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Executive Summary

This deliverable consists of two parts. Part | describes the work orytire{power valley at ED
while Part Il presents the HD-MPC demonstration of results using the puiotpower valle
benchmark.

This part of the deliverable (i.e., Part Il) presents the results on thea-ldwer Valley (HPV)
benchmark. The system is a hydro-power plant composed by seublssems connected t
gether. It is composed by 3 lakes and a river which is divided in 6 resachech terminate wit

in three different ways: by a duct, ducts equipped with a turbine, anis égecipped with a pum
and a turbine. The river is fed by the an upstream inflows and tributasg flo
Six hierarchical/distributed/decentralized schemes have been tested dR\tHeeHchmark:

« Distributed multiple shooting
 Fast gradient-based DMPC
 Hierarchical infinite horizon MPC

« Game theory based MPC

DMPC based on agent negotiation

e Decentralized MPC

should follow a given reference while keeping the water levels in the lakésaaithe dams
constant as possible.
Economic indexes have been defined to compare the different appsoaklso the performanc

sidered.
The best results are obtained with the Distributed Multiple Shooting appreditha nearly per-
fect tracking and a negligible economic cost. Good results are also obtaithetthe fast gradient
based DMPC approach and the Hierarchical infinite horizon MPC approa

A power tracking scenario has been used to test the algorithms: the paotpert of the systegﬂ

with constraints and communications requirements of the distributed appsoaaie been conj

dams equipped with turbines for power production. The lakes and therei@ehes are connectéd

v
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Chapter 1

Synopsis

This report is organized as follows. The second chapter introducéydhne-power valley model. The
system is a hydro power plant composed by several subsystems tamhtugether. It is composed by
3 lakes and a river which is divided in 6 reaches which terminate with damppegliwith turbines
for power production. The lakes and the river reaches are comhectéree different ways: by a
duct, ducts equipped with a turbine and ducts equipped with a pump and eetutiia river is fed
by the an upstream inflows and tributary flows. The models of the diffe@nponent of the system
and the proposed subsystem decomposition is presented in the chaptégllGwing test scenario is
considered: the power output of the system should follow a givenarederwhile keeping the water
levels in the lakes and at the dams as constant as possible.

The third chapter discusses a class of methods applicable for optimal lcofiiege-scale sys-
tems. The proposed approach [19] employs a combination of direct multiptish and domain
decomposition and is called Distributed Multiple Shooting. This approach misetee best perfor-
mance results in the application to the hydro-power valley benchmark.

Chapter 4 presents the application of a distributed MPC method based ontautistaccelerated
proximal gradient method for solving the dual optimization problem. We fiestgmt a framework of
networked optimization, in which the cost function is a composite of a stronglyexoquadratic cost
and a convex non-smooth 1-norm element. We use a dual decompositimaetppthe dual problem
is solved using the distributed algorithm proposed recently[7].

The new algorithm is distributed in the sense that each subsystem onlytoemssmunicate with its
direct neighbors, and there is no need for a master controller. The disttibolution converges to the
centralized solution with a fast convergence rate, thus enables real-timeriergkgion in large-scale
systems.

In order to apply the new algorithm to the hydro power valley benchmarlglseedescribe the mod-
eling technique to obtain a suitable linear model, a decentralized model redigdtiorique that helps
to reduce the computational cost. The simulation results show that the neithatg capable of
solving the power reference tracking problem of the hydro power plemte respecting the opera-
tional constraints. Interestingly, our distributed algorithm requires mucheshcomputational time
than a centralized QP approach, even when we compare the total time oftetionmsi

The fifth Chapter presents a hierarchical control structure designediar to maintain certain
variables of a hydro power valley into a zone while the whole power pldlotife a certain reference.
The controllers use here are Infinite Horizon Model Predictive CorftHiVIPC), these controllers
assures stability if the linear system is stable and do not have integrating stdteshierarchical
control structure is composed by IHMPC with zone control (coordina®ontroller that is applied
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over the entire plant, there are eight IHMPC controllers, one for eaosbystem. The coordinator
calculates hierarchical input variables and output references that\aays into the designed zone,
this information is taken by the controller of each subsystem to generate titevemmables that are

going to be applied, in order to achieve the reference that the coordigpaterates. A constraint is
added to the IHMPC with zone control formulation, it is used to calculate thepofithe system as

a function of output variables, and to assure that the variable followfeeeree.

The following chapter proposes the use of the game theory to formulate ibutistt model pre-
dictive control scheme to control the hydro-power valley. In this corgobleme the whole system
is decomposed into several subsystems able to communicate between therach-sulesystem a
local MPC controller is formulated, and all local optimization problems are cosadpat the same
time without using an iterative procedure to determine what control actiangdshe applied to each
subsystem. Since the decisions of the subsystems depend on the deditienstbers, game theory
is used as a mathematical framework to formulate and to analyze the distributegfdBlem and to
derive a reliable solution.

The last distributed approach is presented in the seventh chapter. Titileutksl MPC scheme
is based on agent negotiation presented in [9]. This control scheme isdditordistributed linear
systems composed of subsystems coupled in the inputs. We assume thasttséesnb are controlled
by a set of independent agents that are able to communicate and thageatinas access only to
the model and the state of one of the subsystems. These assumptions implgfohatthe agents
take a cooperative decision, they must negotiate. At each time sample, fglawirotocol, agents
make proposals to improve an initial feasible solution on behalf of their loctlfanction, state and
model. These proposals are accepted if the global cost improves theoestponding to the current
solution.

Four quantitative indexes has been used to analyze the performaneeapitoaches:

¢ Mean absolute tracking error (MAE) MW
» Mean quadratic tracking error (MQE)W?

» Power reference tracking index J; ) in Euros: two indexes will be used to assess the economic
performance of the proposed scheme. In first place, an expressjoreithin the index proposed
for the power reference tracking scenario is used:

86400
/ c(t)
JO

wherec(t) is the cost of the electricity at timte Note that this expression only focuses on the
economical part of the equation (2/24).

dt

8
O~ 3 P O4(0). (1)

e Power reference tracking index &) in Euros: another option that will be used to test the
economic performance of the scheme is given by the following expression

('.‘)36400(;('[)max(pr (t)— él Pi(%i (1), Ui (1)), 0) dt

+O.5f(§se4OOC(t)max<i_§1 pi (X (), U (t)) — pr(t), 0) dt

In Table 1.1 the indexes for each one of the approaches are showice M@t there are very important

differences among approaches from an economic point of view.

|
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Control performance J N7 MAE MQE
Distributed multiple shooting 0.20 - 6.31 x | 6.99 X
10°° 1079
Fast gradient-based DMPC 2568 2440 1.65 4.85
Hierarchical infinite horizon MPG 2397 1416 1.52 3.21
Game theory-based DMPC 4722 4066 3.19 19.06
DMPC based on agent negotiatiorb750 4194 3.72 19.88
Decentralized MPC 330 x | 278 x | 20870 | 54.08 x
10° 10° 103

Table 1.1: Table of the quantitative benchmark indices of each tested lbemtro

The best results are obtained with the Distributed Multiple Shooting appregitha nearly per-
fect tracking and a negligible economic cost. Good results are obtainedi#tisbast gradient-based
DMPC and with Hierarchical infinite horizon MPC.
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Chapter 2

Hydro-Power Valley Description

2.1 System overview

The system we consider is a hydro power plant composed by sevbsylstems connected together.
Figure 2.1 gives an overview of the system which is composed by 3 ldaked { andL3) and a
river which is divided in 6 reache®(, R»,R3, R4, Rs andRg) which terminate with dams equipped
with turbines for power productiord, D,,D3, D4, D5 andDg). The lakes and the river reaches are
connected by a duct)), ducts equipped with a turbingy(andT,) and ducts equipped with a pump
and a turbine@; andCy). The river is fed by the flowgin andaributary-

In the following sections we shall provide a model for all the subsystemsiriplify the system
modeling we make the following assumptions:

« the ducts are connected at the bottom of the lakes (or to the bottom of éhded);
* the cross section of the reaches and of the lakes is rectangular;
« the width of the reaches varies linearly along the reaches;

« the river bed slope is constant along every reach.

2.2 System model

2.2.1 Reach model

The model of the reaches is based on the one-dimensional Saint Vemaal ¢ifferential equation:

aq(t,z)  9s(t,2)
+ =0

132 q(t Z)at 10 (¢?(t,2)\  oh(t,2) (2.1)

gt9t<s(t,z)>+zgaz<32<t7z))+ 97 +1¢(t,2) —1o(2) =0

The two equations in (2.1) express the mass and momentum balance. Théegaepresent the
following quantities:

« zis the spatial variable which increases along the flow main direction;

* ((t,2) is the river flow (or discharge) at tinteand space coordinate

| Page 8/70
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Gin

Hrributary

Figure 2.1: Overview of the Hydro power valley.

s(t,z) is the wetted surface;

h(t,z) is the water level w.r.t. the river bed;

e gis the gravitational acceleration;

* 1£(t,2) is the friction slope;

* lo(2) is the river bed slope.

Assuming the cross section of the river is rectangular we can write the fotjosquations:

s(t,z) =w(z)h(t, 2) (2.2)

and
q(t,2)* (W(2) +2n(t, 2)*"

1= e wan, )P 22)

wherew(z) is the river width andksy is the Gauckler-Manning-Strickler coefficiént

To take into account lateral inflows, the first equation in (2.1) which esga®the mass balance
can be modified as follows

oq(t.2) , 9s(t.2)
0z ot
whereq;(z) is the lateral inflow per space unit.

=a(2) (2.4)

1The Gauckler-Manning-Strickler coefficient changes accordingly ¢okihd of river bed surface. In the model we
developedkst is constant along the river.
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2.2.2 Discretized model

The partial differential equation (2.1) can be converted into an ordiddfgrential equation with
the method of lines. Divide the reach intbcells of lengthdzand denote by (t) the value of the
discharge in the middle of the céland byh;(t) the value of the water level at the beginning of éell
hn1 represents the water level at the end of the reach.

Denoting bygi,(t) andgeui(t) the water inflow at the beginning of the reach and the water outflow
at the end of the reach, we obtain the following set of ordinary differeatjaations (time dependen-
cies are omitted)

ohy 1l o—0n—0y
ot wy dz?2
Ot i O, 201 O1—Gin 1 (@)’ hy —hy
ot T whdz2 wih dz2 |wi\n ) 9| g T
2 4/3
+gwihilo — gwihy %
Ky (wihy) ™
ohi 1g-G-1—q
o w dz ,
dg 9 O 26 9—-G-1, |1 /g\" . [hi—h .
ot " whdz wh dz |w\n) MM Tt i=200N
_ g (wi2m) 2
+gwihilo —gwihy [kgtr (W hi)10/3

ohny1 _ 1 CQou—0n
dt WN+]_ dZ/2

(2.5)
wherew; represents the river width at the beginning of éeliy 1 represents the river width at the
end of the reach andg, is the total lateral inflow of celi. The river bed slopéy is assumed to be
constant. Since the width of the reaches changes linearly, the valugsaoidwy. 1 are provided in
the model data while

(i —1)(Wnt1—Wwi)

N .
Remark 1 Notice that distance between the beginning of the reaches and the lateval pdints are
given in the last section. They are denoted @gutary, Lc,, LT;, Lc, and Lr,.

Wi = W1+ (2.6)

2.2.3 Lake model

Denote bygin (t) andgou(t) the water inflow and outflow of the lake under consideration, respectively
The volume of water inside the lake varies accordingly to the following equation

ov(t
20 = in(®) - Gout) @7
Since the cross section of the lake is assumed to be rectangular, (2.2 equitalently expressed as

ah(t) _ din(t) — dout(t)
Y _ . 7 (2.8)

whereh(t) is the water level an&is the lake surface area.
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2.2.4 Duct model

The flow inside the dudt; can be modeled using Bernoulli's law. Assuming the duct section is much
smaller than the lake surface, the flow from ldketo lakeL, can be expressed as

Qu, (t) = SJl Sigr(hLz(t) - hl—l (t) + hUl)\/Zg|h|—2(t) - hL1 (t) + hU1|> (2.9)

whereh, andh;, are the water levels for lakés andL,, hy, is the height difference of the du@y,
is the section of the duct argiis the gravitational acceleration.

Denotingx = hy, (t) — hy, (t) + hy,, equation(2.9) can be written &,/2gsign(x)/|x|. The
function sigr{x)/]x| is not differentiable forx = 0. The following approximation can be used to
make the functiomy, (t) differentiable

X

sign(x)+/ |X| ~ m.

Notice that fore = 0 the two functions are equivalent, while keepimngmall we obtain a good ap-
proximation % corresponds to the derivative of the approximatior &t0).
2.2.5 Turbine model

For every turbine we assume that we can control directly the turbine dggeh@ihe power produced
is given by the following equation

Pe(t) = ke () Ay (t), (2.10)
wherek; is the turbine coefficienty(t) is the turbine discharge auxh(t) is the turbine head.

2.2.6 Pump model

Pumps can be modeled similarly to turbines. The power absorbed by a pumpnsgi

Pp(t) = koOp(t)Ahp(t), (2.12)

wherek;, is the pump coefficiengy(t) is the pump discharge amhy(t) is the pump head.

2.2.7 Modeling of ducts equipped with a turbine and a pump

The ductsC; andC; are equipped with a pump and a turbine and therefore we can use equations
(2.10) and/(2.11) to express the amount of power generated or adsddowever, the turbines and

the pumps cannot function together and this should be expressed in the lamimiral problems
(OCPs) formulated using the hydro power plant. Depending on the O@HRufation and the method
used to solve the problem different models can be used. In the remairttiés section we illustrate
some possibilities in modeling; (the same model can be used @)). We assume that the flow can

be determined by the controller.

Discontinuous model
Denote byge, (t) the flow through dudE;. We assume that:

* (c, (t) > 0 whenC; functions as a turbine;

| Page 11/70
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* (c, (t) < 0 whenC; functions as a pump.

Notice that by using this convention we do not need to express explicithyCthean function as a
turbine or a pump alternatively. The power produced can be exprassed

pCl(t) - I@l(qu(t))qcl(t)AhQ(t)v (2-12)

whereAhc, (t) it the duct head which depends on the water level in lakand reactR; and

_ J ke, Wwhengg,(t) >0
e @0)={ & Whenai) 20 213)
(ktcl is the turbine coefficient arkr!,Cl is the pump coefficient). The flow i@, is limited:
qcl (t) € [_qclpﬁmaﬂ _qclp,min] U [qclt,michlt,max] ? (214)

where the valuesic, ... AC;pmins ACimn @NA ey, @€ POsitive (the subscriptstands for turbine,
while p stands for pump).

Equation((2.18) and the constraint (2.14) make the model o€thgiscontinuous and therefore
not suitable for many control techniques.

Smoothed model

Equation((2.13) can be written as

1 . .
ey (A (£) = 5 (2 sign(di, (£)) ke, + (1= sign(ge, (1)) e, ) (2.15)
and then made smooth using the following approximation
sign(x) ~ m (2.16)

(¢~ corresponds to the derivative of the approximation &t0). The constraint (2.14) can be sim-
plified by imposing

qcl (t) € [_qclp.max’ qclt(max] ° (217)
The previous model @t is still highly nonlinear and may not be suitable for linear MPC applications.

Double flow model

Another simplified model can be obtained by introducing two separate vasigbkxpress the flow
inCy

* Ocy,(t): flow whenC,; is functioning as a pump;
* Oc, (t): flow whenC; is functioning as a turbine.
Assuming these new variables are both positive we can write
G (1) = Gey, (1) — Gy, (1) (2.18)

and

Pe: (1) = (K, Gy, (1) = Kpe, Gcy, (1)) Bhcy (1) (2.19)
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The constraint (2.14) can be rewritten in termgjgf (t) andoc,, (t)

qclp(t) € [qup.miN qclp,max} (220)

Ay () € [0Cw s Ot ma) - (2.21)

Relaxed model

When the power production is maximized (as in the profit maximization scenapoged below),
the following relaxation can be used

P (1) < ke, G, (1), (1)
Py (1) < Ko, Gy, (DA, (1) (2.22)
and
qu(t) S [_qclp_’maﬂ qclt,max] (2-23)

This relaxation is meaningful for power maximization since the valu%gk ktcl-

Remark 2 Using any of the models in Sections 2.2.7, 2.2[7 or 2.2.7 introduces sonux@pations.
In particular, the control inputs corresponding to the solution of an OCRgithese simplified models
may not respect constrai2.14) The control values achieved should be therefore modified.

2.3 Subsystem partition

The system is partitioned into 8 subsystems.

2.3.1 Subsystem 1l(; + Lo + U1 + T1 + Cy)

Subsystem 1 is composed by lakgsandL, and ductdJ;, T; andC;. DuctC; can function as a pump
or a turbine.
Define the following quantities:

* hy,(t) is the water level in lakéy;

,(t) is the water level in laké;
A
(

L
L
L2
-

t) is the water inflow folL; which takes into account rain, small tributaries, etc.;

h
q
q
G

)
)
)
t) is the water inflow folL, which takes into account rain, small tributaries, etc.;
. (t) is the water discharge going to turbifig(control variable);

)

* (g, (t) is the water discharge going through the ddc{control variable);

hy, is the height difference of dudi;

hc, is the height difference of du€l;

hr, T, (t) is the water level ifR, at the outflow point of ducty;

| Page 13/70
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* hr, ¢, (t) is the water level irR; at the outflow point of dudty;
* ki;, is the turbine coefficient ofy;

* ki, is the turbine coefficient df;;

* Ko, is the pump coefficient df,

* pg (t) is the power produced by subsystem 1.

The equations governing the subsystem behavior can be derivedthisiaguations illustrated in
the previous section and setting

e lakel;
Qin(t) = o, () +au, (1)
qout(t) =0m (t) +0c, (t)
e lakelL,
Oin (t) = 0L, (t)
Gout(t) = qu, (t)
e turbineT;

Aht(t) = th + hLl(t) - th,Tl(t)
» combined turbine/pum@;

Ah01<t) = hC1 + hl—l(t) - th,Cl(t)'

The variables of subsystem 1 are subject to the following constraints

Ly, < (1) <hg
hLzmin < hLz (t) < hLZmax
ATymin < 0Ty (t> < OTimax
qcl (t) € [_qclpmax? _qup.min] U [qclt,min7qclt7max]

2.3.2 Subsystem 2l(z + To + Cyp)

Subsystem 2 is composed by ldkeand ductsT, andC;.
Define the following quantities:

* hi,(t) is the water level in lakés;
* qu,(t) is the water inflow folLz which takes into account rain, small tributaries, etc.;
)

* qr,(t) is the water discharge going to turbifg(control variable);

qc, (1) is the water discharge going through the dDgtqc,(t) is positive wherC; functions as
a pump (control variable);

hr, is the height difference of dudb;

hc, is the height difference of du€h;
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* hr, 1,(t) is the water level irRs at the outflow point of ducty;
* hg,c,(t) is the water level iR, at the outflow point of dudEs;
* ki, is the turbine coefficient ofy;

* ki, is the turbine coefficient of;

* Ko, is the pump coefficient ofy;

* ps,(t) is the power produced by subsystem 2.

The equations governing the subsystem behavior can be derivedaggiagons (2.8)~(2.11) and
setting

e lakelLs
Qin(t) = du,(t)
qOUt(t) =0mn, (t) +0c, (t)

e turbineT,
Ahy(t) = hy, + hig(t) — hrs 1, ()

» combined turbine/pum@;
Ahc,(t) = he, +hiy (t) —hr,c, (1)-
The variables of subsystem 2 are subject to the following constraints

hI-3min S hLB (t) S hLBmax
qTZmin S qTZ (t) S qTZmax
qCZ (t) € |:7qc2p.max’ 7q02p,minj| U [qCZt,min7qC2t.maxj|

2.3.3 Subsystem 3F(1 + D]_), 4 (R2 + Dg), 5 (R3 + Dg), 6 (R4 + D4), 7 (R5 + D5), 8 (Ra +
De)

Subsystems 3, 4, 5, 6, 7, and 8 are composed by a reach and dam/ZERyepresents the structure

of the dams. All the flow going through the dams is used by the turbine to pecelectricity. The

head of the turbines inside the dams can be expressed as differeneenaitén level before and after

the dam. Since the water level after d&wis not part of the model we consider it constam( ).
The constraints on the subsystem variables are

e subsystem 3
thmin < th (t> < thmax
D1 min < Dy (t) < UD 1 max
wherehg, (t) is the water level at the end of reaBh andqp, (t) is the dam discharge which
goes to the turbine (the control variable);

e subsystem 4
bR < MR, (t) < PRz
ADzmin < D, (t) < ODomax
wherehg, (t) is the water level at the end of reaBh andqgp,(t) is the dam discharge which
goes to the turbine (the control variable);
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turbine head

Figure 2.2: Dam configuration.

turbine

e subsystem 5
hR3min S hR3 (t) S hR3max
qDSmin S qu (t) S qDSmax
wherehg,(t) is the water level at the end of reaBh andgp,(t) is the dam discharge which
goes to the turbine (the control variable);

» subsystem 6
hR4min S hR4 (t) S hR4max
qDAmin S qDA (t) S qD4max
wherehg,(t) is the water level at the end of reaB andqp,(t) is the dam discharge which
goes to the turbine (the control variable);

e subsystem 7
hF\>':'>min S hR5 (t) S hR5max
qDSmin S qDS (t) S qDSmax
wherehg(t) is the water level at the end of reaBj andqp,(t) is the dam discharge which
goes to the turbine (the control variable);

e subsystem 8
I’]Rlimin S hRG (t) S hRGmax
qDGmin S qDG (t) S qDGmax
wherehg,(t) is the water level at the end of reaBg andqp,(t) is the dam discharge which
goes to the turbine (the control variable).

2.4 Control test scenario: Power reference tracking

We assume that the power reference to be followed by the entire systeows R4 hours in advance.
Therefore, the prediction horizon is set to 86400 seconds. The inpthe system can be changed
every 30 minutes.The input vectasgt) are constant in this time intervals.
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The optimal control problem to be solved reads

_ 86400
MmNy u, /0 y

wherety = 180, f is a function which represents the dynamics of the whole system. The function
pr(t) is the given power reference (piecewise constant).

86400

8
d”;/o (% (1) = Xssi) T Qi (X (1) — Xsgi)dlt (2.24)

8
pr(t) — Zl pi(xi (1), i (t))

Remark 3 Notice that when implementing this scenario the power should be expiasd®¥d (megawatts).

In the control test scenario we make the assumption that all the water inflewsrstantd, (t) =

Qin, Qtributary(t) = Qrributarys Gin (t) = Qinc, » Gin, (t)= Qinc,» Gin., (t)= qus)-
To simplify the description of the two optimal control problem formulations wengefi

* X(t): state vector of subsysteim
* U;(t): input vector of subsysteiin
» Ci: set describing the constraints for subsystem

* pi(%(t),ui(t)): power produced by subsystem
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Chapter 3

Distributed Multiple Shooting

3.1 Introduction

In this section we discuss a class of methods applicable for optimal contasbefscale systems. The
proposed approach [19] employs a combination of direct multiple shootohd@mnain decomposition
and is called Distributed Multiple Shooting. We regard the optimal control pnoble

gyyeg/ ‘e dt+zi/ A (), U (1), 2 (t))dt (3.1)
stx(t) = (X (t), U (1), 2 (1)) (3.1b)
Y (1) =g'(xX(t),u(t),2(t) (3.1c)
X (O) — )er (3.1d)
M

2 =5 Ayl (1) (3.1e)

; j
le' (3.19)
PO, U(t) >0, qet) >0 telo,T], (3.1g)

wherex (t),u'(t) andZ (t) is the state variable, control input variable and coupling input signal, re-
spectively. The signal(t) can be regarded as a reference signal. Note that the coupling between
subsystems is characterized only by (3.1f).

3.2 Discretization

In order to obtain a finite nonlinear program, we have to discretize our cantisignals. In this
section we detail how this may be carried out. The signd)se(t) andy(t) are discretized by using
Legendre polynomials. For example, b€ element of theZ (t) signal can be approximated by

Zl ( ) rm( ) mp7 (3-2)

whererl »(t) is themi™-order Legendre basis. Due to the orthogonality gft), the discretization can
be obtained by performing the integration

Vo= o [T () e @3

thir—th Jt,
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The discretization of the state profile is done inside an integrator, thus wedefilye the ini-
tial valuex, of each shooting interval and handle the integrator as a function thasstiféerential
equations depending on the initial value, the control input signal and soapding input coefficients.

We discretize the control input signal by introducing piecewise constarital profile, thus for
systemi and each shooting interval we introduce the functior (x,ul,, ), which represents a
simulator that is able to generate sensitivities as well.

After the discretization steps we obtain a finite nonlinear programming problem.

N-1 M
min Ln(en) + $ L (X Ul 7
g( o(en)+ 3 Lty n>>
Ynon o
st Xy = FRa(xh, Un, Z,) n=0,....N—1
Yn=Gn(%,Uy,zn)  n=0,....N-1 (3.4)
=%
Zn =3 LAY

en=rn+ 3, Bijyh

P'(Xh,Uy) 20, Qn(en) =0
One may solve the result problem with a Sequential Quadratic Programmingdnethich calcu-
lates the linearization of the original problem and employs corrections seglleto the original

optimization variables. The essence of the proposed method is that thetievatfaR) (X, U, z,)
along withOR} (x,, Uy, Z,) may be divided intdM x N independent tasks with own integration rules.

3.3 Solution methods

In this section we describe the solution method that can be used to solve T&4implify our
discussion we regard the constrained nonlinear programming problem

miny  f(x)
st. g(x)=0

wherely(x,A) = Of(x) — Og(x)A.

with KKT — conditions :[LX(X’A )} =0,
9(x)

Sequential Quadratic Programming methods linearize the KKT system in a @apke the resulting
problem sequentially until convergence.
Once we calculate exact linearizations (i.e. exact constraint Jacobianisave to solve the linear

system
LK B  —0g¢ [x—x]
M " [(ngf o ||a-a)=°

or equivalently we have to solve the quadratic program
1
min Zp'Bp+ (0 p

st. g+ (0g9)"p=0,

[Xk+1] o [Xk
Aksr] |0

Page 19/70 |

and apply the solutiop* to obtain

+ akp” (3.5)




HD-MPC ICT-223854 HD-MPC validation for the hydro-power vall ey — Part 1| |

with someay € (0, 1]. This approach we will regard &sll SQP method
By using inexact derivative§* ~ (0g)T we may neglect some directions in the Jacobian (i.e.
less forward derivatives in the integrators) while retaining converggsic The corresponding linear

system to be solved is
LK B —(GYT] [x—x] _
[gk} * [Gk o |[r-a]=?

or equivalently solve the quadratic programming problem
L ok 4T
—p'B
mp|n2p p+d' p
st. g+ G¥p=0,

whered = LK+ (GK)TA = Of*— Og“A + (GX)TA. Note thatdgA is computable with one adjoint
derivation, which gives the name to the methadjoint-based SQP method

In the context of Distributed Multiple Shooting, one can divide the variab&tore into [z, z;],
wherez; represents the low-order coefficients of sigz{t) having the following structure ilF (x,, U, ).

e | | @on | @b ]
X X X X x x x x 00
X X X X x x x x 00
X X X X x x x x 00

In this approach [18] there is a tunable parameter that determines the léngthNote that in the
extreme case none of tleecolumns are calculated, in which case the quadratic programming sub-
problems decompose M x N small quadratic programs. In optimization terminology this approach
corresponds to Newton’s method in the variablesdu, and a fix-point iteration in the variables
From the control point of view, this is equivalent to local controllers tloaiperate with each other by
exchanging the variablesbetween neighbors.

3.4 Numerical results

We have solved an optimal control problem on the Hydro Power Valley evtiner cost function con-
sisted of an%, and an¥; term that correspond to the tracking of the steady state and tracking of the
power reference, respectively. The control horizon was 24 hadrieh we divided into 48 subinter-
vals.

In Tablel 3.1 the running time of one SQP iteration is shown. It is clear that ing Bdultiple
Shooting (MS) and Distributed Multiple shooting (DMS) one can solve the saotdgm in much
less running time compared to a serial solution.

In Table 3.2 we show the number of iterations needed to achieve the redjt@stance in the
KKT conditions. One can conclude that in this specific application it is suffidie do Newton-
method only on the first coupling coefficient.

In Figure 3.1 the KKT-tolerance is depicted in a logarithmic scale against tagiaecounter. Our
experiments correspond to what we can expect from SQP convergiesary, namely we achieved
linear convergence.

In Figurel 3.2 we compared the planned power production and the reéepenver within 1 day.
This can be considered as an accurate tracking, since the maximal tractongs never larger than
1073
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| Method | Integr. | QP sol. | s |
fSQP (SS - serial) 8min43s| 0.0ls| 8min43s
fSQP (MS — 48 cores) 10.88s| 9.93s 20.81s
fSQP (DMS — 384 cores) 1.92s| 9.93s 11.85s

aSQP(5) (DMS — 384 cores 1.31s| 9.93s 11.24s
aSQP(1) (DMS — 384 cores 1.17s| 9.93s 11.10s
aSQP(0) (DMS — 384 cores 1.15s| 9.93s 11.08 s

Table 3.1: Guessed running time of one SQP iteration. fSQP: full Sequénidalratic Programming
method. aSQP(x): adjoint-based Sequential Quadratic Programming methakisity only x out
of 10 directions in the Jacobians.

| [1E-3] 1IE-4] 1E5 |
fSQP 5 6 7
aSQP()| 5 6 7
asQP(1)|[ 5 6 7

Table 3.2: Number of iterations needed by different methods in order iewacbertain tolerance in
the KKT-conditions

In Figurel 3.3 the evolution of the water levels in time are depicted. In the begirofithe
prediction horizon an oscillatory behavior may be observed that is due &gthressivity of the power
tracking. Our formulation incorporates the steady state tracking as watltmpower tracking) and
thus the system converges to the steady state at the end of the predictimmhahile respecting
hard constraints.

In Figure 3.4 the control plan of the HPV subsystems are shown, the saenemkenon may be
observed as in the states, after a while the control profile gets smoothenauther, driving the
whole system to the steady state.

Performance analysis

In this section we characterize the quality of our controller with objective oreas
« Mean absolute tracking error:374x 107> MW
+ Mean quadratic tracking error:@51x 10~° MW?2
« Power reference tracking index (EUR):

86400
[y
0

8

pr(t) — Zl pi(xi(1), ui(t))

dt=0.1986 EUR (3.6)
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Figure 3.1: Converge rate of fSQP and aSQP(5) methods.
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Figure 3.2: Comparison of the reference power and the power getierate
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Figure 3.3: Water levels in different reaches and lakes together withchadraints along 24 hours.
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Figure 3.4: Control plan of reaches and lakes together with constrairitd foours.
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e Optimality measure and constraint violation: The solution found is considesexth optimal
solution (though not highly accurate) with
— KKT tolerance 0258831,
— primal infeasability 108 x 10~1?
— dual infeasability 167.
« Communication costs: The communication costs consist of sending andingoatctors and

matrices. The centralized controller sends®x 48 = 2034 vectors, and receives<®B x 48 =
1920 vectors and & 8 x 48 matrices via MPI interface using double precision.
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Chapter 4

Fast Gradient-Based Distributed MPC

In this chapter we present the application of a novel distributed MPC methtek irlydro Power
Valley benchmark. Our approach make use of a distributed algorithm faroneed optimization
that is applicable to a class of convex non-smooth optimization problems [€].n&w algorithm is
distributed in the sense that each subsystem only needs to communicate witkctsdighbors, and
there is no need for a master controller. The distributed solution conviergiess centralized solution
with a fast convergence rate, thus enables real-time implementation in laigesgstems. We will
first summarize the essence of the distributed optimization technique, thesslitcapplication to
the Hydro Power Valley benchmark.

4.1 Distributed gradient-based algorithm for networked optimization

4.1.1 Problem setup

We consider convex non-smooth optimization problems with the following form:

. 1
min Jha éxTHx+ 9" x+ y||Px—pll1 (4.1)

S.t.AIX=DB;
Aox < By

wherex € r", the matrixH is block-diagonal, positive definite, the matriegse r4", A, € r"*" and
P € r™™ have sparsity structures. The sparsity will facilitate distributed implementation.

Based on the structure bff, we partition the full variable into the set oM local variables € r"
asx= [x{,...,x};]" and define correspondirtg andg; such that

1 M1
J(x) & éxTHx+ g'x= Zlé)('THiX‘ +o7 % (4.2)
i=
Problem|(4.1) represents a form of network optimization problems, in wiich subsystem (or
agent) is associated with a variable The subsystems are coupled through constraints and the 1-

norm term, which is commonly used as a regularization term or as a soft @onstret us define
the neighborhood/; of each subsysteirnas the group of all subsystems that couple with subsystem
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through either the constraints or the 1-norm term. Mathematical definitioff oan be given as:
Adjijj #  [Olnxn;, OF
M= jE{l,...,M} AZ[ij] % [O]nixnj,or
P[ij] 7é [o]nixnj

where the subscriptj] refers to the sub-matrix corresponding to the variaki@sdx;.
Our method will work with positive definitél, for this reason we need the following assumption:

(4.3)

Assumption 1 We assume that each h (4.2)is a real symmetric positive definite matrix that satis-
fies the following eigenvalue bounds

where0 < g; < g; < ».

Assumption 2 We assume that there exists a Slater vegtts,the optimization problem, i.e. a vector
x such that Ax = B; and AX < B,. Further, we assume thatd=1,...,q are linearly independent.

Remark 1 Assumption 2 together with the fact that the cost functidis Btrongly convex implies
that the minimum of the optimization problgd1)is always attained at a unique point, denoted by
X*.

4.1.2 Dual problem

In the following section we will present the formulation of a dual problem td)(4which will be
tackled with the new distributed optimization method.

We start by introducing auxiliary variablesg to get the following optimization problem which is
equivalent to[(4.1):

min 300 + el (4.

S.t.AIX=DB;
Aox < By
PX—p=Xa

We introduce Lagrange multipliess € RY, € RL,, v € R™ for relaxation of the constraints. The
dual function is

ah.v) = i {300 + Vil + AT (A )+
+uT (Apx—B3) + v (Px— p—xa)} (4.5)
Let us make use of the definition of the conjugate function (cf. [17]) efrefion f (x):
f*(y) 2 s)L(Jp{yTx— f(x)}. (4.6)

Using the notation of conjugate functions, we can rewrite|(4.5) by regimgrthe terms and
replacing ink(-) by —sup(—(-)) with the following form:

qA, V) = —F(—(AIA + A +PTv))
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—sxl:p[vTxa— V| Xall1] (4.7)

Note that we can compute the conjugate of the scaled 1-norm explicitly:

sxl:p{vTxa— VilXall1} = leip{ S [V —vixel] }

-3 {sxti:p[vix;— Al }

[0 ifvfe<y
"] o else

where the superscriptdenotes thé-th element in the vector. We see that the conjugate of the scaled
1-norm is an indicator function of a hyper box. In order to have a defuaitee for the sup operator,

we must look forv in the box where the maximal values of all the elementg. i$n this way, we
absolutely respect the 1-norm term in the cost function of (4.4), whilgirgjaonly the constraint.

Remark 2 The fact that the conjugate of the scaled 1-norm becomes a box-doh$brathe intro-
duced dual variablesy, is important for distribution reasons. The projection operations onto the box
are parallelizable, thus facilitating the distributed computation.

We introduce the following notations:
o = AL AL PT]T #-[BIE} ' 2= AT VT
whereg/ € RATTHM*N 2 ¢ RATTM gndz ¢ R4HT+M The set of feasible dual variables is defined as
Z=RIxRyx [y, Y™ (4.8)

where[—y, y]™ stands fom times product of the sgt-y, y|. With these definitions the dual problem
can be rewritten in a compact form as follows:

q2) = (-T2 - A"z

Note that agl is a quadratic function with positive definitg, the conjugate functiod*(y) has the
explicit formula [4]:

1 _
F(y)=350-9"H y-9g) (4.9)
and it is differentiable with the gradient:

03 (y) =H y—g) (4.10)

Under Assumption 2 it is well known (cf. [4, §5.2.3]) that there is no dualétg,g.e. we can get
the minimum of[(4.4) by solving the dual problem:

maxq(z) (4.11)

zeZ
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To present the algorithm in a more familiar way of convex optimization, insteawasimizing
the concave function, we will focus on minimizing the convex functiohwhich is the opposite of

q:
f(2)2-q2=3(—o"2)+ A"z
= %(MH o)'H Y (o Tz24+9)+ %8z (4.12)
In the next section, we will present the distributed algorithm for solving tta problem, together
with the convergence property.

4.1.3 Distributed dual accelerated proximal gradient mettod (DDAPG)

Our algorithm is based on a fast gradient technique, the acceleratéohptgradient methods (APG).
This method has convergence rﬁl@l—z) as developed in [12] and further elaborated and extended in
3,113, 14, 21, 22].

In this section, we present a distributed algorithm based on the APG methiold aghieves the
same convergence rate with the centralized counterpart. The main idea iglod &éxe problem
structure such that the APG computations can be distributed to subsystemsdetailed algorithm
was discussed in [7], in the following we summarize the distributed accelepateénal gradient
algorithm for solving the dual problem.

Let us partition the constraint matrices to each row as

aI by
d=| i |, #=
: b
aq+r+m g+r+m

in which eachgy,| = 1,...,g+r +mis a column vector, corresponding to a scalar constraint in (4.4)
asa/x<by,l =1,....qora'x=by,| =q+1,...,q+r+m. Recall the definition of the neighborhood

in (4.3), it can be seen that if th® constraint involves subsysteirthen all the non-zero values af
only involvesi and the neighboring subsysteips 4.

Let us also divide the sétl,...,q+r +m} into M subsetsZ,i =1,...,M, such that each subsys-
temi will be responsible for all computations concerning the constriats4. There are different
ways to make this division, the only requirement is that for every.%, we havea; # 0, with g
represents the sub-vectorafthat corresponds to the variabdgin thel™ constraint of((4.4).

TheDistributed Dual Accelerated Proximal Gradiealgorithm is given as below.

Algorithm 1 Distributed Dual Accelerated Proximal Gradient

Initialize 2 =zt and x1
In every node, i, the following computations are performed:
Fork>0

1. Compute

2k+1 k—1 .,
K — kK_ k-1
% k+2xI k+2X'

(4.14)
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2. Sendd to each je A, receivei'j‘ from each je .A4{

3. Compute with eachd %

d=5 ajx—b (4.15)
JEN
1
1 1«
At =g -+ d 1<q (4.16)
— 1
+1_ k1, Lok
Z|k —maX{O,Z|k+k+2(Z|k Z|k )+Ldl}7
q<| <qg+r (4.17)
Z‘k+1:min{y,max[ k+22‘k Z|k
+id|"”, q+r<l<g+r+m (4.18)

4. Send(z1} . 4 to each je A,
receive{z 1} z from each je A

The convergence rates for the dual functioand the primal variables when running Algorithin 1
are stated in the following theorem.

Theorem 1 Algorithm1 has the following convergence rate properties:
1. Denote zas an optimizer of the dual proble(.11) The convergence rate is:

(4.19)

2. Denote x as the unique optimizer of the primal problem. The rate of convergentesfprimal
variable is ” ||
4oL -z
k *112 2
X =X5< ——-52,Yk>1

The proof of Theorem 1 and more details of Algorithm 1 can be found in [7]

This result enables implementing the algorithm DDAPG in a distributed fashioa@rdve fast
convergence rate as the centralized APG algorithm. The improvement afrihergence rate is help-
ful when we want to use this method for solving online optimal control probsroh as distributed
model predictive control. In the following section we will apply the new algonitto DMPC of the
Hydro Power Valley benchmark.

(4.20)

4.2 Model construction and distributed MPC configuration for HPV
application

Since our proposed method is designed for linear systems, we first nebtato a linear model of
the HPV. We linearize the given nonlinear model at the steady state conditien tioe linear model.

Page 31/70




HD-MPC ICT-223854 HD-MPC validation for the hydro-power vall ey — Part Il

Although the approximation property of the linear model is good only neatéaglg state region, the
linear model is well suited for the control, as will be shown by the simulatiortsesu

One of the difficulties for applying a linear MPC approach to the HPV prolidire discontinuity
of the power functions associated with the dugt®ndC,. The discontinuity is caused due to the fact
that the flow througlC; (or C,) can have two directions and the powers generated or consumed do
not have equivalent coefficients. To deal with this issue, we use ddloll¢echnique, which means
introducing two separate positive variables to express the fl@y:in

* Ocy,(1): virtual flow such thaC, functions as a pump
* (c, (t): virtual flow such tha€, functions as a turbine

Using these two flows, the power function associated @its replaced by two continuous func-
tions that express the power produced ey, (t)) and consumed (bgc, (t)). This approach allows
the optimization solver to deal with continuous variables only. When the solutioht&@ned, we
combine the virtual flows to get the real flow through

Gc, (t) = Qcy (t) - qup(t) (4-21)

The double-flow approach is also applied @r Consequently, the new linear model has 12 in-
puts. Another issue of the linear model is that the spatial discretization réswependencies of
adjacent states representing water levels along the reaches, leadinggaisobservable and un-
controllable modes. Moreover, the linear model has a large number of, statessng computational
burden. We will use balanced truncation for model order reductiorg@8hat the reduced model has
only observable and controllable modes.

Let us first describe the balancing transformation. Consider a disimetelinear model with
state-space realization:

x(k+1) = Ax(k) + Bu(k)
y(k) = Cx(k)

We can compute the controllability Grami&ras follows:
APAT +BB" =P (4.22)
and the observability Gramidp as:
ATQA+C'C=0Q (4.23)

With a transformation matriX, |T| # O for state transformatiorn= T x, the Gramians are trans-
formed to:

P=TPT!, Q=T 'QT* (4.24)
We can find a particular matrik such that
P=Q=diago,...,0n) (4.25)

with g; > 0,Vi. This is called a balancing transformation. The controllability and observaGiteyni-
ans of the new system realization are equal and diagonal, consistingriesen, ..., o, which are
called Hankel singular values.
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The truncated model is obtained by removing the modes that correspond taosnaaitl all the
modes of the reduced model are both controllable and observablesjonding tog; > 0). This
model reduction method is called balanced truncation.

Since we want to keep the structure of the HPV model, we perform baldngezhtion for each
local system. With a particular choice of the modes to be truncated, we obtd&irstaté reduced
model that approximately represent the dynamics of the full linear model Wilsttes.

Finally, the discrete MPC optimization problem can be cast into the form oflgmof4.1). We
then use Algorithm 1 to solve the optimization problem at each sampling time in a disttigetting.
In particular, we use 8 subsystems as defined in Table 4.1.

Table 4.1: Subsystem configuration

Subsystem Neighborhood set Input variables Output variables
1 {1,3,4} U1 = [qr1,Gcat, Ocip)! | Vi = [hg, hio]”
2 {2,6,7} Uy = [Gr2, Ocat, Ocp) | Yo =his
3 {3,1,4} U3 = Op1 Y3 = hry
4 {4, l, 3, 5} Us = Qb2 Y4 = th
S {5,4,6} Us = Op3 Y5 = hra
6 {6,2,5,7} Us = Op4 Yo = hra
7 {7,2,6,8} U7 = Ops y7 = hprs
8 {8,7} Us = Ope Y8 = hrs

The control parameters are chosen as follows:
» Time step:T = 180Gs.

e Horizon length:N = 10.

e Simulation time: 48 steps (1 day).

« y=500.

4.3 Simulation results

We made simulations of the HPV control with the proposed DDAPG algorithm. Toodstrate
the fast convergence property of DDAPG algorithm, we also solve the ogtiimizproblem at each
time step in a centralized way, this is done by transforming the problem into afiagdroblem and
applying thequadprogsolver of MATLAB. The comparison of computation time of the distributed
algorithm and the centralized solver is presented in Figure 4.1. Note thdtstibuted algorithm is
implemented in MATLAB, hence it is a fair to compare it against a solver written XTMAB, other
than a solver written in C. Figure 4.1 shows that the total computation time of DDAB&ithm
is much shorter than the computation timegefadprog this reflexes the fast convergence rate of
DDAPG and the efficiency of dealing with the 1-norm element in the costiumc

The power reference tracking is plotted in Figure 4.2, showing that otnikdited controller
performs tracking very well. This result validates the linear model and thehneduction technique,
the reduced linear model is good enough for control of the HPV system.

In Figures 4.3 and 4.4, we see that the input and output constraints satisfied. The constraint
satisfaction is achieved due to the fact that the solution of the distributed MR@®isd the centralized
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solution of the dual problem, and since there is no duality gap, the dual optequids the primal
optimum, thus giving us the primal solution of the centralized MPC problem.

Computation time per step

25 T T T T T T T T T
Distributed algorithm
— — —quadprog (centralized)
2 - i
I
' ASRENINT -7
I I - I =
[ [ [ [ -
[ Co [ - L1
L5r L k —41 re—gq 10
'W | = | r | | —_ - -]
2, I - Lo
[5) _ r
= -
|_
1 L -
0.5 ]

O 1 1 1 1 1
0 5 10 15 20 25 30 35 40 45 50

MPC step

Figure 4.1: Comparison of computation time per each time step

4.4 Performance analysis

In this section we characterize the quality of our controller with objective oreas
* Mean absolute tracking error:656 MW.
+ Mean quadratic tracking error.86 MW?2,

« Power reference tracking index (EUR):

86400
/ c(t)
0

« Power reference tracking index 2 (EUR):

8
pr(t) — Z pi (% (t), Ui (t))‘dt = 2568

86400 ) 8
/O c(t) min (pr (t) — i; NOTORT (t)),O) dt
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Power tracking
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Figure 4.2: Simulation result of reference power tracking

86400 8
+o.5/0 c(t) min (zl D% (1), i (1)) — pr (t),0> dt — 2440

 Constraint violation: There is no violation for input constraints. The dugmmstraints are
slightly violated, only for the water levels of the reacli®sandRg, with the following indices:

— Maximum constraint violation ofg,: 0.02 m. Accumulated constraint violation b,
over 48 steps: 049 m/day.

— Maximum constraint violation ofir,: 0.023 m. Accumulated constraint violation log,
over 48 steps: 058 m/day.

e Communication costs: The communication costs consist of sending andimgogiimal vec-
tors and dual vectors between neighbors in each iteration. The communicasts vary de-
pending on the total number of iterations needed until convergence is ethtae provide the
graphs of the communication costs with respect to each MPC step in Rigurasdi456.

45 Conclusions

We have presented a distributed MPC method that is applicable to the Hydes Falley benchmark.
The distributed MPC is based on a distributed accelerated proximal graakéthod for solving the
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Time[s] % 10* Time[s] % 10"

Figure 4.3: Input constraint satisfaction with the DDAPG

dual optimization problem. The distributed solution converges to the centraiatation with a fast
convergence rate, thus enable real-time implementation in large-scale sy®terhsve also shown
that the new algorithm is suitable for the control problem of the Hydro P&akey benchmark. The
simulation results has shown that the power reference can be trackeaviédl all the operational
constraints are satisfied. Moreover, our distributed algorithm requires shmrter computational
time than a centralized QP approach, even when we compare the total time aftations.
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Figure 4.4: Output constraint satisfaction with the DDAPG
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Figure 4.5: Number of data packages transmitted between distributed castrolle
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Figure 4.6: Number of floating point reals transmitted between distributedotiensr
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Chapter 5

Hierarchical Infinite Horizon Model
Predictive Controller

5.1 Introduction

The model of the HPV was linearized in order to develop a hierarchicalitefidorizon Model Pre-
dictive Controller (IHMPC). The resultant model had certain charatiesishat made the control
troublesome. Problems regarding the controllability and the stability of the systeen

 Controllability: This property was tested finding the controllability matrix and cating its
rank. Initial tests showed bad conditioning of the matrix, then it seemed thasitet full rank,
but modifying the tolerance of the estimation it presented full rank. Thidtresis caused by
the large difference between singular values, i.e. the system is controbbabliere are many
states that need large effort to be controlled.

* Integrating system: if the eigenvalue of the discrete linear model have umergal value
exactly in the unitary circle in a complex space, it is said that the system is amaititeg
system. In this case there were eight singular values that had a puralealof one, so the
system had eight integrating states.

Since IHMPC assures stability only if the discrete linear system is stable, ribtée applied
directly to the system. The approach selected to skip this problem was stakitizisgstem using a
state feedback controller, with the variable change:

u(k) = —Kx(k) 4+ v(k) (5.1)

where the state feedback gain maticould be found by means of pole placement or with an opti-
mization problemy(k) being the new manipulated variable. A necessary condition to find the gain
matrix was that the system should be stabilizable [26]. With that condition athiezould be cal-
culated as the solution of an optimization probleniKas R~1BTP(t), whereP was found solving the
Ricatti equation [6].

With the proposed maodification, the dynamics of the system changed andtéhespigesentation
became:

X(k+1) = (A= BK)x(k) + Bv(k)
= AX(K) + Bv(k) (5.2)
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Figure 5.1:Hierarchical structure

where the matrix = (A— BK) is stable (the norm of all eigenvalues Afare inside of the unitary
circle). Since the plant is stable, the MPC can now control it by ug{kggas manipulated variable.
The problem is then reduced to control the new state feedback system.b&lioe change on the
manipulated variable the constrains must be expressed in tewfig) ofrhis was done replacing (5.2)
into the constraints for the sates and for the manipulated variables. In theewtion the hierarchies
used on the design of the proposed hierarchical controller will be exgalain

5.2 Hierarchical control approach for hydro-power valley

In this section a hierarchical structure is designed for the HPV problenastbhased on an IHMPC
with zone control (coordinator) as controller applied over the entire phatit eight IHMPCs that con-
trolled the subsystems (see Figure/5.1). The coordinator calculatedchieedrinput variables and
output references with values inside the designed zone, this informat®taken by the controllers
for generating the input variables that were applied, achieving theereferthat the coordinator gen-
erated.

5.2.1 Coordinator of the IHMPC with zone control

The zone control strategy is implemented in applications where the exacs\@lule controlled
outputs are not important, as long as they remain inside a range with specific BjnitSHe MPC
optimization problem implemented with the zone control strategy is as follows:

Page 41/70




HD-MPC ICT-223854 HD-MPC validation for the hydro-power vall ey — Part Il

00

min _Jeo =3 (Y(k+]) ~Yspc— &) Q(y(k+ )~ Yspk — &)

Auk!yspkvd< J:l
Ne—1

+ Y Au(k+ j 1K) TRAUK j|K) + &) S5
=1

subject to
x(k+ 1) = Ax(k) 4+ BAu(k)

y(K) = Cx(k) 4+ Du(k)

Yspmin < Yspk < Yspnax (5.3)

Umin < U(K+ j|K) < Umax

whereN; is the control horizonQu(k) is the increment of the manipulated variabl§sdenotes the
slack variabley(k) is the output of the systenf\, B, C, D are the matrices associated with the
linear model of the system, aiygy is the reference value for the output of the system, wil) the
control action,Q, R, Swighting matrices, and the subindexn andmaxthe minimal and maximal
values (respectively) of the corresponding variable. In this formuldkieroverall system model was
represented as a discrete, linear time-invariant (LTI) model. For the H&/only necessary to add
the following constraint to 5.3:

8
Coy= Y P =Pes (5.4)
p i; } = Pe

whereCy, is a selection matrix an@® is the power generated by theh subsystem. Finally the
optimization problem that solved the coordinator was:

0

min_ Jeo = Zl(y(kJr )] _YSp;k—ax)TQ(y(k‘i' i) = Yspk — &)

Aug,Yspk,O =

Ne—1
+ 5 Bu(k+ j[k)TRAU(K+ j[K) + & SA
=1

subject to
X(k+1) = Ax(k) + BAu(k)

y(K) = Cx(k) 4+ Du(k)
pr: Pef
(5.5)
Yspin < Yspk < Yspmax

—AUmin < Au(k+ j|k) < Aumax

Umin < u(k+ J‘k) < Umax
wherePRe+ is the power reference of the valley.
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5.2.2 Local controllers of the extended IHMPC

The extended infinite horizon MPC is defined as follows [15]:

00

Aﬂi,g\]k’w = JZl(Yi(k+ i) —Ysp — 6K)T Q(yi(k+1]) —Ysp — &)

Ne—1
+ 5 Bui(k+ k) TRAG (k+ j k) + & S
=1

subject to
Xi(K+ 1) = Ajix (K) + Bijj Aui (k)

yi(K) = Giixi (k) + Diiui (k)
(5.6)
—AUimin < AU (K+ j|K) < AUimax

Uimin < Ui (K+ j|K) < Uimax
whereN; is the control horizonAi, Bjj, Ci, Dji are the blocks of the matrices B C, D relating
the local states and control inpu€@c 0™ ™, Re 0" *"i are positive definite weighting matrices,
O € O™ is a vector of slack variables ar®le (™ *™ is assumed positive definite. Observe that
each slack variable refers to a given controlled output. Weighting matsias selected such that the
controller pulls to zero the slacks or at least minimize them depending on theenwfimputs. To
reduce the infinite to finite horizon controller was necessary to add a terstatalpenalty (that is
obtained by solving a Lyapunov equation) and a terminal constraints termiréwe cost to become
unbounded.

5.3 Simulation results

The control objective of the HPV was to follow a power reference whiléebels depicted earlier had
to be maintained into a certain zone. So, an infinite horizon MPC with zone tamsamplemented,
the power of each plant had a tracking reference while the levels hattaledined by the coordinator.
In the results presented below both the coordinator and the local coctimigawere computed at the
same time step in a sequential way, i.e. first the coordinator computed the foowach subsystem
and the zones for the levels. After that, the local controllers computed timeadgontrol inputs to be
applied on each subsystem.

The hierarchical control structure could manage the power refemobéem in the HPV benchmark,
with the extra constrain the controllers could follow the total plant powereafse (Figure 5.2). The
output variables (levels and individual system powers) were sugposiee into a designated zone
(Figures 5.8 and 5.4), the simulations show how the controller had to move thet @ariables to
other set point to achieve the power reference. In certain cased @atfables went out of the zone,
as the levels in the reach By), but immediately the variable was forced to come back. In Figure 5.5
the input variables are shown, it can be seen that the behavior of iélearhad a tendency, i.e. the
plant appeared to be stable.

From the simulation results it is possible to conclude that the levels variables imetsrchical
control structure could to be controlled into the zone. In this case the locdtatlers used the
information from the coordinator to correct the input variables, in ordectoeve the reference that
the coordinator sent.
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Figure 5.2:Comparison between the power produced by the HPV with theeposference
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5.4 Performance analysis

In this section, the performance analysis of the proposed control schienpeesented. The indices
and values are:

* Mean absolute tracking error:5119IMW
» Mean square tracking error:ZL1MW?
* Power reference tracking index (economic index 1): 2397
» Power reference tracking index (economic index 2): 1416

» Constraint violation: some of the levels violate the restriction at certain instauttshey do it
in a very short time, the total time where there is constrain violation was calcddtidg the
period of time where the levels violate the restriction, the total time is 177 minutes tadmos
hours).

* Number of data packets transmitted: since the controller is a hierarchigetust with decen-
tralized local controller, few information is transmitted. The coordinator tratsshe values of
the output reference and input variable bias for each subsystem. SadittBnator transmit two
vectors to each subsystems of size<1P for input variables bias and 71 for the reference
of the output variables.
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Chapter 6

Game Theory Based Distributed Model
Predictive Controller

6.1 Game formulation of distributed model predictive control

Let us first introduce some notation used in this section. (detlenote the feasible set of control
actions for subsysten i = 1,...,M, defined as the Cartesian proddgt= I'I'j\'io/\i, where/\; is
the feasible set for the control actiongk+ j), for j = 0,...,N, determined by the physical and
operational limits of subsystemwith N, being the control horizon. Let(k) = [0} (k),...,0%(K)]T,
where;(k) = [u (K),...,uT (k+Ny)]" fori=1,....M. Let @(t(k);x(k)) denote the cost function
for subsysten, i = 1,...,M, where the notatiofu(k); x(k)) indicates that the functiop depends on
u(k) andx(k) is a parameter whose time evolution is given by the linear state update equation

x(k+ 1) = Ax(k) + Bu(k)

whereA andB are obtained by linearizing the model describing the behavior of the whsiersy24].
For the sake of simplicity of notation we will not indicate the dependenag of x(k) explicitly in
the remainder of this paper and thus wigtei(k)) insteadq (u(k); x(k)).

Assume that & A; fori =1,...,M. Assume that\; is closed, convex, and independenkdbr
i =1,...,M. Assume that the subsystems are able to “bargain”in order to achieve a cogoalo to
maintain both the local and the whole system performance by driving the efdtessystem to their
reference values. Let denotes the constrained stabilizable set, yds the set of all initial states
that can be steered to the origin by applying a sequence of admissiblel @ntioos. Assume that
the initial system state vectatk) € x (this assumption also is made in [24, 25]).

A game is defined as the tup(®l, {Qi}ien, {@ }ien), WhereN = {1,... M} is the set of players,
Q; is a finite set of possible actions of playeandqg : Q; x ... x Qu — IR is the payoff function
of theith player [1]. So, a DMPC problem can be defined as a t@le (N, {Q;}ien, {@}ien),
whereN = {1,...,M} is the set of subsystem@; is the non-empty set of feasible control actions for
subsystem, and@ : Q1 x ... x Qu — IR, whereq is the cost function of thieth subsystem. Hence,
a DMPC problem is a game in which the players are the subsystems, the aotitims eontrol inputs,
and the payoff of each subsystem is given by the value of its cost functio

Since it is assumed that the subsystems are able to “bargain”in order teeaaltemmon goal,
the gameG can be analyzed as a bargaining game following the Nash theories albbudaunes. A
bargaining game is a situation involving a set of players who have the opjigroicollaborate for
mutual benefit by an agreement on a joint plan of action [10, 11]. If aeesgent is not possible,
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the players carry out an alternative plan which is determined by the informiatoally available.
The benefit perceived by the player when an agreement is not possdaltled disagreement point.
Mathematically, a bargaining game is defined as follows [16]:

Definition 1 A bargaining game for N is a paifS d) where:

1. Sis a nonempty closed subsetRY (Closedness of the feasible set S is required for mathe-
matical convenience.).

2. deint(S), d being the disagreement point.
3. (S :=max{@: (@)icn € S} exists for every € N.

Here@: IRM — IR denotes the profit function of playerifori 1,...,M, S denotes the feasible set
of profit functions, andj; (S) denotes the utopia point of subsystem i ferl,...,M. Moreover, if the
feasible set S is convex then the bargaining gé8d) is called a convex bargaining game.

Note that Definition 1 is formulated in a static context. Then, an extension ofritji@al definition
of bargaining games is required in order to analyze a DMPC problem as@ ga
Let a discrete-time dynamic bargaining game refers to a situation wheretetimacstep a static
bargaining gaméS, d) is solved depending on the dynamic evolution of the decision environment,
with dynamic evolution determined by the state ve&tty € IR" and the input vectan(k) € IR™, with
x(k) € X andu(k) € U, X andU being the feasible sets fafk) andu(k) respectively. In this game,
we assume that the feasible set and/or the disagreement point can ahidmigme. Mathematically,
a discrete-time dynamic bargaining game is defined as follows:

Definition 2 Discrete-time dynamic bargaining game:
A discrete-time dynamic bargaining game for N is a sequence of fg®),n(0)), (S(1),n(1)),...},
denoted by{(©(k),n(k))}x_o (n(k) being the disagreement point at time step k), where:

1. ©(k) is a nonempty closed subsetlBM, fork=1,2,3,...

2. n(k) €int(©(k)) fork=1,2,3,..., n(k) being the disagreement point.
3. ZGi(O(k)) :=max{a(k): (@a(k))icn € O(K)} exists for every € N at each time step k, i.e., for
k=123,

4. There exists functionsd IR",gi € IR,h € IR, i=1,...,M, determining the dynamic evolution
of the decision environment, the feasible set, and the disagreement pplayer i such that

X (k+1) = fi(x(k),u(k))
Oi(k+1) = gi(x(k),
ni(k+1) = hi(x(k),

with % (k) € X, X; ¢ X.
5. There exists a profit functiop(x(k), u(k)) € IRM such thatp(x(k),u(k)) € ©(k).

If gi is a convex function for+ 1...,M, then©(k) is convex and the gamgO(k),n(k))}y , is a
convex discrete-time bargaining game.
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Let Y(k) := {(gn(u(k)),...,@u(u(k))): Gi(k) € Q;, Vi € N} denote the feasible set of the DMPC
problem. Since); is time-invariant fori = 1,...,M the feasible seY{(k) is also time invariant, i.e.,
Y(1) =Y(2) =... =Y. Let us define the disagreement pointk) asn (k) := (ni(k),...,nm((K)),
where

L i —alm(k)— @@k, m(k) > @)
mik+1) = { mi(K) -+ @(T(k) — (k). mi(k) < (k)

Vi € N, with 0 < a < 1. Such definition of the disagreement point is based on the negotiation model
proposed by [11]. Let the utopia poigt(Y) := min{@(t(k)): @(u(k)) € Y} exist for everyi € N.
Then, the DMPC problem can be defined as a discrete-time dynamic bagpaamre{ (Y, n (k) }¢_o.
Note that in{(Y, n(k)) };_, only the disagreement point depends of the time kfemd thatf;(Y) is
redefined. Moreover, sincty is assumed closed and convex fee 1,...,M, Q; also is closed and
convex fori = 1,...,M. Thus, if@(u(k)) is a continuous convex function with respectii), then
the feasible seY'is closed and convex. Sind€is time-invariant{ (Y, n(k)) }¢_ is a bargaining game
with closed and convex feasible set.

In order to derive a solution for a bargaining game an axiomatic approasipmwposed in [11].
Such a characterization is based on the symmetry of the bargaining gamegainbeg gamg S, d)
is called symmetric id; = d» = ... = dy, and for everyp € S any point@ e IRM arising fromg
by performing some permutation of its coordinates is als&.inf a bargaining gaméS d) does
not satisfy these conditions, then it is called a nonsymmetric bargaining gaoredidérete-time
dynamic bargaining games, ifi(k) = ... = nu(k) for k= 0,1,2,..., and for everyp(k) € O(k),
any point@(k) € IRM arising fromg(k) by performing some permutation of its coordinates is also
inside@(k) fork=0,1,2,..., the game{(O(k),n (K)) }i_, is called symmetric. These conditions are
satisfied wherf; (x(k), u(k)) = f; (x(k), u(k)), g (x(k), u(k)) = gj (x(k),u(k)), hi (x(k), u(k)) = h; (x(K),
u(k)), andX; = X for all i,j € N. However, the symmetry conditions for discrete-time dynamic
bargaining games are heavily restrictive in real DMPC applications. Thegneral a DMPC game
{(Y;n(K)) }_o is nonsymmetric.

Let RY, :={¢@(a € RN: a; >0, forall i € N}. LetH denote a wighted hierarchy b, i.e.,H
is an ordered! + 1)-tupleH = <N1, .. .,N',W>, where(N?,...,N') is a partition ofN (i.e., the sets
NI, j=1,...,1 are pairwise disjoint nonempty sets whose union equal¥)t@ndw € IR, with
Yieniwi =1 foreveryj=1,...,1 [16]. LetP(T):={a €T: thereisngB e Twithf<a, B#a}
denote the Pareto optimal subsetTaf Let L, (T,y) :={i € L: there existaa € T with a; < y}.
LetargmaXf(a): a e T}:={aeT: f(a) > f(B) forall B € T}. Then the non-symmetric Nash
bargaining solution of a gamg®(k), n(k))}i_, at time stefk is defined as follows [16, Definition
2.14].

Definition 3 Non-symmetric Bargaining Solution: _
LetH= <N1,...,N',W> be a weighted hierarchy of N. L¥t, j =0,...,| denote the feasible set for
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the partition N. Then, the set®! are defined as follows:
0% := {o(t(k)) € RN: ¢(Ti(k)) € P(©),@(T(k) < n(k)}
O :=argmax(ni(k) — @(T(k)))":
i e N, o(Ti(k) € ©%
argmax 1 (ni(k) — @ (t(k)))"™
02— '€N2(91 n( ))JP U(k)) € ©}
' if N (Gl,n(k)) # &
o! otherwise

argmaxT(ni(k) — @ (u(k)))™:
o ieNL(©@ T n(K), g(i(k) € 0}
ifN' (@'1.d) £ o
©'-1 otherwise
LetH = (N,w). Then, according to Definition/ 3 the nonsymmetric bargaining solution of a OMP
game{(Y,n(k))}r_, at time stegk can be computed in a centralized way as a solution of the maxi-
mization problem/ (6.1).

rgjj(fki)><l'h“il(m(k) — @ (k)"

Subject to: (6.1)
ni(K) > q(t(k))
u(k) € Q
Maximization problem (6.1) can be written equivalently/as (6.2).
M
rﬁn(%xglwi log(ni(k) — a(t(k)))
Subject to: (6.2)
ni(K) > a(u(k))
u(k) e Q
Let g (G (k), Ui (k)) = @(U(k)) fori=1,...,M, whereti_j (k) = [0] (K),...,T"_1(K),T, 1 (K),..., T (K)].

Then, maximization problem (6.1) can be solved in a distributed way by locdilingahe system-
wide control problem (6.3).

malewr log(nr (k) — oy (Gi (k), 0_i(k)))

Subject to: (6.3)
N (k) > o (Gi (k), Ui (k))
G.(k) e Q;
Note that maximization problem (6.3) is equivalent to maximization problem (62%idering fixed
u_i(k) and optimizing only in the direction afi(k). This formulation allows to each subsystem
take into account the effect of its decisions in the behavior of the whoterayand to promote the

cooperation among subsystems. The proposed algorithm for salvingg&®kn in [2, 23]. In the
next section a DMPC control based on game theory is presented for\an HP
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6.2 Game theory based control of a hydro-power valley

With the purpose of designing a MPC for the HPV depicted in before, wsidenthe power tracking
scenario proposed in [20]. In this scenario, power output of thersysteuld follow a given reference
while keeping the water levels in the lakes and at the dams as constant iéep&ss, the global cost
function considered for the DMPC is composed by two terms: the first tenaliges the 1-norm of
the power tracking error, and the second term penalizes the 2-norra dethations of the levels in
the lakes and in the dams of their steady state values.

Let Ts denote the sample time. By linearizing and discretizing the HPV model yields:

X(k+1) = Agx(k) + Bgu(k)
y(K) = Cax(K) + Dgu(k)

whereAq,By,Cq,Dq are the matrices resulting of the linearization of the HPV model, gk =
[p(k), hg(k)}—r, with hD(k) = [thNx, hDZNXa hD3Nxa hD4NX7 hD5Nxa hDGNX] the levels at the dams (onIy the
levels in the last element of the spatial discretization of the reaches is catsiteregulate the
levels of the reaches). Note that the power produced by the HPV is pgxeefined respect to
u(k) due to the turbine-pump elements. In order to overcome this issue in the liriesrjz@nstants
Kdes, Kdeg Were introduced, virtual inputs (k) € [—0Oc1pump Acturb], U2(K) € [—0c2pump Oc2turb] Were
considered, and a gain compensation

kdes — . —
_ | k() if Up(k) = 0
Up(k) - { kdeSpJ (k) if Up<k) <0

Kocp P

(6.4)

was proposed, Wheg1pump dc2pump Aciturb, Oc2turb are the maximum pumped flows and maximum
turbine flows for the turbine-pump elemefts C;, respectivelyp = 1, 2 (the values ofic1pump de2pump
Qc1turb, Oc2turb @re given in [20]).

Moreover, note that the dimension of the matriégsBy depends ofNy, which in general is large
in order to adequately represent the HPV dynamics. Then a centraliz€nvdybe is not suitable
and a DMPC is required.

Let Ny be the prediction horizon. Then optimization problem of the power trackiogl@m can
be written as

ngll(? VIPr (K) — ¥p(Gi(K))| + 0" (K)Quuli(k) + hj () Quxi(k) + b (k) Quehy (K)

Subiject to: (6.5)
u(k) € Q
U(k+v) =u(k+Ny), YNy <v <Np—1

where B (K) = [pr (K. ..... pr (K + Np)J, 9p(i(K)) = [P(x(K), u(K)). ..., p(x(K), u(k+ Np — 1))], Quu =
B} QBd, Qux=X" (K)A] QBq, Qux=A] QAq, andQ is the feasible set composed by the input constraints
and the mapping using (6.4) of the state constraints to input constraintsAyilla the resulting
matrices from the prediction &b (k) alongN,, andQ the Q block diagonal matrix resulting form the
transformation of the power tracking problem into (6.5). From [20], it isgilole to divide the HPV
under study into 8 subsystems:

Tt Subsystem 1: lakds; andL,, turbineT;, and turbine-pumge;.
Tt Subsystem 2: lakkes, turbineT,, and turbine-pumg,.
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Tt Subsystems 3-8: reachi@sto Rg respectively.
Let g; (Ui (k),u_i(k) be the local cost function of each subsystenfy; (k),U_;(k) defined as

0i (Ui (k), U-i(k)) = yIpr (k) = Yp(i(K), U= (K))]
+ (67 (k), 0T (] HITT (k). OT5(K)] T + 2R (a7 (k), o (k)]

whereH;, R are the resulting matrices of the permutation of the rows and colume.odnd Quy
respectively. (the state dependenceogf) was omitted for notational convenience), and IR a
constant weight (the termy, (k)Q«hf (k) was omitted because it is constant respect to the decision
variables, then it does not affect the result of the optimization). Fror) &8 state and input con-
straints are time independent and only establishes lower and upper biegriddhe states and inputs.
So, they are independent for each subsystems, i.e., there is not coaptarhints. Then, for the con-
trol of the HPV we have a gam@npy = {N,{0;(Ui(K),U_i(K)) }ien, {Qi}ien}, With N = {1,...,8},

in which all subsystems have the same goal: to minimize the power tracking eapink the levels
in the lakes and at the dams as close as possible to their steady state vahes, thie gam&ypy
can be analyzed and solved as a discrete-time dynamic bargaining{gaimgk)) }_,, with n (k)
defined as in Sectidn 6.1. Then, according to (6.3) the distributed solutibe ghmeGpy is given
by the solution of the local optimization problems (6.6).

8
maxy wilog( () 01 (k) 14(K))

Subject to: (6.6)
Nr(K) > or (Ui (k),U-i(k))
ti(k) € Qi

Since the power produced by the HPV at time dtép equal to the sum of the powers generated by
all subsystems, and assuming that each subsystem communicates the Wadustaties and inputs to
the remaining subsystems, each subsystem is able to compute the poweregrbgituhe other sub-
systems. Hence, the terypr (K) — yp (Ui (k), U_i(k))| is reduced to compute the power contribution of
subsystenm given the power produced by the remaining subsystems. In the nextrsthaisimulation
results are presented.

6.3 Simulation results

Based on the formulation presented in Section 6.2, a closed-loop simulatioa blﬂ:’tb{ described

in [20] was performed along 24 hours (simulation time). In this simulatigey = (ktc1+ Kpc1),
Kgew = 4(ktc2+ Kpc2), Ts = 18005 (30 minutes)N, = 48 (corresponding to a day, = 32 Wi 2= 0—4

W3_g = 06 (the weights of subsystems 1 to 8);,(0) = 1 x 10° (the initial disagreement pomt of
subsystems 1to 8y,=50,Q = (I being the identity matrix), and the lower and upper values of the
inputs and the states, and the parameter of the HPV model were taken asqatap[20].

Figure[ 6.1 shows the comparison between the power produced by the kP¥e power ref-
erence, when the proposed DMPC scheme computed the inputs of eagistenn In this Figure
was shown that the power produced by the HPV followed the powerergter satisfying one of the
objectives proposed for the control scheme. However, there wascdlation at the beginning of the
experiment due to the transient generated by the change of the powet T®MW (the equilibrium
power) to the initial required power 150 MW.
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Figure 6.1: Comparison between the power produced by the HPV with therpeference, when the
proposed game-theory-based DMPC is used for computing the inputs sifliegstems

In order to maintain some power demand, the levels of the reaches and thédake be modi-
fied. In Figure 6.2 the behavior of the levels is presented. At the begiithg simulation the lakes
increased their levels due to the reduction of the power form the equilibroim fo the set point (see
first panel of Figure 6.2). When the required power was increaseldkbs reached constant levels
of water, achieving one of the system objectives. During the whole simuldigoreaches maintained
their levels as constant as possible (see second panel of Figuref &.B)considered that the reaches
also can be used for maritime traffic, maintaining constant their levels guasaihterhis condition
was considered in the selection of the weights, by giving more importance tedbhbes compared
with the lakes; it is evidenced withe_sw; > 52, w;.

The excursions of the levels of the lakes were associated with the bebatia control inputs
(see Figure 6.3). Even though the control inputs remained inside the defiged by the constraints,
the control actions of subsystems 1 and 2 had higher variations than tinel @mtions of the remain-
ing subsystems, with respect to their local capability. This produced lhgeges in the levels of the
lakes than in the levels of the reaches. Recall that subsystems 3 to 8 weneghants and subsystems
1 and 2 were ducts equipped with turbines and turbine-pump elements, witlajesdslity to produce
electric power than the power plants.

Finally, in Figure 6.4 the evolution of the disagreement points is presentethislirigure, the
disagreement started at the same point but as they were evolving eagfstsub had its own value
indicating the non-symmetry of the garGgpy. Figure 6.5 shows a zoom betweeb 8 10* and 8x
10%, note that all the disagreement points decreased with low frequency tisnslaSuch oscillations
were associated to the decision process of each subsystem.

6.4 Performance analysis

In order to evaluate the performance of the proposed control scheméoltbwing indices were
proposed:

Page 53/70




HD-MPC ICT-223854 HD-MPC validation for the hydro-power vall ey — Part Il

h [m]

"y
.............................................

0 1 2 3 4 5 6 7 8 9
Time [s] x 10*
30 h,,®
B’ Cmimiem el L el . Tl h,®
ool e T
= T T 1 "os()
1560 ©0000000060c029 *****g*g*g************ == o)
10******‘***********‘*****f**** ‘ ‘ ‘ ‘ h_(
0 1 2 3 4 5 6 7 8 9 ps
Time [s] X 10° o) hDG(t)

Figure 6.2: Behavior of the levels in the lakes (first panel) and the leviie atams (second panel) of
the HPV. In both panels the levels are inside the values defined by theaiotsstalthough the levels
of the lakes (first panel) present large excursions before remaioimgtant, while the levels of the
reaches remains as constant as possible.

» Mean absolute power tracking error1925MW

+ Mean square tracking error: TH9GMW?

e Power tracking index (economic index 1): 4722
e Power tracking index (economic index 2): 4066

» Constraint violation: with the proposed control scheme there are twaraors which are
not respected. These constraints are those regarding the levels okdékéJeandL,. The
constraints regarding lake, violated almost all the time. The deviation is less than 1m in
both directions. The constraints regarding lakeare violated from 45000s until the end of the
simulation. The deviation is 1m below the minimum allowed level value.

* Number of data packets transmitted: in the proposed control scheme @aystem has to
transmit its disagreement point, the value of the local states, and the ccorgral action. In
the case of the HPV: the vector of local inputs is a vector with dimensionB3®r subsystems
3 to 8 and 64« 1 for subsystems 1 and 2, the vector of states has a dimensiarnl40r
subsystems 3 to 8,241 for subsystem 2, and>21 for subsystem 1, and the disagreement point
has a dimension & 1 for all subsystems (all the vectors are double precision vectors).
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u(t)

Time [s]

Figure 6.3: Control actions applied to the subsystems. In the first panbktievior of the control
actions applied to subsystems 1 and 2 is presented. In the second pdpehaivéor of the control
actions applied to subsystems 3 to 8 is presented. In both panels the cotitmod @&emains inside the
range defined by the constraints of the control inputs.

Time [s]

Figure 6.4: Behavior of the disagreement points at the full simulation. @esdution
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Figure 6.5: Behavior of the disagreement points at the full simulation. Detagedthat allows to
evidence the non-symmetry of the game.
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Chapter 7

Distributed MPC Based on Agent
Negotiation

7.1 Introduction

In this chapter we use the distributed MPC scheme based on agent negqiatented in [9]. This
control scheme is tailored for distributed linear systems composed of selvs/soupled in the in-
puts. We assume that the subsystems are controlled by a set of indepagelets that are able to
communicate and that each agent has access only to the model and the@tatefdhe subsystems.
These assumptions imply that before the agents take a cooperative detisiomust negotiate. At
each time sample, following a protocol that will be explained later in this sectganta make pro-
posals to improve an initial feasible solution on behalf of their local costtiomcstate and model.
These proposals are accepted if the global cost improves the cosspoanding to the current solu-
tion. At this point it is convenient to point out that it is possible to guarantestébility properties of
the proposed distributed controller as it is shown in [9]. Neverthelessispéper we use a slightly
simplified version of the algorithm which does not guarantee stability. Thsomeof the algorithm
has successfully been appliedin [27]. Finally, notice that some simplifyisgnagtions were made in
order to adapt the system model, which is non-linear and include state apuplitne algorithm. In
particular, a linear model was used and the coupling in the state was negiesteding that the dif-
ference of water levels remains constant during the control horizorthiegpower generation depends
only on the value of the manipulated variables.

7.2 DMPC algorithm based on agent negotiation

The control objective of the proposed scheme is to minimize a global perfeamadex defined as
the sum of each of the local cost functions. The local cost functiomgeiiti based on the predicted
trajectories of its state and inputs is defined as

J 06U} en) = TR Li(Xik: {Uji}jen)

whereU; = {uj«} is the future trajectory of inpug, N is the prediction horizorL;(-) with i € My is
the stage cost function defined as

Li(%, {Uj}jen) = (% — %) TQi(X% — X,)
+Zj€ni U-JrSj uj
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with Q; > 0,Sj > 0. Note that the term;, stands for the agentreference.

We use the notatior  to denote the statie k-steps in the future obtained from the initial state
applying the input trajectories defined By; } jcn,.

At the end of the negotiation rounds, the agents decide a set of inputdrigsadenoted agq.
The first input of these trajectories is applied and the rest of the valaassad to generate the initial
proposalJ® for the next sampling time. Note that the last value of these trajectories isedseathat
US has the proper size.

We define next the proposed distributed MPC scheme:

» Step 1: Each agemnt measures its current statg(t). The agents communicate in order to
obtainUs(t) fromUY(t — 1). The initial value for the decision control vectdf (t) is set to the
value of the shifted input trajectories, thatig (t) = US(t).

» Step 2: Randomly, each agent asks the neighbors affected if theyar®fevaluate a proposal
(each agent can only evaluate a proposal at the time). If all the nefglalosnowledge the
petition, the algorithm continues. If not, the agent waits a random time bejang &gain. We
will use the superscrigp to refer to the agent which is granted permission to make a proposal.

e Step 3: In order to make its proposal, agprsolves:

{Ujp(t)}jenp = arg{umin Jp(Xp; {Uj}jen,)

jsrijenp

s.t.
Xpk+1 = ApXpk + 3 jen, BpjUjk 21
Xp,0 = Xi (t) ( . )

XpJ(E%‘p, kZO,N
Uik € %, k=0,...N=1,Vjeny
Uj =Uf(t), ¥i ¢ Nprop

From the centralized point of view, the proposal at time stefoagentp is defined as
UP() = {UL(t)}jen, U (1)
where the operatio stands for the update of the components relativéwﬁt)}jenp inu9(t).

» Step 4: Each agemtaffected by the proposal evaluates the difference between the cibet of
new proposall P(t) and the cost of the current accepted propbkit) as

AIP(t) = J(xi (1), {U (1) }jen)
=J3i(%(t), {U(t)}jen)

This differenceAJip(t) is sent back to the agept If the proposal does not satisfy the constraints
of the corresponding local optimization problem, an infinite cost incremerdsigmed. This
implies that unfeasible proposals will never be chosen.

e Step 5: Once agenreceives the local cost increments from each neighbor, it can evaheate
impact of its proposahJP(t), which is given by the following expression

AJP(t) = Zierenpropmj A‘]ip(t) (7.2)
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Figure 7.1: Power tracking by the distributed controller based on aggntiagon.

This global cost increment is used to make a cooperative decision ontthe fiaputs trajecto-
ries. If AJP(t) is negative, the agent will broadcast the update on the control actioolséav
in the proposal and the joint decision vedtft(t) will be updated to the value &fP(t), that is
Ud(t) =UP(t). Else, is discarded.

e Step 6: The algorithm goes back to step 1 until the maximum number of pisgwss been
made or the sampling time ends. We denote the optimal cost corresponding tecttiedd
inputs as

It) = M J (1), UL en) (7.3)

« Step 7: The firstinput of each optimal sequendé %t ) is applied and the procedure is repeated
the next sampling time.

7.3 Simulation results

In the following pictures, the results of the HPV controlled in closed loop withdik&ibuted con-
troller based on agent negotiation are shown. In Figure 7.1 the povezenek and the power gen-
erated by the system is shown. Figures 7.2/and 7.3 show respectivelothéan of the levels and
the inputs of the system. Notice that the y-axes limits are adjusted to the valueaafrtbeponding
upper and lower constraints.
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Figure 7.2: Levels by the distributed controller based on agent negotiation.

7.4 Performance analysis
In this section, we study the performance of the proposed scheme udergulifindices:

» Mean absolute tracking error: 3.72 MW

+ Mean quadratic tracking error: 19.88/?

86400
| e
0

f§6“°°c<t>max<pr o

Pr(t) — i pi (% (t), U (t)) | dt = 5750

pi(Xi(t),u (t)),o> dt

pi (X (1), ui(t) — pr(t)), 0) dt = 4194

N oo
Mo

+0.5 f0864°°c(t)max<

i=1
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« Constraint violation: there are two small violations in one of the constraintseoproblem.
Specifically, the constraints regarding the water level of lake 2 and the lsaét at reach 1 are
violated . In the first case, the maximum value of the deviation with respecbitsraint is
0.035 m and the violation takes place during a total time of 2 hours out of the@4 bf the
simulation. In the second case, the maximum violation is -0.05 m and the total timan2aga
hours.

¢ Number of data packets transmitted: the total number of proposals thavatmted each
sample time is 50. This means that each agent sends an average numhmorinagtely 6
proposals to its neighbors. Given that these results are obtained fatraldworizonN.=10,
each proposal consists of a maximum number of 30 floating point reals.
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Figure 7.3: Inputs by the distributed controller based on agent negotiation.
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Chapter 8

Economic Assessment and Results

This section summarizes the results of the different approaches, amgiiyeioontrol performance in
the tested scenario and providing indices to compare the algorithms fronmareioopoint of view.
We also compare the new approaches with a standard decentralized MB@hso

8.1 Decentralized MPC simulation

In addition to the results of newly developed hierarchical and distributptbaphes, we also apply
a decentralized model predictive control to the Hydro Power Valley baadk in order to provide a
more complete comparison. The decentralized MPC setting is defined as follows

e There are 8 local controllers, each of them is responsible for theataftwne subsystem. Each
one can only measure its own output and can only control its own manipslator(

» The controllers use linearized local models with double-flow techniquelier@o apply discrete-
time linear MPC control to the local problem.

¢ No information exchange is allowed. The steady-state inputs and statésearely common
information of the local controllers. Any subsystem interaction will be modbiedsing the
steady-state variables of the other models.

e The power reference tracking is separated into local tracking, with tta pmwer references
proportional to the steady-state power of the corresponding subsystem.

With the above conditions, we treat the optimal control problem (2.24) byusaal MPC prob-
lems as follows:

86400 86400 T
minga [ VP = ROO.UO)dt [ 060 —xes) Q) —xes)dt, T=1,...,8

wherepy;(t) is the local power reference. The valuesppfit) are computed such that the following
condition is maintained:

Pri () _ Pssi
pr(t) Pss
in which pssi and pss respectively represent the steady-state powers of the subsiyatehthe whole
plant.
For the decentralized simulation, we use the horiZérsN. = 10, sampling tim& = 1800s and
y = 500. The results are plotted in Figures|8.1, 8.2and 8.3.

VR (8.1)
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Figure 8.1: Total power reference tracking with decentralized MPC

Comparison and assessment of the results

Four quantitative indices have been used to analyze the performaneeaggloaches:

Mean absolute tracking error (MAE) MW
Mean quadratic tracking error (MQEJW?

Power reference tracking index ) in Euros: two indices will be used to assess the economic
performance of the proposed scheme. In first place, an expressjoreitin the index proposed
for the power reference tracking scenario is used:

86400
/ c(t)
0

where c(t) is the cost of the electricity at tirheNote that this expression only focuses on the
economical part of the equation (2.24).

dt

8
pr(t) — ; pi(xi(1), ui(t))

Power reference tracking index ) in Euros: another option that will be used to test the
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Figure 8.2: Input constraint satisfaction with decentralized MPC

economic performance of the scheme is given by the following expression

ngOOC(t)maX(pr (t)— ; pi (X (), Ui (t))’0> dt
i=1

+05 3 o(tmax( 3 px(0.u (1) - pi(0.0)

In Table[ 8.1 the indices for each one of the approaches are shown.eNlatitthere are very

important differences among approaches from an economic point of view
The best results are obtained with the Distributed Multiple Shooting appregttha nearly per-
fect tracking and a negligible economic cost. Good results are obtainedi#tisbast gradient-based
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Figure 8.3: Output constraint satisfaction with decentralized MPC

DMPC and Hierarchical infinite horizon MPC. These results are undetabde as the Distributed
Multiple Shooting approach implements a nonlinear controller that uses a goddear approxima-
tion of the centralized model, while Fast gradient-based DMPC and the tfiéral infinite horizon
MPC effectively solve the centralized linear MPC problem.

The DMPC scheme based on agent negotiation shows a poor perforinacm@parison with
the scheme that obtained the best results. This result was expected sngarticular scheme is
tailored for problems in which there are strong restrictions on the amoutlodignformation each
agent has. Specifically, each agent only knows how other agents tféen and use this information
in order to make proposals to the others. Hence, the final degree oératigm is relatively low.
This assumption is reasonable for systems in which there are concemistbbanformation the
agents share, e.g.: a supply chain, or in which the composition of the osgsédim is not known
in advance. In addition, the model used by the agents is linear while the systiantest presented
some important nonlinearities.

The Decentralized MPC scheme heavily suffers from the lack of informatiohange, as it could
hardly track the total power reference. Moreover, the decentraliZe@ May cause instability, as we

can see in Figure 8.3 that the water leveRafexceeds the upper constraint and cannot be regulated.

The unfavorable results of the decentralized MPC signifies the role ahmafiton exchange in optimal
control of large-scale systems.

Another important issue in HPV systems is that reach and lake levels remaiedmetaaximum
and minimum values. This is to prevent the risk of flood and to guarantee a minguoalogical

Page 66/70




HD-MPC ICT-223854 HD-MPC validation for the hydro-power vall ey — Part Il

Control performance J N MAE MQE
Distributed Multiple Shooting 0.20 - 6.31 x | 6.99 x
10°° 107°
Fast Gradient-based DMPC 2568 2440 1.65 4.85
Hierarchical Infinite Horizon MPQ 2397 1416 1.52 3.21
Game Theory-based DMPC 4722 4066 3.19 19.06
DMPC based on agent negotiatian5750 4194 3.72 19.88
Decentralized MPC 330 x | 278 x | 20870 | 54.08 x
10° 10° 106°

Table 8.1: Table of the quantitative benchmark indices of each tested lbemtro

level. In general, most of the approaches present a good behagardireg constraints violations.
Only sporadic small constraint violations appear in some of the appraaches

« Distributed Multiple Shooting: No constraint violations

 Fast gradient-based DMPC: There is no violation for input constrairite.output constraints
are slightly violated, only for the water levels of the reacResndRg

 Hierarchical Infinite Horizon MPC: some of the levels violate the restrictiaredain instants,
but they do itin a very short time, the total time where there is constrain violatbfisninutes
(almost 3 hours).

e Game Theory Based MPC: with the proposed control scheme there amhstraints which
are not respected. These constraints are those regarding the letreddaiifed.; andL,. The
constraints regarding lake, violated almost all the time. The deviation is less than 1m in
both directions. The constraints regarding lakere violated from 45000s until the end of the
simulation. The deviation is 1m below the minimum allowed level value.

 DMPC based on agent negotiation: there are two small violations in one cbtisraints of
the problem. Specifically, the constraints regarding the water level of lakel Zhe water level
at reach 1 are violated . In the first case, the maximum value of the deviaitiomespect the
constraint is 0.035 m and the violation takes place during a total time of 2 haticf the 24
hours of the simulation. In the second case, the maximum violation is -0.05 meatatdhtime
is again 2 hours.

» Decentralized MPC: there is no violations of the input constraints. Havibeewvater levels of
the reache®s, R4 andRs are violated, especially for the reaBy, the water level blows up.

Finally, communication requirements must be considered in distributed apgsathe follow-
ing summarizes the communication needs of each one of the methods:

« Distributed Multiple Shooting: The communication costs consist of sendingeaaiving vec-
tors and matrices. The centralized controller sends86< 48 = 2034 vectors, and receives
5x 8 x 48= 1920 vectors and & 8 x 48 matrices via MPI interface using double precision.
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 Fast gradient-based DMPC: the communication costs consist of sentingeeiving primal
vectors and dual vectors between neighbors in each iteration. The cacatiomcosts vary de-
pending on the total number of iterations needed until convergence is ethtdee Figures 4.5
and 4.6).

« Hierarchical Infinite Horizon MPC: the controller is a hierarchical dinte with decentralized
local controller, so few information is transmitted. The coordinator transmitsahees of the
output reference and input variable bias for each subsystem. Sodhdir@tor transmit two
vectors to each subsystems of sizex12 for input variables bias and %71 for the reference
of the output variables.

e Game Theory Based MPC: each subsystem has to transmit its disagrqemnthe value
of the local states, and the current control action. The vector of lopaksns a vector with
dimension 3% 1 for subsystems 3 to 8 and &4l for subsystems 1 and 2, the vector of states
has a dimension 40 1 for subsystems 3 to 8,41 for subsystem 2, and>21 for subsystem 1,
and the disagreement point has a dimensienlifor all subsystems (all the vectors are double
precision vectors).

 DMPC based on agent negotiation: the total number of proposals thatatmted each sample
time is 50. This means that each agent sends an average number offappedx6 proposals to
its neighbors. Given that these results are obtained for a control ha¥izdl0, each proposal
consists of a maximum number of 30 floating point reals.

e Decentralized MPC: there is no communications between local controllers.
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