(t)

∣∣∣∣∣pr(t)−
8

∑
i=1

pi(xi(t),ui(t))

∣∣∣∣∣dt

wherec(t) is the cost of the electricity at timet. Note that this expression only focuses on the
economical part of the equation (2.24).

• Power reference tracking index 2 (J2) in Euros: another option that will be used to test the
economic performance of the scheme is given by the following expression

∫ 86400
0 c(t)max

(
pr(t)−

8
∑

i=1
pi(xi(t),ui(t)),0

)
dt

+0.5
∫ 86400

0 c(t)max

(
8
∑

i=1
pi(xi(t),ui(t))− pr(t),0

)
dt

In Table 1.1 the indexes for each one of the approaches are shown. Notice that there are very important
differences among approaches from an economic point of view.
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Control performance J1 J2 MAE MQE
Distributed multiple shooting 0.20 - 6.31 ×

10−5
6.99 ×
10−9

Fast gradient-based DMPC 2568 2440 1.65 4.85
Hierarchical infinite horizon MPC 2397 1416 1.52 3.21
Game theory-based DMPC 4722 4066 3.19 19.06
DMPC based on agent negotiation5750 4194 3.72 19.88
Decentralized MPC 3.30 ×

105
2.78 ×
105

208.70 54.08×
103

Table 1.1: Table of the quantitative benchmark indices of each tested controller

The best results are obtained with the Distributed Multiple Shooting approach,with a nearly per-
fect tracking and a negligible economic cost. Good results are obtained alsowith Fast gradient-based
DMPC and with Hierarchical infinite horizon MPC.
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Chapter 2

Hydro-Power Valley Description

2.1 System overview

The system we consider is a hydro power plant composed by several subsystems connected together.
Figure 2.1 gives an overview of the system which is composed by 3 lakes (L1, L2 and L3) and a
river which is divided in 6 reaches (R1, R2,R3, R4, R5 andR6) which terminate with dams equipped
with turbines for power production (D1, D2,D3, D4, D5 andD6). The lakes and the river reaches are
connected by a duct (U1), ducts equipped with a turbine (T1 andT2) and ducts equipped with a pump
and a turbine (C1 andC2). The river is fed by the flowsqin andqtributary.

In the following sections we shall provide a model for all the subsystems. Tosimplify the system
modeling we make the following assumptions:

• the ducts are connected at the bottom of the lakes (or to the bottom of the river bed);

• the cross section of the reaches and of the lakes is rectangular;

• the width of the reaches varies linearly along the reaches;

• the river bed slope is constant along every reach.

2.2 System model

2.2.1 Reach model

The model of the reaches is based on the one-dimensional Saint Venant partial differential equation:




∂q(t,z)
∂z

+
∂s(t,z)

∂ t
= 0

1
g

∂
∂ t

(
q(t,z)
s(t,z)

)
+

1
2g

∂
∂z

(
q2(t,z)
s2(t,z)

)
+

∂h(t,z)
∂z

+ If(t,z)− I0(z) = 0
(2.1)

The two equations in (2.1) express the mass and momentum balance. The variables represent the
following quantities:

• z is the spatial variable which increases along the flow main direction;

• q(t,z) is the river flow (or discharge) at timet and space coordinatez;
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Figure 2.1: Overview of the Hydro power valley.

• s(t,z) is the wetted surface;

• h(t,z) is the water level w.r.t. the river bed;

• g is the gravitational acceleration;

• I f (t,z) is the friction slope;

• I0(z) is the river bed slope.

Assuming the cross section of the river is rectangular we can write the following equations:

s(t,z) = w(z)h(t,z) (2.2)

and

I f (t,z) =
q(t,z)2(w(z)+2h(t,z))4/3

k2
str(w(z)h(t,z))10/3

(2.3)

wherew(z) is the river width andkstr is the Gauckler-Manning-Strickler coefficient1.
To take into account lateral inflows, the first equation in (2.1) which expresses the mass balance

can be modified as follows
∂q(t,z)

∂z
+

∂s(t,z)
∂ t

= ql(z) (2.4)

whereql(z) is the lateral inflow per space unit.

1The Gauckler-Manning-Strickler coefficient changes accordingly to the kind of river bed surface. In the model we
developedkstr is constant along the river.
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2.2.2 Discretized model

The partial differential equation (2.1) can be converted into an ordinarydifferential equation with
the method of lines. Divide the reach intoN cells of lengthdz and denote byqi(t) the value of the
discharge in the middle of the celli and byhi(t) the value of the water level at the beginning of celli.
hN+1 represents the water level at the end of the reach.

Denoting byqin(t) andqout(t) the water inflow at the beginning of the reach and the water outflow
at the end of the reach, we obtain the following set of ordinary differential equations (time dependen-
cies are omitted)





∂h1

∂ t
= − 1

w1

q1−qin −ql1

dz/2
∂q1

∂ t
=

q1

w1h1

ql1

dz/2
− 2q1

w1h1

q1−qin

dz/2
+

[
1

w1

(
q1

h1

)2

−gw1h1

]
h2−h1

dz
+

+gw1h1I0−gw1h1

[
q2

1(w1 +2h1)
4/3

k2
str(w1h1)

10/3

]





∂hi

∂ t
= − 1

wi

qi −qi−1−ql i

dz
∂qi

∂ t
=

qi

wihi

ql i

dz
− 2qi

wihi

qi −qi−1

dz
+

[
1
wi

(
qi

hi

)2

−gwihi

]
hi+1−hi

dz
+

+gwihi I0−gwihi

[
q2

i (wi +2hi)
4/3

k2
str(wihi)

10/3

]
i = 2, . . . ,N

∂hN+1

∂ t
= − 1

wN+1

qout−qN

dz/2
(2.5)

wherewi represents the river width at the beginning of celli, wN+1 represents the river width at the
end of the reach andql i is the total lateral inflow of celli. The river bed slopeI0 is assumed to be
constant. Since the width of the reaches changes linearly, the values ofw1 andwN+1 are provided in
the model data while

wi = w1 +
(i−1)(wN+1−w1)

N
. (2.6)

Remark 1 Notice that distance between the beginning of the reaches and the lateral inflow points are
given in the last section. They are denoted as Ltributary, LC1, LT1, LC2 and LT2.

2.2.3 Lake model

Denote byqin(t) andqout(t) the water inflow and outflow of the lake under consideration, respectively.
The volume of water inside the lake varies accordingly to the following equation

∂v(t)
∂ t

= qin(t)−qout(t). (2.7)

Since the cross section of the lake is assumed to be rectangular, (2.7) can be equivalently expressed as

∂h(t)
∂ t

=
qin(t)−qout(t)

S
, (2.8)

whereh(t) is the water level andS is the lake surface area.
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2.2.4 Duct model

The flow inside the ductU1 can be modeled using Bernoulli’s law. Assuming the duct section is much
smaller than the lake surface, the flow from lakeL1 to lakeL2 can be expressed as

qU1(t) = SU1 sign(hL2(t)−hL1(t)+hU1)
√

2g|hL2(t)−hL1(t)+hU1|, (2.9)

wherehL1 andhL2 are the water levels for lakesL1 andL2, hU1 is the height difference of the duct,SU1

is the section of the duct andg is the gravitational acceleration.
Denotingx = hL2(t)− hL1(t) + hU1, equation (2.9) can be written asSU1

√
2gsign(x)

√
|x|. The

function sign(x)
√
|x| is not differentiable forx = 0. The following approximation can be used to

make the functionqU1(t) differentiable

sign(x)
√
|x| ≈ x

(x2 + ε4)1/4
.

Notice that forε = 0 the two functions are equivalent, while keepingε small we obtain a good ap-
proximation (1ε corresponds to the derivative of the approximation atx = 0).

2.2.5 Turbine model

For every turbine we assume that we can control directly the turbine discharge. The power produced
is given by the following equation

pt(t) = ktqt(t)∆ht(t), (2.10)

wherekt is the turbine coefficient,qt(t) is the turbine discharge and∆ht(t) is the turbine head.

2.2.6 Pump model

Pumps can be modeled similarly to turbines. The power absorbed by a pump is given by

pp(t) = kpqp(t)∆hp(t), (2.11)

wherekp is the pump coefficient,qp(t) is the pump discharge and∆hp(t) is the pump head.

2.2.7 Modeling of ducts equipped with a turbine and a pump

The ductsC1 andC2 are equipped with a pump and a turbine and therefore we can use equations
(2.10) and (2.11) to express the amount of power generated or absorbed. However, the turbines and
the pumps cannot function together and this should be expressed in the optimal control problems
(OCPs) formulated using the hydro power plant. Depending on the OCP formulation and the method
used to solve the problem different models can be used. In the remainder of this section we illustrate
some possibilities in modelingC1 (the same model can be used forC2). We assume that the flow can
be determined by the controller.

Discontinuous model

Denote byqC1(t) the flow through ductC1. We assume that:

• qC1(t) ≥ 0 whenC1 functions as a turbine;
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• qC1(t) < 0 whenC1 functions as a pump.

Notice that by using this convention we do not need to express explicitly thatC1 can function as a
turbine or a pump alternatively. The power produced can be expressedas

pC1(t) = kC1(qC1(t))qC1(t)∆hC1(t), (2.12)

where∆hC1(t) it the duct head which depends on the water level in lakeL1 and reachR1 and

kC1(qC1(t)) =

{
ktC1

whenqC1(t) ≥ 0
kpC1

whenqC1(t) < 0
, (2.13)

(ktC1
is the turbine coefficient andkpC1

is the pump coefficient). The flow inC1 is limited:

qC1(t) ∈
[
−qC1p,max,−qC1p,min

]
∪
[
qC1t,min,qC1t,max

]
, (2.14)

where the valuesqC1p,max, qC1p,min, qC1t,min andqC1t,max are positive (the subscriptt stands for turbine,
while p stands for pump).

Equation (2.13) and the constraint (2.14) make the model of theC1 discontinuous and therefore
not suitable for many control techniques.

Smoothed model

Equation (2.13) can be written as

kC1(qC1(t)) =
1
2

(
(1+sign(qC1(t)))ktC1

+(1−sign(qC1(t)))kpC1

)
(2.15)

and then made smooth using the following approximation

sign(x) ≈ x

(x2 + ε2)1/2
(2.16)

(ε−1 corresponds to the derivative of the approximation atx = 0). The constraint (2.14) can be sim-
plified by imposing

qC1(t) ∈
[
−qC1p,max,qC1t,max

]
. (2.17)

The previous model ofC1 is still highly nonlinear and may not be suitable for linear MPC applications.

Double flow model

Another simplified model can be obtained by introducing two separate variables to express the flow
in C1

• qC1p(t): flow whenC1 is functioning as a pump;

• qC1t (t): flow whenC1 is functioning as a turbine.

Assuming these new variables are both positive we can write

qC1(t) = qC1t (t)−qC1p(t) (2.18)

and
pC1(t) = (ktC1

qC1t (t)−kpC1
qC1p(t))∆hC1(t). (2.19)
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The constraint (2.14) can be rewritten in terms ofqC1p(t) andqC1t (t)

qC1p(t) ∈
[
qC1p,min,qC1p,max

]
(2.20)

qC1t (t) ∈
[
qC1t,min,qC1t,max

]
. (2.21)

Relaxed model

When the power production is maximized (as in the profit maximization scenario proposed below),
the following relaxation can be used

pC1(t) ≤ ktC1
qC1t (t)∆hC1(t)

pC1(t) ≤ kpC1
qC1p(t)∆hC1(t)

(2.22)

and
qC1(t) ∈

[
−qC1p,max,qC1t,max

]
(2.23)

This relaxation is meaningful for power maximization since the value ofkpC1
< ktC1

.

Remark 2 Using any of the models in Sections 2.2.7, 2.2.7 or 2.2.7 introduces some approximations.
In particular, the control inputs corresponding to the solution of an OCP using these simplified models
may not respect constraint(2.14). The control values achieved should be therefore modified.

2.3 Subsystem partition

The system is partitioned into 8 subsystems.

2.3.1 Subsystem 1 (L1 + L2 + U1 + T1 + C1)

Subsystem 1 is composed by lakesL1 andL2 and ductsU1, T1 andC1. DuctC1 can function as a pump
or a turbine.

Define the following quantities:

• hL1(t) is the water level in lakeL1;

• hL2(t) is the water level in lakeL2;

• qL1(t) is the water inflow forL1 which takes into account rain, small tributaries, etc.;

• qL2(t) is the water inflow forL2 which takes into account rain, small tributaries, etc.;

• qT1(t) is the water discharge going to turbineT1 (control variable);

• qC1(t) is the water discharge going through the ductC1 (control variable);

• hT1 is the height difference of ductT1;

• hC1 is the height difference of ductC1;

• hR2,T1(t) is the water level inR2 at the outflow point of ductT1;
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• hR1,C1(t) is the water level inR1 at the outflow point of ductC1;

• ktT1
is the turbine coefficient ofT1;

• ktC1
is the turbine coefficient ofC1;

• kpC1
is the pump coefficient ofC1

• pS1(t) is the power produced by subsystem 1.

The equations governing the subsystem behavior can be derived usingthe equations illustrated in
the previous section and setting

• lakeL1
qin(t) = qL1(t)+qU1(t)
qout(t) = qT1(t)+qC1(t)

• lakeL2
qin(t) = qL2(t)
qout(t) = qU1(t)

• turbineT1

∆ht(t) = hT1 +hL1(t)−hR2,T1(t)

• combined turbine/pumpC1

∆hC1(t) = hC1 +hL1(t)−hR1,C1(t).

The variables of subsystem 1 are subject to the following constraints

hL1min ≤ hL1(t) ≤ hL1max

hL2min ≤ hL2(t) ≤ hL2max

qT1min ≤ qT1(t) ≤ qT1max

qC1(t) ∈
[
−qC1p,max,−qC1p,min

]
∪
[
qC1t,min,qC1t,max

]

2.3.2 Subsystem 2 (L3 + T2 + C2)

Subsystem 2 is composed by lakeL3 and ductsT2 andC2.
Define the following quantities:

• hL3(t) is the water level in lakeL3;

• qL3(t) is the water inflow forL3 which takes into account rain, small tributaries, etc.;

• qT2(t) is the water discharge going to turbineT2 (control variable);

• qC2(t) is the water discharge going through the ductC2. qC2(t) is positive whenC2 functions as
a pump (control variable);

• hT2 is the height difference of ductT2;

• hC2 is the height difference of ductC2;
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• hR5,T2(t) is the water level inR5 at the outflow point of ductT2;

• hR4,C2(t) is the water level inR4 at the outflow point of ductC2;

• ktT2
is the turbine coefficient ofT2;

• ktC2
is the turbine coefficient ofC2;

• kpC2
is the pump coefficient ofC2;

• pS2(t) is the power produced by subsystem 2.

The equations governing the subsystem behavior can be derived usingequations (2.8)–(2.11) and
setting

• lakeL3
qin(t) = qL3(t)
qout(t) = qT2(t)+qC2(t)

• turbineT2

∆ht(t) = hT2 +hL3(t)−hR5,T2(t)

• combined turbine/pumpC2

∆hC2(t) = hC2 +hL3(t)−hR4,C2(t).

The variables of subsystem 2 are subject to the following constraints

hL3min ≤ hL3(t) ≤ hL3max

qT2min ≤ qT2(t) ≤ qT2max

qC2(t) ∈
[
−qC2p,max,−qC2p,min

]
∪
[
qC2t,min,qC2t,max

]

2.3.3 Subsystem 3 (R1 + D1), 4 (R2 + D2), 5 (R3 + D3), 6 (R4 + D4), 7 (R5 + D5), 8 (R6 +
D6)

Subsystems 3, 4, 5, 6, 7, and 8 are composed by a reach and dam. Figure2.2 represents the structure
of the dams. All the flow going through the dams is used by the turbine to produce electricity. The
head of the turbines inside the dams can be expressed as difference of the water level before and after
the dam. Since the water level after damD6 is not part of the model we consider it constant (hD6out

).
The constraints on the subsystem variables are

• subsystem 3
hR1min ≤ hR1(t) ≤ hR1max

qD1min ≤ qD1(t) ≤ qD1max

wherehR1(t) is the water level at the end of reachR1 andqD1(t) is the dam discharge which
goes to the turbine (the control variable);

• subsystem 4
hR2min ≤ hR2(t) ≤ hR2max

qD2min ≤ qD2(t) ≤ qD2max

wherehR2(t) is the water level at the end of reachR2 andqD2(t) is the dam discharge which
goes to the turbine (the control variable);
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Figure 2.2: Dam configuration.

• subsystem 5
hR3min ≤ hR3(t) ≤ hR3max

qD3min ≤ qD3(t) ≤ qD3max

wherehR3(t) is the water level at the end of reachR1 andqD3(t) is the dam discharge which
goes to the turbine (the control variable);

• subsystem 6
hR4min ≤ hR4(t) ≤ hR4max

qD4min ≤ qD4(t) ≤ qD4max

wherehR4(t) is the water level at the end of reachR4 andqD4(t) is the dam discharge which
goes to the turbine (the control variable);

• subsystem 7
hR5min

≤ hR5(t) ≤ hR5max

qD5min
≤ qD5(t) ≤ qD5max

wherehR5(t) is the water level at the end of reachR5 andqD5(t) is the dam discharge which
goes to the turbine (the control variable);

• subsystem 8
hR6min

≤ hR6(t) ≤ hR6max

qD6min
≤ qD6(t) ≤ qD6max

wherehR6(t) is the water level at the end of reachR6 andqD6(t) is the dam discharge which
goes to the turbine (the control variable).

2.4 Control test scenario: Power reference tracking

We assume that the power reference to be followed by the entire system is known 24 hours in advance.
Therefore, the prediction horizon is set to 86400 seconds. The inputs of the system can be changed
every 30 minutes.The input vectorsui(t) are constant in this time intervals.
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The optimal control problem to be solved reads

minxi ,ui

∫ 86400

0
γ

∣∣∣∣∣pr(t)−
8

∑
i=1

pi(xi(t),ui(t))

∣∣∣∣∣dt+
8

∑
i=1

∫ 86400

0
(xi(t)−xss,i)

TQi(xi(t)−xss,i)dt (2.24)

wheretk = 1800k, f is a function which represents the dynamics of the whole system. The function
pr(t) is the given power reference (piecewise constant).

Remark 3 Notice that when implementing this scenario the power should be expressedin MW (megawatts).

In the control test scenario we make the assumption that all the water inflows are constant (qin(t) =
qin, qtributary(t) = qtributary, qinL1

(t) = qinL1
, qinL2

(t) = qinL2
, qinL3

(t) = qinL3
).

To simplify the description of the two optimal control problem formulations we define

• xi(t): state vector of subsystemi;

• ui(t): input vector of subsystemi;

• Ci : set describing the constraints for subsystemi;

• pi(xi(t),ui(t)): power produced by subsystemi;
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Chapter 3

Distributed Multiple Shooting

3.1 Introduction

In this section we discuss a class of methods applicable for optimal control oflarge-scale systems. The
proposed approach [19] employs a combination of direct multiple shooting and domain decomposition
and is called Distributed Multiple Shooting. We regard the optimal control problem

min
x,u,z,
y,e

∫ T

0
ℓ(e(t))dt+

M

∑
i=1

∫ T

0
ℓi(xi(t),ui(t),zi(t))dt (3.1a)

s.t.ẋi(t) = f i(xi(t),ui(t),zi(t)) (3.1b)

yi(t) = gi(xi(t),ui(t),zi(t)) (3.1c)

xi(0) = x̄i
0 (3.1d)

zi(t) =
M

∑
j=1

Ai j y
j(t) (3.1e)

e(t) = r(t)+
M

∑
i=1

Biyi(t) (3.1f)

pi(xi(t),ui(t)) ≥ 0, q(e(t)) ≥ 0 t ∈ [0,T], (3.1g)

wherexi(t),ui(t) andzi(t) is the state variable, control input variable and coupling input signal, re-
spectively. The signalr(t) can be regarded as a reference signal. Note that the coupling between
subsystems is characterized only by (3.1f).

3.2 Discretization

In order to obtain a finite nonlinear program, we have to discretize our continuous signals. In this
section we detail how this may be carried out. The signalsr(t),e(t) andy(t) are discretized by using
Legendre polynomials. For example, thepth element of thezi(t) signal can be approximated by

zi
p(t) = Γm(t)Tzi

m,p, (3.2)

whereΓn(t) is themth-order Legendre basis. Due to the orthogonality ofΓn(t), the discretization can
be obtained by performing the integration

yi
n =

2
tn+1− tn

∫ tn+1

tn
Γn(t)

(
yi(t)

)T
dt. (3.3)

Page 18/70



HD-MPC ICT-223854 HD-MPC validation for the hydro-power vall ey – Part II

The discretization of the state profile is done inside an integrator, thus we onlydefine the ini-
tial valuexi

n of each shooting interval and handle the integrator as a function that solves differential
equations depending on the initial value, the control input signal and some coupling input coefficients.

We discretize the control input signal by introducing piecewise constant control profile, thus for
systemi and each shooting intervaln we introduce the functionF(xi

n,u
i
n,z

i
n), which represents a

simulator that is able to generate sensitivities as well.
After the discretization steps we obtain a finite nonlinear programming problem.

min
ui

n,x
i
n,z

i
n,

yi
n,en

N−1

∑
n=0

(
Ln(en)+

M

∑
i=1

Li
n(x

i
n,u

i
n,z

i
n)

)

s.t. xi
n+1 = F i

n(x
i
n,u

i
n,z

i
n) n = 0, . . . ,N−1

yi
n = Gi

n(x
i
n,u

i
n,z

i
n) n = 0, . . . ,N−1

xi
0 = x̄i

0

zi
n = ∑M

j=1Ai j y
j
n

en = rn +∑M
j=1Bi j y

j
n

pi(xi
n,u

i
n) ≥ 0, Qn(en) ≥ 0

(3.4)

One may solve the result problem with a Sequential Quadratic Programming method, which calcu-
lates the linearization of the original problem and employs corrections sequentially to the original
optimization variables. The essence of the proposed method is that the evaluation of F i

n(x
i
n,u

i
n,z

i
n)

along with∇F i
n(x

i
n,u

i
n,z

i
n) may be divided intoM×N independent tasks with own integration rules.

3.3 Solution methods

In this section we describe the solution method that can be used to solve (3.4).To simplify our
discussion we regard the constrained nonlinear programming problem

minx f (x)
s.t. g(x) = 0

with KKT −conditions :

[
Lx(x,λ )

g(x)

]
= 0,

whereLx(x,λ ) = ∇ f (x)−∇g(x)λ .

Sequential Quadratic Programming methods linearize the KKT system in a way and solve the resulting
problem sequentially until convergence.

Once we calculate exact linearizations (i.e. exact constraint Jacobians), we have to solve the linear
system

[
Lk

x
gk

]
+

[
Bk −∇gk

(∇gk)T 0

][
x−xk

λ −λk

]
= 0

or equivalently we have to solve the quadratic program

min
p

1
2

pTBkp+(∇ f k)T p

s.t. gk +(∇gk)T p = 0,

and apply the solutionp∗ to obtain
[

xk+1

λk+1

]
:=

[
xk

0

]
+αkp∗ (3.5)
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with someαk ∈ (0,1]. This approach we will regard asfull SQP method.
By using inexact derivativesGk ≈ (∇gk)T we may neglect some directions in the Jacobian (i.e.

less forward derivatives in the integrators) while retaining convergence [5]. The corresponding linear
system to be solved is

[
Lk

x
gk

]
+

[
Bk −(Gk)T

Gk 0

][
x−xk

λ −λk

]
= 0,

or equivalently solve the quadratic programming problem

min
p

1
2

pTBkp+dT p

s.t. gk +Gkp = 0,

whered = Lk
x + (Gk)Tλ = ∇ f k −∇gkλ + (Gk)Tλ . Note that∇gkλ is computable with one adjoint

derivation, which gives the name to the method,adjoint-based SQP method.
In the context of Distributed Multiple Shooting, one can divide the variable vector z into [z1,z2],

wherez1 represents the low-order coefficients of signalz(t) having the following structure in∇F i
n(x

i
n,u

i
n,z

i
n).

xi
n ui

n (z1)
i
n (z2)

i
n

× × × × × × × × 0 0
× × × × × × × × 0 0
× × × × × × × × 0 0

In this approach [18] there is a tunable parameter that determines the length of z1. Note that in the
extreme case none of thez columns are calculated, in which case the quadratic programming sub-
problems decompose toM×N small quadratic programs. In optimization terminology this approach
corresponds to Newton’s method in the variablesx andu, and a fix-point iteration in the variablesz.
From the control point of view, this is equivalent to local controllers that cooperate with each other by
exchanging the variablesz between neighbors.

3.4 Numerical results

We have solved an optimal control problem on the Hydro Power Valley where the cost function con-
sisted of anL2 and anL1 term that correspond to the tracking of the steady state and tracking of the
power reference, respectively. The control horizon was 24 hours, which we divided into 48 subinter-
vals.

In Table 3.1 the running time of one SQP iteration is shown. It is clear that by using Multiple
Shooting (MS) and Distributed Multiple shooting (DMS) one can solve the same problem in much
less running time compared to a serial solution.

In Table 3.2 we show the number of iterations needed to achieve the requested tolerance in the
KKT conditions. One can conclude that in this specific application it is sufficient to do Newton-
method only on the first coupling coefficient.

In Figure 3.1 the KKT-tolerance is depicted in a logarithmic scale against the iteration counter. Our
experiments correspond to what we can expect from SQP convergence theory, namely we achieved
linear convergence.

In Figure 3.2 we compared the planned power production and the reference power within 1 day.
This can be considered as an accurate tracking, since the maximal trackingerror is never larger than
10−3.
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Method Integr. QP sol. ∑
fSQP (SS – serial) 8 min 43 s 0.01 s 8 min 43 s
fSQP (MS – 48 cores) 10.88 s 9.93 s 20.81 s
fSQP (DMS – 384 cores) 1.92 s 9.93 s 11.85 s
aSQP(5) (DMS – 384 cores) 1.31 s 9.93 s 11.24 s
aSQP(1) (DMS – 384 cores) 1.17 s 9.93 s 11.10 s
aSQP(0) (DMS – 384 cores) 1.15 s 9.93 s 11.08 s

Table 3.1: Guessed running time of one SQP iteration. fSQP: full SequentialQuadratic Programming
method. aSQP(x): adjoint-based Sequential Quadratic Programming method withtaking onlyx out
of 10 directions in the Jacobians.

1E-3 1E-4 1E-5

fSQP 5 6 7
aSQP(5) 5 6 7
aSQP(1) 5 6 7

Table 3.2: Number of iterations needed by different methods in order to achieve certain tolerance in
the KKT-conditions

In Figure 3.3 the evolution of the water levels in time are depicted. In the beginning of the
prediction horizon an oscillatory behavior may be observed that is due to theaggressivity of the power
tracking. Our formulation incorporates the steady state tracking as well (next to power tracking) and
thus the system converges to the steady state at the end of the prediction horizon, while respecting
hard constraints.

In Figure 3.4 the control plan of the HPV subsystems are shown, the same phenomenon may be
observed as in the states, after a while the control profile gets smoother andsmoother, driving the
whole system to the steady state.

Performance analysis

In this section we characterize the quality of our controller with objective measures.

• Mean absolute tracking error: 6.3074×10−5 MW

• Mean quadratic tracking error: 6.9951×10−9 MW2

• Power reference tracking index (EUR):

∫ 86400

0
γ

∣∣∣∣∣pr(t)−
8

∑
i=1

pi(xi(t),ui(t))

∣∣∣∣∣dt = 0.1986 EUR (3.6)
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Figure 3.1: Converge rate of fSQP and aSQP(5) methods.

Page 22/70



HD-MPC ICT-223854 HD-MPC validation for the hydro-power vall ey – Part II

0 5 10 15 20 25
10

−6

10
−5

10
−4

10
−3

Time [h]

A
bs

ol
ut

e 
er

ro
r 

[M
W

]

0 5 10 15 20 25
140

160

180

200

220

Time [h]

P
ow

er
 [M

W
]

 

 
Power ref.
Power prod.

Figure 3.2: Comparison of the reference power and the power generated.
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Figure 3.3: Water levels in different reaches and lakes together with hardconstraints along 24 hours.
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Figure 3.4: Control plan of reaches and lakes together with constraints for 24 hours.
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• Optimality measure and constraint violation: The solution found is consideredas an optimal
solution (though not highly accurate) with

– KKT tolerance 0.258831,

– primal infeasability 1.08×10−12

– dual infeasability 1.67.

• Communication costs: The communication costs consist of sending and receiving vectors and
matrices. The centralized controller sends 6×8×48= 2034 vectors, and receives 5×8×48=
1920 vectors and 5×8×48 matrices via MPI interface using double precision.
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Chapter 4

Fast Gradient-Based Distributed MPC

In this chapter we present the application of a novel distributed MPC method inthe Hydro Power
Valley benchmark. Our approach make use of a distributed algorithm for networked optimization
that is applicable to a class of convex non-smooth optimization problems [7]. The new algorithm is
distributed in the sense that each subsystem only needs to communicate with its direct neighbors, and
there is no need for a master controller. The distributed solution convergesto the centralized solution
with a fast convergence rate, thus enables real-time implementation in large-scale systems. We will
first summarize the essence of the distributed optimization technique, then discuss its application to
the Hydro Power Valley benchmark.

4.1 Distributed gradient-based algorithm for networked optimization

4.1.1 Problem setup

We consider convex non-smooth optimization problems with the following form:

min
x

Jh ,
1
2

xTHx+gTx+ γ‖Px− p‖1 (4.1)

s.t.A1x = B1

A2x≤ B2

wherex∈ rn, the matrixH is block-diagonal, positive definite, the matricesA1 ∈ rq×n, A2 ∈ r r×n and
P∈ rm×n have sparsity structures. The sparsity will facilitate distributed implementation.

Based on the structure ofH, we partition the full variablex into the set ofM local variablesxi ∈ rni

asx = [xT
1 , . . . ,xT

M]T and define correspondingHi andgi such that

J(x) ,
1
2

xTHx+gTx =
M

∑
i=1

1
2

xT
i Hixi +gT

i xi (4.2)

Problem (4.1) represents a form of network optimization problems, in which each subsystem (or
agent) is associated with a variablexi . The subsystems are coupled through constraints and the 1-
norm term, which is commonly used as a regularization term or as a soft constraint. Let us define
the neighborhoodNi of each subsystemi as the group of all subsystems that couple with subsystemi
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through either the constraints or the 1-norm term. Mathematical definition ofNi can be given as:

Ni =



 j ∈ {1, . . . ,M}

∣∣∣∣∣∣

A1[i j ] 6= [0]ni×n j , or
A2[i j ] 6= [0]ni×n j , or
P[i j ] 6= [0]ni×n j



 (4.3)

where the subscript[i j ] refers to the sub-matrix corresponding to the variablesxi andx j .
Our method will work with positive definiteH, for this reason we need the following assumption:

Assumption 1 We assume that each Hi in (4.2) is a real symmetric positive definite matrix that satis-
fies the following eigenvalue bounds

σ i I � Hi � σ̄i I

where0 < σ i ≤ σ̄i < ∞.

Assumption 2 We assume that there exists a Slater vector,x̄ to the optimization problem, i.e. a vector
x̄ such that A1x̄ = B1 and A2x̄ < B2. Further, we assume that al , l = 1, . . . ,q are linearly independent.

Remark 1 Assumption 2 together with the fact that the cost function Jh is strongly convex implies
that the minimum of the optimization problem(4.1) is always attained at a unique point, denoted by
x∗.

4.1.2 Dual problem

In the following section we will present the formulation of a dual problem to (4.1), which will be
tackled with the new distributed optimization method.

We start by introducing auxiliary variablesxa to get the following optimization problem which is
equivalent to (4.1):

min
x,xa

J(x)+ γ‖xa‖1 (4.4)

s.t.A1x = B1

A2x≤ B2

Px− p = xa

We introduce Lagrange multipliersλ ∈ R
q,µ ∈ R

r
≥0, v ∈ R

m for relaxation of the constraints. The
dual function is

q(λ ,µ,ν) = inf
x,xa

{
J(x)+ γ‖xa‖1 +λ T(A1x−B1)+

+µT(A2x−B2)+νT(Px− p−xa)

}
(4.5)

Let us make use of the definition of the conjugate function (cf. [17]) of a function f (x):

f ⋆(y) , sup
x

{
yTx− f (x)

}
. (4.6)

Using the notation of conjugate functions, we can rewrite (4.5) by rearranging the terms and
replacing infx(·) by −supx(−(·)) with the following form:

q(λ ,µ,ν) = −J⋆(−(AT
1 λ +AT

2 µ +PTν))
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−sup
xa

[
νTxa− γ‖xa‖1

]
(4.7)

Note that we can compute the conjugate of the scaled 1-norm explicitly:

sup
xa

{
νTxa− γ‖xa‖1

}
= sup

xa

{

∑
i

[
ν ixi

a− γ|xi
a|
]
}

= ∑
i

{
sup
xi

a

[
ν ixi

a− γ|xi
a|
]
}

=

{
0 if ‖ν‖∞ ≤ γ
∞ else

where the superscripti denotes thei-th element in the vector. We see that the conjugate of the scaled
1-norm is an indicator function of a hyper box. In order to have a definitevalue for the sup operator,
we must look forν in the box where the maximal values of all the elements isγ. In this way, we
absolutely respect the 1-norm term in the cost function of (4.4), while relaxing only the constraint.

Remark 2 The fact that the conjugate of the scaled 1-norm becomes a box-constraint for the intro-
duced dual variables,ν , is important for distribution reasons. The projection operations onto the box
are parallelizable, thus facilitating the distributed computation.

We introduce the following notations:

A = [AT
1 AT

2 PT ]T B = [BT
1 BT

2 pT ]T z= [λ T µT νT ]T

whereA ∈ R
(q+r+m)×n, B ∈ R

q+r+m andz∈ R
q+r+m. The set of feasible dual variables is defined as

Z = R
q×R

r
≥0× [−γ,γ]m (4.8)

where[−γ,γ]m stands form times product of the set[−γ,γ]. With these definitions the dual problem
can be rewritten in a compact form as follows:

q(z) := −J⋆(−A
Tz)−B

Tz.

Note that asJ is a quadratic function with positive definiteH, the conjugate functionJ⋆(y) has the
explicit formula [4]:

J⋆(y) =
1
2
(y−g)TH−1(y−g) (4.9)

and it is differentiable with the gradient:

∇J⋆(y) = H−1(y−g) (4.10)

Under Assumption 2 it is well known (cf. [4, §5.2.3]) that there is no duality gap, i.e. we can get
the minimum of (4.4) by solving the dual problem:

max
z∈Z

q(z) (4.11)
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To present the algorithm in a more familiar way of convex optimization, instead ofmaximizing
the concave functionq, we will focus on minimizing the convex functionf which is the opposite of
q:

f (z) , −q(z) = J⋆(−A
Tz)+B

Tz

=
1
2
(A Tz+g)TH−1(A Tz+g)+B

Tz (4.12)

In the next section, we will present the distributed algorithm for solving the dual problem, together
with the convergence property.

4.1.3 Distributed dual accelerated proximal gradient method (DDAPG)

Our algorithm is based on a fast gradient technique, the accelerated proximal gradient methods (APG).
This method has convergence rateO( 1

k2 ) as developed in [12] and further elaborated and extended in
[3, 13, 14, 21, 22].

In this section, we present a distributed algorithm based on the APG method which achieves the
same convergence rate with the centralized counterpart. The main idea is to exploit the problem
structure such that the APG computations can be distributed to subsystems. The detailed algorithm
was discussed in [7], in the following we summarize the distributed acceleratedproximal gradient
algorithm for solving the dual problem.

Let us partition the constraint matrices to each row as

A =




aT
1
...

aT
q+r+m


 , B =




b1
...

bq+r+m




in which eachal , l = 1, . . . ,q+ r +m is a column vector, corresponding to a scalar constraint in (4.4)
asaT

l x≤ bl , l = 1, . . . ,q or aT
l x= bl , l = q+1, . . . ,q+ r +m. Recall the definition of the neighborhood

in (4.3), it can be seen that if thel th constraint involves subsystemi, then all the non-zero values ofal

only involvesi and the neighboring subsystemsj ∈ Ni .
Let us also divide the set{1, . . . ,q+ r +m} into M subsetsLi , i = 1, . . . ,M, such that each subsys-

tem i will be responsible for all computations concerning the constraintsl ∈ Li . There are different
ways to make this division, the only requirement is that for everyl ∈ Li , we haveali 6= 0, with ali

represents the sub-vector ofal that corresponds to the variablexi in the l th constraint of (4.4).
TheDistributed Dual Accelerated Proximal Gradientalgorithm is given as below.

Algorithm 1 Distributed Dual Accelerated Proximal Gradient

Initialize z0 = z−1 and x−1

In every node, i, the following computations are performed:
For k≥ 0

1. Compute

xk
i = −H−1

i

(
∑

j∈Ni

[
∑

l∈L 1
j

ali z
k
l

]
+gi

)
(4.13)

x̄k
i =

2k+1
k+2

xk
i −

k−1
k+2

xk−1
i (4.14)
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2. Send̄xk
i to each j∈ Ni , receivex̄k

j from each j∈ Ni

3. Compute with each l∈ Li

dl = ∑
j∈Ni

aT
l j x̄

k
j −bl (4.15)

zk+1
l = zk

l +
k−1
k+2

(zk
l −zk−1

l )+
1
L

dk
l , l ≤ q (4.16)

zk+1
l = max

{
0,zk

l +
k−1
k+2

(zk
l −zk−1

l )+
1
L

dk
l

}
,

q < l ≤ q+ r (4.17)

zk+1
l = min

{
γ,max

[
− γ,zk

l +
k−1
k+2

(zk
l −zk−1

l )

+
1
L

dk
l

]}
, q+ r < l ≤ q+ r +m (4.18)

4. Send{zk+1
l }l∈Li to each j∈ Ni ,

receive{zk+1
l }l∈L j from each j∈ Ni .

The convergence rates for the dual functionf and the primal variables when running Algorithm 1
are stated in the following theorem.

Theorem 1 Algorithm 1 has the following convergence rate properties:

1. Denote z∗ as an optimizer of the dual problem(4.11). The convergence rate is:

f (zk)− f (z∗) ≤ 2L‖z0−z∗‖2
2

(k+1)2 ,∀k≥ 1 (4.19)

2. Denote x∗ as the unique optimizer of the primal problem. The rate of convergence for the primal
variable is

‖xk−x∗‖2
2 ≤

4σ̄L‖z0−z∗‖2
2

σ(k+1)2 ,∀k≥ 1 (4.20)

The proof of Theorem 1 and more details of Algorithm 1 can be found in [7].
This result enables implementing the algorithm DDAPG in a distributed fashion andachieve fast

convergence rate as the centralized APG algorithm. The improvement of the convergence rate is help-
ful when we want to use this method for solving online optimal control problem,such as distributed
model predictive control. In the following section we will apply the new algorithm to DMPC of the
Hydro Power Valley benchmark.

4.2 Model construction and distributed MPC configuration for HPV
application

Since our proposed method is designed for linear systems, we first need toobtain a linear model of
the HPV. We linearize the given nonlinear model at the steady state condition toget the linear model.
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Although the approximation property of the linear model is good only near the steady state region, the
linear model is well suited for the control, as will be shown by the simulation results.

One of the difficulties for applying a linear MPC approach to the HPV problemis the discontinuity
of the power functions associated with the ductsC1 andC2. The discontinuity is caused due to the fact
that the flow throughC1 (or C2) can have two directions and the powers generated or consumed do
not have equivalent coefficients. To deal with this issue, we use double-flow technique, which means
introducing two separate positive variables to express the flow inC1:

• qC1p(t): virtual flow such thatC1 functions as a pump

• qC1t (t): virtual flow such thatC1 functions as a turbine

Using these two flows, the power function associated withC1 is replaced by two continuous func-
tions that express the power produced (byqC1p(t)) and consumed (byqC1t (t)). This approach allows
the optimization solver to deal with continuous variables only. When the solution isobtained, we
combine the virtual flows to get the real flow throughC1:

qC1(t) = qC1t (t)−qC1p(t) (4.21)

The double-flow approach is also applied forC2. Consequently, the new linear model has 12 in-
puts. Another issue of the linear model is that the spatial discretization resultsin dependencies of
adjacent states representing water levels along the reaches, leading to some unobservable and un-
controllable modes. Moreover, the linear model has a large number of states, causing computational
burden. We will use balanced truncation for model order reduction[28]so that the reduced model has
only observable and controllable modes.

Let us first describe the balancing transformation. Consider a discrete-time linear model with
state-space realization:

x(k+1) = Ax(k)+Bu(k)

y(k) = Cx(k)

We can compute the controllability GramianP as follows:

APAT +BBT = P (4.22)

and the observability GramianQ as:

ATQA+CTC = Q (4.23)

With a transformation matrixT, |T| 6= 0 for state transformation ¯x = Tx, the Gramians are trans-
formed to:

P̄ = TPTT , Q̄ = T−TQT−1 (4.24)

We can find a particular matrixT such that

P̄ = Q̄ = diag(σ1, . . . ,σn) (4.25)

with σi ≥ 0,∀i. This is called a balancing transformation. The controllability and observabilityGrami-
ans of the new system realization are equal and diagonal, consisting of entries σ1, . . . ,σn which are
called Hankel singular values.
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The truncated model is obtained by removing the modes that correspond to smallσi , and all the
modes of the reduced model are both controllable and observable (corresponding toσi > 0). This
model reduction method is called balanced truncation.

Since we want to keep the structure of the HPV model, we perform balancedtruncation for each
local system. With a particular choice of the modes to be truncated, we obtain a 46-state reduced
model that approximately represent the dynamics of the full linear model with 249 states.

Finally, the discrete MPC optimization problem can be cast into the form of problem (4.1). We
then use Algorithm 1 to solve the optimization problem at each sampling time in a distributed setting.
In particular, we use 8 subsystems as defined in Table 4.1.

Table 4.1: Subsystem configuration
Subsystem Neighborhood set Input variables Output variables

1 {1,3,4} u1 = [qT1,qC1t ,qC1p]
T y1 = [hL1,hL2]

T

2 {2,6,7} u2 = [qT2,qC2t ,qC2p]
T y2 = hL3

3 {3,1,4} u3 = qD1 y3 = hR1

4 {4,1,3,5} u4 = qD2 y4 = hR2

5 {5,4,6} u5 = qD3 y5 = hR3

6 {6,2,5,7} u6 = qD4 y6 = hR4

7 {7,2,6,8} u7 = qD5 y7 = hR5

8 {8,7} u8 = qD6 y8 = hR6

The control parameters are chosen as follows:

• Time step:T = 1800s.

• Horizon length:N = 10.

• Simulation time: 48 steps (1 day).

• γ = 500.

4.3 Simulation results

We made simulations of the HPV control with the proposed DDAPG algorithm. To demonstrate
the fast convergence property of DDAPG algorithm, we also solve the optimization problem at each
time step in a centralized way, this is done by transforming the problem into quadratic problem and
applying thequadprogsolver of MATLAB. The comparison of computation time of the distributed
algorithm and the centralized solver is presented in Figure 4.1. Note that ourdistributed algorithm is
implemented in MATLAB, hence it is a fair to compare it against a solver written in MATLAB, other
than a solver written in C. Figure 4.1 shows that the total computation time of DDAPGalgorithm
is much shorter than the computation time ofquadprog, this reflexes the fast convergence rate of
DDAPG and the efficiency of dealing with the 1-norm element in the cost function.

The power reference tracking is plotted in Figure 4.2, showing that our distributed controller
performs tracking very well. This result validates the linear model and the model reduction technique,
the reduced linear model is good enough for control of the HPV system.

In Figures 4.3 and 4.4, we see that the input and output constraints are allsatisfied. The constraint
satisfaction is achieved due to the fact that the solution of the distributed MPC isindeed the centralized
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solution of the dual problem, and since there is no duality gap, the dual optimumequals the primal
optimum, thus giving us the primal solution of the centralized MPC problem.
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T
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Computation time per step

 

 
Distributed algorithm
quadprog (centralized)

Figure 4.1: Comparison of computation time per each time step

4.4 Performance analysis

In this section we characterize the quality of our controller with objective measures.

• Mean absolute tracking error: 1.65MW.

• Mean quadratic tracking error: 4.85MW2.

• Power reference tracking index (EUR):

∫ 86400

0
c(t)

∣∣∣∣pr(t)−
8

∑
i=1

pi(xi(t),ui(t))

∣∣∣∣dt = 2568

• Power reference tracking index 2 (EUR):

∫ 86400

0
c(t)min

(
pr(t)−

8

∑
i=1

pi(xi(t),ui(t)),0

)
dt
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Figure 4.2: Simulation result of reference power tracking

+0.5
∫ 86400

0
c(t)min

( 8

∑
i=1

pi(xi(t),ui(t))− pr(t),0

)
dt = 2440

• Constraint violation: There is no violation for input constraints. The output constraints are
slightly violated, only for the water levels of the reachesR5 andR6, with the following indices:

– Maximum constraint violation ofhR5: 0.02 m. Accumulated constraint violation ofhR5

over 48 steps: 0.049 m/day.

– Maximum constraint violation ofhR6: 0.023 m. Accumulated constraint violation ofhR6

over 48 steps: 0.058 m/day.

• Communication costs: The communication costs consist of sending and receiving primal vec-
tors and dual vectors between neighbors in each iteration. The communication costs vary de-
pending on the total number of iterations needed until convergence is obtained. We provide the
graphs of the communication costs with respect to each MPC step in Figures 4.5and 4.6.

4.5 Conclusions

We have presented a distributed MPC method that is applicable to the Hydro Power Valley benchmark.
The distributed MPC is based on a distributed accelerated proximal gradientmethod for solving the
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Figure 4.3: Input constraint satisfaction with the DDAPG

dual optimization problem. The distributed solution converges to the centralizedsolution with a fast
convergence rate, thus enable real-time implementation in large-scale systems.We have also shown
that the new algorithm is suitable for the control problem of the Hydro PowerValley benchmark. The
simulation results has shown that the power reference can be tracked well,while all the operational
constraints are satisfied. Moreover, our distributed algorithm requires much shorter computational
time than a centralized QP approach, even when we compare the total time of computations.
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Figure 4.4: Output constraint satisfaction with the DDAPG
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Figure 4.5: Number of data packages transmitted between distributed controllers
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Figure 4.6: Number of floating point reals transmitted between distributed controllers
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Chapter 5

Hierarchical Infinite Horizon Model
Predictive Controller

5.1 Introduction

The model of the HPV was linearized in order to develop a hierarchical Infinite Horizon Model Pre-
dictive Controller (IHMPC). The resultant model had certain characteristics that made the control
troublesome. Problems regarding the controllability and the stability of the systemwere:

• Controllability: This property was tested finding the controllability matrix and computing its
rank. Initial tests showed bad conditioning of the matrix, then it seemed that it was not full rank,
but modifying the tolerance of the estimation it presented full rank. This result was caused by
the large difference between singular values, i.e. the system is controllable, but there are many
states that need large effort to be controlled.

• Integrating system: if the eigenvalue of the discrete linear model have one pure real value
exactly in the unitary circle in a complex space, it is said that the system is an integrating
system. In this case there were eight singular values that had a pure realvalue of one, so the
system had eight integrating states.

Since IHMPC assures stability only if the discrete linear system is stable, it cannot be applied
directly to the system. The approach selected to skip this problem was stabilizingthe system using a
state feedback controller, with the variable change:

u(k) = −Kx(k)+v(k) (5.1)

where the state feedback gain matrixK could be found by means of pole placement or with an opti-
mization problem,v(k) being the new manipulated variable. A necessary condition to find the gain
matrix was that the system should be stabilizable [26]. With that condition achieved it could be cal-
culated as the solution of an optimization problem asK = R−1BTP(t), whereP was found solving the
Ricatti equation [6].

With the proposed modification, the dynamics of the system changed and the state representation
became:

x(k+1) = (A−BK)x(k)+Bv(k)

= Ãx(k)+Bv(k) (5.2)
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COORDINATOR

Local controller 1 Local controller 2 Local controller

Subsystem 1 Subsystem 2 Subsystem 

Figure 5.1:Hierarchical structure

where the matrix̃A = (A−BK) is stable (the norm of all eigenvalues ofÃ are inside of the unitary
circle). Since the plant is stable, the MPC can now control it by usingv(k) as manipulated variable.
The problem is then reduced to control the new state feedback system. Also, by the change on the
manipulated variable the constrains must be expressed in terms ofv(k). This was done replacing (5.2)
into the constraints for the sates and for the manipulated variables. In the next section the hierarchies
used on the design of the proposed hierarchical controller will be explained.

5.2 Hierarchical control approach for hydro-power valley

In this section a hierarchical structure is designed for the HPV problem, it was based on an IHMPC
with zone control (coordinator) as controller applied over the entire plant,with eight IHMPCs that con-
trolled the subsystems (see Figure 5.1). The coordinator calculated hierarchical input variables and
output references with values inside the designed zone, this information was taken by the controllers
for generating the input variables that were applied, achieving the reference that the coordinator gen-
erated.

5.2.1 Coordinator of the IHMPC with zone control

The zone control strategy is implemented in applications where the exact values of the controlled
outputs are not important, as long as they remain inside a range with specific limits [8]. The MPC
optimization problem implemented with the zone control strategy is as follows:
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min
∆uk,ysp,k,δk

Jk,∞ =
∞

∑
j=1

(
y(k+ j)−ysp,k−δk

)T
Q
(
y(k+ j)−ysp,k−δk

)

+
Nc−1

∑
j=1

∆u(k+ j|k)TR∆u(k+ j|k)+δ T
k Sδk

subject to
x(k+1) = Ax(k)+B∆u(k)

y(k) = Cx(k)+Du(k)

yspmin ≤ ysp,k ≤ yspmax

−∆umin ≤ ∆u(k+ j|k) ≤ ∆umax

umin ≤ u(k+ j|k) ≤ umax

(5.3)

whereNc is the control horizon,∆u(k) is the increment of the manipulated variables,δk denotes the
slack variable,y(k) is the output of the system,A, B, C, D are the matrices associated with the
linear model of the system, andysp,k is the reference value for the output of the system, withu(k) the
control action,Q, R, Swighting matrices, and the subindexmin andmaxthe minimal and maximal
values (respectively) of the corresponding variable. In this formulationthe overall system model was
represented as a discrete, linear time-invariant (LTI) model. For the HPV was only necessary to add
the following constraint to 5.3:

Cpy =
8

∑
i=1

Pi = Pre f (5.4)

whereCp is a selection matrix andPi is the power generated by thei-th subsystem. Finally the
optimization problem that solved the coordinator was:

min
∆uk,ysp,k,δk

Jk,∞ =
∞

∑
j=1

(
y(k+ j)−ysp,k−δk

)T
Q
(
y(k+ j)−ysp,k−δk

)

+
Nc−1

∑
j=1

∆u(k+ j|k)TR∆u(k+ j|k)+δ T
k Sδk

subject to
x(k+1) = Ax(k)+B∆u(k)

y(k) = Cx(k)+Du(k)

Cpy = Pre f

yspmin ≤ ysp,k ≤ yspmax

−∆umin ≤ ∆u(k+ j|k) ≤ ∆umax

umin ≤ u(k+ j|k) ≤ umax

(5.5)

wherePre f is the power reference of the valley.
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5.2.2 Local controllers of the extended IHMPC

The extended infinite horizon MPC is defined as follows [15]:

min
∆uk,δk

Jk,∞ =
∞

∑
j=1

(yi(k+ j)−yspi −δk)
T Q(yi(k+ j)−yspi −δk)

+
Nc−1

∑
j=1

∆ui(k+ j|k)TR∆ui(k+ j|k)+δ T
k Sδk

subject to
xi(k+1) = Aii xi(k)+Bii ∆ui(k)

yi(k) = Cii xi(k)+Dii ui(k)

−∆uimin ≤ ∆ui(k+ j|k) ≤ ∆uimax

uimin ≤ ui(k+ j|k) ≤ uimax

(5.6)

whereNc is the control horizon,Aii , Bii , Cii , Dii are the blocks of the matricesA, B C, D relating
the local states and control inputs,Q∈ ℜnyi×nyi , R∈ ℜnui×nui are positive definite weighting matrices,
δk ∈ ℜnyi is a vector of slack variables andS∈ ℜnyi×nyi is assumed positive definite. Observe that
each slack variable refers to a given controlled output. Weighting matrixSwas selected such that the
controller pulls to zero the slacks or at least minimize them depending on the number of inputs. To
reduce the infinite to finite horizon controller was necessary to add a terminalstate penaltyQ (that is
obtained by solving a Lyapunov equation) and a terminal constraints to prevent the cost to become
unbounded.

5.3 Simulation results

The control objective of the HPV was to follow a power reference while thelevels depicted earlier had
to be maintained into a certain zone. So, an infinite horizon MPC with zone control was implemented,
the power of each plant had a tracking reference while the levels had a zone defined by the coordinator.
In the results presented below both the coordinator and the local control actions were computed at the
same time step in a sequential way, i.e. first the coordinator computed the powerfor each subsystem
and the zones for the levels. After that, the local controllers computed the optimal control inputs to be
applied on each subsystem.
The hierarchical control structure could manage the power referenceproblem in the HPV benchmark,
with the extra constrain the controllers could follow the total plant power reference (Figure 5.2). The
output variables (levels and individual system powers) were supposed to be into a designated zone
(Figures 5.3 and 5.4), the simulations show how the controller had to move the output variables to
other set point to achieve the power reference. In certain cases output variables went out of the zone,
as the levels in the reach 1 (R1), but immediately the variable was forced to come back. In Figure 5.5
the input variables are shown, it can be seen that the behavior of the variables had a tendency, i.e. the
plant appeared to be stable.
From the simulation results it is possible to conclude that the levels variables in thehierarchical
control structure could to be controlled into the zone. In this case the local controllers used the
information from the coordinator to correct the input variables, in order toachieve the reference that
the coordinator sent.
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Figure 5.2:Comparison between the power produced by the HPV with the power reference
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Figure 5.3:Behavior of the levels in the lakes and the levels at the dampsof the HPV.
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Figure 5.4:Behavior of the individual powers of the HPV.
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Figure 5.5:Control actions
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5.4 Performance analysis

In this section, the performance analysis of the proposed control schemeare presented. The indices
and values are:

• Mean absolute tracking error: 1.5191MW

• Mean square tracking error: 3.2119MW2

• Power reference tracking index (economic index 1): 2397

• Power reference tracking index (economic index 2): 1416

• Constraint violation: some of the levels violate the restriction at certain instants, but they do it
in a very short time, the total time where there is constrain violation was calculatedadding the
period of time where the levels violate the restriction, the total time is 177 minutes (almost 3
hours).

• Number of data packets transmitted: since the controller is a hierarchical structure with decen-
tralized local controller, few information is transmitted. The coordinator transmits the values of
the output reference and input variable bias for each subsystem. So thecoordinator transmit two
vectors to each subsystems of size 12×1 for input variables bias and 17×1 for the reference
of the output variables.
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Chapter 6

Game Theory Based Distributed Model
Predictive Controller

6.1 Game formulation of distributed model predictive control

Let us first introduce some notation used in this section. LetΩi denote the feasible set of control
actions for subsystemi, i = 1, . . . ,M, defined as the Cartesian productΩi = ΠNu

j=0Λi , whereΛi is
the feasible set for the control actionsui(k+ j), for j = 0, . . . ,Nu determined by the physical and
operational limits of subsystemi, with Nu being the control horizon. Let̃u(k) = [ũT

1 (k), . . . , ũT
M(k)]T ,

whereũi(k) = [uT
i (k), . . . ,uT

i (k+ Nu)]
T for i = 1, . . . ,M. Let φi(ũ(k);x(k)) denote the cost function

for subsystemi, i = 1, . . . ,M, where the notation(ũ(k);x(k)) indicates that the functionφi depends on
ũ(k) andx(k) is a parameter whose time evolution is given by the linear state update equation

x(k+1) = Ax(k)+Bu(k)

whereA andB are obtained by linearizing the model describing the behavior of the whole system [24].
For the sake of simplicity of notation we will not indicate the dependence ofφi on x(k) explicitly in
the remainder of this paper and thus writeφi(ũ(k)) insteadφi(ũ(k);x(k)).

Assume that 0∈ Λi for i = 1, . . . ,M. Assume thatΛi is closed, convex, and independent ofk for
i = 1, . . . ,M. Assume that the subsystems are able to “bargain”in order to achieve a common goal: to
maintain both the local and the whole system performance by driving the statesof the system to their
reference values. Letχ denotes the constrained stabilizable set, i.e.,χ is the set of all initial statesx
that can be steered to the origin by applying a sequence of admissible control actions. Assume that
the initial system state vectorx(k) ∈ χ (this assumption also is made in [24, 25]).

A game is defined as the tuple(N,{Ωi}i∈N,{φi}i∈N), whereN = {1, . . . ,M} is the set of players,
Ωi is a finite set of possible actions of playeri, andφi : Ω1× . . .×ΩM −→ IR is the payoff function
of the ith player [1]. So, a DMPC problem can be defined as a tupleG = (N,{Ωi}i∈N,{φi}i∈N),
whereN = {1, . . . ,M} is the set of subsystems,Ωi is the non-empty set of feasible control actions for
subsystemi, andφi : Ω1× . . .×ΩM −→ IR, whereφi is the cost function of thei-th subsystem. Hence,
a DMPC problem is a game in which the players are the subsystems, the actions are the control inputs,
and the payoff of each subsystem is given by the value of its cost function.

Since it is assumed that the subsystems are able to “bargain”in order to achieve a common goal,
the gameG can be analyzed as a bargaining game following the Nash theories about such games. A
bargaining game is a situation involving a set of players who have the opportunity to collaborate for
mutual benefit by an agreement on a joint plan of action [10, 11]. If an agreement is not possible,

Page 47/70



HD-MPC ICT-223854 HD-MPC validation for the hydro-power vall ey – Part II

the players carry out an alternative plan which is determined by the information locally available.
The benefit perceived by the player when an agreement is not possibleis called disagreement point.
Mathematically, a bargaining game is defined as follows [16]:

Definition 1 A bargaining game for N is a pair(S,d) where:

1. S is a nonempty closed subset ofIRM (Closedness of the feasible set S is required for mathe-
matical convenience.).

2. d∈ int(S), d being the disagreement point.

3. ζi(S) := max{φi : (φi)i∈N ∈ S} exists for every i∈ N.

Hereφi : IRM −→ IR denotes the profit function of player i for i= 1, . . . ,M, S denotes the feasible set
of profit functions, andζi(S) denotes the utopia point of subsystem i for i= 1, . . . ,M. Moreover, if the
feasible set S is convex then the bargaining game(S,d) is called a convex bargaining game.

Note that Definition 1 is formulated in a static context. Then, an extension of the original definition
of bargaining games is required in order to analyze a DMPC problem as a game.

Let a discrete-time dynamic bargaining game refers to a situation where at each time step a static
bargaining game(S,d) is solved depending on the dynamic evolution of the decision environment,
with dynamic evolution determined by the state vectorx(k)∈ IRn and the input vectoru(k)∈ IRm, with
x(k) ∈ X andu(k) ∈ U, X andU being the feasible sets forx(k) andu(k) respectively. In this game,
we assume that the feasible set and/or the disagreement point can changewith time. Mathematically,
a discrete-time dynamic bargaining game is defined as follows:

Definition 2 Discrete-time dynamic bargaining game:
A discrete-time dynamic bargaining game for N is a sequence of pairs{(S(0),η(0)),(S(1),η(1)), . . .},
denoted by{(Θ(k),η(k))}∞

k=0 (η(k) being the disagreement point at time step k), where:

1. Θ(k) is a nonempty closed subset ofIRM, for k = 1,2,3, . . .

2. η(k) ∈ int(Θ(k)) for k = 1,2,3, . . ., η(k) being the disagreement point.

3. ζi(Θ(k)) := max{φi(k) : (φi(k))i∈N ∈ Θ(k)} exists for every i∈ N at each time step k, i.e., for
k = 1,2,3, . . .

4. There exists functions fi ∈ IRni ,gi ∈ IR,hi ∈ IR, i = 1, . . . ,M, determining the dynamic evolution
of the decision environment, the feasible set, and the disagreement point of player i such that

xi(k+1) = fi(x(k),u(k))

Θi(k+1) = gi(x(k),u(k),Θ(k))

ηi(k+1) = hi(x(k),u(k),η(k))

with xi(k) ∈ Xi , Xi ⊂ X.

5. There exists a profit functionφ(x(k),u(k)) ∈ IRM such thatφ(x(k),u(k)) ∈ Θ(k).

If gi is a convex function for i= 1. . . ,M, thenΘ(k) is convex and the game{(Θ(k),η(k))}∞
k=0 is a

convex discrete-time bargaining game.
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Let ϒ(k) := {(φ1(ũ(k)), . . . ,φM(ũ(k))) : ũi(k) ∈ Ωi , ∀i ∈ N} denote the feasible set of the DMPC
problem. SinceΩi is time-invariant fori = 1, . . . ,M the feasible setϒ(k) is also time invariant, i.e.,
ϒ(1) = ϒ(2) = . . . = ϒ. Let us define the disagreement pointη(k) asη(k) := (η1(k), . . . ,ηM((k)),
where

ηi(k+1) =

{
ηi(k)−α |ηi(k)−φi(ũ(k))|, ηi(k) > φi(ũ(k))
ηi(k)+ |φi(ũ(k))−ηi(k)|, ηi(k) < φi(ũ(k))

∀i ∈ N, with 0< α 6 1. Such definition of the disagreement point is based on the negotiation model
proposed by [11]. Let the utopia pointζi(ϒ) := min{φi(ũ(k)) : φi(ũ(k)) ∈ ϒ} exist for everyi ∈ N.
Then, the DMPC problem can be defined as a discrete-time dynamic bargaining game{(ϒ,η(k))}∞

k=0.
Note that in{(ϒ,η(k))}∞

k=0 only the disagreement point depends of the time stepk, and thatζi(ϒ) is
redefined. Moreover, sinceΛi is assumed closed and convex fori = 1, . . . ,M, Ωi also is closed and
convex fori = 1, . . . ,M. Thus, ifφi(ũ(k)) is a continuous convex function with respect toũ(k), then
the feasible setϒ is closed and convex. Sinceϒ is time-invariant{(ϒ,η(k))}∞

k=0 is a bargaining game
with closed and convex feasible set.

In order to derive a solution for a bargaining game an axiomatic approach was proposed in [11].
Such a characterization is based on the symmetry of the bargaining game. A bargaining game(S,d)
is called symmetric ifd1 = d2 = . . . = dM, and for everyφ ∈ S any pointφ̃ ∈ IRM arising fromφ
by performing some permutation of its coordinates is also inS. If a bargaining game(S,d) does
not satisfy these conditions, then it is called a nonsymmetric bargaining game. For discrete-time
dynamic bargaining games, ifη1(k) = . . . = ηM(k) for k = 0,1,2, . . ., and for everyφ(k) ∈ Θ(k),
any pointφ̃(k) ∈ IRM arising fromφ(k) by performing some permutation of its coordinates is also
insideΘ(k) for k = 0,1,2, . . ., the game{(Θ(k),η(k))}∞

k=0 is called symmetric. These conditions are
satisfied whenfi(x(k),u(k)) = f j(x(k),u(k)), gi(x(k),u(k)) = g j(x(k),u(k)), hi(x(k),u(k)) = h j(x(k),
u(k)), andXi = X j for all i, j ∈ N. However, the symmetry conditions for discrete-time dynamic
bargaining games are heavily restrictive in real DMPC applications. Then,in general a DMPC game
{(ϒ,η(k))}∞

k=0 is nonsymmetric.
Let IRN

++ := {φ(α ∈ IRN : αi > 0, for all i ∈ N}. Let H denote a wighted hierarchy ofN, i.e.,H
is an ordered(l + 1)-tuple H =

〈
N1, . . . ,Nl ,w

〉
, where(N1, . . . ,Nl ) is a partition ofN (i.e., the sets

N j , j = 1, . . . , l are pairwise disjoint nonempty sets whose union equals toN), andw ∈ IRN
++ with

∑i∈N j wi = 1 for every j = 1, . . . , l [16]. Let P(T) := {α ∈ T : there is noβ ∈ T with β 6 α , β 6= α}
denote the Pareto optimal subset ofT. Let L+(T,γ) := {i ∈ L : there existsα ∈ T with αi < γi}.
Let argmax{ f (α) : α ∈ T} := {α ∈ T : f (α) ≥ f (β ) for all β ∈ T}. Then the non-symmetric Nash
bargaining solution of a game{(Θ(k),η(k))}∞

k=0 at time stepk is defined as follows [16, Definition
2.14].

Definition 3 Non-symmetric Bargaining Solution:
Let H = 〈N1, . . . ,Nl ,w〉 be a weighted hierarchy of N. Letϒ j , j = 0, . . . , l denote the feasible set for
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the partition Nj . Then, the setsΘ j are defined as follows:

Θ0 := {φ(ũ(k)) ∈ IRN : φ(ũ(k)) ∈ P(Θ),φ(ũ(k)) 6 η(k)}
Θ1 := argmax{Π(ηi(k)−φi(ũ(k)))wi :

i ∈ N1, φ(ũ(k)) ∈ Θ0}

Θ2 :=





argmax{Π(ηi(k)−φi(ũ(k)))wi :
i ∈ N2

+(Θ1,η(k)), φ(ũ(k)) ∈ Θ1}
if N2

+(Θ1,η(k)) 6= ∅

Θ1 otherwise

...

Θl :=





argmax{Π(ηi(k)−φi(ũ(k)))wi :
i ∈ Nl

+(Θl−1,η(k)), φ(ũ(k)) ∈ Θl−1}
if N l

+(Θl−1,d) 6= ∅

Θl−1 otherwise

Let H = 〈N,w〉. Then, according to Definition 3 the nonsymmetric bargaining solution of a DMPC
game{(ϒ,η(k))}∞

k=0 at time stepk can be computed in a centralized way as a solution of the maxi-
mization problem (6.1).

max
ũ(k)

ΠM
i=1(ηi(k)−φi(ũ(k)))wi

Subject to:

ηi(k) > φi(ũ(k))

ũ(k) ∈ Ω

(6.1)

Maximization problem (6.1) can be written equivalently as (6.2).

max
ũ(k)

M

∑
i=1

wi log(ηi(k)−φi(ũ(k)))

Subject to:

ηi(k) > φi(ũ(k))

ũ(k) ∈ Ω

(6.2)

Let σi(ũi(k), ũ−i(k))= φi(ũ(k)) for i = 1, . . . ,M, whereũ−i(k)= [ũT
1 (k), . . . , ũT

i−1(k), ũ
T
i+1(k), . . . , ũ

T
M(k)].

Then, maximization problem (6.1) can be solved in a distributed way by locally solving the system-
wide control problem (6.3).

max
ũi(k)

M

∑
r=1

wr log(ηr(k)−σr(ũi(k), ũ−i(k)))

Subject to:

ηr(k) > σr(ũi(k), ũ−i(k))

ũi(k) ∈ Ωi

(6.3)

Note that maximization problem (6.3) is equivalent to maximization problem (6.2), considering fixed
ũ−i(k) and optimizing only in the direction of̃ui(k). This formulation allows to each subsystem
take into account the effect of its decisions in the behavior of the whole system and to promote the
cooperation among subsystems. The proposed algorithm for solving (6.3)is given in [2, 23]. In the
next section a DMPC control based on game theory is presented for an HPV.
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6.2 Game theory based control of a hydro-power valley

With the purpose of designing a MPC for the HPV depicted in before, we consider the power tracking
scenario proposed in [20]. In this scenario, power output of the system should follow a given reference
while keeping the water levels in the lakes and at the dams as constant as possible. So, the global cost
function considered for the DMPC is composed by two terms: the first term penalizes the 1-norm of
the power tracking error, and the second term penalizes the 2-norm of the deviations of the levels in
the lakes and in the dams of their steady state values.

Let Ts denote the sample time. By linearizing and discretizing the HPV model yields:

x(k+1) = Adx(k)+Bdu(k)

y(k) = Cdx(k)+Ddu(k)
(6.4)

whereAd,Bd,Cd,Dd are the matrices resulting of the linearization of the HPV model, andy(k) =
[p(k),hT

D(k)]T , with hD(k) = [hD1Nx ,hD2Nx ,hD3Nx ,hD4Nx ,hD5Nx ,hD6Nx ] the levels at the dams (only the
levels in the last element of the spatial discretization of the reaches is considered to regulate the
levels of the reaches). Note that the power produced by the HPV is piecewise defined respect to
u(k) due to the turbine-pump elements. In order to overcome this issue in the linearization, constants
kdes1,kdes2 were introduced, virtual inputs ¯u1(k) ∈ [−qC1pump,qC1turb], ū2(k) ∈ [−qC2pump,qC2turb] were
considered, and a gain compensation

up(k) =

{ kdesp

ktCp
ūp(k) if ūp(k) ≥ 0

kdesp

kpCp
ūp(k) if ūp(k) < 0

was proposed, whereqC1pump,qC2pump,qC1turb,qC2turb are the maximum pumped flows and maximum
turbine flows for the turbine-pump elementsC1,C2 respectively,p= 1,2 (the values ofqC1pump,qC2pump,
qC1turb,qC2turb are given in [20]).

Moreover, note that the dimension of the matricesAd,Bd depends ofNx which in general is large
in order to adequately represent the HPV dynamics. Then a centralized MPC maybe is not suitable
and a DMPC is required.

Let Np be the prediction horizon. Then optimization problem of the power tracking problem can
be written as

min
ũ(k)

γ|p̃r(k)− ỹp(ũ(k))|+ ũT(k)Quuũ(k)+hT
D(k)Quxũ(k)+hT

D(k)Qxxh
T
D(k)

Subject to:

ũ(k) ∈ Ω
u(k+ν) = u(k+Nu), ∀Nu < ν < Np−1

(6.5)

where p̃r(k) = [pr(k), . . . , pr(k+ Np)], ỹp(ũ(k)) = [p(x(k),u(k)), . . . , p(x(k),u(k+ Np − 1))], Quu =
B̄T

d Q̄B̄d, Qux = xT(k)ĀT
d Q̄B̄d, Qxx = ĀT

d Q̄Ād, andΩ is the feasible set composed by the input constraints
and the mapping using (6.4) of the state constraints to input constraints, withĀd, B̄d the resulting
matrices from the prediction ofhD(k) alongNp, andQ̄ theQ block diagonal matrix resulting form the
transformation of the power tracking problem into (6.5). From [20], it is possible to divide the HPV
under study into 8 subsystems:

† Subsystem 1: lakesL1 andL2, turbineT1, and turbine-pumpC1.

† Subsystem 2: lakeL3, turbineT2, and turbine-pumpC2.
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† Subsystems 3-8: reachesR1 to R6 respectively.

Let σi(ũi(k), ũ−i(k) be the local cost function of each subsystem,σi(ũi(k), ũ−i(k) defined as

σi(ũi(k), ũ−i(k)) = γ|p̃r(k)− ỹp(ũi(k), ũ−i(k))|
+[ũT

i (k), ũT
−i(k)]H̄i [ũ

T
i (k), ũT

−i(k)]
T +2F̄i [ũ

T
i (k), ũT

−i(k)]
T

whereH̄i , F̄i are the resulting matrices of the permutation of the rows and columns ofQuu andQux

respectively. (the state dependence ofσi(·) was omitted for notational convenience), andγ ∈ IR a
constant weight (the termhT

D(k)QxxhT
D(k) was omitted because it is constant respect to the decision

variables, then it does not affect the result of the optimization). From [20], the state and input con-
straints are time independent and only establishes lower and upper boundaries to the states and inputs.
So, they are independent for each subsystems, i.e., there is not coupledconstraints. Then, for the con-
trol of the HPV we have a gameGHPV = {N,{σi(ũi(k), ũ−i(k))}i∈N,{Ωi}i∈N}, with N = {1, . . . ,8},
in which all subsystems have the same goal: to minimize the power tracking error keeping the levels
in the lakes and at the dams as close as possible to their steady state values. Hence, the gameGHPV

can be analyzed and solved as a discrete-time dynamic bargaining game{(ϒ,η(k))}∞
k=0, with η(k)

defined as in Section 6.1. Then, according to (6.3) the distributed solution ofthe gameGHPV is given
by the solution of the local optimization problems (6.6).

max
ũi(k)

8

∑
r=1

wr log(ηr(k)−σr(ũi(k), ũ−i(k)))

Subject to:

ηr(k) > σr(ũi(k), ũ−i(k))

ũi(k) ∈ Ωi

(6.6)

Since the power produced by the HPV at time stepk is equal to the sum of the powers generated by
all subsystems, and assuming that each subsystem communicates the value ofthe states and inputs to
the remaining subsystems, each subsystem is able to compute the power produced by the other sub-
systems. Hence, the termγ|p̃r(k)− ỹp(ũi(k), ũ−i(k))| is reduced to compute the power contribution of
subsystemi given the power produced by the remaining subsystems. In the next section the simulation
results are presented.

6.3 Simulation results

Based on the formulation presented in Section 6.2, a closed-loop simulation of the HPV described
in [20] was performed along 24 hours (simulation time). In this simulation,kdes1 = 3

4(ktC1 + kpC1),
kdes2 = 3

4(ktC2+kpC2), Ts = 1800s(30 minutes),Np = 48 (corresponding to a day),Nu = 32,w1,2 = 0.4
2 ,

w3−8 = 0.6
6 (the weights of subsystems 1 to 8),ηi(0) = 1× 105 (the initial disagreement point of

subsystems 1 to 8),γ = 50,Q = I (I being the identity matrix), and the lower and upper values of the
inputs and the states, and the parameter of the HPV model were taken as proposed in [20].

Figure 6.1 shows the comparison between the power produced by the HPV and the power ref-
erence, when the proposed DMPC scheme computed the inputs of each subsystem. In this Figure
was shown that the power produced by the HPV followed the power reference, satisfying one of the
objectives proposed for the control scheme. However, there was an oscillation at the beginning of the
experiment due to the transient generated by the change of the power from 175 MW (the equilibrium
power) to the initial required power 150 MW.
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Figure 6.1: Comparison between the power produced by the HPV with the power reference, when the
proposed game-theory-based DMPC is used for computing the inputs of thesubsystems

In order to maintain some power demand, the levels of the reaches and the lakes had to be modi-
fied. In Figure 6.2 the behavior of the levels is presented. At the beginningof the simulation the lakes
increased their levels due to the reduction of the power form the equilibrium point to the set point (see
first panel of Figure 6.2). When the required power was increased thelakes reached constant levels
of water, achieving one of the system objectives. During the whole simulationthe reaches maintained
their levels as constant as possible (see second panel of Figure 6.2). If it is considered that the reaches
also can be used for maritime traffic, maintaining constant their levels guarantees it. This condition
was considered in the selection of the weights, by giving more importance to thereaches compared
with the lakes; it is evidenced with∑8

i=3wi > ∑2
i=1wi .

The excursions of the levels of the lakes were associated with the behaviorof the control inputs
(see Figure 6.3). Even though the control inputs remained inside the rangedefined by the constraints,
the control actions of subsystems 1 and 2 had higher variations than the control actions of the remain-
ing subsystems, with respect to their local capability. This produced lager changes in the levels of the
lakes than in the levels of the reaches. Recall that subsystems 3 to 8 were power plants and subsystems
1 and 2 were ducts equipped with turbines and turbine-pump elements, with lesscapability to produce
electric power than the power plants.

Finally, in Figure 6.4 the evolution of the disagreement points is presented. Inthis Figure, the
disagreement started at the same point but as they were evolving each subsystem had its own value
indicating the non-symmetry of the gameGHPV. Figure 6.5 shows a zoom between 3.5×104 and 8×
104, note that all the disagreement points decreased with low frequency oscillations. Such oscillations
were associated to the decision process of each subsystem.

6.4 Performance analysis

In order to evaluate the performance of the proposed control scheme, the following indices were
proposed:
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Figure 6.2: Behavior of the levels in the lakes (first panel) and the levels atthe dams (second panel) of
the HPV. In both panels the levels are inside the values defined by the constraints, although the levels
of the lakes (first panel) present large excursions before remaining constant, while the levels of the
reaches remains as constant as possible.

• Mean absolute power tracking error: 3.1925MW

• Mean square tracking error: 19.0696MW2

• Power tracking index (economic index 1): 4722

• Power tracking index (economic index 2): 4066

• Constraint violation: with the proposed control scheme there are two constraints which are
not respected. These constraints are those regarding the levels of the lakesL1 andL2. The
constraints regarding lakeL2 violated almost all the time. The deviation is less than 1m in
both directions. The constraints regarding lakeL2 are violated from 45000s until the end of the
simulation. The deviation is 1m below the minimum allowed level value.

• Number of data packets transmitted: in the proposed control scheme each subsystem has to
transmit its disagreement point, the value of the local states, and the currentcontrol action. In
the case of the HPV: the vector of local inputs is a vector with dimension 32×1 for subsystems
3 to 8 and 64× 1 for subsystems 1 and 2, the vector of states has a dimension 40× 1 for
subsystems 3 to 8, 1×1 for subsystem 2, and 2×1 for subsystem 1, and the disagreement point
has a dimension 1×1 for all subsystems (all the vectors are double precision vectors).
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Figure 6.3: Control actions applied to the subsystems. In the first panel thebehavior of the control
actions applied to subsystems 1 and 2 is presented. In the second panel thebehavior of the control
actions applied to subsystems 3 to 8 is presented. In both panels the control actions remains inside the
range defined by the constraints of the control inputs.
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Figure 6.4: Behavior of the disagreement points at the full simulation. Overall evolution
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Figure 6.5: Behavior of the disagreement points at the full simulation. Detailedview that allows to
evidence the non-symmetry of the game.
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Chapter 7

Distributed MPC Based on Agent
Negotiation

7.1 Introduction

In this chapter we use the distributed MPC scheme based on agent negotiationpresented in [9]. This
control scheme is tailored for distributed linear systems composed of subsystems coupled in the in-
puts. We assume that the subsystems are controlled by a set of independent agents that are able to
communicate and that each agent has access only to the model and the state ofone of the subsystems.
These assumptions imply that before the agents take a cooperative decision, they must negotiate. At
each time sample, following a protocol that will be explained later in this section, agents make pro-
posals to improve an initial feasible solution on behalf of their local cost function, state and model.
These proposals are accepted if the global cost improves the cost corresponding to the current solu-
tion. At this point it is convenient to point out that it is possible to guarantee the stability properties of
the proposed distributed controller as it is shown in [9]. Nevertheless, in this paper we use a slightly
simplified version of the algorithm which does not guarantee stability. This version of the algorithm
has successfully been applied in [27]. Finally, notice that some simplifying assumptions were made in
order to adapt the system model, which is non-linear and include state coupling, to the algorithm. In
particular, a linear model was used and the coupling in the state was neglectedassuming that the dif-
ference of water levels remains constant during the control horizon, i.e.,the power generation depends
only on the value of the manipulated variables.

7.2 DMPC algorithm based on agent negotiation

The control objective of the proposed scheme is to minimize a global performance index defined as
the sum of each of the local cost functions. The local cost function of agenti based on the predicted
trajectories of its state and inputs is defined as

Ji(xi ,{U j} j∈ni ) = ∑N−1
k=0 Li(xi,k,{u j,k} j∈ni )

whereU j = {u j,k} is the future trajectory of inputj, N is the prediction horizon,Li(·) with i ∈ Mx is
the stage cost function defined as

Li(xi ,{u j} j∈ni ) = (xi −xr i )
TQi(xi −xr i )

+∑ j∈ni
uT

j Si j u j
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with Qi > 0,Si j > 0. Note that the termxr i stands for the agenti reference.
We use the notationxi,k to denote the statei, k-steps in the future obtained from the initial statexi

applying the input trajectories defined by{U j} j∈ni .
At the end of the negotiation rounds, the agents decide a set of input trajectories denoted asUd.

The first input of these trajectories is applied and the rest of the values are used to generate the initial
proposalUs for the next sampling time. Note that the last value of these trajectories is repeated so that
Us has the proper size.

We define next the proposed distributed MPC scheme:

• Step 1: Each agentp measures its current statexp(t). The agents communicate in order to
obtainUs(t) from Ud(t −1). The initial value for the decision control vectorUd(t) is set to the
value of the shifted input trajectories, that is,Ud(t) = Us(t).

• Step 2: Randomly, each agent asks the neighbors affected if they are free to evaluate a proposal
(each agent can only evaluate a proposal at the time). If all the neighbors acknowledge the
petition, the algorithm continues. If not, the agent waits a random time before trying again. We
will use the superscriptp to refer to the agent which is granted permission to make a proposal.

• Step 3: In order to make its proposal, agentp solves:

{U p
j (t)} j∈np = arg min

{U j} j∈np

Jp(xp,{U j} j∈np)

s.t.
xp,k+1 = Apxp,k +∑ j∈np

Bp ju j,k

xp,0 = xi(t)
xp,k ∈ Xp, k = 0, . . .N
u j,k ∈ U j , k = 0, . . .N−1, ∀ j ∈ np

U j = Ud
j (t), ∀ j /∈ nprop

(7.1)

From the centralized point of view, the proposal at time stept of agentp is defined as

U p(t) = {U p
j (t)} j∈np

⊎
Ud(t)

where the operation
⊎

stands for the update of the components relatives to{U p
j (t)} j∈np in Ud(t).

• Step 4: Each agenti affected by the proposal evaluates the difference between the cost ofthe
new proposalU p(t) and the cost of the current accepted proposalUd(t) as

∆Jp
i (t) = Ji(xi(t),{U p

j (t)} j∈ni )

−Ji(xi(t),{Ud
j (t)} j∈ni )

This difference∆Jp
i (t) is sent back to the agentp. If the proposal does not satisfy the constraints

of the corresponding local optimization problem, an infinite cost increment is assigned. This
implies that unfeasible proposals will never be chosen.

• Step 5: Once agentp receives the local cost increments from each neighbor, it can evaluatethe
impact of its proposal∆Jp(t), which is given by the following expression

∆Jp(t) = ∑i∈⋃ j∈nprop mj
∆Jp

i (t) (7.2)
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Figure 7.1: Power tracking by the distributed controller based on agent negotiation.

This global cost increment is used to make a cooperative decision on the future inputs trajecto-
ries. If ∆Jp(t) is negative, the agent will broadcast the update on the control actions involved
in the proposal and the joint decision vectorUd(t) will be updated to the value ofU p(t), that is
Ud(t) = U p(t). Else, is discarded.

• Step 6: The algorithm goes back to step 1 until the maximum number of proposals have been
made or the sampling time ends. We denote the optimal cost corresponding to the decided
inputs as

J(t) = ∑Mx
i=1Ji(xi(t),{Ud

j (t)} j∈ni ) (7.3)

• Step 7: The first input of each optimal sequence inUd(t) is applied and the procedure is repeated
the next sampling time.

7.3 Simulation results

In the following pictures, the results of the HPV controlled in closed loop with thedistributed con-
troller based on agent negotiation are shown. In Figure 7.1 the power reference and the power gen-
erated by the system is shown. Figures 7.2 and 7.3 show respectively the evolution of the levels and
the inputs of the system. Notice that the y-axes limits are adjusted to the value of thecorresponding
upper and lower constraints.
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Figure 7.2: Levels by the distributed controller based on agent negotiation.

7.4 Performance analysis

In this section, we study the performance of the proposed scheme using different indices:

• Mean absolute tracking error: 3.72 MW

• Mean quadratic tracking error: 19.88MW2

• ∫ 86400

0
c(t)

∣∣∣∣∣pr(t)−
8

∑
i=1

pi(xi(t),ui(t))

∣∣∣∣∣dt = 5750

•
∫ 86400

0 c(t)max

(
pr(t)−

8
∑

i=1
pi(xi(t),ui(t)),0

)
dt

+0.5
∫ 86400

0 c(t)max

(
8
∑

i=1
pi(xi(t),ui(t)− pr(t)),0

)
dt = 4194
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• Constraint violation: there are two small violations in one of the constraints ofthe problem.
Specifically, the constraints regarding the water level of lake 2 and the water level at reach 1 are
violated . In the first case, the maximum value of the deviation with respect the constraint is
0.035 m and the violation takes place during a total time of 2 hours out of the 24 hours of the
simulation. In the second case, the maximum violation is -0.05 m and the total time is again 2
hours.

• Number of data packets transmitted: the total number of proposals that are evaluated each
sample time is 50. This means that each agent sends an average number of approximately 6
proposals to its neighbors. Given that these results are obtained for a control horizonNc=10,
each proposal consists of a maximum number of 30 floating point reals.
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Figure 7.3: Inputs by the distributed controller based on agent negotiation.
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Chapter 8

Economic Assessment and Results

This section summarizes the results of the different approaches, analyzing the control performance in
the tested scenario and providing indices to compare the algorithms from a economic point of view.
We also compare the new approaches with a standard decentralized MPC solution.

8.1 Decentralized MPC simulation

In addition to the results of newly developed hierarchical and distributed approaches, we also apply
a decentralized model predictive control to the Hydro Power Valley benchmark, in order to provide a
more complete comparison. The decentralized MPC setting is defined as follows:

• There are 8 local controllers, each of them is responsible for the control of one subsystem. Each
one can only measure its own output and can only control its own manipulator(s).

• The controllers use linearized local models with double-flow technique in order to apply discrete-
time linear MPC control to the local problem.

• No information exchange is allowed. The steady-state inputs and states arethe only common
information of the local controllers. Any subsystem interaction will be modeledby using the
steady-state variables of the other models.

• The power reference tracking is separated into local tracking, with the local power references
proportional to the steady-state power of the corresponding subsystem.

With the above conditions, we treat the optimal control problem (2.24) by using local MPC prob-
lems as follows:

minxi ,ui

∫ 86400

0
γ|pr i(t)− pi(xi(t),ui(t))|dt+

∫ 86400

0
(xi(t)−xss,i)

TQi(xi(t)−xss,i)dt, i = 1, . . . ,8

wherepr i(t) is the local power reference. The values ofpr i(t) are computed such that the following
condition is maintained:

pr i(t)
pr(t)

=
pss,i

pss
, ∀i,∀t (8.1)

in which pss,i andpss respectively represent the steady-state powers of the subsystemi and the whole
plant.

For the decentralized simulation, we use the horizonsN = Nc = 10, sampling timeT = 1800s and
γ = 500. The results are plotted in Figures 8.1, 8.2 and 8.3.
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Figure 8.1: Total power reference tracking with decentralized MPC

8.2 Comparison and assessment of the results

Four quantitative indices have been used to analyze the performance of the approaches:

• Mean absolute tracking error (MAE) inMW

• Mean quadratic tracking error (MQE)MW2

• Power reference tracking index 1 (J1) in Euros: two indices will be used to assess the economic
performance of the proposed scheme. In first place, an expression inspired in the index proposed
for the power reference tracking scenario is used:

∫ 86400

0
c(t)

∣∣∣∣∣pr(t)−
8

∑
i=1

pi(xi(t),ui(t))

∣∣∣∣∣dt

where c(t) is the cost of the electricity at timet. Note that this expression only focuses on the
economical part of the equation (2.24).

• Power reference tracking index 2 (J2) in Euros: another option that will be used to test the
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Figure 8.2: Input constraint satisfaction with decentralized MPC

economic performance of the scheme is given by the following expression

∫ 86400
0 c(t)max

(
pr(t)−

8
∑

i=1
pi(xi(t),ui(t)),0

)
dt

+0.5
∫ 86400

0 c(t)max

(
8
∑

i=1
pi(xi(t),ui(t))− pr(t),0

)
dt

In Table 8.1 the indices for each one of the approaches are shown. Notice that there are very
important differences among approaches from an economic point of view.

The best results are obtained with the Distributed Multiple Shooting approach,with a nearly per-
fect tracking and a negligible economic cost. Good results are obtained alsowith Fast gradient-based
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Figure 8.3: Output constraint satisfaction with decentralized MPC

DMPC and Hierarchical infinite horizon MPC. These results are understandable as the Distributed
Multiple Shooting approach implements a nonlinear controller that uses a good nonlinear approxima-
tion of the centralized model, while Fast gradient-based DMPC and the Hierarchical infinite horizon
MPC effectively solve the centralized linear MPC problem.

The DMPC scheme based on agent negotiation shows a poor performancein comparison with
the scheme that obtained the best results. This result was expected since this particular scheme is
tailored for problems in which there are strong restrictions on the amount of global information each
agent has. Specifically, each agent only knows how other agents affect them and use this information
in order to make proposals to the others. Hence, the final degree of cooperation is relatively low.
This assumption is reasonable for systems in which there are concerns about the information the
agents share, e.g.: a supply chain, or in which the composition of the overallsystem is not known
in advance. In addition, the model used by the agents is linear while the systemunder test presented
some important nonlinearities.

The Decentralized MPC scheme heavily suffers from the lack of informationexchange, as it could
hardly track the total power reference. Moreover, the decentralized MPC may cause instability, as we
can see in Figure 8.3 that the water level ofR4 exceeds the upper constraint and cannot be regulated.
The unfavorable results of the decentralized MPC signifies the role of information exchange in optimal
control of large-scale systems.

Another important issue in HPV systems is that reach and lake levels remain between maximum
and minimum values. This is to prevent the risk of flood and to guarantee a minimumecological
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Control performance J1 J2 MAE MQE
Distributed Multiple Shooting 0.20 - 6.31 ×

10−5
6.99 ×
10−9

Fast Gradient-based DMPC 2568 2440 1.65 4.85
Hierarchical Infinite Horizon MPC 2397 1416 1.52 3.21
Game Theory-based DMPC 4722 4066 3.19 19.06
DMPC based on agent negotiation5750 4194 3.72 19.88
Decentralized MPC 3.30 ×

105
2.78 ×
105

208.70 54.08×
103

Table 8.1: Table of the quantitative benchmark indices of each tested controller

level. In general, most of the approaches present a good behavior regarding constraints violations.
Only sporadic small constraint violations appear in some of the approaches:

• Distributed Multiple Shooting: No constraint violations

• Fast gradient-based DMPC: There is no violation for input constraints.The output constraints
are slightly violated, only for the water levels of the reachesR5 andR6

• Hierarchical Infinite Horizon MPC: some of the levels violate the restriction at certain instants,
but they do it in a very short time, the total time where there is constrain violation is177 minutes
(almost 3 hours).

• Game Theory Based MPC: with the proposed control scheme there are twoconstraints which
are not respected. These constraints are those regarding the levels ofthe lakesL1 andL2. The
constraints regarding lakeL2 violated almost all the time. The deviation is less than 1m in
both directions. The constraints regarding lakeL2 are violated from 45000s until the end of the
simulation. The deviation is 1m below the minimum allowed level value.

• DMPC based on agent negotiation: there are two small violations in one of theconstraints of
the problem. Specifically, the constraints regarding the water level of lake 2and the water level
at reach 1 are violated . In the first case, the maximum value of the deviation with respect the
constraint is 0.035 m and the violation takes place during a total time of 2 hours out of the 24
hours of the simulation. In the second case, the maximum violation is -0.05 m and the total time
is again 2 hours.

• Decentralized MPC: there is no violations of the input constraints. However the water levels of
the reachesR3,R4 andR5 are violated, especially for the reachR4, the water level blows up.

Finally, communication requirements must be considered in distributed approaches. The follow-
ing summarizes the communication needs of each one of the methods:

• Distributed Multiple Shooting: The communication costs consist of sending andreceiving vec-
tors and matrices. The centralized controller sends 6× 8× 48 = 2034 vectors, and receives
5×8×48= 1920 vectors and 5×8×48 matrices via MPI interface using double precision.
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• Fast gradient-based DMPC: the communication costs consist of sending and receiving primal
vectors and dual vectors between neighbors in each iteration. The communication costs vary de-
pending on the total number of iterations needed until convergence is obtained. (See Figures 4.5
and 4.6).

• Hierarchical Infinite Horizon MPC: the controller is a hierarchical structure with decentralized
local controller, so few information is transmitted. The coordinator transmits thevalues of the
output reference and input variable bias for each subsystem. So the coordinator transmit two
vectors to each subsystems of size 12×1 for input variables bias and 17×1 for the reference
of the output variables.

• Game Theory Based MPC: each subsystem has to transmit its disagreementpoint, the value
of the local states, and the current control action. The vector of local inputs is a vector with
dimension 32×1 for subsystems 3 to 8 and 64×1 for subsystems 1 and 2, the vector of states
has a dimension 40×1 for subsystems 3 to 8, 1×1 for subsystem 2, and 2×1 for subsystem 1,
and the disagreement point has a dimension 1×1 for all subsystems (all the vectors are double
precision vectors).

• DMPC based on agent negotiation: the total number of proposals that areevaluated each sample
time is 50. This means that each agent sends an average number of approximately 6 proposals to
its neighbors. Given that these results are obtained for a control horizon Nc=10, each proposal
consists of a maximum number of 30 floating point reals.

• Decentralized MPC: there is no communications between local controllers.
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