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Executive Summary

This deliverable contains the slides of the presentations given at the final HD-MPC Workshop
which took place in Milan, Italy, on August 28, 2011 as a pre-congress workshop of the IFAC
World Congress. The aim of this workshop was to present recent advances on hierarchical and
distributed model predictive control, with the presentation of significant case studies
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Chapter 1

General information on the workshop

Title

Hierarchical and Distributed Model Predictive Control, Algorithms and Applications

Organizers

Moritz Diehl (K.U.Leuven, Belgium) and Riccardo Scattolini (Politecnico di Milano, Italy)

Date
Sunday, August 28, 2011

Location

Milan, Italy

Abstract

The workshop is aimed to present recent advances in the field of hierarchical and distributed control
and estimation for large-scale complex networked systems. The main technique underlying all the
proposed solutions is Model Predictive Control, in view of its flexibility in the definition of the control
problem and of the possibility to include in the problem formulation state and control constraints.
Two mainstreams of recent research in the field will be covered. The first one refers to distributed
optimization techniques for the solution of a centralized MPC problem. In this case, the goal is to
decompose the optimization problem into a number of smaller and more easily tractable ones. In
this framework, primal and dual approaches will be considered. The second approach relies on the
solution of a number of local control problems with information exchange among them. In this case,
the control algorithm itself, rather than its numerical solution, is distributed. Convergence properties
of the methods can be achieved by resorting to robust MPC algorithms, where the uncertainties are
related to the mutual influences among the subsystems. In the same way, it will be shown how to
construct hierarchical control methods, where the hierarchical structure stems either from a structural
decomposition of the system under control, or from its multi-level and multi time scale description.
A number of examples will be discussed to witness the potentialities of the methods. In particular,
reference will be made to spatially distributed systems, such as irrigation channels and water networks.
A complex application will deal with the control of a hydroelectric power valley, with five reservoirs,
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three river reaches and a number of additional plants (ducts, turbines, generators, dams). The design of
a hierarchical control scheme for Combined Cycle Power Plants will also be discussed, with particular
emphasis to the problems related to the start-up phase, where particular attention must be posed to the
thermal and mechanical stresses of the components, which strongly affect the life time of the plant.

Agenda

e M. Diehl, R. Scattolini
K.U.Leuven, Belgium and Politecnico di Milano, Italy
Opening

e J. Rawlings
University of Wisconsin, USA
An overview of distributed MPC

e M. Diehl, A. Kozma, C. Savorgnan
K.U.Leuven, Belgium
Hierarchical and distributed optimization algorithms

e M. Farina, B. Picasso, R. Scattolini
Politecnico di Milano, Italy
Design of hierarchical and distributed MPC control systems with robustness tools

e J.M. Maestre, D. Limoén, D. Muiioz de la Pefia
University of Seville, Spain
Distributed MPC based on game theory

e W. Marquardt, H. Scheu
RWTH Aachen, Germany
Distributed model predictive control by primal decomposition

e B. De Schutter
Delft University of Technology, The Netherlands
Hierarchical MPC with applications in transportation and infrastructure networks

e D. Faille, F. Davelaar
EDEF, France
Hierarchical and distributed control of a hydro power valley

e A.Tica, H. Guéguen, D. Dumur, D. Faille, F. Davelaar
Supélec and EDF, France
Application to start-up of combined-cycle power plant

e L. Sanchez, M.A. Ridao
INOCSA and University of Seville, Spain
Distributed control of irrigation canals

e B. De Schutter
Delft University of Technology, The Netherlands
Closing
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Chapter 2

Slides of the presentations

2.1 Opening (M. Diehl, R. Scattolini)
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Hierarchical and Distributed Model Predictive
Control, Algorithms and Applications

Organizers: M. Diehl, R. Scattolini
Sunday, August 28, 2011

HD-MPC

IFAC 2011

9:00 M. Diehl, R. Scattolini
KU Leuven, Politecnico di Milano
Opening

9:15 J. Rawlings
University of Winsconsin
An overview of distributed MPC

10:00 M. Dieh, A. Kozma, C. Savorgnan
KU Leuven

10:30 Break

11:00 M. Farina, B. Picasso, R. Scattolini
Politecnico di Milano
Design of hierarchical and distributed MPC control systems with robustness tools

11:30 D. Murioz de la Peia, J.M. Maestre and D. Limén
University of Seville
Distributed MPC based on game theory

12:00 M. Diehl
KU Leuven
Interactive Session on Methods of Hierarchical and Distributed MPC

and Distributed Model Predictive Control, Algorithms and Appl

Agenda - afternoon

14:00 W. Marquardt, H. Scheu
RWTH, Aachen
Distributed model predictive control by primal decomposition

14:30 B. De Schutter
TUDelft
MPC with in and networks

15:00 D. Faille, F. Davelaar

EDF

Hierarchical and distributed control of a hydro power valley
15:30 Break

16:00 A.Tica, H Guéguen, D. Dumur, D. Faille, F Davelaar
Supelec and EDF
Application to start-up of Combined-Cycle Power Plant

16:30 L. Sanchez, M. A. Ridao
INOCSA and University of Seville
Distributed Control of Irrigation Canals.

17:00 B. De Schutter
TUDelft
Closing
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2.2 An overview of distributed MPC (J. Rawlings)
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An overview of distributed model predictive control

(MPC)

James B. Rawlings

Department of Chemical and Biological Engineering

WISCONSIN

August 28, 2011
IFAC Workshop: Hierarchical and Distributed Model Predictive Control,
Algorithms and Applications
Milano, ltaly

Distributed MPC 1/56

Outline

@ Overview of distributed model predictive control
o Nomenclature
@ Stability of cooperative MPC for linear systems

@ Hierarchical control
@ Reducing communication

© Distributed MPC for nonlinear systems
@ The challenge of nonconvexity

@ Robustness of cooperative MPC
@ Inherent robustness of suboptimal MPC

@ Conclusions and future outlook

Distributed MPC 2/56

Distributed MPC 3/56

Chemical plant integration

Material flow

Energy flow

Distributed MPC 4/56

MPC at the large scale

Decentralized Control
@ Most large-scale systems consist of networks of
interconnected /interacting subsystems

Chemical plants, electrical power grids, water distribution networks, .. .

o Traditional approach: Decentralized control
Wealth of literature from the early 1970’s on improved decentralized
control ?
Well known that poor performance may result if the interconnections
are not negligible

“(Sandell Jr. et al., 1978; Siljak, 1991; Lunze, 1992)

Distributed MPC 5 /56

MPC at the large scale

Centralized Control
o Steady increase in available computing power has provided the
opportunity for centralized control

Coordinated control: Distributed optimization to achieve fast solution
of centralized control (Necoara et al., 2008; Cheng et al., 2007)

Most practitioners view centralized control of large, networked
systems as impractical and unrealistic

A divide and conquer strategy is essential for control of large,
networked systems (Ho, 2005)

Centralized control: A benchmark for comparing and assessing
distributed controllers

Distributed MPC 6/ 56
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Nomenclature: consider two interacting units

Objective functions
and

decision variables for units

Vi(uz, w2), Va(ur, u2)

V(ur, up) = wy Vi(ur, u2) + wa Vo(ur, uo)

uy € Q,

uzeﬂz

Decentralized Control

in V3
e, i)

in V;
b, Val)

Noncooperative Control

in V4
g 1(u1, u2)

in V;
ning (1, U2)

(Nash equilibrium)

Cooperative Control min V(ug, u2) misr}l V(u1, )
P15 05

u €

(Pareto optimal)

Centralized Control V(uy, up)

min
U, € X
(Pareto optimal)

Distributed MPC 7/56

Noninteracting systems

24
,d. p
14 b
Va(u)
u 04 M
-1+ Va(u)
2
-2 -1 0 1 2
U

Distributed MPC 9 /56

Geometry of cooperative vs. noncooperative MPC

210 4

Distributed MPC 10 / 56

Plantwide suboptimal MPC

-10 -5 0 5 10

o Early termination of optimization gives suboptimal plantwide feedback
o Use suboptimal MPC theory to prove stability

Distributed MPC 11 /56

Plantwide suboptimal MPC

Consider closed-loop system augmented with input trajectory
(x*) _ (AX + Bu)
ut )\ g(x,u)
o Function g(-) returns suboptimal choice
o Stability of augmented system is established by Lyapunov function
al(xu)’ < V(x,u) < b|(x,u)?
V(xt,ut) = V(x,u) < —c|(x, u)[?
o Adding constraint establishes closed-loop stability of the origin for all
ul
lu <d[x] xeB,r>0

@ Cooperative optimization satisfies these properties for plantwide
objective function V(x,u)
(Rawlings and Mayne, 2009, pp.418-420)

Distributed MPC 12 / 56
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Modeling
Plantwide step response

u2

X

J (=

o Interaction models found by decentralized identification?

I n » X1 = Auxi + B
uy
2 X531 = Aorxor + By

2Gudi and Rawlings (2006)

Distributed MPC 13 / 56

Modeling

Consider the linearized physical model

xT = Ax + Bius + Bowp n==0x, y=0Cx

o Kalman canonical form of the triple (A, B;, G;)

+

oc oc oce oc oc
Zij A0 A 2 B
oc Goc  pBc  pABcoE  pBCcE 5c 5c
zj€ _ Aij A,-j AD’_ Al z;° " ij u
z 0 0 A 0 z ol
¢ o e oe
z3 0 0 A Af z; 0
oc
ZU
_ Z0¢
. — [Coc ot i = .
yy=[C° 0 ¢ 0] |7 vi=> v
i -
e i
z2¢

@ Interaction models

. oc B oc . oc . oc
Aj — AF B — Bjf Cj— (i x5 zj

Distributed MPC 14 / 56

Unstable modes

For unstable systems, we zero the unstable modes with terminal
constraints.

@ For subsystem 1
Stxai(N) =0 S5'x1(N) =0

@ To ensure terminal constraint feasibility for all x, we require (A;, B;)

stabilizable
A1 B
A = B, =
= [ A21:| = {BQJ

o For output feedback, we require (A1, C1) detectable
An
A = G=[Cu G
1 { A12] 1=[Cu G

@ Similar requirements for other subsystem

Distributed MPC 15 / 56

Output feedback

Consider augmented system perturbed by stable estimator

s+ AR+ Bu+ Le
ut | =1 g% ue)
et ALe

o Stable estimator error implies Lyapunov function

3le| <J(e) < ble|
J(eM)—J(e) < —c e

o Stability of perturbed system established by Lyapunov function

W(%,u,e) = V(%,u) + J(e)

Distributed MPC 16 / 56

Two reactors with separation and recycle

Distributed MPC 17 / 56

Two reactors with separation and recycle
oL setpoinf X 0.05 setpoin/ X
1t-MP t-MP
005 . sy U NS Mp
Coop-MPC (1 Rerate! Y Coop-MPC (1 rerate
o}, 0.05
L 01
-005
Ha Hy, -0.15
-0.1
02
015
A B s e reeobebeope] 025
02 03 Jroxxxn X RS SR—
025 035
0 5 10 15 20 25 30 3 40 0 5 10 15 20 25 30 3 40
Time Time
0.04 NG 02 NG
CobpMPC (1 Rerate] Caop-MPC (1 ferate
0.02 01
Ao )
-0.1
-0.2
0 5 10 15 20 25 30 3 4 0 5 10 15 20 25 30 3 40
Time Time
Distributed MPC 18 / 56
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Two reactors with separation and recycle

Performance comparison

Cost (x102) Performance loss
Centralized MPC 1.75 0
Decentralized MPC 00 oo
Noncooperative MPC 00 (o)
Cooperative MPC (1 iterate) 2.2 25.7%
Cooperative MPC (10 iterates) 1.84 5%

Distributed MPC 19 / 56

Traditional hierarchical MPC

Plantwide coordinator
Setpoints
1hr

Data

o Multiple dynamical time scales in plant
o Data and setpoints are exchanged on chosen scale

@ Optimization performed at each layer

Cooperative MPC data exchange

Read

Data storage

Write

o All data exchanged plantwide

@ Data exchange at each controller execution

Distributed MPC 21 / 56

Cooperative hierarchical MPC

Plantwide data storage

Write

o Optimization at MPC layer only
@ Only subset of data exchanged plantwide
o Data exchanged at chosen time scale

Motivating the hierarchical optimization

u2|_. V(uy. )

@ Any point in the triangle decreases the cost of V

Distributed MPC 23 / 56

Hierarchical optimization

Consider the optimization
min V(u1, ua, u3, us)
u

We group the variables into two neighborhoods
o N; = {1,2} and N, = {3,4}
We solve the optimization in a distributed fashion

@ suboptimizations utilize the latest iterate only from variables in their

neighborhood

Distributed MPC 24 / 56
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Hierarchical optimization

Suboptimizations

s
2 Vi, 8, 19)

Distributed MPC 25 / 56

Hierarchical optimization

Overall

(u3, us)

V(uy, up, us, ug)

Distributed MPC 26 / 56

Two reactors with separation and recycle

Performance comparison

Cost  Performance loss

Centralized 0.95 -

Cooperative (1 iterate) | 1.60 68%
Ns=1 1.633 71%
Ng =2 1.646 73%
Ns =5 1.661 75%
Ns =10 1.669 76%
N =25 1.670 76%
Ns = 50 1.670 76%

Distributed MPC 27 / 56

Reducing communication

We define a leader in each neighborhood and a graph between the leaders

Distributed MPC 28 / 56

Reducing communication

We define the state propagation in the following way

k—1
xi(k) =Afxi(0) + 3 > AL Byu(r)

7=0 jeN;
k-1
Slk—m—1] %
23 3 AT M Aaain)
7=0 I€L selym\/
such that

L= .
aj = Aja; + Z Bjju;
JEN;

o « is defined only for the leaders

o Computation requires only information from within the neighborhood
and from other leaders

Distributed MPC 29 / 56

Nonlinear Distributed MPC

We assume the model is of the form

d;

% = f(x1, x2, u1, U2)
n==0Gx

dxo

— =h ,ut,

i (X1, X2, U1, U2)
y2=Gxo

Given these physical system models of the subsystems, the overall plant
model is

dx
i f(x, u)
y=C
in which
x1 u fi iz G
- f= - C=
dl I i B R S AN
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Nonconvexity

A \“0 \0\‘ ‘\\“\‘ \\ “\

\ WA

A\
\ \

Figure: Cost contours for a two-player, nonconvex game; cost increases for the
convex combination of the two players’ optimal points.

Rav

Distributed MPC 31 /56

Requirements for distributed, nonlinear control

@ Must handle nonconvex objectives
o Two criteria in design:
@ the optimizers should not rely on a central coordinator
@ the exchange of information between the subsystems and the iteration
of the subsystem optimizations should be able to terminate before
convergence without compromising closed-loop properties.

Distributed MPC 32 / 56

Distributed nonconvex optimization

o Consider the optimization
minV(u) st. uelU
u

o We require approximate solutions to the following suboptimizations at
iterate p > 0 for all i € I,

o? = arg min V(u;, u”;)
ui€Uj

in which u_; = (uy,..., Ui—1, Ujs1, - .., Um).-

o Define the step vf

Distributed MPC 33 / 56

Algorithm

o To choose the stepsize af, each suboptimizer initializes the stepsize®
with @;
V(uP) = V(uf 4+ afuP 0P ) > —0alf ViV (uP) 0P
in which o € (0,1).

@ After all suboptimizers finish the backtracking process, they exchange
steps. Each suboptimizer forms a candidate step

1 .
u;’Jr =u? + wjafvf Vielim

3Armijo rule: (Bertsekas, 1999, p.230)
s Distributed MPC 34 /56

Algorithm

o Check the following inequality, which tests if V/(uP) is convex-like

V) < 3wV +afof, o) o)
i€lim
in which ZiEhM w; =1and w; >0 forall i € Iy.p.

o If the condition above is not satisfied, then we find the direction with
the worst cost improvement

imax = argmax{ V(uf + ofvf uP )}
i

and eliminate this direction by setting w;, . to zero and repartitioning
the remaining w; so that they sum to 1.

o At worst, condition (1) is satisfied with one direction only.

Distributed MPC 35 / 56

Distributed nonconvex optimization — Properties

Lemma (Feasibility)

Given a feasible initial condition, the iterates uP are feasible for all p > 0.

Lemma (Objective decrease)

The objective function decreases at every iterate, that is,
V(uPtl) < V(uP).

Lemma (Convergence)

Every accumulation point of the sequence {uP} is stationary.

Distributed MPC 36 / 56
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Distributed nonconvex optimization

T
u{mw\m |
N

\
1\
Vi

Figure: Nonconvex function optimized with Distributed nonconvex optimization
algorithm

Distributed MPC 37 / 56

A nonlinear example

o Consider the unstable nonlinear system

xfr:x12+xz+uf+uz

x;:x1+x22+u1+u§

with initial condition (x1,x2) = (3, —3).

o For this example, we use the stage cost
l1(x1, u1) :%(X{ Qux1 + uiRiu)
lo(x2, u2) :%(Xé Qoxz + Uy Ro )
o For the simulation we choose the parameters

Q=/ R=/ N=2 p=3 U;=[-2525] Vicl,

Distributed MPC 38 / 56

Distributed nonlinear cooperative control

.
B jp—
« — 3
3 o ——
o —— )
2
. '
X0
o
1
1
2
2
3
3
“
“ o p B s s 10
o 2 . s . 1 .
f
. . Figure: Centralized state trajector
Figure: State trajectory (p = 3) (ﬁg: 10) Y 4

Distributed MPC 39 / 56

Distributed nonlinear cooperative control

Figure: Centralized input trajectory

Figure: Input trajectory (p = 3) (= 10)

Distributed MPC 40 / 56

10*
10?
10°
102
104
106
108
10710

V(x(k), u(k))

Figure: Open-loop cost to go versus time on the closed-loop trajectory for
different numbers of iterations.

Distributed nonlinear cooperative control

Figure: Contours of V with N =1 for k = 0 with (x1(0), x2(0)) = (3, —3).
Iterations of the subsystem controllers with initial condition (uf, u3) = (0,0).

Distributed MPC 42 / 56
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Why study robustness of suboptimal MPC?

Cooperative, distributed MPC is a special case of suboptimal MPC.
Anything we establish about suboptimal MPC can be applied to
cooperative, distributed MPC (and optimal MPC!)

Suboptimal MPC has an interesting feature: a nonunique,
point-to-set control law u € k().

Optilnal solution of nonconvex
Pun(x) : in Vy(x,u
N( ) welly N( ’ )

cannot be computed online for any nonlinear model. Practitioners
implement only suboptimal MPC.

o We should know something about its inherent robustness properties.*

“Pannocchia et al. (2011)

Rav Distributed MPC 43 / 56

For suboptimal MPC; again, the basic MPC setup

@ The system model
xT = f(x,u) (2)
@ State and input constraints
x(k) € X, u(k)eU for all k € I>o
o Terminal constraint (and penalty)

d(N; x,u) € X C X

Distributed MPC 44 / 56

Cost function and control problem

o For any state x € R” and input sequence u € UV, we define

N-1
Vn(x,u) = Z Up(k; x,u), u(k)) + Ve(p(N; x, u))

k=0
o {(x,u) is the stage cost; V¢(x(N)) is the terminal cost
o Consider the finite horizon optimal control problem

Pu() e min Vy(x,u)

Distributed MPC 45 / 56

Suboptimal MPC

o Rather then solving Py(x) exactly, we consider using any
(unspecified) suboptimal algorithm having the following properties.

o Let u € Up(x) denote the (suboptimal) control sequence for the
initial state x, and let &t denote a warm start for the successor initial
state x* = f(x, u(0; x)), obtained from (x,u) by

0= {u(l;x),u(2;x),...,u(N—1;x),us } 3)

o u; € U is any input that satisfies the invariance condition in the
terminal region

Distributed MPC 46 / 56

Suboptimal MPC

o The warm start satisfies & € Upn(x").

o The suboptimal input sequence for any given x* € Xy is defined as
any ut € UV that satisfies:

ut e Upn(x) (42)
Vn(xt ut) < V(xt, i) (4b)
Vi(xFut) < Ve(xT) when x* € rB (4c)

in which r is a positive scalar sufficiently small that rB C Xy.

o Notice that constraint (4c) is required to hold only if x* € rB, and it
implies that |u®| — 0 as [xT| — 0.

o Condition (4b) ensures that the computed suboptimal cost is no
larger than that of the warm start.

Distributed MPC 47 / 56

Inherent robustness of the suboptimal controller

o Consider a process disturbance d, x™ = f(x, k(x)) + d
o A measurement disturbance x,, = x + e

@ Nominal controller with disturbance
xt e f(x, kn(xm)) +d
xt e f(x,kn(x+e€))+d
xT € Feg(x) (5)

Robust stability; is the system x € Foq(x) input-to-state stable
considering (d, e) as the input.

Distributed MPC 48 / 56
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Robust exponential stability of suboptimal MPC

Definition (SRES)

The origin of the closed-loop system (5) is strongly robustly exponentially
stable (SRES) on a compact set C C Xy, 0 € int(C), if there exist scalars
b>0and 0 < A < 1 such that the following property holds: Given any
€ > 0, there exists 6 > 0 such that for all sequences {d(k)} and {e(k)}
satisfying

|d(k)| <6 and [e(k)| <0 for all k € Ixo,

and all x € C, we have that

xm(k) = x(k) + e(k) € Xy, x(k) € Xy, forall k € I, (6a)
|ped(k; x)| < bAK|x| + €, for all k € Isg. (6b)

Distributed MPC 49 / 56

Behavior with and without disturbances

Nominal System System with Disturbance

xt =f(x,u)+d
u=rn(x+e)

xt = f(x,u)

u = rn(x)

d is the process disturbance
e is the measurement disturbance

Distributed MPC 50 / 56

Main results

Theorem (SRES of suboptimal MPC (Pannocchia et al., 2011))

Under standard MPC assumptions, the origin of the perturbed closed-loop
system
xT € Feq(x)

is SRES on C,,.

This result applies also to distributed, cooperative MPC.
See also Pannocchia talk on Wednesday, 14:30, WEB07.4.

Distributed MPC 51 /56

Conclusions

Cooperative MPC theory maturing?

“Stewart et al. (2010); Maestre et al. (2011)
@ Avoids coordination layer
o Satisfies hard input constraints

o Provides nominal stability for plants with even strongly interacting
subsystems

@ Retains closed-loop stability for early iteration termination

o Converges with iteration to Pareto optimal (centralized) control

o Remains stable under perturbations

Distributed MPC 52 / 56

Future directions

Lots to do!

o Applications in which players compete as well as cooperate

o Framework(s) for decomposing large-scale systems

@ Modeling versus performance tradeoffs poorly understood

@ Unstable systems and coupled constraints difficult to handle (supply
chain)

o Distributed state estimation has received less attention than control
(Farina et al., 2010a,b)

@ Applications exposing limitations of current approaches (De Schutter
and Scattolini, 2011; Tarau et al., 2011; Baskar et al., 2011)
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Research Part C-Emerging Technologies, 19(3):424-439, JUN 2011.

Distributed MPC 56 / 56

Page 18/80]




‘ HD-MPC ICT-223854 Proceedings of the HD-MPC workshop |

2.3 Hierarchical and distributed optimization algorithms (M. Diehl, A.
Kozma, C. Savorgnan)
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Hierarchical and Distributed
Optimization Methods

Moritz Diehl, Attila Kozma, Carlo Savorgnan

Optimization in Engineering Center OPTEC
and Electrical Engineering Department ESAT
K.U. Leuven, Belgium

IFAC WC Milano,

OPTEC August 28, 2011

0 onen Gt gy e HD-MPC

® Motivation for Centralized Computation
@ Distributed Multiple Shooting Framework
@ Adjoint Based SCP Methods, from Hierarchical to Distributed

o Software

Large-scale systems in engineering
o composed of multiple subsystems
@ complex nonlinear dynamics and
o mutual influences

E.g. river networks, chemical production sites, airflow in buildings.

How to compute optimal controls e.g. for transients? )

ns on distributed MPC

(1) For cooperative model predictive control, we ideally want to solve
one large centralized MPC problem.

Reasons for distributed setup:

® Robustness and easier reconfigurability

@ Distribution of data and model maintenance

@ Parallel computations (ideally, solution time independendent of size)
® Hope that less communication is needed than in centralized setting

(2) Most distributed MPC methods work iteratively and focus on parallelizing
each iteration. But even if solution time for each iteration is independent
of size, the convergence speed mostly deteriorates with size of the
problem (usually linear or sublinear rates).
Distributed P ion and time might be much
higher than for one i i i.e. many pr
together working very hard can be slower than one single one!

(Interlud ge Scale QP algorithms)

Decomposition by Lagrangian dual function

s Two-level problem

= Convex separable QP s Low-level: parametric QPs

o : (online act. set strat.)

» Coupling lin. equality

a High-level: unconstr.
problem with gradient avail.
(fast gradient method)

(Runtime Compal

Solve large distributed quadratic program with 100 subsystems on 100
CPUs, using different dual decomposition methods:

Wall clock: 8 Nesterov  Gradient
10°° 0:55 02:58
10~* 1:55 03:59
107° 2:52 04:56
10~° 3:29 05:52

Same problem takes 0:03 seconds on a single CPU
when solved with a sparse IP method (OOQP from S. Wright).

Problem of all gradient methods: no second order information,
slow linear convergence. Better parallelize IP solver!

Page 20/80]




HD-MPC ICT-223854

Proceedings of the HD-MPC workshop

Can simulation efficiently be parallelized ?

Assumption: simulators for individual subsystems exist J

@ use their own adaptive numerical integration schemes
@ based on possibly different modelling languages

@ can provide derivatives in forward and reverse mode (not yet
standard, but provided e.g. by SUNDIALS, DASPK,
DAESOL-Il, ACADO Integrators, ...)

Example: Hydro Power Valley (HPV) Benchmark

River reaches connected by dams and
hydro power units.
NMPC control aims:

o strictly respect level constraints
o match total power demand

@ keep levels as constant as possible

HPV consists of 8 coupled subsystem

Hydro Power Valley (HPV)

Water flow in reaches modeled by Saint Venant PDE:

1% (Q(z, r))m 1 ’ o (07(r.z)> L oH(e2)

9Q(z.t) | OH(z1) _
{ H(z, t) H2(t.2)

+l(z2) = =0

gw It 2gw? dz dz

Transform PDE into ODE by spatial discretization.

The ™

imulation Box” (e.g. one reach of HPV)
coupling input

control input1

initial state =——> [ end state

coupling output

Centralized Optimal Control

my [ ((c(t))dt+;/0 Gl (8), i (2), 21 (1)) dt
st i

() = f(rt (), w' (1), (1))

yi(t) = g (2 (1), u' (1), 2(1))

z4(0) = )

e(t) =7(t) + X, Biyi(t)
P(). () 20, qle(t) 20 t€[0,T]

Key idea: The signals z(t), 4(t) and e(t) can be represented as a
linear combination of orthogonal polynomials.
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Distributed Multiple Shooting yields sparse NLP

N-1 M

min Z <Ln(en) + Z Ly, (x,, uy,, z;))
R R im1

Yni€n

noon i=
P, up) 2 0, Qn(en) 20

Distributed Multiple Shooti

Multiple Shooting Bock and Piitt 19841, but in time AND SPACE

adiscretized subsystem
connections (polynomials)

sgaps between subsystems

sany complex topology

space

ge Scale Nonlinear Program (NLP)

Each simulation box x; = ¢;(Xi. uj) also evaluates an objective
fi(X;. u;) and inequality constraints g;(X;, u;).

X; = output of each simulation box.
X; = Input, lin. combination of other outputs

N
minimizey, Z fi( Xi. u;)

i=1
subject to i(Xi, ui) ‘®: 0,

gi(Xi.u) <0, i=1,.... N.

Note: coupling constraints only feasible in solution!
Simultaneous method for simulation and optimization.

Sequential Convex Programming (SCP)

Assuming f;, g; convex and known to central optimizer, can
linearize simulation boxes at linearization points X, T;.

N
minimize,, Z fi(Xi. u;)
i=1
) o 1, 00X, T) [X—X;
bt o [("f(x””’)+4(f;’(()<fu)') [uifu,']]% —0

&i(Xi ui) <0, i€ [LN].

Iteratively solving linearized convex problems for obtaining the next
linearization point yields a generalization of SQP, Sequential
Convex Programming (SCP). Can prove linear convergence
towards local minima [Necoara et al, CDC, 2009], [T. D. Quoc and
MD, BFG, 2010].

Adjoint based SCP Me

Approximate % by cheaper A;. Add gradient correction to

objective.

Doi(X;, T

N
minimizey , Z fi(Xi i) + [XVT‘ufT]W A

i—1
subject to 6i(Xi, ;) + A I:Xi B {'} —x; =0,
uj — T

gi(Xi.u) <0, ie[1,N]

Solution x*, u* and equality multipliers 0* yield next linearization
point x*, 7" and multiplier guess, At = X 4 d*.

Linear convergence proven [D., Walther, Bock, Kostina, OMS,
2009, [Quoc et al. 2010].

hy are inexact derivatives interesting

. . e X:.0;) - . .
@ derivative ﬁ‘((;(’,‘f‘") is a large dense matrix, expensive to

compute

o often, only few strongly coupling variables X,A in
Xi= (X,-A. XF), so can cheaply approximate derivative:

9o; i 9o; do;
Do 1 oam]=[oa 101 5]=n

o evaluate gradient correction ’]"",‘(;:“F‘)TX, by reverse
differentiation, only 4 times more expensive than simulation
&i(X;, u). One single extended simulation box call.

o Less communication: variables x® and multipliers A8 only
passed between child and parent nodes. Central optimizer
works with aggregate model in x* and v only.

Variant: left part of A; = 0, get completely distributed convex subproblems!
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Adjoint SCP: both Hierarchical and Distributed

® Exact SCP: all coordination work done by central agent who
solves convex subproblems. 100% hierarchical.

® Adjoint based SCP with partially zero derivative matrices A, :
only most influential variables coordinated by central agent, fine
interactions are exchanged locally.

® Adjoint based SCP with completely zero derivative matrices A; :
all information is exchanged locally, convex problem
decomposes, no central agent necessary: 100% distributed.

Trade-off: convergence speed vs distributed solution

® Motivation for Centralized Computation
@ Distributed Multiple Shooting Framework
@ Adjoint Based SCP Methods, from Hierarchical to Distributed

® Software

ACADO Toolkit for Nonlinear MPC

W with Joachim Ferreau and Boris Houska
v

Software for Nonlinear MPC ADO Tool

® ACADO = Automatic Control and Dynamic Optimization

® Open source (LGPL):

@ User interface close to mathematical syntax
® Self containedness: only need C++ compiler
@ Focus on small but fast applications

Problem Classes in

® Optimal Control of Dynamic Systems (ODE/DAE)
minimize, ST L, y(7). u(r), p) dr + M(u(T).,p) ]
subject to
VEE0.T]: 0 = f(ta(t).y(t). ul).p)
0 = r((0).u(T).p)

Vee0.T]: 0 = s(ty(t).ult).p)

® Nonlinear Model Predictive Control

® Parameter Estimation and Optimum Experimental Design
® Robust Optimization

oA ic Code ion for fast MPC

Example for Code Generati Tiny“ Scale)

Differentialstat v, phi, ; N

Comeros TR pones Algorithm: Gauss Newton Real-
Time lterations

Vatrix Q = eye( 4 );

Matrix R = eve( 1);

DifferentialEquation £; 1 control input
fedotip) == v; .
£ dot ls‘ 10 control intervals
£ « dot (phi) 4 states
£ < dot (omega)
CPU time | Percentage

oc? ocp( 0.0 Integration & sensitvities Sps | 63%
ocp.minimizels

Condensing s | 0%
ocp.subjectTo( £ );
ocp.subjectTo( -0.2 <= a <= 0.2 ); QP solution (with qpoASES) 58 9%
Optinizationalgorithm algorithm(ocp) ; Remaining operations Sps | <s%
algorithm.solve() ; 1 —

One complete real-time iteration | 548 | 100%

NMPC with 200 kHz possible !
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Modelica and Automatic Derivatives with
CasADi

with Joel Andersson

® CasADi
« “Computer Algebra System for Automatic Differentiation”
« Free (LGPL) open-source symbolic tool (www.casadi.org)
. the NLP app! for OCP to sh
« “Write a state-of-the-art multiple shooting code in 50 lines”

CasADi

(oF:15 NLP approach for Shooting Me

Components of CasADi
® A computer algebra system for algebraic modeling
e Efficient, general implementation of AD
» AD on sparse, matrix-valued computational graphs
+ Forward/adjoint mode
» Generate new graphs for Jacobians/Hessians
e Efficient virtual machine for function/derivative evaluation
® Front-ends to C++, Python and Octave
® Smart interfaces to numerical codes, e.g.:
* NLP solvers: IPOPT, KNITRO, (SNOPT, LiftOpt)
« DAE integrators: Cvodes, Idas, GSL
« Automatic generation of Jacobian information (for BDF)
« Automatic formulation of sensitivity equations (fwd/adj)
® Symbolic model import from Modelica (via Jmodelica.org)

CasADi/CVODES for Sen s of HPV subsyst

= For full problem:
25 . ® Total: 48 time
4 . intervals, 8
subsystems = 384
N simulation boxes
2 Sensitivity Integration
o . of full system on full
. horizon would take

5

|

3

' 1630 sec

Compare this to 1.5
up to 2.7 sec per
simulation box.

TRy e s 6 7 s o w0 s
i

Fig. 4. Time required to integrate and linearize a subsys-
namics for an time interval of 30 minutes using

0 =only forward w.r.t. controls and adjoint, fully distributed
15 = all forward derivatives, full space exact SCP

@ In cooperative MPC we want to solve centralized optimization problems,
and centralized algorithms might be more efficient in both time and
communication than distributed ones

@ Distributed Multiple Shooting (DMS) is a way to parallelize simulation and
sensitivity generation

@ Adjoint based SCP Algorithms for DMS allow many variants between fully
hierarchical and fully distributed algorithms

Software (LGPL):

® ACADO Toolkit and code generation allow fast nonlinear MPC for small
problems (e.g. 200 kHz for 4 states)

® CasADi allows one to easily couple integrators and
optimizers and setup e.g. distributed multiple shooting
- Talk Attila Kozma, Monday, 11:20, room Vito

HD-MPC
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Main idea and algorithms

@ Problem Statement @ Main idea: Combine three techniques
M - Lagrangian dual decompositiop
min f(z) =3 filan RN SR - . possibl th :
,min ; ® /,:R"™ - R -convex, possible nonsmoof A~ S dily)
cp M ® X; CR" —closed , bounded - 1
Rt I P closed convex, bounde Smoothing technique via prox-functions
= ) o e £ () + (A — 0Ty
e x Joa(@) = max {() + (Az = ©)Ty—Bopy (1)}
o s ds, () := min {f(@) +y" (Ax — b)+Bipx (=)}
® Examples s _ Excessive gap condition [Nesterov2005]
- Large-scale LPs, QPs. v - a
_ Optimization in networks, graph theory. s 5. (T) < dp, (7)
— Multi-stage stochastic convex optimization. L

Distbutod MPG _ ® Optimality and feasibility gaps
istribute , etc. 0<é(z) —d(y) < p1D, and ||AZ —b|| < B2Dj.
® Aim: . . o
_ Design distributed algorithms to solve (CP) ® Algorithm: two variants — primal update and switching update
— Generate a sequence {(.)} such that it maintains the excessive gap
condition, while controls 3, and o zero.

vantages and performance Coupling between subsystems

® Advantages . L .
_ Convergence rate O(1/k) Dynamics of subsystems are coupled via in-/output profiles of J

— Fast (compared to dual-fast gradient method [Necoara2008], subgradient, “coupling variables”. Infinite dimensional coupling.
augmented Lagrangian)

Numerical robustness
~ Highly distributed

® Numerical test: Large scale separable QP problems (dense)

vt

Compare three difference algorithms: primal update, switching update, dual-fast gradient for solving
random QPs  (left ~ iterations, right - CPU time)

Coupling between subsystems Ca i Code Example: Single Shooting in 30 lines

from casadi import *

# Build up a graph of integrator calls

it ia in- il N N for k in range(NU):
Dynan‘flcs of _subsystems.are co.upled.wa in /oquut profiles of O B i (o e, e ) FBER B AT D
‘coupling variables”. Infinite dimensional coupling. X=SX("x"); y=SK("y"); u=SK("u"); L-SK("cost") 6 Con Gt 1

# ODE right hand side function F = MXFunction([V], (X[211)

Can approximate coupling profile by orthogonal polynomials: 2 08 = ks = 550 I 2 £ & 237, G0l # Terminal constraints: 0<=[x(T);y(T)]<=0
rhs = SKFunction([[t], bx,y, 11, [w]], [£]) L ey
b P # Croate an integrator (Ciodes)
Pie)Pi(tyde = § © ifiskj 1 2 Crodostategrator he) CemmPatm
A ’ J 1 otherwise 1.setOption("abstol”,1e-10) # abs. tolerance 'POP! L

solver. setOption("tol", 1a-5)

-setOption(*reltol”, 16-10) # rel. tolerance solver. setOption(*hessian_approximation®, \

I
I.setOption("steps_per_checkpoint", 100)
3

o e “1initod-nemory"
Ani solver.setOption("max_iter",1000)
=) solver.init()
. . # AL controls (use complex, general DAG)
o Approximation of typical NU = 20; U = WX("U",NU) 4 Set bounds and initial
s ; et bounds and initial guess
s output water discharge # Tho initial state (x=0, y=1, L=0) el e e e
y rofile (black) b X (00,1,00) Solver. et Toput (HUs 0,01 NLP.
Ep p Y Solver. setTnput (YU 0,01 NLP_X_INIT)
e § § solver. setInput ([0,0]  NLP_LEG)
polynomials of degree 1, 4 # Time horizon P oo
™ o O ST, o (HERETD solver. sotInput ([0,0] NLP_UBG)
= 1 State dortuacive, slgubraic state (aot waeqy  ® S6ITe She provlen

o on 2= solver.solve()
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2.4 Design of hierarchical and distributed MPC control systems with
robustness tools (M. Farina, B. Picasso, R. Scattolini)
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Design of hierarchical and distributed MPC

control systems with robustness tools

Marcello Farina, Bruno Picasso, Riccardo Scattolini
DEI-Politecnico di Milano

Pre-Congress Workshop - IFAC 2011 Milano

1. Introduction

2. Hierarchical MPC systems
+ Basic architecture
« Extensions (performance & reconfigurability)
« Conclusions

3. Distributed MPC systems
+ A*“tube-based”, non cooperative DMPC algorithm
« Conclusions

4. Concluding remark

Pre-Congress Workshop - IFAC 2011

Motivations for distributed / hierarchical control:

+ Reduce the computational load

« Reduce the communication load

« Improve the robustness with respect to failures
» in the transmission of information
» in the central control unit

« Improve the modularity and the flexibility of the system [

« Consider different goals at different time scales (Real-
Time Optimization)
« Synchronize subsystems working at different time scales

[Subsystem 2

There has hence been a long time interest for decentralized /
distributed [Siljak ‘78... ‘91] and hierarchical control [Mesarovic ‘70,
Findeisen ‘80, ...] for larg le and

Recent contributions include: [Engell ‘07, Tatjewski ‘08 and
Scattolini ‘09 - “An overview on distributed and hierarchical MPC™]).
Pre-Congress Workshop - IFAC 2011 Milano HD-MPC

The proposed approac 4

tl t

Subsystem 2|

e
Subsystem 1|

In both distributed and hierarchical structures,
there are two possible approaches to the control synthesis
allowing to deal with the interacting subsystems:

1. Game theory
2. Robust control &

Pre-Congress Workshop - IFAC 2011 Milano HD-MPC

2. Hierarchical MPC systems
« Basic architecture
+ Extensions (performance & reconfigurability)
« Conclusions

Pre-Congress Workshop - IFAC 2011 Milano

Hierarchical MPC systems: basic architecture

Xng1 = Axp 3 b
=
xex
X
u® e p® —
actuators (I/O con- (discrete-time constrained
strained linear systems) linear system)

el
v
(0, = FOD 4 GO0
a0 = HOD
Control goal: state-feedback
@ez® stabilization
S0 € O

Typical structure in many control applications:

« Process control [Skogestadt ‘00]
« Automotive [Brahma et al. ‘00]

«+ Production planning [Golenko-Ginzburg et al. ‘93]
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Hierarchical MPC systems: basic ecture

A two-layer hierarchical (cascade) control system:

Hierarchical MPC systems: the robust control approach

(1) a®
Robust MPC Rd I = At Epou®
2

i1 = Ax + Brug + B£w) ! x
u® D] 0 = Ax, + ’_f] buf? g xeX, ud e u®
MPC = e u(m)|[Low level systems
X ntrolled actuators)
R x Sampled model L. Process
e el of the process i_ @) — () o
igh level controller - (slow time scale) >wi\/ =u\" —u\<
(sampled model of u(m) Lm) [Process Discrepancy between
lhem'::eo‘;izl il)ow the required control and
the effective action
controlled | Sampler |
actuators, fast time scale h
Sampler
To be designed: MPC (high-level controller) and
R/’s (low-level regulators)
Pre-Congress Workshop - IFAC 2011 Milano HD-MPC Pre-Congress Workshop - IFAC 2011 Milano HD-MPC
Hierarchical MPC systems: the robust control approach 9 High level robust MPC design 10
b ey e _ . o
obust MPC R [ 11 = A+ £ p0u? Two possible scenarios:
Py =Axk+li]uk+li@ = x
e u® U xeX, u®eu® 1. The high level unit can simulate the low level actuators
u(m)|[Low ievel systems | () = the disturbance w is predicted (y, is locally available)
{=| (controlled actuators)
Sampled model ! -
of the process H B B N i i i i i
CDEED) L w@® = §) — y(@< 2. The d|_sturbance wis not predictable by the high level unit
e e but v, is globally available
the required control and
the effective action Main resul
Sampler ain result . X
— In both cases, a robust MPC controller is designed so that:
Wl < ~allzll Equivalent
due to the | disturbance The scheme is ) R . .
.e”vi.‘;ysg;jgs w z equivalent to a small- « The high level controller is robustly stabilizing in the slow time scale k ;
dynamics gain control scheme
u Robust MPC « Convergence to the equilibrium for the overall control system
obus is guaranteed in the fast time scale h .
High level robust MPC design u Comments 12

Scenario 1 (wis predictable): ! Scenario 2 (only y, is known):

min N, minmax J(x,F,D, N,
nin J(x. F, Np) ninmax J(x »)
subject to the dynamics, the constraints
+ a suitable auxiliary law
where | where

!
1
1
!
1
1 subject to the dynamics, the constraints
: + a suitable auxiliary law

- -z - Nl
U213 =72 1wk 13,0 +Vr k) |

is a sequence of control poli

and 1
'
'

F=|uwp Wepr o Wepn1 ] 1 D= [ Wi Wit Wit Np—1 ]

is a sequence of control values | is a sequence of disturbance values
! F=u uga () Wepn-10) |
1
'

Features: the high and low level
designs are only partially decoupled; Features: the high and low level
but a global y4 is not needed and 1 designs are decoupled but y4 and

the optimization is less demanding } minmax optimization are needed

Pre-Congress Workshop - IFAC 2011 Milano HD-MPC

« Perfect reference tracking of the low level systems —i.e., frequency
decoupling between the inner and outer loops — is not assumed: the
low level dynamics is fully taken into account

« Even in the absence of perfect frequency decoupling, the robust

control approach allows one to largely decouple the control designs
at the high and at the low level

o

Pre-Congress Workshop - IFAC 2011 Milano
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Comments 13

« Perfect reference tracking of the low level systems — i.e., frequency
decoupling between the inner and outer loops — is not assumed: the
low level dynamics is fully taken into account

« Even in the absence of perfect frequency decoupling, the robust
control approach allows one to largely decouple the control designs

at the high and at the low level
Example: Robust high-level MPC — j
v R N = |
non-Robust algorithm —— W E w % ® e oW ow e
(neglected low level dynamics)

Figue 1: CSTR st gl

Pre-Congress Workshop - IFAC 2011 Milano

Extensio performance, control allocation problem 14

(1) =
Robust MPC ) 1 = Axgh
+ 5 a§;>b@u${)
X1 = Axg + Brogugt =1 x
+ Boagwy, x € X, u® € u®

x €&, udeud utm) =
aefo,1)m H

Sampled model Low level systems

(slow time scale) (controlled actuators)

t

ISamoler |
Sampler

Related works, e.g.:
« Load sharing [Eitelberg ‘99]
« Fault tolerance [Mhaskar et al. ‘05 (with MPC), Casavola et al. '07]

Pre-Congress Workshop - IFAC 2011 Milano HD-MPC

Extensions: performance, control allocation problem 15

Robust MPC
Xit1 = Axi + Bi@ut
+ B

ud

x €&, u®eu® u(m)
€ {0,1}™
Samp[ed model Low level systems
(slow time scale) (controlled actuators)
t S

ampler

Iw]| < vgllzl| Equivalent Features:
due to the low level disturbance
systems's dynamics | W z « Control _Iogd c_an !Je bal_anced
El « The optimization is a Mixed
X

u,@ |:) Integer Quadratic Programming
Robust MPC problem because of the presence
Twithy va <l of the boolean variable o

Pre-Congress Workshop - IFAC 2011 Milano HD-MPC

Extensions: performance, high level switching controller 16

i1 = A+ 5 bOuf)
&

| =

yi = e(xn)

xeX, uldeu®
Low level systems

(convoled acaors) | | [Process (wiener mode)
L _Jx

1 Sampler

— 1

Performance vs robustness :

« Less robustness (a larger y;) enforces a faster response
of the low level systems, thus it ensures better performance decrease

« Feasibility (i.e., the small-gain condition) is guaranteed: if the Y <r2< <95
af:lualors arevnol fa§l enough, an alert signal B is sent to the Performance.
high level which switches to a more robust (smaller y;) mode improvement

A hybrid system: stability is ensured by a
Pre-Congress Workshop - IFAC 2011

large average dwell-time
PC

Extensions: reconfigurability (plug & play [Stoustrup ‘09]) 17

e &0

EYe)
Xpg1 = Axy+ 3, bOuf?
=1

Robust MPC

(high level control unit)| |, (m) gm)  [xex @ evo

Low level systems

(controlled actuators)
u(m+1) = a0
i g — ! Addition
Sampler

o

Pre-Congress Workshop - IFAC 2011 Milano

urability (plug & play [Stoustrup ‘09]) 18

Iy a® m4-
Robust MPC : i R gl. o
L ) x
(high level control unit)| \,(m) | gWievelsystems||a(m) |*€* ul® e y®
(controlled actuators)
(mt1) = gon+)
— S| e
i g — ! Addition
Sampler
@ a) —
Robust MPC u it = At 2 O
X
(high level control urit)| () | gGiiievalsyetemg|a(m) | X< % ¢ v
(controlled actuators)
31 Replacement |Process
] B

ampler

Pre-Congress Workshop - IFAC 2011 Milano HD-MPC
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urability (plug & play) 19
Should one completely re-design the high level control unit ?

In the MPC approach reconfigurability is achieved
if the auxiliary law can be kept unchanged

Main idea:

« The gain y4 is an abstraction of the low level system

« Different low level configurations ized by
the same (or similar) y4 can be considered w smaneel 1,

« Actuators can be substituted/added provided that

74 does not change. Otherwise a new “attenuation
constraint” is added to the MPC problem u X
Robust MPC

+ In both cases (actuator substitution and addition) the

auxiliary control law can be left (essentially) unchanged
Thus, reconfigurability properties are achieved !
Remark: the resulting control system switches among different stable g
configurations. Stability is preserved if proper dwell-time is guaranteed
Pre-Congress Workshop - IFAC 2011 Milano HD-MPC

Example 20
[PEGEEsS (basic configuration):
04 0 0 1 3
2f(h+1)=| 0 —08 0 [af )+ | 0 |uf(h)+| 1 |uf(n).
0 11 1 0

0
[AGEHEEOTS (low level system gain): 74 = 0.161.
Actuator addition: At time h = 4, a new actuator is added and 4 = 0.963 >
0.161 (the supplementary “attenuation constraint” is needed in MPC).

4= state trajectories: basic configuration (dots)
and with the added actuator (dashed line).
§ Control reference vs effective control action

P 50

] i
o el o g ot
oot . i e,
L Cepen
B e T
W . T e
1 5 ]

Actuator replacement: At time h = 12, the nd actuator is replaced with
one guaranteeing a better attenuation level (y3°% = 0.118 < 0.161).

A ) i, aer
o i |
i | e
= | [ !
N - = - - o
| F
] A
s R - s
| T £
Time: h=12 Time: h=12 Time: h=12
‘ State trajectories: f ﬁ
basic configuration, with the replaced actuator Control reference
and added actuator vs
effective control action
Pre-Congress Workshop - IFAC 2011 Milano HD-MPC

Conclusion

A robust MPC approach has been presented for the design of
two-layer hierarchical control systems

« For constrained linear discrete-time systems

« The robust control approach allows to :
> largely decouple the design at the two levels
» to abstract subsystems with their gain and thus to obtain versatility resulting in numerous
extensions (reconfigurability, control allocation problems, switching control for
performance improvements)
« Convergence results have been established

Papers:
* B. Picasso, D. De Vito, R. Scattolini, P. Colaneri. An MPC approach to the design of two layer
hierarchical control systems. Automatica, Vol.46(5), pp. 823-831, 2010.

« B. Picasso, C. Romani, R. Scattolini. Tracking control of Wiener models with hierarchical and
switching MPC. Submitted.

«+ D. De Vito, B. Picasso, R. Scattolini. On the design of reconfigurable two layer

hierarchical control systems with MPC. In Proceedings of the American Control

Conference, Baltimore, pp. 4704-4712, 2010.

Pre-Congress Workshop - IFAC 2011

3. Distributed MPC systems
* A*“tube-based”, non cooperative DMPC algorithm
« Conclusions

Pre-Congress Workshop - IFAC 2011 Milano

Distributed MPC

Distributed-MPC methods can be
classified [Scattolini ‘09] according to:

— Communication protocols
+ Neighbor-to-neighbor
+ All-to-all
— Number of iteration to achieve a
solution (at each step)
+ lterative algorithms
+ Non-iterative algorithms
— Cost function to be optimized

+ Cooperative algorithms (common goal)
+ Non-cooperative algorithms
(temperature control, ecc...)
Pre-Congress Workshop - IFAC 2011 HD-MPC
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Distributed MPC

The large-scale system evolves according to the
centralized dynamical model:

Distributed-MPC methods can be
classified [Scattolini ‘09] according to:

Xi1 = Ax; + Buy

Most common approaches:

« Decentralized MPC: X € X constrained state
- [Magni-Scattolini ‘06, Raimondo et al. / o
- Communication protocols ‘07] (1SS perspective) [Alessio-Bempo- / u; €U constrained input
+ Neighbor-to-neighbor rad ‘08), [Barcelli-Bemporad ‘09]
+ All-to-all « Distributed MPC:
— Number of iteration to achieve a [Duh:har '073. Kipiod poncooperae
» neighbor-{o-neighbor communication);
solution (at each step) [Liu et al. ‘09-10] (teratve, cooperative);
* lterative algorithms [Venkat et al. ‘08, Stewart et al.“10]
+ Non-iterative algorithms (possibly iterative, cooperative, output feedback MPC
Cost function to be optimized with all-to-all communication);
— Cosl ptimi. [Maestre,’09]: (game theory-based, cooperative,

+ Cooperative algorithms (common goal) iterative approach for linear systems).
+ Non-cooperative algorithms
(temperature control, ecc...)

Pre-Congress Workshop - IFAC 2011 Milano HD-MPC Pre-Congress Workshop - IFAC 2011 Milano

The large-scale system evolves according to the S _@ The large-scale system evolves according to the
centralized dynamical model: centralized dynamical model:

Xi41 = Ax¢ + By Xi41 = Ax¢ + By

X € X constrained state X € X constrained state

v €U constrained input v €U constrained input

central station '

Pre-Congress Workshop - IFAC 2011 Milano HD-MPC Pre-Congress Workshop - IFAC 2011 Milano HD-MPC

We partition the system into a graph of

centralized dynamical model: interconnected M (here M=4) low-order

models.
X1 = Axi + Bu, Ay A Ay Ay
A | A2 An An Axn
X € X constrained state A3 Az Az Ax
u €U constrained input Ag Ag Az Ay
. B 0 0 0
S xp41=Axy + By p_| 0 B 00
Aims: 0 0 B3 0
« develop a control algorithm for the process 0 0 0 By

+ use model predictive control for optimality and to handle constraints
«solve in parallel 4 small scale optimization problems instead of one large
problem

«+ exploit a neighbor-to-neighbor communication protocol

Pre-Congress Workshop - IFAC 2011 Milano Pre-Congress Workshop - IFAC 2011 Milano
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Assumptions

We partition the system into a graph of
interconnected M (here M=4) low-order

models.
A Az 00
A_| 0 An An 0
o 0 A Ay
Agy A 0 Ay
B, 0 0 0
&t xp1=Ax;+ By B—| 0 B 0 0
=10 o0 B30
0 0 0 By

S+ obhy = Al + Bl + 5 Agel)

Pre-Congress Workshop - IFAC 2011 Milano

®
N

Large-scale system:  X;41 = Ax; + Bug

Graph of interconnected M low-order subsystems:

W« )
X €X; local state constraints

affly = Al + Bufd 4 500 A2l
W € U; tocal input constraints
il ]y o
(" %) <0

o

HD-MPC

Pre-Congress Workshop - IFAC 2011

Large-scale system:  X;41 = AX; + Buy

Graph of interconnected M low-order subsystems:

o) = gl Bl 4 5550 Ayl

I
&

x!‘] €X; local state constraints

u!i] €U; local input constraints

Wl x) <o
Each subsystem i o
N i _dleg
« has a reference trajectory % and guarantees that X; €&
« transmits, at each time, the nominal trajectory frf‘]w its neghbors
€é;
o) = A+ Bufl+ Y a4+ Y Ay (-l
= :

Pre-Congress Workshop - IFAC 2011 Milano

DP

Large-scale system:  X;41 = AX; + Buy

he robust co

ol approac!

Graph of interconnected M low-order subsystems:
oA, = Al 4 Bl + 5y Al AT e X;  tocal state constraints
u!‘] €U; local input constraints
Wl x) <o
Each subsystem i o
. ) i_dle g
« has a reference trajectory % and guarantees that X, —%; ' € &;

« transmits, at each time, the nominal trajectory frf‘]m its neghbors

\i) _
wil € W= @A
o) = A+ Baufl+ Y AEHY A ' o

i
= Al + Bl + 3 Agal 4wl
JE

Pre-Congress Workshop - IFAC 2011

DPC: the robust control approac|

DPC relies on the solution of M robust MPC problems (i-DPC) with the tube-based approach
presented in [Mayne, Seron, Rakovi¢, Automatica, 2005]

i-th “perturbed” model:
of}y = Al + Bl + 3 @)+ wl!
i
i<th nominal model:
afl, = Al + pall + 3 ayal!
Ead
Assign ) =alt +K!i"""(xyl )
Deine " =1~
= 21y = (it BiRE -l wil e w;

If (A+B, K2 is as. stable, there exists a RPI (robust positively invariant) set Z, for all i. Therefore

A ez, mmdp f-dleztorali>: %

Pre-Congress Workshop - IFAC 2011 Milano HD-!

PC

DPC: the robust control approac|

MAIN UNDERLYING IDEA

Guarantee that A1, all B k=0,..N~ 1| Guaranteed by suitable
constraints in the
Az optimization problem

where E;BZ; C &;

) Attime t:

Ii]

X =

f-ll-gh+dl-dhea

)
wil= T il —) € sy = Wi
7 i

- ez

Byinduction: ISP Al dllezk=1,..8 2 i

Pre-Congress Workshop - IFAC 2011 Milano HD-MPC
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Online phase

« Solve M tube-based robust MPC problems (i-DPC), with dynamic constraints:
1, = gl 4 pall 4+ 3 a2l
F
« Coupling variables are the reference trajectories x‘[,'] (known in all the prediction horizon k=t,...,t+N-1)

 Further constraint on the solution of the i-DPC:
A B k=0..N-1

A e,

+Solution: &1}, {af) 1V~

=) inputto the real system:  ul) = ﬁf‘}, +Kme(ef] —j{?,)

m==)> reference trajectory update: ﬁqm *i{qm/r

Pre-Congress Workshop - IFAC 2011 Milano

nline phase 39
The optimization problem at time t
Given - the ref. traectory of i £, k=1,...,t+N—1

 the ref. trajectories of its neighbors: A2 k= 1,....,(+N—1

o1
in. - X uellah vl

Offline phase 40

-

. Assign suitable decentralized stabilizing auxiliary control law.

a{ﬂ)i’:i; 2. Define suitable i-DPC optimization problem cost functions.
subjectto &1, = Agal) + Baafl + Y Azl 3. Define the sets £; ;. Z;.
Al_dlez i .. : : -
d i 4. Initialize the reference trajectory and the set a suitable value for the prediction
iﬁ—;?ﬁ]sEi k=t,....t+N~-1 horizon N.
z{‘] €X; Wex, RiozCX; local state constraint
ilev; il et; 00Kz CU; input constraint
Wiefl.x) <o Wz <o coupled state constraint
Alyext dlyesf KF oz CXl terminal constraint
Pre-Congress Workshop - IFAC 2011 Milano Pre-Congress Workshop - IFAC 2011 Milano HD-MPC
Example 1 Example

Chemical plant — r Iseparator pt [Liuetal. 2010]

Fr l 0.01 Fr
Fo )
Fou
EAN
A—>B—>(| A—B—>(|
Q3

i

The model is developed under the assumption of hydraulic equilibrium

States for each subsystem: h .
+ z4; : Concentration of compound A Inputs for each subsystem:
* xp; :Concentration of compound B « Q :Heat

® T :Temperature of subsystem i
We use the linearized model around a given equilibrium point

Pre-Congress Workshop - IFAC 2011 Milano

Example: Chemical plant — reactor/separator process

We study the response of linearized model to a perturbation of magnitude

Ay —0.05
Azp; | =] —0.05
AT; -5
Input constraints: 0<Q; <50 =) —10 < AQ; <40

Pre-Congress Workshop - IFAC 2011 Milano
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A distributed predictive control algorithm has been presented
« For linear discrete-time systems

« Alarge scale control problem has been subdivided into M low order, almost independent
subproblems

« Non cooperative algorithm: each subsystem minimizes a local cost function

+ Neighbor-to-neighbor tr is required: low burden
+ Only local knowledge on the systems dynamics is required

« The algorithm s highly scalable: transmission, memory and computational loads do not grow.
« Constraints on state and input variables (local and global) can be handled

« Convergence results can be established

ongress Workshoy

Pre-Congress Workshop

Advances:

« Efficient algorithms for the initialization of DPC
« Output feedback DPC
« Extension for coping with non input-decoupled systems (B is not block diagonal)

Wide area of application of DPC:

« Independent systems with coupled constraints (e.g., transportation network)
« Cascade systems (e.g., simplified model of an HPV)

« Chemical plants with relevant couplings and feedbacks

Future developments:
« Explore applications in a plug-and-play architecture
« DPC for tracking

Papers:
* M. Farina, R. Scattolini. Distributed P
Proceedings of the IFAC World Conference, 2011.
+ M. Farina, R. Scattolini. Distributed predictive control: a non-cooperative algorithm with
neighbor-to-neighbor communication for linear systems. Submitted

« M. Farina, R. Scattolini. An output feedback distributed predictive control algorithm. To appear in
Proceedings of the IEEE Conference on Decision and Control 2011.

MPC with b

'AC 2011

Concluding remar|

Motivations for distributed / hierarchical control:

45

* Reduce the computational load
Reduce the communication load
Improve the robustness with respect to failures
> in the transmission of information
> in the central control unit
* Improve the modularity and the flexibility of the system
Consider different goals at different time scales (Real-
Time Optimization)
Synchronize subsystems working at different time scales

)
v

[Subsystem 2

[

Both for distributed and hierarchical control
systems, robust control turns out to be a suitable
tool to deal with the main issues concerned with
large-scale and complex systems.

Pi

ongress Workshop - IFAC 2011 M
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2.5 Distributed MPC based on game theory (J.M. Maestre, D. Limoén,
D. Muioz de la Pena)
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] DISA | Outline

—
Distributed Model Predictive Control o Introduction
Based on Game Theory o DMPC scheme for Two Agents
o DMPC scheme for Multiple Agents
— — o Conclusions and Further Research

Departamento de Ingenieria de Sistemas y Automatica
Universidad de Sevilla

J.M. Maestre, D. Limén and
D. Mufioz de la Pefia

Pre-Congress Workshop - IFAC 2011
Hierarchical and Distributed Model Predictive Control, Algorithms and Applications
Milano, August 28, 2011

DMPC based on game theory 2/48
Introduction Introduction
o Standard centralized control o Many control schemes have been proposed with differences on:
systems N
= Single controller = System decomposition

= Flawless communication . — @

X Systems coupled through the inputs
o Implementation problems 2 and N subsystems
= System-wide model l

Computation time

= Large scale systems
Transportation networks

Communication constraints

= Information available

T Local model and measurements
= Concerns about privacy
Supply chains —~
./f /. = Communicational constraints
o Distributed control '~ )
= Multiple controllers/agents o Agent to agent communication

= Communication

Low communicational burden
= Partial system knowledge

DMPC based on game theory /48 4748
Introduction Introduction
o Game theory o Cooperative games i
) ) ) 5 = Prisioners’ dilemma
"Game theory is a mathematical field that studies the process of
interactive decision making, that is, situations in which there are
several entities, namely players or agents, whose individual v

decisions determine jointly the final outcome.” W

What would you do?

iy

Cooperative games

i I
Bargaining processes . / / a\
@

Coalitions S S e

Cooperative game theory assume all the players “cooperate”

DMPC based on game theary 548 DMPC based on game theary 6148
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Introduction

o Cooperative games
= Prisioners’ dilemma

Prisioner A point of view

T8 remains sient |8 confesses_|
|Aremainssiient | tyer | 20vear | “Greater good”
| Aconfesses | goesfree |  Syears
5 remains stent |5 confesses_|
Prisioner B point of view |Aremainssilent | 2vears | 20year |
| Aconfesses | 20years | 10vears |
[ 8 remains silent | B confesses |
| A remains sitent | tyear | goesfree | ((glt;bgl‘czslfuln;tion))
global knowledge|
| Aconfesses | 20vears | syears | (communicate)

DMPC based on game theary

DMPC scheme for two agents

o Assumptions

= There is no coupling
between the states of the
agents, only in the
actuation

a1 (t+ 1) = Ayz1(t) + Bryui(t) + Byouo(t)
@(t + 1) = Agaa(t) + Barua (t) + Baoua(t)

;i € Xju; €Uy, i =1,2

Input and state

1
r Loy g ung) + Pi(an )
constraints

.
V1(21. U1, U2) = p
=
252 U Un) = | La(eaua,) + Pataa )

Each agent has local
information about the
state and model

Agents optimize according
to a local cost function

DMPC based on game theory

DMPC scheme for two agents

o Centralized MPC
min, J(U1,Uz,z1,20) = J1 + J2

H
E

Definition of the global cost function (“greater good”)

DMPC based on game theary

DMPC scheme for two agents

o Algorithm
= Each agent receives its state info x;

= Each agent evaluates Us shifting the last decided input
trajectory Ud

vl =

= Each agent calculates its optimal control action assuming the
other actuates according to the last agreed trajectory Us

U = min Ji(Up Ube )
zi(k+1) = Awi(k) + Bijui(k) + Bineitinei(k)
Tip = x;
ik € X;
TN €S
uk € Uj

DMPC based on game theary 10748

DMPC scheme for two agents

o Algorithm
= Then it calculates the wished action for the neighbor,
assuming agent 7/ will play the action calculated before

o

nei

= min Ji(U7, Uneir @)
zi(k+1) = Agzi(k) + Bijui(k) + Bineitinei(k)
i = T
wik € Xi
i N € 2
Uneik € Unei

Each agent has computed two different trajectories using
their local model and measurements

DMPC based on game theary 11748

[A Uy Uy
S{x (0 (003(0) S (w000,
Stablefoption | */(=().Ui().U3() (5000
(w005 (0).U3(0)) (5.7 (1)
Selfish{option | +/(x()Ui(1)U3(1) (5105 ().
RACION EONED
Altruistfoption | +/,(x().Ur(1).U3(1))

DMPC scheme for two agents

o Algorithm

= Agents communicate again and build a cooperative game
corresponding to the following team problem
pE)

= Agents implement the first global minimum they find
= The algorithm is repeated the next sampling time

DMPC based on game theary 12/48
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DMPC scheme for two agents

Communication
Calculate U, Calculate U,*

—

Calculate U,* Calculate U,*

o

PR

Calculate U#| > |calculate U,*
Al

PR

Agent 1 ¢ Agent 2
Calculate J; Calculate J,
for all options for all options
Decision Decision
DMPC based on game theory 13/48

DMPC scheme for two agents

o Application to a supply chain (MIT beer problem)
= States
Stock
Unfulfilled order of stock
Backlog of unfulfilled orders
= Manipulated variable
Orders
o Simulation scenarios
= 4 different scenarios
o Comparison
= Centralized MPC
= Iterative MPC (based on information broadcast)

DMPC based on game theory 1a/as

DMPC scheme for two agents

J Teim
Centralized {_3.6179e+006 1.4187
DMPC 4.9827e+006 D 0.6246
Iterl 2.1866e+007 | 0.379715
Iter2 5.6999e+006 ) 0.488593
Iter5 5.8449e+006 1.2611
Iter10 4.1679¢+006 ) 1.3750

DMPC based on game theary 15748

DMPC scheme for two agents

—
A -
g — N\
e
22
o
o 0 10 20 30 40 50 60
Q Retailer
:
2 —_— Troms ordered
e 1008 A e —_ Extern demand
o = =
—
DMPC based on game theory 16/48

DMPC scheme for two agents

Retailer

Stock reference

~
P
L
= T ordored
100 Extern demand ‘|
0 2 E w0 Ej ES
Supplier
T ordored
Supplier demand
OMEC based on game theory 1748

DMPC scheme for two agents

U = min (Ui, Ui i)

wi(k+1) = Ajwi(k) + Bijui(k) + Bj neitinei(k)
Ti0 =i

Terminal region/constraint approach
Robust design approach

w0 Decentralized properties (subspace x)

@y
72,1
o TN <:|
2N
Wy 2.
a 20
1 Q,

FOFD=AnOF Brn@ F ol

DMPC based on game theary 18748
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DMPC scheme for two agents

o Stability theorem 1
o Terminal cost / Local controller /1 (z1, Uy, Uz L1y ko uax) + Fi(e,N)

O Conditions for each subsystem and also for the overall system

A+ B KDay + BroK2az) = Fi(en) + Li(ey, Kiz1) 0, Vap €82,
IF2((A2 + BaoKo)ep + Bo1Ky1) — Fy(a2) + Ly (a2, Kox2) <0, Vg €
IF((A+ BK)x) — F(z) + L(z, Kz) <0, Vo € Q =21 x 1
o Recursive feasibility
21 € Q1 — (A1 + B11K1)a1 + B12Kowo € 23, Vaz € Q22
29 € Qo — (Ag + BapK2)ap + Boy Ky € Q, Vay € Q)
Kyzy € Uy, Vay €
Kowy € U, Vag € 2
Q1€ X
Q0 eXo

Note: Local controllers only depend on local state measurements.

DMPC based on game theary 19748

DMPC scheme for two agents

Design procedure based on robust positive invariance

QUA, B, D, K, X,U, W)

v
2€Q—+ (A4 BK)z+DweQ, vweW

KzelU 11 A‘
Qex

Q1(M\1,A2) = Q(Aq, Bi1, Bia, X1, K1,

Q2(A\1,A2) = Q(A2, B2, Bo1, X2, K 1)

Convex optimization problem

Q1(A1, A2) X (A1, A
Alg(gﬂf\ie(oluf( 1(A1,22) X 2(A1,A2))

DMPC based on game theory 20148

DMPC scheme for two agents

o Local state and model knowledge

o Cooperative solution based on a strategic team
problem

o Two/three communications steps
= Input trajectories
= Cost function values

o In order to design a stabilizing controller the
centralized model is needed
= And an initial feasible solution!

o Approximate design procedure of jointly invariant
sets
= Parameterization of the input constraints

DMPC scheme for two agents

o HD-MPC four-tank benchmark

ed MPC techniques applied to the.
Alvarado, D. Limon, D. Muroz de.

22148

DMPC based on game theory 21/48 DMPC based on game theory
DMPC scheme for multiple agents DMPC scheme for multiple agents
o Assumptions Agents optimize according to a local cost function
There is no coupling N _ N N-1
" between the states of the zit +1) = A@i(t) + Tjen, Bijus (1) Ji(@i, {Uj}jen)) = En Li(sk, {Ujk}jens) + Filzin)

agents, only in the
actuation T €X,i=1,...,] M,

wjely, j=1,..., M,

Each agent has local
information about the
state and knows how it is Conolker Systen
affected by the different — -
inputs {Chgms ]-—1

= Input and state
constraints

Agent My

Inputs are not assigned
to agents

DMPC based on game theary 2348

L@, {5} jen) = 27 Qi + Tyen, w2 Ryt

Fy(z;) = .7‘;[};}]?1
My
Control objective Z Ji(a(t), {Uj(t)}jEn,-)
=1
‘GLOBAL PERFORMANCE INDEX

The different agents must reach an agreement on the value
of the shared inputs

DMPC based on game theary 24128
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DMPC scheme for multiple agents

o Proposed DMPC scheme
= Subsystems coupled through the inputs
= Each agent has only partial information of the system
= Low communicational requirements
= Cooperative solution
Cooperative algorithm from a game theory point of view
= Guaranteed closed-loop stability properties

o Direct extension of the previous algorithm is not
possible because of the combinatorial explosion
= N agents with q proposals lead to g™ options!

o Negotiation based scheme

DMPC based on game theary 25048

DMPC scheme for multiple agents

o Algorithm
= Each agent receives its state info x;
= The agents communicate (if needed) to evaluate the initial value
of the input trajectories U, (shifted inputs) from the latest decided
input

"
o

ul
vie-1=|

a
U N-1

= A number of proposals are made by a set of agents
A proposal consists of a future trajectory for a subset of inputs
A proposal is accepted if and only if it improves the costs for all the
agents affected by that control action
After a predefined number of proposals are made, the latest agreed
input trajectory is applied

DMPC based on game theory

DMPC scheme for multiple agents

o Algorithm
= In order to make a proposal, each agent calculates the optimal
control action for a (sub)set of inputs that affect its dynamics

{U ()}jen, = arg min Jp(«’“pv(U]}]enp)

{Ujlje
s.t.
Tp k1 = ApTpk + Ljen, Bpjttjk
zp,0 = @(t)

Tpp € Xp, k=0,...N
uj €Uy, k=0,...N
Tp N €
Uj=Us(t), Vi ¢ By

-1, Vjeny

Different communication protocols: Round robin, asynchronous...

DMPC based on game theary

DMPC scheme for multiple agents
o
— —
S o \
.\ f/ \./
— 5@

// ~ @
v
e e

DMPC based on game theary

28/48

DMPC scheme for multiple agents

\

\/
0

//\

@ Proposal

DMPC based on game theary 20148

DMPC scheme for multiple agents

\

\/
0

//\

@ Proposal

DMPC based on game theary 30048
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DMPC scheme for multiple agents

@ Proposal

DMPC based on game theary 3148

DMPC scheme for multiple agents

_©®
.\ /\

0/
//

*TdN

o
~07 | @

N
—eo—

O Result

(accepted
or not)

DMPC based on game theory 32048

DMPC scheme for multiple agents

—@

/\

- S

0\///0\

/el
.\ ./ \ I >° / O Result
—0 (s

DMPC based on game theary 3348

DMPC scheme for multiple agents

Algorithm can be executed in parallel

\..,/.
o // \./\
\.\I./. © Result

(accepted
or not)

DMPC based on game theary 39148

DMPC scheme for multiple agents

o Stability theorem
o Terminal cost / Local controllers
o Stabilizing linear controller (centralized or decentralized)

M
> F(Aiwi+ Y. Bij Y. Kjprp)—Fi(x)+Lizi,
=1 jens

{ X Kjptpljen) <0
pem; pem;

o Recursive feasibility
If x,€ @ for all i then
Aizi + Yjen; Bij Lpem; Kjprp € Qi
pem; Kjptp € Uj
i € Xi
o Jointly invariant set: robust stability w.r.t. neighbors

o Standard LMI design techniques
o Centralized model is needed

DMPC based on game theary 35048

DMPC scheme for multiple agents

z;(t+ 1) = Az (1)

Ay
Bjvi(t) = Tjen, BijKjixi 1
Kjiwi € Nilly

U,
Liem; Nji €1 2

Ewi(t) = Ljen; Bij Cpem; (i) Kipop

Vi(A) = Apithy % Aoiho X -
Wi(A) =

- X Ang

'
pemy— (:)/\11,)111 X (Spemy— i) Xop)h2 X - X (Spemy, — (i) MtaMar,)

max f(@ % . X Qur,)

Convex optimization problem X Ki Vi), W(4)

A€ (0,1), Vii
Siem, Aji €1, ¥i

DMPC based on game theary 36048
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DMPC scheme for multiple agents DMPC scheme for multiple agents
o Local state and model knowledge o Example = foan] 0 2= ] 20 Lo
) A o = Four coupled systems
o Cooperative solution based on negotiation
o Multiple communications with neighbors
= Input trajectories
= Cost function values
o Parallel implementation
o In order to design a stabilizing controller the
centralized model is needed
= And an initial feasible solution!
o Approximate design procedure of jointly invariant
sets = Cost functions 1
= Parameterization of the input constraints
DMPC scheme for multiple agents DMPC scheme for multiple agents
. —0.2732 —0.5935 —0.0065 —0.0112 —0.0055 —0.0151 0 0
LMLdesign: | oo o 0201 02 0 0 oo -0
B —0.0025 —0.0052 0 0 —0.2463 —0.6878 —0.0027 —0.0042
0 0 —0.0118 —0.0204 —0.0100 —0.0276 —0.3081 —0.4845
o 0] Maximum robust '\r(\v)'aria’nt N DecentraH‘zed}oint@(“}
17 ! set of the centralized system robust invariant set
0 0 |
o 0
5018 5004
55001 89561 :2
DMPC scheme for multiple agents DMPC scheme for multiple agents
E h
(a) ()
- — — —
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DMPC scheme for multiple agents

o Control benchmark of a Hydro Power Plant

Nonlinear system
Power reference tracking

Profit maximization DMPC with 8 agents

Linear model
Two time scales (state decoupling)

DMPC based on game theary 4348

Food for thought...

Questions
-Do all the links have to be enabled all the time?
-How to divide profits/costs between the agents?
-Which are the most relevant agents/links?

DMPC based on game theory aa/a8

Food for thought...

o A cooperative game is defined by...
= A set of agents N={1,2,...,n}
Separated into coalitions S
= A characteristic functuon v that assigns a value to each
of the possible 2" coalitions
v(S) represents the cost to reach the common goal
without the assistance of the agents out of the coalition

f Comunication is
! not costless

DMPC based on game theary as/a8

Food for thought...

An appllcatlon of Cooperative Game Theory to Distributed
Control. J M. Maestre, D. Mufioz de la Pefia, A. Jiménez
Losada, . Algaba Duran, E. F. Camacho. Proceedlngs of the
18th IFAC World Congress.

DMPC based on game theary a6/48

Related publications

o Distributed model predictive control based on a cooperative game. J. M.
Maestre, D. Mufioz de la Pefia, acho. Optimal Control
Appl\catlons and Methods 3272, March/Aprll 2011, 153-176.

o Distributed model predictive control based on agent negotiation, J.M.
Maestrea, D. Mufioz de la Pefa, E.F. Camacho and T. Alamo. JoUrnal of
Process Control, 21 5, June 2011 685-697

o A comparative analysis of distributed MPC techniques applied to the HD-
MPC four-tank benchmark. I. Alvarado, D. Limon, D. Munoz de la Pefa,
.M. Maestre, M.A. Ridao, H. Scheu, W, Marquardt, R.R Negenborn, B. De
Schutter, F. Valencia anc{] Espmusa Journal of Process Control, 21.5,
June 2011, 800-815.

o An application of Cooperatlve Game Theory to Distributed Control.
Maestre, D. Mufioz de la Pefia, A. Jiménez Losada, E. Algaba Duran E .
Camacho. Proceedings of the 18th IFAC World Congress

DMPC based on game theary

The end

Thanks for your attention!

Questions, suggestions, comments...

DMPC based on game theary ag/a8
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2.6 Distributed model predictive control by primal decomposition (W.
Marquardt, H. Scheu)
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Motivation and Background

= Chemical & energy process plants
* large-scale, structured
+ nonlinear, stiff

AACHENERREREAHEENSITECHNIK = Process control and operations
« industrial state of the art Ryl
= decentralized (PID) control t

& supervisory control ‘ I’

= linear (centralized) MPC using step response or state space models
from plant tests)

« (selected) research activities
= nonlinear centralized MPC and RHE using first principles models
= dynamic real-time optimization (DRTO)
= hierarchical or/and decentralized optimal control (MPC, DRTO) and

m matching nonlinear ion & state

Industrial Case Study (1) Industrial Case Study (2)

Large-scale industrial process (Shell):
» How should decentralized control scheme
be designed for a range of operating

Computational results: adaptive discretization and parallelization

Discretization of control 3

S ng f « Initial guess: 25 parameters
conditions and transitions in between? « Adaptive parameterization at final solution: 129 parameters
* How fz:)st can plant be moved from « Equivalent non-adapti i ati 3072
operating point A to B?

* 2 reactors, 3 distillation columns

= rigorous model including base layer control
system: 14.000 DAEs

* 4 controls & 6 path constraints for transition,
long time horizon >> 24 hrs

— 95% (or 41 million) equations eliminated by adaptive refinement!

« Calculation time per sensitivity integration: ~ 7500 sec
« Total computation times (adaptive, serial): > 1 month
« Total computation times (adaptive, parallel, 8 CPUs): ~ 1 week

Optimal solution (offline) successful!
Savings of 50 k€ per transition!

NLP with 100 Mio embedded DAEs

Optimal transition control: |
« complexity estimate (single shooting): ‘

(Hartwich, Marquard, 2010)
.

Control of Process Plants (1) Control of Process Plants (2)

= Process plants can naturally be
decomposed into subsyst: i

interconnecting variables: flows,

i.e. rate, conc., temp., etc.

local inputs: flow rates, etc.

local outputs: measurements and

interconnecting flows

= Centralized MPC (or DRTO)
+ optimal and stable
- large-scale problem

= Decentralized MPC -
(or DRTO) Py
i
]
]
]
]

+ small-scale problems

« optimality and stability not
guaranteed

Distributed MPC (or DRTO)

+ small-scale problems

+ optimality and stability can be
guaranteed (if properly set-up)

« communication required (Scattolini, 2009)
E =
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Classic Approach — Dual Decomposition (1)

= Consider the convexV'NLP
min 3 ®ip), P =[h i)
i=1

st Y ei(p1) > 0.

i=1

= [decomposed into subproblems, with primal problems

min®i(pi) ~ Aer(pi), Vi€ 1,.., N
=Li(pi:\) \‘

= | and dual problem ’
def

N,
max h(X) = min 3" Li(pi, )
A ¥ i=1

- iterate to convergence (Lasdon, 1970)

Classic Approach — Dual Decomposition (2)

= [ Primal problems
min ®i(pi) ~ Aer(pi), Vi€ 1, N
L =L

« cost functions and constraint functions are additive
« straight forward implementation

= | Dual problem &
p max ) & min > Li(pis A)

=il

+ main challenge for the solution in dual decomposition
+ normally requires many iterations

+ convergence can be proven under convexity assumptions
(Lasdon, 1970)
©

Sensitivity-Driven Decomposition (1)

-ecomposition (2)

= Consider a more

general NLP:
neither constraints nor objective functions
of subsystems
are additive!
(Scheu and Marquardt 2011a)
e

= Corfsider a more J
min ®;(p),
leneral NLP: 14 igl ()

s.it. ¢i(p) 20, Vi

iterations

9

(Scheu and Marquardt 2011a)

10

Why Might this Decomposition Work?

Let us look at the NCO for the (centralized) NLP

=0, Condition depends only on
first order sensitivities

¢i(p) >0, Vi,
. Directly guaranteed by
> s
Ai 20, Vi, the subproblems
Aici(p) =0, Vi.

Proof of optimality requires comparison of the NCO for the
centralized problem and the decomposed problem.

Theorem on Optimality

= Assumptions on centralized NLP: il i @i(p)
« cost functions @, are strictly convex Lt e
« constraint functions c; are concave s.t. ¢i(p) >0, Vi

= Further assumptions
+ p*solves the centralized NLP and satisfies LICQ
« distributed algorithm converges and its minimizer satisfies the LICQ

= Then, the minimizer P"’], k — o0, of the distributed problem and
the minimizer p* of the centralized problem are the same, i.e.
fim plkl = p*.
o0

(Scheu and Marquardt 2011a)
~

12
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Graphical Interpretation

N
* do; "
- i
> =+ Zd pi—pi")
i=1 APi |plk)
#i
overall problem: iterative approach
ind = dotted: original problem
min® =261 + &, Pl
x
10 -
linearization point
_ 20
5 2
= = / s
3
10
0
initial guess sl x
==~ optimal solution h X X x x
-2 o 2 -2 o 2 0 o 2 4
u u 3

Linear Continuous-Time Systems (1)

= Finite-horizon linear continuous-time optimal control problem:

1oty 2 2
T3 (le@I + lu®) 1) dt,
s.t. @(t) = Ax(t) + Bu(t), te€ (to,ts],
z(to) = o,
zeX, uelU

= Transcribe into QP ~
. 1
min > Sp'Hip + fip
i=1

st. 0<Ap+b, Vi

(Scheu and Marquardt 2011a)

14

Sketch of Transcription

1. Discretize the input variables
u j(t) = ZP;,]J o)
1
2. Solve the state variables x(k) for the input parameters p and the
initial condition x, in discrete time, i.e.
z(k) =Tp+Sag
3. Transform continuous-time cost function into discrete cost
function (Pannocchia et al. 2010)
t

4-1
/rTQ.J, +ulRyudr = 3" a(m)" QC(mzm) + p(m) ROmIp(n) + 22(m)" S°(m)p(n)
fo n=0

4. Substitute x(k) in the discrete cost function

Linear Continuous-Time Systems (2)

= Transcribe into QP
1, ,
min > S'Hip + fip
i=1

st 0< Ap+b, Vi

T — <05
zc X uc ]l

= Apply sensitivity-driven decomposition and coordination:

i def 1 qk) T prizlk] | =[K] T ¢i
min®j = 51&“ Hipl 451 T

T
N N N
+ |3 ([ o mE M+ - A @i,
=1
J#E

st el =4 Tl + b >0

(Scheu and Marquardt 2011a)
©

16

Convergence Analysis

Algorithm defines a fixed point iteration method, analysis based
on the KKT NCO

] =~ [, ] )+ B

Alk+1] —Aliag 0 _AT o | [alm ALKl
-1 ; ;
B [Hu_urag *Adlag] [Z}\:l f’]
—Adiag —b

Small-gain theorem can be applied, convergence for

-1 .
1 0] [Hgag —Adiag]  [SoHI -A
L= - = <1
(Scheu and Marquardt 2011a)
©

17

Enforce Convergence

= Further modification of the cost function
1
D= + 2 oyt~ o)
= > constant L does also depend on £;:

- P

=
~Adiag -4 0 ] 4

<1

gradient-free optimi24§§f; (\K/‘eﬁ[gein,q 958; ﬁ [gltJLrberg et ai.,

TI79)

generalization of proximal minimization algorithm (Rockafellar
1976; Censor 1992)
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Sensitivity-Driven Distributed MPC (S-DMPC) lllustrative Example — Alkylation of Benzene

In closed loop, do on each horizon:

1. Measure or estimate the current system state.
2. Transcribe the optimal control problem into QP.
3. Select

= initial parameters pl%(h) and

= initial Lagrange multipliers A ().

CSTR 2

Iy
= Warm start based on preceding horizon. lash .
cparator
4. Apply the distributed QP algorithm described before. ) r\
5. Apply the calculated optimal control inputs wi,;(t) = > p; j1 ¢i(t)
to the plant. ! [o] L’/ o]
coooperative, iterative, optimal on convergence, C— » = subsystems
neighbor-to-neighbor communcation (J- Liu et al. 2010) " = inputs
B -
19 2
Sketch of Mathematical Model Sketch of Controller Design

For each subsystem: _
= Mass balances for each species and energy balance * Nonlinear process model
de = Full state feedback

Lgtm = Linear controller, based on
deci| = f,(...) linearization of nonlinear
a9t model
dgf‘ “Medium-scale” DAE system: - centralized
i «25 dlﬁerentlal_ equations . distributed
+ ~100 algebraic equations

For stirred tank r no further disturbances, but
= nonlinear reaction kinetics plant-model mismatch

For flash separator: set-point tracking

= nonlinear phase equilibrium and physical property models

N _
21 2
Results Linear Discrete-Time Systems
47 S-DMPC provides the = Finite horizon discrete-time linear optimal control problem:
z same controller BRSS! ) ) )
£ performance as a mre X, (e B + kIR + ()3,
g centralized MPC =
H st. a(k+ 1) = Az(k) + Bu(k), k=FK,... K +K-1,
o Solve 5 small QP a(k) =y,
0 500 1000 1500 2000 0IV€ O smal
time t[s] in parallel (k) € X,u(k) €U
520 v instead of 1 large QP
—setpoint | .
E s00 Cen. MPC | = Write as QP N - ,
;' 480 PR > faster computation min i;l P Hp+ fip
© 460 | possible st 0< Ap+b, Vi,
< — A%, cq i
440 { 0=A{"+b, Vi
0 500 1000 1500 2000
fmettsl = Apply sensitivity-driven coordination
(Scheu and Marquardt, 2011a) PPy 4 (Scheu & Marquardt 2011b)
N _

23 2
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Continuous-time vs. discrete-time

Case Study

Continuous-time

also possible for higher order
input representations
non-uniform control-grid
possible

system couplings are solved
during transcription

couplings could also be
included in finite number of
equality-constraints

most natural for nonlinear

Discrete-time

only piecewise constant
inputs

uniform control-grid

system couplings are
included in equality-
constraints

couplings could also be
solved by transcription

difficult to extent to nonlinear

Discrete-time linear system with unknown disturbances
a(k+1) = A o(k) + B u(k) + D d(k) w

= where Aq1 0 Ag -
A=[Ag | Ay | O
0 Ao | Asz
Bo | 0 0 @
B=D=|[0 | By | O
0 | 0 | By

9 differential state variables
3 scalar inputs
3 scalar disturbances

0 0‘5 1 15
case cases = unstable system dynamics: realti (A
(Scheu and Marquardt 2011b)
~ o ~
25 2
MPC Setup MPC Setup (cont.)

knowledge, large QP

QP

Disturbances ;) — {0-
0,

dy(k) = {g.

else

Centralized MPC — 1 monolithic controller with full system

Decentralized MPC — 3 independent controllers, small QP
Dual Decomposition — 3 low layer controller, 1 coordinator, small

S-DMPC - 3 cooperative controllers, small QPs

1, for 75 <k <150
else '

1, for 225 < k < 300
else '

0.1, for 375 < k < 450
d3(k) = {0 sks

no terminal cost

long prediction and control horizon (K = 50)

solved using Matlab standard QP solver quadprog with standard
settings

J = 30 iterations required for dual decomposition approach for
convergence

J=1and J = 2 iterations for S-DMPC -> low communication and
computing requirements

Closed-loop Trajectories

State trajectories:

= Decentralized MPC

+ bad disturbance
compensation
 almost unstable control

= Dual Decomposition
« achieves good performance
+ requires many iterations (here
30)

= S-DMPC
+ only one iteration

+ almost matches the
centralized control

Cen MPC
oM/ N Dec MPC -
—— Dual Dec.
10 .| sDMPC
(] 200 400 600
time index k
20
“o 200 400 600
time index k
10,
—\
0
o 200 400 600
time index k

Closed-loop trajectories

Input trajectories 1
Cen MPC
S0 ~—— Dec MPC
- Dual Dec.
4 ] S-DMPC
(] 200 00
time index k
05
0
0% 200 400 600
time index k
05
B
0% 200 400 600
time index k
o
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Controller Performance

= Absolute performance (quadratic performance index)

1
Pabs = 3 (Ile(IF + luk)F)
k=0

= Relative performance (Centralized controller is reference)
Pabs — Pabs, ref

D =
e Pabs, ref
= Simulation results
Method  It.  Daps  [Drer (%]
Cen. MPC 1.94e4 -
Dec. MPC  — 1.34e5 | 589
Dual Dec. 30 2.30e4 18.6
S-DMPC 1 1.95e4 0.5
S-DMPC 2 1.94e4 0

Computing Time

= Comparison of average computing time for the methods

considered
Method  It. 7 [s]
Cen. MPC  — 0.112
Dec. MPC - 3 x0.026
Dual Dec. 30 3x0.922
S-DMPC 1 3x0.030
S-DMPC 2 3 x0.059

Computing time can be reduced, in particular with multiple CPU
cores

Dual decomposition is not competitive |

Conclusions & Future Work

Conclusions
= S-DMPC: a new method for distributed optimal control
« inherits properties of centralized optimal control problem
+ S-DMPC provides optimal performance
= S-DMPC enables distributed computing
« size of QP to be solved reduced
« computing time can be reduced
Future work
guaranteed stability (e.g. infinite horizon, terminal constraint, ...)
output feedback
convergence (adaptation of QP via Wegstein extension)
nonlinear systems

Efficient implementation and integration
into dynamic real-time optimization platform of AVT.PT
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2.7 Hierarchical MPC with applications in transportation and infras-
tructure networks (B. De Schutter)

Page 51/80]




HD-MPC ICT-223854

Proceedings of the HD-MPC workshop

Bart De Schutter
Delft Center for Systems and Control

Hierarchical MPC with applications in

transportation and infrastructure networks

Milan, ltaly, August 28, 2011

M T

SEVENTH FRAMEWORK
HD-MPC PROGRAMME

@ HD-MPC for large-scale systems

e Traffic management and automated highway systems
e Multi-level multi-scale HD-MPC for AHS

@ Related work

@ Conclusions and future work

Hierarchical MPC for transportation networks — Bart De Schutter

HD-MPC for large-scale systems

Challenges in control of large-scale networks:
@ Large-scale networks

@ Distributed vs centralized control

@ Optimality <> computational efficiency/tractability

@ Global < local

@ Scalability

@ Communication requirements (bandwidth)

@ Robustness against failures

— multi-level multi-agent approach

Hierarchical MPC for transportation ks — Bart De Schutter

HD-MPC for large-scale systems /52

Multi-level multi-agent control

@ Multi-level control with intelligent control agents &
coordination

@ Time-based and space-based separation into layers

supervisor supervisor

— = - - ~

control’agent )  control agent \
el S

!

.
control agent
| N /s )

Hierarchical MPC for transportation networks — Bart De Schutter

HD-MPC for large-scale systems
Muilti-level multi-agent control

@ Multi-level control with intelligent control agents &
coordination

@ Time-based and space-based separation into layers

slow dynamics
large region

fast dynamics
small region

Hierarchical MPC for transportation networks — e Schutter

HD-MPC for large-scale systems 5/52

Multi-level control framework

@ Lowest level:

@ local control agents

o “fast” control

o small region

o operational control
@ Higher levels:

° supervisors

@ “slower” control

o larger regions

¢ operational, tactical, strategic control
@ Multi-level, multi-objective control structure
@ Coordination at and across all levels

@ Combine with model predictive control (MPC)

Hierarchical MPC for tr. art De Schutter
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HD-MPC for large-scale systems 6/52

Major problem for MPC in practice: Required computation
time for large-scale systems

@ Use distributed and/or hierarchical control approach
@ Choice of the prediction model: accuracy versus
computational complexity
@ Right optimization approach
@ parallel and/or distributed optimization
@ approximate original MPC optimization problem by another
optimization problem that can be solved efficiently

@ Include application-specific knowledge

Hierarchical MPC for transportation networks — Bart De Schutter

Traffic management and automated way system

Need for traffic control

Traffic jams & congestion
— cause time losses, extra costs, more incidents
have negative impact on economy, environment, society

Hierarchical MPC for transportation networks — Bart De Schutter

Traffic management and automated highway systems 8/52

Several ways to reduce traffic jams and to improve traffic
performance:

@ New infrastructure, missing links

@ Pricing

@ Modal shift

@ Better use of available capacity through
intelligent traffic control

Hierarchical MPC for transportation networks — Bart De Schutter

Traffic management and automated highway systems 9/52

Intelligent traffic control
Next generation traffic control and management system
@ Use in-car telematics (navigation, telecommunication,
information, ...) systems
@ Vehicle-vehicle + vehicle-roadside communication
@ Use intelligent vehicles (1Vs)
@ control system senses environment using sensors
@ enhances either performance of driver or vehicle itself
@ assisting (advisory/warning)
@ taking partial or complete control (full automation)
@ Two variants of traffic management using IVs:
@ cooperative vehicle-infrastructure systems (CVIS):
drivers are still in charge of their vehicles
o Automated Highway Systems (AHS):
autonomous vehicles organized in platoons

Hierarchical MPC for transportation e Bart De Schutter

Traffic management and automated highway systems

Automated highway systems (AHS)

@ Platoons of intelligent,
autonomous vehicles

@ Small inter-vehicle distance inside
distances + high speeds
— higher throughput

@ Larger inter-platoon distance for
safety

@ Problems:

@ transition

o psychological & legal aspects
— long-term, trucks

Traffic management and automated highway systems
Automated highway systems (AHS)

@ Integrate various in-vehicle and roadside-based traffic control
measures that support platoons of fully autonomous Vs

platoon cooperative adaptive cruise control

intelligent speed adaptation

dynamic route guidance

@ Goal: improved traffic performance (safety, throughput,
) g

environment, ) + constraints (robustness, reliability, ...

Hierarchical MPC for transportation netwo art De Schutter HD-MPC

hical MPC for transportation networks e Schutter
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Traffic management and automated highway systems

Ad

nal advantage of platoons: No capacity drop

@ Capacity drop for human drivers: If traffic flow breaks down,
then afterwards outflow from congested area is less than
previous higher flow

24 oo STOPPEDCARS
— T W W SmEET mEE W —
) o STOPFEDCARS >
DR OO OO T O R O Wi T —
STOPPED CARS >
— O e mmWEwm W Cwm S = —
» o STOPPEDCARS >

@ Reason: Human drivers tend to accelerate more slowly when
they are coming out of congestion

@ This effect plays less or even not with autonomous vehicles

Hierarchical MPC for transportation networks — Bart De Schutter

MPC for traffic control 1

Traffic flow models
Two main classes:
@ Microscopic models — individual vehicles
@ Macroscopic models — aggregated variables

Hierarchical MPC for transportation networks — Bart De Schutter

MPC for traffic control 14/52

Microscopic traffic flow models

Consider individual vehicles

Car following + lane changing + overtaking models
Different driver classes (with different parameters settings)
Simulation rather time-consuming for large networks

— less suited as prediction model for MPC

— better suited as simulation/validation model

@
@
@
@

Hierarchical MPC for transportation networks — Bart De Schutter

MPC for traffic control 15/52

Macroscopic traffic flow models
@ Work with aggregated variables (average speed, density, flow)
@ Examples:
o fluid-like models: Lighthill-Whitham-Richards (LWR), Payne,

METANET, ...
@ gas-kinetic models: Helbing model, ...

@ Trade-off between computational speed versus accuracy
— well suited as prediction model for MPC
— less suited as simulation/validation model

@ In this presentation we use macroscopic models for automated
highway systems as prediction model for MPC

Hierarchical MPC for transportation networks — Bart De Schutter

Multi-level multi-scale HD-MPC for AHS 16/52

A multi-level multi-scale HD-MPC approach for AHS —
hierarchical multi-layer control approach (~ California PATH)

Supraregional controller
Regional controller

l Area controller ] cee l Area controller ]

Regional controller

l Roadside controller ] .o -l Roadside controller ]

\

l Platoon controller ] cee l Platoon controller ]

\ 1

[ Vehicle controller ]

Vehicle controller ]'

Hierarchical MPC for transportation ne

Multi-level multi-scale HD-MPC for AHS 17/52
Controller | Unit Control Time scale
Vehicle vehicle throttle, brake, <s

steering
Platoon vehicles distances & speeds, | <'s
trajectories
Roadside | platoons lanes & speeds, s—min
split & merge
Area flows of platoons | routing > min
Regional | flows routing > 15-30 min

Hierarchical MPC for transportation networks — Bart De Schutter
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Multi-level multi-scale HD-MPC for AHS

Control strategies

@ Vehicle controllers: (adaptive) PID + logic (for safety)
@ Platoon controllers: rule-based control, hybrid control

@ Roadside, area, regional controllers: MPC
J(k)

s.t. model of system

min
u(k),...,u(k+Ne—1)

operational constraints

—  medium-sized problems due to temporal & spatial
division
—  still tractable
@ Coordination (top-down) via performance criterion J or
constraints

Hierarchical MPC for transportation networks — Bart De Schutter

18/52 i i-scale HD-MPC for AHS— Roadside co

Roadside controllers

@ Control highway or stretch of highway
@ Measurements: position, speed, lanes of platoon leaders
@ Control inputs: platoon speeds, lane allocations, on-ramp
release times
@ Objectives:
o track speed and splitting rate profiles imposed by area

controllers
@ minimize total time spent (TTS) in network and queues, ...

@ Constraints: min. headway, min. and max. speeds

Hierarchical MPC for transportation networks — Bart De Schutter

Multi-level multi-scale HD-MPC for AHS— Roadside control

Multi-level multi-scale HD-MPC for AHS— Roadside control

MPC for roadside controllers

@ Model: “big-car” model
platoon = vehicle with speed-dependent length
np—1 np
Lpiatoon.p(K) = (np = 1)So+ Y Taapiva, (k) + D Lj
i=1 i=1
with So minimum safe distance at zero speed and Tg,p ;i the
desired time gap
@ Nonlinear optimization problem:
min (TTS links + TTS queues)
subject to nonlinear model
operational constraints
@ Optimization: mixed-integer nonlinear programming
Simplify by bi-level approach in which first lane allocation is
determined (via heuristics, optimized, slower rate, .. .)

Hierarchical MPC for transportation networks — Bart De Schutter

Case study — Problem statement
Two-lane highway with an incident causing traffic

Okm 35km 4km 5km 6km
lane 1
lane 2 [ I
incident at tgqy
Scenario:

@ Demand: 2500 veh/h (mainstream) and 350 veh/h (on-ramp)
@ Incident at 4-5 km, start of simulation (10 minutes)

@ Queues at start: empty

@ Simulation period: 10 min, controller sampling time: 1 min

°

Simulation sampling time: 1's

Hierarchical MPC for transportation networks — Bart De Schutter

Multi-level multi-scale HD-MPC for AHS— Roadside control

Multi-level multi-scale HD-MPC for AHS— Roadside control

Case study — Cases

Cases considered:
@ Uncontrolled human drivers
@ Controlled human drivers (current situation)
@ Platoon approach — our approach

Hierarchical MPC for transportation networks — Bart De Schutter

Case study — Results

Case TTS Relative im-

(veh-h) provement (%)
Uncontrolled 71.80 0%
Controlled (human drivers)  63.38 10.96 %
Controlled (platoons) 57.75 18.86 %

Reduced TTS — decreased travel times, increased trips, ...

Hierarchical MPC for transportation networks — Bart De Schutter

Page 55/80]




HD-MPC ICT-223854

Proceedings of the HD-MPC workshop

Multi-level multi-scale HD-MPC for AHS— Area control

Area controllers
@ Route guidance + provide set-points for roadside controllers
@ Traffic network is represented by graph with nodes and links
@ Due to computational complexity, optimal route choice
control done via flows on links
@ Optimal route guidance: nonlinear integer optimization with
high computational requirements — intractable

Hierarchical MPC for transportation networks — Bart De Schutter

Multi-level multi-scale HD-MPC for AHS— Area control

Area controllers (contd.)
@ Fast approaches based on
@ Mixed-Integer Linear Programming (MILP)

@ transform nonlinear problem into system of linear equations
using binary variables

@ can be solved efficiently using branch-and-bound; several
efficient commercial and freeware solvers available

@ macroscopic METANET-like traffic flow model
@ for humans, splitting rates are determined by traffic
assignment
@ in AHS, splitting rates considered as controllable input
@ will result in non-convex real-valued optimization

Hierarchical MPC for transportation networks — Bart De Schutter

Multi-level multi-scale HD-MPC for AHS— Area control

MILP approach — General set-up
@ Only consider flows and queue lengths
@ Each link has maximal allowed capacity constraint

@ Piecewise constant time-varying demand - [kTs, (k + 1) T) for
=0,...,K -1 with K (simulation horizon)

D,
Do,q(1) Dod(K —2)
Do.q(0) D=1
0 T 2T, .. (K=2T,(K-1)T, KT, t

@ Main goal: assign optimal flows x; , 4(k)

Hierarchical MPC for transportation networks — Bart De Schutter

Multi-level multi-scale HD-MPC for AHS— Area control 27/52
MILP approach — Model

@ Inflow at origin:

k
S X04(K) < Dog(k) + ""%() for each d € D
€L ML, g s
@ Outflow from origin to destination:
Fod(k) = Z X1,0,d(k)

1eL3*NL, g

@ Assume constant delay x between beginning and end of link
@ Queue behavior at origin: Total demand — outflow
@ More specifically, Do q(k) — FS“(k) in time interval

[KTs, (k+1)Ts)

Go.d(k +1) = max (0, go,a(k) + (Do,a(k) — F5'g(K)) Ts)

Hierarchical MPC for transportation networks — Bart De Schutter

Multi-level multi-scale HD-MPC for AHS— Area control

Multi-level multi-scale HD-MPC for AHS— Area control

MILP approach — Equivalences
P1l: [f(x) < 0] <= [6 = 1] is true if and only if

{ f(x) < M(1-9)
f(x) = e+ (m—e)d

y < Ms
y=m
y < f(x) —m(1-9)
y = f(x) = M(1-9)

P2: y = §f(x) is equivalent to

@ f function with upper and lower bounds M and m
@ ¢ is a binary variable

@ y is a real-valued scalar variable

@ ¢ is a small tolerance (machine precision)

— transform max equations into MILP equations

Hierarchical MPC for transportation networks — Bart De Schutter

MILP approach — Transforming the queue model
Go,d(k + 1) = max (0, go,.4(k) + (Do.a(k) — F4(K))Ts)
Define
[00d(k) =1] == [do.d(k) + (Dod(k) — Fgi(k))Ts > 0]
Can be transformed into MILP equations using equivalence P1

Go,d(k + 1) = 66,4(k)( Go,a(k) + (Do.a(k) — FO4 (k) Ts)

£ (linear)

= 25,4(k)

Product between d, 4(k) and f can be transformed into system of
MILP equations using equivalence P2
Queue model — system of MILP equations

Hierarchical MPC for transportation networks — Bart De Schutter
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Multi-level multi-scale HD-MPC for AHS— Area control 30/52

MILP approach — Objective function for queues
Original objective function: time spent in queues
(linear/quadratic):

queue queue

feneth \

length

time time

ANS

time time

Approximated objective function (linear):

queue queue
length length

Hierarchical MPC for transportation networks — Bart De Schutter

Multi-level multi-scale HD-MPC for AHS— Area control

MILP approach — Objective Functions

@ Time spent in links:

Kena—1

Jinks =Y > Xioa(k)ei T2

k=0 (0,d)eOXD I€Loy

@ Time spent in queues:

Kena—1

Jaewe = DY

k=0 (0,d)eOXD

2Goalk) + doalk + D)T;

Hierarchical MPC for transportation networks — Bart De Schutter

Multi-level multi-scale HD-MPC for AHS— Area control

Multi-level multi-scale HD-MPC for AHS— Area control

MILP approach — Overall area control problem
Nonlinear optimization problem:
min (TTS links + TTS queues)
subject to
nonlinear model
operational constraints

MILP optimization problem:
min (TTS links + TS queues)
subject to
MILP model
operational constraints

Hierarchical MPC for transportation networks — Bart De Schutter

MILP approach — Case study

or—~()
Is

()

Figure: Set-up of case study network

d>

Hierarchical MPC for transportation networks — Bart De Schutter

Multi-level multi-scale HD-MPC for AHS— Area control

Multi-level multi-scale HD-MPC for AHS— Area control

MILP approach — Case study — Set-up
@ Dynamic demand case with queues only at origins of network

Period (min) | 0-10 | 10-30 | 30-40 | 40-60
Doy, (veh/h) | 5000 | 8000 | 2500 | 0
Doy, (veh/h) | 1000 | 2000 | 1000 | 0

@ Scenario:
o simulation period: 60 min, sampling time: 1 min
» capacities: C;=1900 veh/h, C;=2000veh/h, C3=1800veh/h,
C4=1600veh/h, Cs=1000veh/h, and Cs=1000veh/h
o delay factor: k1=10, k=9, k3=6, K4=T7, ks=2, and Ke=2

Hierarchical MPC for transportation networks — Bart De Schutter

MILP approach — Case study — Cases

Cases considered
@ Case A: no control
@ Case B: controlled using the MILP solution
@ Case C: controlled using the exact solution

Hierarchical MPC for transportation networks — Bart De Schutter
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Multi-level multi-scale HD-MPC for AHS— Area control

Multi-level multi-scale HD-MPC for AHS— Area control

MILP approach — Case study — Results

Case TTStor | improvement | CPU time

(veh.h) (s)
No control 1434 0% -
MILP 1081 24.6 % 0.27
SQP (5 initial points) 1067 25.6 % 90.0
SQP (50 initial points) 1064 25.8% 983
SQP (with MILP solution 1064 25.8% 1.29

as initial point)

Hierarchical MPC for transportation networks — Bart De Schutter

MILP approach — Case study — Analysis

@ Uncontrolled case: only direct/short routes are used. Length
of origin queue increases with time

@ Controlled cases: flows assigned to both short and long routes

Hierarchical MPC for transportation networks — Bart De Schutter

Multi-level multi-scale HD-MPC for AHS— Regional control

Regional controllers
@ Control collection of areas
@ Determine optimal flows of platoons between areas
@ Model: aggregate model — AHS variant of the Macroscopic
Fundamental Diagram (MFD)
@ Optimization: Nonlinear non-convex programming problem
Will be approximated using mixed-integer linear programming

Hierarchical MPC for transportation networks — Bart De Schutter

Multi-level multi-scale HD-MPC for AHS— Regional control

Macroscopic Fundamental Diagram (MFD)

@ Introduced by Geroliminis and

Daganzo q

@ Describes relation between [vehvh]
space-mean flow and density in
neighborhood-sized sections of
cities (up to 10 km?)

@ Macroscopic fundamental
diagram is independent of the
demand

Critical

Congested

Free-flow

o [vehkm]

@ Outflow of area is proportional
to space-mean flow within area

Hierarchical MPC for transportation networks — Bart De Schutter

Multi-level multi-scale HD-MPC for AHS— Regional control

Multi-level multi-scale HD-MPC for AHS— Regional control

Macroscopic Fundamental Diagram for AHS

@ Adopt modified version of MFD for AHS

@ Shape of MFD will be sharper and maximal flow will be much
higher than in MFD for human drivers
@ Represent AHS network by graph
@ links correspond to areas, with inflow gi, 2(k), outflow
Gouta(K). and density p,(k)
» nodes correspond to connections between areas,
external origins (with inflow gorig o(k)), or
external exits (with outflow Gexit,e(k))

Model for regional controllers
@ Network MFD for AHS results in static description of form

Gout,a(k) = Ma(pa(k))
@ Evolution of densities inside each area is described using
simple conservation equation:

palk 1) = 0200+ 1 (al0) — Gl

with T sample time step system and L, measure for total
length of highways and roads in area a
@ For every node v balance between inflows and outflows:

> Gouta(k)+ D> Gorigolk) =

acT, 0€Lorig,v
Z Gin,a(k) + Z Gexit.e(K)
ac0, €0t

Hierarchical MPC for transportation networks — Bart De Schutter

Hierarchical MPC for transportation networks — Bart De Schutter
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Multi-level multi-scale HD-MPC for AHS— Regional control

Multi-level multi-scale HD-MPC for AHS— Regional control

MPC for regional controllers

@ Try to keep density in each region below critical density perit,a:
N,
Jpen(k) = Zp Z [max(O,pa(k +Jj)— Pcrit,a)]2
j=1 a
@ Also minimize total time spent (TTS) by all vehicles in region:
N,
Jrrs(k) = ZDZ Lapa(k +/)T
j=1 a

@ Total objective function:
J(k) = Jpen(k) + vJrTs(k)

@ Constraints on maximal flows from one area to another,. ..

@ Results in nonlinear, non-convex optimization problem

Hierarchical MPC for transportation networks — Bart De Schutter

Mixed integer linear programming (MILP) — Two properties
@ Given function f with lower bound m and upper bound M
@ Property 1:
[f(x) < 0] < [6 = 1] is equivalent to

f(x) < M(1-96)
f(x)>e+(m—e)d

@ Property 2:
y = df(x) with § € {0,1} is equivalent to

y < Mo
y > md
y < f(x) —m(1-46)
y > f(x) — M(1-6)

Hierarchical MPC for transportation networks — Bart De Schutter

Multi-level multi-scale HD-MPC for AHS— Regional control

Transformation into MILP problem
@ Approximate MFD by Piece-Wise Affine (PWA) function

Gout.a(k) = aipa(k) + Bai if pa(k) € [pai, pajit+1]

q
[vehih]

PWA

p [veh/km]

Hierarchical MPC for transportation networks — Bart De Schutter

Multi-level multi-scale HD-MPC for AHS— Regional control aa/52

Transformation into MILP problem
@ Approximate MFD by Piece-Wise Affine (PWA) function

%ut,a(k) = “a,i/’a(k) + 0. if pa(k) € [/’3-,"7 /’21i+1]
@ Introduce binary variables §, (k) such that
0a,i(k) =1 ifand only if p,; < pa(k) < pai+1

Can be transformed into MILP equations using Property 1
@ Now we have
N,
Gout,a(K) = Y (Qaipalk) + Ba,1)0ai(K)

i=1

@ Introduce real-valued auxiliary variables y, i(k) = pa(k)da, i(k)
Can be transformed into MILP equations using Property 2

Hierarchical MPC for transportation networks — Bart De Schutter
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Multi-level multi-scale HD-MPC for AHS— Regional control

Transformation into MILP problem
@ Results in

Na
Gout,a(k) = Z agi¥a,i(k) + Ba,idai(k)
i—1

@ If we combine all equations and inequalities, we obtain a
system of mixed-integer linear inequalities

Transformation into MILP problem
@ Recall

Jpen(k) = ZZ [max(0, pa(k +j) — pc,it,é,)}2 — not linear
7 a

Jrrs(k) = ZZ Lapa(k + )T — linear!
)

@ Removing square in Jyen(k) results in PWA objective function
Can be transformed in MILP equations using Properties 1 & 2

@ Hence, we get MILP problem

@ Solution of MILP problem can be directly applied or it can be
used as good initial starting point for original nonlinear,
non-convex MPC optimization problem

Hierarchical MPC for transportation networks — Bart De Schutter
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Related work

Related work: Traffic management using MPC

©

More viable option on short term:

roadside intelligence

— traffic control center +
current infrastructure

Use conventional control measures:
variable speed limits, ramp metering,
traffic signals, lane closures, shoulder lane
openings, tidal flow, ...

o

Also include “soft” control measures:
dynamic route information, travel time
information, ...

©

Hierarchical MPC for transportation networks — Bart De Sc

Related work: Traffic management u MPC

Ongoing research

@ Address complexity issues for large-scale systems
o simplified models for urban traffic networks
@ parametrized MPC

@ Alternative objective functions + related models
o emissions: CO, NO,, CO,, HC, ...
o fuel consumption

Hierarchical MPC for transportation networks — Bart De Schutter

Related work: Traffic management using MPC

Cooperative Vehicle Infrastructure Systems
@ Intermediate step between current system and AHS

Hierarchical MPC for transportation networks — Bart De Schutter

Related work: Traffic management using MPC 50/52

Other applications

@ Electricity
networks

@ Water networks

@ Railway networks

@ Logistic systems

Hierarchical MPC for transportation netwo Bart De Schutter

Conclusions and future work 51/52

Conclusions

@ Hierarchical control framework for automated highway
systems (AHS)

@ Focus on roadside, area, and regional controllers

@ In general: nonlinear, non-convex mixed-integer optimization
problems

@ Reduce complexity of problem by selecting appropriate models
and making approximations

@ Results by bi-level, mixed-integer linear programming, or

nonlinear, non-convex real-valued optimization problems

Future work
@ extensive integrated case study & assessment
@ further development of HD-MPC approaches

@ further improvements in efficiency and performance

Conclusions and future work

Main issues and topics in HD-MPC for transportation and
infrastructure networks

@ How to obtain tractable prediction models?

@ What is the best division into subnetworks?

@ Selection of static/dynamic region boundaries?

@ How to determine subgoals so as to optimize overall goal?

@ How can existing approaches be extended to hybrid systems?
°

How can the computation/iteration time be reduced further?
(algorithms, properties, approximations, reductions, )

Schutter

Hierarchical MPC for transportation netw

Hierarchical MPC for transportation netwo art De Schutter
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2.8 Application to start-up of combined-cycle power plant (A. Tica, H.
Guéguen, D. Dumur, D. Faille, F. Davelaar)
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SUPELEC

Introduction 223

General context

o Diffusion of Combined Cycle Power Plants (CCPP)
o Efficiency
o Lower pollutant emissions

@ Production to consumption fit
o Partial load (ancillary services)
o Frequent start-up and shut-down

@ Flexibility Improvement
o Reduction of start-up and shut-down time
o Avoidance of start-up failure
o Minimization of life-time consumption

CCPP are complex plants with numerous systems and sub-systemsJ

Introduction

Objectives
@ How can MPC control help to reduce start-up time while
saving life-time consumption?

@ How can Distribution and Hierarchy help to design and
implement control?

@ How can design models (Modelica) of the plant be used for
operationnal phases?

Start-Up of Combined Cycle Power Plants — H. Guéguen

bined Cycle Power Plants 423

Schematic view

Water

HRSG HP steam

HP steam Pump

3

aur weals

N«
o) oo
HP steam - -

Fuel Hot gas LP steam

€T =G T =G

Start-Up of Combined Cycle Power Plants — H. Guéguen

Combined Cycle Power Plants 5/23
Start-up procedure
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Combined Cycle Power Plants 6/23

Modelica model
Politecnico di Milano (F Casella)

o 111 CCPP with 3 levels of pressure

o ThermoPower Library

@ can be used from low load to high load
o Simplified model:

e gas turbine
o low pressure components

o Stress model of critical components

o high and intermediate pressure superheated steam headers
e high and intermediate pressure steam turbine rotor

Start-Up of Combined Cycle Power Plants — H. Guéguen
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Case Study 723

1-1-1 CCPP with 1 level of pressure

t

Ec =

Economizer

-
W o=

Evaporator

Superheater

HPsieam £

1P steam

Start-Up of Combined Cycle Power Plants — H. Guéguen

Case Study 8/23
Increasing Load Phase

Initial state

o Turbine generators are connected to the grid

@ Gas turbine load is around 15%

o Pressure is around 60 e5 Pa

o Steam is admitted in steam turbine (Bypass valve is closed)
Aim: full load

o GT load near 100%

@ admission valve: fully open

o

Start-Up of Combined Cycle Power Plants — H. Guéguen

Case Study o/23

Local control

o Gas turbine control
o Feed water flow by drum level control loop
o Steam turbine admission valve by control wrt gas turbine load

o when GT load < 50%: open-loop control of pressure
o when GT load > 50%: fully open

o Minimize start-up time

o Constraints on stress level

@ Control variables: GTload, admission valve

o

Start-Up of Combined Cycl

ver Plants — H. Guéguen

Case Study 10/23

Modelica Model

@ ThermoPower library
o Stress model (ASME)
o Header stress: combination of mechanical and thermal stress
o Rotor stress: thermal stress
o Complexity
o ~2400 equations
o 42 state variables

o simulation time for increasing load phase: 12.4s (PC with 2
GHz CPU)

Start-Up of Combined Cycle Power Plants — H. Guéguen

Overview 123

1 pressure
level CCPP

|ThermoPower Modelica Model |

Start-Up of Combined Cycle Power Plants — H. Guéguen

Overview 123

1 pressure
level CCPP

|ThermoPower Modelica Model |

<

Pol. Di Milano
IFAC WC WeA15.5

Start-Up of Combined Cycle Power Plants — H. Guéguen
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Overview 11/23

1 pressure
level CCPP

|ThermoPower Modelica Model |

Identified interpolated .
Smooth Modelica Model

Pol. Di Milano
IFAC WC WeA15.5

Start-Up of Combined Cycle Power Plants — H. Guéguen

Smooth Model 1223

e Aim:
o elimination of discontinuities
o if clauses
o piecewise affine functions
o steam/water tables

o reduction of simulation time

o Constraint: keep the structure of the ThermoPower model
e corresponding components
o new media functions for steam and water

Start-Up of Combined Cycle Power Plants — H. Guéguen

Smooth Model 13/23

o simplification/specialization of some components (e.g. reverse
flow elimination)

@ discontinuities approximations

Start-Up of Combined Cycl ver Plants — H. Guéguen

Smooth Model 13/23

o simplification/specialization of some components (e.g. reverse
flow elimination)

@ discontinuities approximations

Discontinuity approximation

1
1+ ek«

VXGRH(X)={2 i;g ,F
L

Vx € R Hi(x) =

Start-Up of Combined Cycle Power Plants — H. Guéguen

Smooth Model 14/23
Steam/Water functions approximatiol

piecewise polynomial approximations of the Modelica.Media
functions
eg. T =f(P,h)

S
T @

P

Start-Up of Combined Cycle Power Plants — H. Guéguen

Smooth Model 15/23

Complexity

@ ~2000 equations

® 42 state variables

o simulation time for
increasing load phase: 1.4s
(PC with 2 GHz CPU)

Start-Up of Combined Cycle Power Plants — H. Guéguen
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Overview 16/23

1 pressure
level CCPP

|ThermoPower Modelica Model |

Identified interpolated .
Smooth Modelica Model

Pol. Di Milano
IFAC WC WeA15.5

Start-Up of Combined Cycle Power Plants — H. Guéguen

Overview 16/23

1 pressure
level CCPP

|ThermoPower Modelica Model I

Identified interpolated .
Smooth Modelica Model

Pol. Di Milano
IFAC WC WeA15.5
Modelica
optimization tools

Start-Up of Combined Cycle Power Plants — H. Guéguen

Overview 16/23

1 pressure
level CCPP

|ThermoPower Modelica Model |

Identified interpolated -
Smooth Modelica Model

Pol. Di Milano
IFAC WC WeA15.5 's ¢
Black Box Modelica
optimization optimization tools

Start-Up of Combined Cycle Power Plants — H. Guéguen

BB optimization 17/23

Profile optimization.

o Choice of parametrized profiles: L(t) = L,(t,q), e.g.

th tP
Lon(t,q) = Lm + (Li — Lm)m +(Lm — Li)m

o Optimization problem
to
ming, o(J), J = dt
tr
subject to the constraints

x = f(x Lp(t.q))
Lp(tr,q) > Ly — e1

[If (x(te). Lp(tr. @)l < €2
h(x(t)) <0

Start-Up of Combined Cycle Power Plants — H. Guéguen

BB optimization 18/23

Example: Loy(t, q) gains wrt ramp: time 20%; consumption 20%
]

(EEEEE RN E NN

Start-Up of Combined Cycle Power Plants — H. Guéguen

BB optimization 10/23

o Gas turbine load
o 2 hills functions; start-up time: 4790s (-20%)
o spline functions (3); start-up time: 4530s (-25%)

@ Gas turbine load and steam turbine admission valve
o spline functions (2); start-up time: 4440s (-26%)

Start-Up of Combined Cycle Power Plants — H. Guéguen
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MPC 2

o Control variable: gas turbine load
@ Every computation time (T¢)
o profile computation for the next N.T¢
o Lagrange polynomials (N)
o minimization of J = [T |[L1, (£, q) — Lo (L(to))I” dt

Start-Up of Combined Cycle Power Plants — H. Guéguen

MPC 20723

o Control variable: gas turbine load
@ Every computation time (T¢)
o profile computation for the next N.T¢
o Lagrange polynomials (N)
o minimization of J = [T |[L1, (£, ) — Lo (L(to))I” ot

Start-up time: 3400s (-43%) [T¢ = 60s, N = 5]

Start-Up of Combined Cycle Power Plants — H. Guéguen

Hierarchy and Distribution

Hierarchical MPC control

@ Robustness of control
o Introduction of variations into the model?
o Simulation on sets?

Start-Up of Combined Cycle Power Plants — H. Guéguen

Hierarchy and Distribution

Hierarchical MPC control

@ Robustness of control
o Introduction of variations into the model?
o Simulation on sets?

Distributed control

o Gradient based methods?
o Robustness?
o Range of admissible input signals

Start-Up of Combined Cycle Power Plants — H. Guéguen

Hierarchy and Distribution

Example
'Load Valve
et PhT
HRSG <y ST

Start-Up of Combined Cycle Power Plants — H. Guéguen

Hierarchy and Distribution

Example
vLoad Valve
et PhT
HRSG <y ST
vLoad Ph Ph v\/alve
GT o > ST
HRSG « “w
w

Start-Up of Combined Cycle Power Plants — H. Guéguen
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Conclusion

@ Smooth Modelica model for a 1-1-1 1 pressure level CCPP
o new components / media consistent with ThermoPower
e systematic design of the optimisation model
@ Start-up profile optimization
o reduction of start-up time
o importance of profile functions

Start-Up of Combined Cycle Power Plants — H. Guéguen

Conclusion

@ Smooth Modelica model for a 1-1-1 1 pressure level CCPP
o new components / media consistent with ThermoPower
e systematic design of the optimisation model
@ Start-up profile optimization
o reduction of start-up time
o importance of profile functions

@ Such approach for such plants is still challenging
o optimization tools / model development
o simulation tools: admissible state and feasible trajectories
o distributed approaches: steam interactions

Start-Up of Combined Cycle Power Plants — H. Guéguen
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2.9 Distributed control of irrigation canals (L. Sanchez, M.A. Ridao)
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« Irrigation Canal System
— Main Elements
— Operation of an Irrigation Canal

* Models

Laura Sanchez 2 and Miguel A. Ridao® + Control of Irrigation Canals

aINOCSASL.
b University of Seville B x

HD-MPC

07E01 ENBALSE DE g

Bt g *

- o

£ ¥
A e [CANAL camMPO DE
\ f}fg‘m%yg:fs/\ CARTAGENA
vz 4 J Taintor Gate

9 N, . -
\ ,Q,w Sluice Gates
WL

— = REACH; a 3 —
? ***! =
OFFTAKE : :
Two Taintor Gates with side weirs

HD-MPC HD-MPC

Canal Operati oncepts

* Supply oriented operation
— Upstream water supply source or inflow determines the
canal system flow schedule
— Used when the inflow is fixed by a different
organization than the canal manager

Wasteweirs

» Demand oriented operation

— Downstream water demand (offtakes) determines the
canal system flow schedule
— The inflow is determined by the canal manager

accordingly with the demand i

HD-MPC

HD-MPC

Page 69/80]




HD-MPC ICT-223854

Proceedings of the HD-MPC workshop

Control objectives

« Main objective: guarantee flows requested by users. It is necessary to
maintain the level of the canal over the off-take gate.
+ Controlled Variables:
— levels upstream or downstream the gates.
— flows through gates, mainly at the head of the canal and secondary canals.
— Water volume
« Manipulated variables:
— Gate opening
— flowis considered as a manipulated variable to control levels when a two level
controller is used.
« Disturbances:
- Off-takes flows: measured, aggregate values or predicted
- Rainfall: Measured or predicted
« Contraints:
~  Maximum and minimum levels along the canal
- Maximum and minimum flows
~ Operating levels on reservoir at the tail of the canal

HD-MPC

« Control structure adjustments (gates) are based upon information
from downstream (usually levels)

« Downstream control transfers the downstream offtake demand to the
upstream water supply source (flow at the head)

« Compatible with demand oriented operation

« Impossible with supply oriented operation ! i

HD-MPC

Control Concepts — Upstream Control

« Control structure adjustments (gates) are based upon information
from upstream (usually levels)

« Upstream control transfers the upstream water supply (or inflow)
downstream to points of diversion or to the end of the canal

« Compatible with supply oriented operation
« Inefficient with demand oriented operation

HD-MPC

Irrigation Canal Control — General |deas

+ Controlled variables: Water level, water volume or
discharge (most common, level)

» Two global strategies:

— Directly manipulate gate opening in order to control
levels

— Two level control
« Compute required gate discharges in order to control water
levels (discharges as manipulated variable)
* Manipulate gate openings to obtain the requested gate
discharges
— Local Controller (Cascade control)
— Inverting the gate discharge equation f
HD-MPC

Irrigation Canal Control — General |deas

¥

Downstream
predictive
controller

g kilk)

Gate i

i
= ‘ Gate i+l
10 S Yigr
Conveyance Sorage

9 reach reach

Example of a two level downstream controller. The first level is
a predictive controller and the lower level controller is a PID

P

HD-MPC

* Irrigation Canal System

* Models
— Saint-Venant equations
— Models of control structures
— Control models

Control of Irrigation Canals

HD-MPC
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Irrigation Canal Model - Reaches

Qlat
LQ

—

Mean Sea Level

97Q+3Af

= Mass Balance
o o

9Q + (@ +g A %_,_ ?Q‘Q‘ o Momentum Balance
4, Ton CPR, A,

ol ) T

Partial Differential Saint-Venant Equations

HD-MPC

Irrigation Canal Model - Reaches

Qiat
LQ

—

Mean Sea Level

Convective Gravitational

Inertia
acceleration Force

Friction Force

Momentum Balance

P

HD-MPC

Partial Differential Saint-Venant Equations

Saint_Venant Equations — Water Movement

Adisturbance, created in a reach,
results in two wave movements., one
wave travels with velocity V+ ¢ and one
travels with velocity V - c.

c

B Top width of wetted cross section

A, Wetted cross section surface

* Flow Regimes
— Ifc>V, subcritical flow, a change in flow results in two waves in opposite
directions
— Ifc=V, critical flow, a change in flow results in only one wave travelling
downstream
— Ifc<V, supercritical flow, a change in flow results in two waves travelling
downstream
« Subcritical flow is presented in most real irrigation canal

HD-MPC

Saint_Venant Equations — Water Movement

Bode diagram of linearized De Saint Venant equations
10"

When a wave arrives at a boundary (a

: control structure), part of the wave is
H - reflected. If a wave is initiated from one of
3 / \ the boundaries, it returns after a period
10°l
N Foqney e " LoLo L PR
i Tc+V c-V L . L
H . ctV o -V
3 Incrussain resananca
H ek,
D
" e et . ded

Influence of changes in parameter values of reach
dimension on basic frequency

Decesse i resonnee
P.J van Overloop, “Model Predictive Control on Open Pk
Water Systems”. 2006

1

HD-MPC

Structure Models — Overshot Gates

Many theoretical or empirical
formulas have been proposed, for
example:

o-c.LZam-n%

L: Wit of gate
C, : Discharge coeficient

HD-MPC

Structure Models — Undershot gates

oate Q=C,-L-uy2gh;

u: Gate opening

1

HD-MPC
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Simplified models for control

» Some approaches in bibliography

— Based on mathematical models
« Integrator-delay model (Shuurmans, TU Delft)

« Linearization of Saint-Venant equations (Litrico and Fromion,
Cemegraph)

— Identification models
« Weyer et al. (University of Melbourne)
* Rivas Perez (Havana Polytechnic University)
* Rodellar, Sepulveda (Universidad Politécnica de Catalufia)

1

HD-MPC

Simplified models for control — ID Model

R Integrator-delay

simplified model

Qu(kha) Que(k)
(k)4

= Th v

Intogral
(nanspor) (reservoir)

A(h(k +1) = h(k)) =Ty (Qy (k =k ) + 0y, (k) = Qe (k) = G (K))
T, Sampling time

a;, (k)
q,, (k) Offtakes

Schuurmans, J. (1997),
“Control of water levels in
open channels’, Ph.D.-
dissertation TUDelft

Lateral input :rain fall,...

P

HD-MPC

Identification Models |

First and third
" order non-linear
- and linear models
Cate 1 — - for a reach with
Gate2 overshot gates

Non-linear model

2

Vo (t+ D)=y, (0 + eh " (1= 1) (v, (0 - p, (1)

Linear model
Yo (t+1) =y, () +eh (t=2)+ ¢, (v, ()= p(1)

Parameters: c; ¢, t©

E. Weyer. System identification
of an open water channel.
Control Engineering Practice 9,
2001

Identification Models Il

Third order models for the wave dynamics

V() +a,§(t) +a, (1) (t) = Inflow — Outflow

Non-linear model
Y, (t+1) =ch  (t-r)+ e h " (t -7 -1+ c,h (- -2)
+ 6 (¥, (0= P ) ey (y, (-1 - py (t-1)" +
(¥ (t=2)=p,(t-2)"" +y, (1) o
(@-a)(y, () -2y, (t-1)+ y,(t-2) +
@=a)(y, () -2y,(t-1)

Conclusions:
Parameters: ¢, €, C; C,

C5 Cg @y 8, T The models can be used for

accurate simulation of the water
levels at least 7.5 h ahead of time

E. Weyer. System identification (2) The models are valid under
of an open water channel. both high and low fi diti

Control Engineering Practice 9, 0 igh and low flow conditions

2001

HD-MPC

Identification Models Il

Rivas Perez et al. System identification for control of a main irrigation canal pool.
Proceedings of the 17th World Congress

Second order Model

dy. @ dy, (1)

+(T,+T2)T+ y(t) = Ku,(t-7)

ARX higher models and Laguerre Models

Sepulveda, model
PhD Di rtati 1

control of an
de Catalufia.

P

HD-MPC

* Irrigation Canal System

* Models

Control of Irrigation Canals
— Decentralized control
— Distributed control

HD-MPC
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Irrigation Canal C | — Common solutio

* Most of the implemented techniques are based on
local PI

— EL-FLO: A PI controller with a filter applied to downstream
control.

— P+PR: A Pl applied to upstream control.

— BIVAL: The controlled variable used both upstream and
downstream measures (volume control)

y=ay, +1-a)y,,

— AVIS: P controller for radial gates (upstream control)
— AMIL:P controller for radial gates (downstream control)
— PIR: PI+ Smith predictor

Malaterre et al., "Classification of Canal Control
Algorithms", ASCE Journal of Irrigation and Drainage
Engineering. Jan./Feb. 1998, Vol. 124,

A

HD-MPC

ecentralized control

* The most used solution in practice consist of a Pl
compensator and a filter

— The compensator need at
least one pole in s=0 to
achieve zero steady-state
waterlevel error for step load
disturbances

Several PI tuning rules based
on ID model: Schuurmans,
Litrico...

Waterleves (MAHD)

The low pass filter diminish
the controller sensibility to
wave resonance

— Atypical problem is the level
error amplification upstream
(Cantoni, et al. 2007)

HD-MPC

Decoupling and Feedforwa

« Decoupling: Feedforward control considering the flow at the next
gate (u;,,) as a disturbance
— This flow is always measured (or computed) — no additional cost
— Diminish the interrelationship among coupled variables — reduction of
the amplification error problem
« Feedforward — offtake discharges
— Not always available a reliable measure.

U (8) = Ci(s)e;(s) + Fy (s)u,,(s) + Fy (5)d (5)

HD-MPC

MPC approache

« Decentralized
— “Predictive Control Applied to ASCE Canal 2". K. Akouz et al. IEEE International

Conference on Systems, Man, and Cybernetics. (1998).
“Decentralized Predictive Controller for Delivery Canals”.S. Sawadogo et al. IEEE
International Conference on Systems, Man, and Cybernetics, volume 4.(1998).
“A Simulink-Based Scheme for Simulation of Irrigation Canal Control Systems”. J.
A. Mantecon et al.. SIMULATION (2002)
— “Predictive control method for decentralized operation of irrigation canals”. M.

Gomez et al. Applied Mathematical Modelling 26 (2002)

« Centralized
- “Mulnvarlable predlcnve control of irrigation canals. Design and evaluation on a 2-
pool model”. P.O. Malaterre. International Workshop on the Regulation of Irrigation
Canals: S(ale of the Art of Research and Applications (1997).
- Instrumentat\on model identification and control of an experimental irrigation
canal’. C.A. Sepulveda. PhD. Thesis.
- ?/Iodel) Predictive Control on Open Water Systems. P.J. Overloop. PhD. Thesis.

— “Predictive Control with constraints of a multi-pool |rr|%al|on canal prototype”. O.
Begovich. Latin American Applied Research, 37 (200

— “Adaptive and non-adaptive model predictive control of an irrigation canal” J.M.
Lemos et al. Networks and heterogeneous media. Volume 4, Number 2, (2009).

HD-MPC

Athree reaches canal:

= T=1000 s: Offtake increment in Pool1.
3000 s: Offtake increment in Pool2.
+T=5000 s: Water level set point
increment in Pool3.

Wter lvel deviton, 2, (cm)

T, (min)
(@) Schuumans PIE

I H I
H v
1
o ;-
= i
v . T = |—Fooi3]
e ) o 1 o 20)
® W “Time, t (min) Time, t (min)
Sepulveda, msvumemanun model identification and control of an experimental
PhD Dissertation. L litécnica de Catalufia.
HD-MPC

istributed C ol?

« Coordination between sub-systems is needed, i.e. the avoidance of
upstream disturbance amplification in canals consisting of canal
reaches in series

* The number of reaches and gates can be high (near one hundred in
the Postrasvase Tajo-Segura): computational limitations for a
Centralized MPC

« Different section of the canal can be managed by different Control
Centers and even by different organizations.

DECISIONS TAKEN IN ONE HYDROGRAPHICAL AREA CAN INFLUENCE OTHER CLOSE AREAS
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distributed C

ol? Distributed approaches to Irrigation Canal

Coordination between sub-systems is needed, i.e. the avoidance of
upstream disturbance amplification in canals consisting of canal
reaches in series

The number of reaches and gates can be high (near one hundred in
the Postrasvase Tajo-Segura): computational limitations for a
Centralized MPC

Different section of the canal can be managed by different Control
Centers and even by different organizations.

HD-MPC

Decentralized predlcuve controller for delivery canals
S. Sawadogo, R M. Faye, P. O. Malaterre and F Mora-Camino.
of the 1998 IEEE rence on Systems, Man, and Cybernetics (San
Diego, Callornia), 1998
Optimal control of complex irrigation systems via decomposition -coordination and the use
o augmemed Lagrangian
H. El Fawal, D. Georges and G. Bornard
of the 1998 f on Systems, Man, and Cybernetics (San Diego,
California), 1998.
+ Decentralized adaptive control for a water distribution system.
rges.

ofthe 3rd IEEE Conference on Control (Glasgow, UK), 1999.

+  Cooperative Control of Water Volumes of Parallel Ponds Attached to An Open Channel Based
on Information Consensus with Minimum Diversion Water Loss.
Christophe Tricaud and YangQuan Chen

of the 2007 IEEE Conference on and Harbin,
China, 2007,
Distributed conuoner design for open water channels
Y. Li and M. Can

Proceedings of me 17|h IFAC World Congress, Korea, 2008.

Distributed Model Predictive Control of Irrigation Canals

R.R Negenborn, P.J. Overloop, T. Keviczky and B. De Shutter
NETWORKS AND HETEROGENEOUS MEDIA Vol. 4-2, 2009.
Performance Analysis of Irrigation Channels with Distributed Control.
Yuping Li and Bart De Schutter.
2010 IEEE i Conf on Control ‘Yokohama, Japan, 2010

A hierarchical distributed model predictive control approach to irrigation canals: A risk
mitigation perspective
A. Zafra-Cabeza, J.M.Maestre, Miguel A.Ridao, E.F. Camacho and L. Sanchez

PC.201.

Journal of Process Control - Specla\ Issue on HD-Mi

HD-MPC

A serial distributed MPC

HD-MPC

Control strategy: Downstream control
— Controlled variable: Downstream level
— Manipulated variables: Flows at the gates (set-point provided to the local flow
controllers)

Subsystems: A gate and the downstream reach

Each controller requires the current state of its subsystem and predictions of
the values of interconnecting variables.

The controllers perform several iterations consisting of local problem solving
and communication with neighbors.

Serial communication scheme: One agent after another performs
computations

Iterative method based on Lagrange Multipliers.

“DISTRIBUTED MODEL PREDICTIVE CONTROL OF IRRIGATION
CANALS”

R.R Negenborn, P.J. Overloop, T. Keviczky and B. De Shutter
NETWORKS AND HETEROGENEOUS MEDIA Vol. 4-2, (2009)

ID Model:

State-Space

A serial distributed MPC: Models

(k)+

Goue i

T T, T
hi(k+1) = h.(‘<)+c*‘qm.(k —ke) - ,m.(k)—c*‘%‘w..(k)

X (k +1) = Ax; (k) + B u (k) + B, d, (k) + By v, (k)

Model: ¥ (k) = Cx; (k)
‘( hi (k) —}
k -k k
x,(k):}qm“( u‘.)} d‘(k):rqexm.‘( )1
where | | Dot o i (K)
[ Gnitk=1) |
Ui (k) =gy, (k) vik) =gy () yi(k) = hy(k) : f

HD-MPC

A serial distributed MPC: Interconnecting variables

i i ge—— sy =

T wing

IGE)
o (0= KX 0 u )y k]

K; is a interconnecting
output selection matrix

Wi (K) = Wy 5 (K)

and an interconnecting constraint:
9 Wy () = v,y )

1) = G (K
W1 (6) =0, (K)

tindex of the downstream canal reach of reach i

.
j,p tindex of the upstream canal reach of reach i

P

HD-MPC

A serial distributed MPC: Control algorithm

* The controllers solve their control problems in the
following serial iterative way:

— Set the iteration counter and initialize the Lagrange multipliers
arbitrarily.
One controller after another solves its optimization problem:

min ey 3 I (W (K), Wy 1, 4))

Update the Lagrange Multipliers with the new values of the
interconnecting variables

Send and receive the multipliers from the neighbor agent
— Move on to the next iteration until a stopping condition is
satisfied

* The controllers implement the actions until the beginning

of the next control cycle i

HD-MPC
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A serial distributed MPC: Control objective

+ The deviations of water levels from provided set-points
are minimized

» The changes in the set-points provided to the local flow
controllers are minimized to reduce equipment wear

N-1

Jcat i z

2

Ak =hy )* 43 P, (U (k1) —u (K +1+1)
1=0

[ 24,01 T m,,(kﬂ 7.

.y (€)= Wy ()
Jier i :tizum‘nj(k)J ww w2 prev i j

W, 5 ()

Wour pev i (K) =

HD-MPC

A serial distributed MPC: Simulation Results

7 reaches canal

The length of the canal is almost 10 km

Maximum capacity of the head gate is 2.8m3/s

Control cycle length: 240 s.

Prediction horizon length; 31 (to take into account the total delay in the irrigation canal
Scenario: a sudden increase of 0.1m3/s at control cycle k = 30 in the water offtake of

canal reach 3 and a sudden decrease of 0.1m3/s at control cycle k = 70 in the same
canal reach.

HD-MPC

A HD-MPC approach based on risk management

E  This approach shows how risk management can be applied to optimize the
Irrigation Canal operation in order to consider process uncertainties.
B The proposed method, for the use of risk metrics, forecasts the water level of
reaches, benefits and costs associated to IC.
E  Formulation of a Hierarchical and Distributed MPC (HDMPC) to optimize the
strategic plan (mitigation actions) that optimizes the operation of the IC.
Higher Level: MPC with a risk-based strategy
Lower Level: DMPC to optimize the operation (based on the DMPC based on game

theory presented previously)

“A hierarchical distributed model predictive control approach to irrigation
canals: A risk mitigation perspective”

A. Zafra-Cabeza, J.M.Maestre, Miguel A.Ridao, E.F.Camachoand L.

Sanchez
Journal of Process Control - Vol 21-5 - Special Issue on HD-MPC (June-
2011)

HD-MPC and Risk Management

B General structure

External risk informatiol Cost of mitigation
—

Mitigation actions| Internal risks (plant data)

Lower level
DMPC

Flow head and gate
openings

Internal risks (plant data)

Lower level: DMPC approach

Downstream control, considering underflow gates and gate
position as manipulated variable

Each subsystem corresponds with a reach

The Integrator delay model has been used for the reach
moyebTent and the flow through the gates as manipulated
variables

Each agent has only partial information of the system. Agents
optimize according to a local cost function

Low communicational requirements

Cooperative solution: Cooperative algorithm from a game
theory point of view. The different agents must reach an

agreement on the value of the shared inputs

HD-MPC

Lower level: DMPC approach

- T,
1D Model: (k- 1) = h<k>+7q.m(k Kei) - qw.‘(kw s (K) = s (K)

% (k+2) = Ax,(K)+Y  Bu (K)+d,(K)

State state model: jen, DY)

u,(k) = q,, (k)
U, (k) = qg, (k)

where:

There is no coupling between the states of the agents (only coupled by the

actuations)

HD-MPC

Each agent has local information about the state and knows how it is
affected by the different inputs

Inputs are not assigned to agents
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1. Eachagent p measures its current state X,(t)
2. Agents try to submit their proposals randomly. To this end, each agent asks the neighbors

affected if they are free to evaluate a proposal.

E Agents optimize according to a local cost function

N-1 3. In order to generate its proposal, each agent p minimizes J, solving the following
i U ) = Zg(xi(k),{uj(k);jeni) optimization promem;wmm: o i o ()
k=0 » {Ujbjeny
L () ) = (6 = R Qs — R+ 3 sy ZrietL = oo+ Ziem Barty
jem o

E Control objective: Global Performance Index

M, 4. Each agent i affected by the proposal of agent p evaluates the predicted cost corresponding

< to the proposed solution. To do that, the agent calculates the difference between the cost of
> Jiai(t), {U;(®) Yjen,) the new proposal and the cost of the current accepted proposal. The difference is sent back
i=1 to agent p.

5. Once agent p receives the local cost increments from each neighbor, it can evaluate the
impact of their proposal.

B The different agents must reach an agreement on the value of the 6. The algorithm returns to Step 1 until the maximum number of proposals has been made or
shared inputs the sampling time ends.
7. The first input of each optimal sequence is applied and the procedure is repeated the next

sampling time from Step 1.

HD-MPC HD-MPC

ower level: Case study Case s wer level results

. . . B Scenario: All reaches begin with a water level of 3.0 m and there is a change of set
Benchmark: postrasvase Tajo-Segura in the south-east of Spain points for all the reaches to 3.40m (from higher level, day 150)

ELower Level

Control water management in e
canals by satisfying demands P B
Controlled variables: * ¥ I\ !
downstream levels 22 2
Manipulated variables: flow at T 2 \
the head and the position of the % a % 3 1
T e gates T 2 ;:729 —t
tht RTETE Sampling time: 1 minute T % 21l
Loroomo,  [FRAECRD Nal™. Ne=5 . p
P i) The prediction horizon for each 2
reach is the control horizon plus =
17,444km the delay of the reach ST o ™ W w0 W w0 @m0 e
:Np(i)=Nc+Ki K(minutes) Kminutes)
7 main gates 7 agent:
17 off-take gates gents Nominal case. No disturbances Measure disturbances )
7 subsystem in DMPC
AR
HD-MPC HD-MPC
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2.10 Closing (B. De Schutter)
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STREP Project 223854 HD-MPC

Bart De Schutter

Closing of the HD-MPC workshop

Milan, ltaly, August 28, 2011

o T

SEVENTH FRAMEWORK
HD-MPC PROGRAMME

Extra information

@ Website of HD-MPC project: http://www.ict-hd-mpc.eu

@ Slides of this workshop:
http://www.ict-hd-mpc.eu/index.php?page=ifac_workshop

or via HD-MPC website — Events

— Bart De Schutter

Additional HD-MPC activities at IFAC World Co

Two special sessions on HD-MPC organized by Bart De Schutter
and Alfredo Ndifiez:

MoA12 (10.00-12.00): Hierarchical and Distributed Model
Predictive Control — |. Fundamentals

MoB12 (13.30-15.30): Hierarchical and Distributed Model
Predictive Control — Il. Applications

©

©

Room: Vito

Presenters from HD-MPC and other FP7 EU projects (WIDE,
HYCON2, Embocon, MoVeS)

©

©

Closing — Bart De Schutter

Presentations in Session | — Fundamentals 47

@ Feasible-cooperation distributed model predictive control
scheme based on game theory

by Valencia, Espinosa, De Schutter, Staiikova

A dual decomposition-based optimization method with
guaranteed primal feasibility for hierarchical MPC problems
by Doan, Keviczky, De Schutter

Distributed model-predictive control driven by simultaneous
derivation of prices and resources

by Scheu and Marquardt

Distributed non-cooperative MPC with neighbor-to-neighbor
communication

by Farina and Scattolini

Adjoint-based distributed multiple shooting for large-scale systems

by Savorgnan, Kozma, Andersson, Diehl

©

©

©

©

©

Distributed model predictive control and estimation of
large-scale multi-rate systems
by Roshany-Yamchi, Negenborn, Cychowski, Connell, Delaney

Closing — Bart De Schutter

Presentations in Session Il — Applications 5/7

©

Distributed MPC for multi-zone temperature regulation with
coupled constraints
by Morosan, Bourdais, Dumur, Buisson

©

Coordination of a multiple link HVDC system using local
communications based distributed model predictive control
by Mc Namara, Negenborn, De Schutter, Lightbody

©

Hierarchical control with prioritized MPC for conflict
resolution in air traffic control

by Chaloulos, Hokayem, Lygeros

Fixed-profile load scheduling for large-scale irrigation channels
by Li and De Schutter

Decentralised MPC based on a graph partitioning approach
applied to the Barcelona drinking water network

by Ocampo-Martinez, Puig, Bovo

Cooperative distributed MPC for tracking

by Ferramosca, Limén, Rawlings, Camacho

.

©

.
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| on HD-MPC

Special issue of the Journal of Process Co

@ Special Issue on Hierarchical and

Distributed Model Predictive Control - -
@ Journal of Process Control, Volume

21, Issue 5 (2011), pages 683-816

@ Currently 2 papers in top-10 of most
downloaded papers:

o A comparative analysis of distributed
MPC techniques applied to the
HD-MPC four-tank benchmark
by Alvarado et al.

o Decentralized model predictive
control of dynamically coupled linear
systems
by Alessio et al.
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©

ADHS'12: 4th IFAC Conference on Analysis and Design of
Hybrid Systems

Eindhoven, The Netherlands, June 6-8, 2012

Topics:

¢ ¢

» modeling, simulation, analysis, verification, and control of
hybrid systems

@ applications in networked control systems, large-scale process
industries, transportation systems, energy distribution
networks, communication networks, etc.

URL: www.adhs12.org
Submission deadline: Nov. 15, 2011

©

@
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