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Executive Summary

This deliverable contains the slides of the presentations given at the final HD-MPC Workshop
which took place in Milan, Italy, on August 28, 2011 as a pre-congress workshop of the IFAC
World Congress. The aim of this workshop was to present recent advances on hierarchical and
distributed model predictive control, with the presentation of significant case studies
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Chapter 1

General information on the workshop

Title

Hierarchical and Distributed Model Predictive Control, Algorithms and Applications

Organizers

Moritz Diehl (K.U.Leuven, Belgium) and Riccardo Scattolini (Politecnico di Milano, Italy)

Date

Sunday, August 28, 2011

Location

Milan, Italy

Abstract

The workshop is aimed to present recent advances in the field of hierarchical and distributed control
and estimation for large-scale complex networked systems. The main technique underlying all the
proposed solutions is Model Predictive Control, in view of its flexibility in the definition of the control
problem and of the possibility to include in the problem formulation state and control constraints.

Two mainstreams of recent research in the field will be covered. The first one refers to distributed
optimization techniques for the solution of a centralized MPC problem. In this case, the goal is to
decompose the optimization problem into a number of smaller and more easily tractable ones. In
this framework, primal and dual approaches will be considered. The second approach relies on the
solution of a number of local control problems with information exchange among them. In this case,
the control algorithm itself, rather than its numerical solution, is distributed. Convergence properties
of the methods can be achieved by resorting to robust MPC algorithms, where the uncertainties are
related to the mutual influences among the subsystems. In the same way, it will be shown how to
construct hierarchical control methods, where the hierarchical structure stems either from a structural
decomposition of the system under control, or from its multi-level and multi time scale description.

A number of examples will be discussed to witness the potentialities of the methods. In particular,
reference will be made to spatially distributed systems, such as irrigation channels and water networks.
A complex application will deal with the control of a hydroelectric power valley, with five reservoirs,
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three river reaches and a number of additional plants (ducts, turbines, generators, dams). The design of
a hierarchical control scheme for Combined Cycle Power Plants will also be discussed, with particular
emphasis to the problems related to the start-up phase, where particular attention must be posed to the
thermal and mechanical stresses of the components, which strongly affect the life time of the plant.

Agenda

• M. Diehl, R. Scattolini
K.U.Leuven, Belgium and Politecnico di Milano, Italy
Opening

• J. Rawlings
University of Wisconsin, USA
An overview of distributed MPC

• M. Diehl, A. Kozma, C. Savorgnan
K.U.Leuven, Belgium
Hierarchical and distributed optimization algorithms

• M. Farina, B. Picasso, R. Scattolini
Politecnico di Milano, Italy
Design of hierarchical and distributed MPC control systems with robustness tools

• J.M. Maestre, D. Limón, D. Muñoz de la Peña
University of Seville, Spain
Distributed MPC based on game theory

• W. Marquardt, H. Scheu
RWTH Aachen, Germany
Distributed model predictive control by primal decomposition

• B. De Schutter
Delft University of Technology, The Netherlands
Hierarchical MPC with applications in transportation and infrastructure networks

• D. Faille, F. Davelaar
EDF, France
Hierarchical and distributed control of a hydro power valley

• A. Tica, H. Guéguen, D. Dumur, D. Faille, F. Davelaar
Supélec and EDF, France
Application to start-up of combined-cycle power plant

• L. Sánchez, M.A. Ridao
INOCSA and University of Seville, Spain
Distributed control of irrigation canals

• B. De Schutter
Delft University of Technology, The Netherlands
Closing

Page 5/80



HD-MPC ICT-223854 Proceedings of the HD-MPC workshop

Chapter 2

Slides of the presentations

2.1 Opening (M. Diehl, R. Scattolini)
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HD-MPC 

Hierarchical and Distributed Model Predictive 
Control, Algorithms and Applications 

Organizers: M. Diehl, R. Scattolini 
Sunday, August 28, 2011 

IFAC 2011 HD-MPC 

FP7 ICT Project HD-MPC, 2008-2011 

Hierarchical and Distributed Model Predictive Control – Riccardo Scattolini, Moritz Diehl 

2 

HD-MPC Hierarchical and Distributed Model Predictive Control, Algorithms and Applications 

3 Agenda - morning 

9:00 M. Diehl, R. Scattolini 
KU Leuven, Politecnico di Milano 
Opening 

9:15 J. Rawlings 
University of Winsconsin 
An overview of distributed MPC  

10:00 M. Diehl, A. Kozma, C. Savorgnan 
KU Leuven 
Hierarchical and Distributed Optimization Algorithms  

10:30 Break 

11:00 M. Farina, B. Picasso, R. Scattolini 
Politecnico di Milano 
Design of hierarchical and distributed MPC control systems with robustness tools  

11:30 D. Muñoz de la Peña, J.M. Maestre and D. Limón  
University of Seville 
Distributed MPC based on game theory  

12:00 M. Diehl 
KU Leuven 
Interactive Session on Methods of Hierarchical and Distributed MPC   

HD-MPC 

Agenda - afternoon 

Hierarchical and Distributed Model Predictive Control, Algorithms and Applications 

4 

14:00 W. Marquardt, H. Scheu  
RWTH, Aachen 
Distributed model predictive control by primal decomposition    

14:30 B. De Schutter 
TUDelft 
Hierachical MPC with applications in transportation and infrastructure networks 

15:00 D. Faille, F. Davelaar 
EDF  
Hierarchical and distributed control of a hydro power valley 

15:30 Break   

16:00 A.Tica, H Guéguen, D. Dumur, D. Faille, F Davelaar  
Supelec and EDF 
Application to start-up of Combined-Cycle Power Plant  

16:30 L. Sanchez, M. A. Ridao  
INOCSA and University of Seville 
Distributed Control of Irrigation Canals   

17:00 B. De Schutter 
TUDelft 
Closing  
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2.2 An overview of distributed MPC (J. Rawlings)
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An overview of distributed model predictive control
(MPC)

James B. Rawlings

Department of Chemical and Biological Engineering

August 28, 2011
IFAC Workshop: Hierarchical and Distributed Model Predictive Control,

Algorithms and Applications
Milano, Italy

Rawlings Distributed MPC 1 / 56

Outline

1 Overview of distributed model predictive control
Nomenclature
Stability of cooperative MPC for linear systems

2 Hierarchical control
Reducing communication

3 Distributed MPC for nonlinear systems
The challenge of nonconvexity

4 Robustness of cooperative MPC
Inherent robustness of suboptimal MPC

5 Conclusions and future outlook

Rawlings Distributed MPC 2 / 56

Electrical power distribution

Rawlings Distributed MPC 3 / 56

Chemical plant integration

Material flow

Energy flow

Rawlings Distributed MPC 4 / 56

MPC at the large scale

Decentralized Control

Most large-scale systems consist of networks of
interconnected/interacting subsystems

I Chemical plants, electrical power grids, water distribution networks, . . .

Traditional approach: Decentralized control
I Wealth of literature from the early 1970’s on improved decentralized

control a

I Well known that poor performance may result if the interconnections
are not negligible

a(Sandell Jr. et al., 1978; Šiljak, 1991; Lunze, 1992)

Rawlings Distributed MPC 5 / 56

MPC at the large scale

Centralized Control

Steady increase in available computing power has provided the
opportunity for centralized control

Coordinated control: Distributed optimization to achieve fast solution
of centralized control (Necoara et al., 2008; Cheng et al., 2007)

Most practitioners view centralized control of large, networked
systems as impractical and unrealistic

A divide and conquer strategy is essential for control of large,
networked systems (Ho, 2005)

Centralized control: A benchmark for comparing and assessing
distributed controllers

Rawlings Distributed MPC 6 / 56
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Nomenclature: consider two interacting units

Objective functions V1(u1, u2), V2(u1, u2)

and V (u1, u2) = w1V1(u1, u2) + w2V2(u1, u2)

decision variables for units u1 ∈ Ω1, u2 ∈ Ω2

Decentralized Control min
u1∈Ω1

Ṽ1(u1) min
u2∈Ω2

Ṽ2(u2)

Noncooperative Control min
u1∈Ω1

V1(u1, u2) min
u2∈Ω2

V2(u1, u2)

(Nash equilibrium)

Cooperative Control min
u1∈Ω1

V (u1, u2) min
u2∈Ω2

V (u1, u2)

(Pareto optimal)

Centralized Control min
u1,u2∈Ω1×Ω2

V (u1, u2)

(Pareto optimal)

Rawlings Distributed MPC 7 / 56

Noninteracting systems
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Moderately interacting systems
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Geometry of cooperative vs. noncooperative MPC
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Plantwide suboptimal MPC
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Early termination of optimization gives suboptimal plantwide feedback

Use suboptimal MPC theory to prove stability

Rawlings Distributed MPC 11 / 56

Plantwide suboptimal MPC

Consider closed-loop system augmented with input trajectory(
x+

u+

)
=

(
Ax + Bu
g(x ,u)

)
Function g(·) returns suboptimal choice

Stability of augmented system is established by Lyapunov function

a |(x ,u)|2 ≤ V (x ,u) ≤ b |(x ,u)|2
V (x+,u+)− V (x ,u) ≤ −c |(x , u)|2

Adding constraint establishes closed-loop stability of the origin for all
u1

|u| ≤ d |x | x ∈ Br , r > 0

Cooperative optimization satisfies these properties for plantwide
objective function V (x ,u)

1(Rawlings and Mayne, 2009, pp.418-420)
Rawlings Distributed MPC 12 / 56
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Modeling

Plantwide step response

u1

y1

u2

y2

Interaction models found by decentralized identification2

y2 x+
21 = A21x21 + B21u1

x+
11 = A11x11 + B11u1y1

u1

2Gudi and Rawlings (2006)
Rawlings Distributed MPC 13 / 56

Modeling

Consider the linearized physical model

x+ = Ax + B1u1 + B2u2 y1 = C1x , y2 = C2x

Kalman canonical form of the triple (A,Bj ,Ci )


zoc
ij

z ōc
ij

zoc̄
ij

z ōc̄
ij


+

=


Aoc

ij 0 Aocc̄
ij 0

Aōoc
ij Aōc

ij Aōcoc̄
ij Aōcc̄

ij

0 0 Aoc̄
ij 0

0 0 Aōc̄o
ij Aōc̄

ij




zoc
ij

z ōc
ij

zoc̄
ij

z ōc̄
ij

+


Boc

ij

B ōc
ij

0
0

 uj

yij =
[
C oc

ij 0 C oc̄
ij 0

] 
zoc
ij

z ōc
ij

zoc̄
ij

z ōc̄
ij

 yi =
∑

j

yij

Interaction models

Aij ← Aoc
ij Bij ← Boc

ij Cij ← C oc
ij xij ← zoc

ij

Rawlings Distributed MPC 14 / 56

Unstable modes

For unstable systems, we zero the unstable modes with terminal
constraints.

For subsystem 1

Su
11
′x11(N) = 0 Su

21
′x21(N) = 0

To ensure terminal constraint feasibility for all x , we require (A1,B1)
stabilizable

A1 =

[
A11

A21

]
B1 =

[
B11

B21

]
For output feedback, we require (A1,C1) detectable

A1 =

[
A11

A12

]
C1 =

[
C11 C12

]
Similar requirements for other subsystem

Rawlings Distributed MPC 15 / 56

Output feedback

Consider augmented system perturbed by stable estimatorx̂+

u+

e+

 =

Ax̂ + Bu + Le
g(x̂ ,u, e)

ALe


Stable estimator error implies Lyapunov function

ā |e| ≤J(e) ≤ b̄ |e|
J(e+)−J(e) ≤ −c̄ |e|

Stability of perturbed system established by Lyapunov function

W (x̂ ,u, e) = V (x̂ ,u) + J(e)

Rawlings Distributed MPC 16 / 56

Two reactors with separation and recycle

F0, xA0

Q

Fpurge

D, xAd, xBd

Hr Hm

B→ C
A→ BA→ B

B→ C

Hb

F1, xA1

Fm, xAm, xBm

Fb, xAb, xBb,T

Fr, xAr, xBr

MPC3

MPC1 MPC2

Rawlings Distributed MPC 17 / 56

Two reactors with separation and recycle

-0.25

-0.2

-0.15

-0.1

-0.05

0

0.05

0.1

0 5 10 15 20 25 30 35 40

Hm

Time

setpoint
Cent-MPC

Ncoop-MPC
Coop-MPC (1 iterate)

-0.35

-0.3

-0.25

-0.2

-0.15

-0.1

-0.05

0

0.05

0 5 10 15 20 25 30 35 40

Hb

Time

setpoint
Cent-MPC

Ncoop-MPC
Coop-MPC (1 iterate)

-0.04

-0.02

0

0.02

0.04

0 5 10 15 20 25 30 35 40

F1

Time

Cent-MPC
Ncoop-MPC

Coop-MPC (1 iterate)

-0.2

-0.1

0

0.1

0.2

0 5 10 15 20 25 30 35 40

D

Time

Cent-MPC
Ncoop-MPC

Coop-MPC (1 iterate)
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Two reactors with separation and recycle

Performance comparison

Cost (×10−2) Performance loss

Centralized MPC 1.75 0
Decentralized MPC ∞ ∞
Noncooperative MPC ∞ ∞
Cooperative MPC (1 iterate) 2.2 25.7%
Cooperative MPC (10 iterates) 1.84 5%

Rawlings Distributed MPC 19 / 56

Traditional hierarchical MPC

Coordinator

MPCMPC MPC

1s 1s5s 3s 0.5s

Setpoints

2min1min

1hr

Data

Plantwide coordinator

Coordinator

MPC MPC

Multiple dynamical time scales in plant

Data and setpoints are exchanged on chosen scale

Optimization performed at each layer

Rawlings Distributed MPC 20 / 56

Cooperative MPC data exchange

MPCMPC MPC

1s 1s5s 3s 0.5s

Data storageData storage

Read

Write

5s

MPC MPC

All data exchanged plantwide

Data exchange at each controller execution

Rawlings Distributed MPC 21 / 56

Cooperative hierarchical MPC

MPCMPC MPC

1s 1s5s 3s 0.5s

Data storage

1min

Read

Write
2min

1hr

Plantwide data storage

Data storage

MPC MPC

Optimization at MPC layer only

Only subset of data exchanged plantwide

Data exchanged at chosen time scale

Rawlings Distributed MPC 22 / 56

Motivating the hierarchical optimization
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V (u1,u2)u2

u1

u0

u∗
2

u∗
1

Any point in the triangle decreases the cost of V

Rawlings Distributed MPC 23 / 56

Hierarchical optimization

3

4

2

N3

N1 1

I1:4

Consider the optimization

min
u

V (u1, u2, u3, u4)

We group the variables into two neighborhoods

N1 = {1, 2} and N2 = {3, 4}
We solve the optimization in a distributed fashion

suboptimizations utilize the latest iterate only from variables in their
neighborhood

Rawlings Distributed MPC 24 / 56
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Hierarchical optimization

Suboptimizations

u1

u2

u0

ῡ1
1

ῡ2
1

V (u1, u2, u
0
3 , u

0
4)

u4

u3

u0

V (u0
1 , u

0
2 , u3, u4)

ῡ2
3

ῡ3
1

Rawlings Distributed MPC 25 / 56

Hierarchical optimization

Overall

u0

u1ῡ1
3

ῡ2
3

ῡ2
1

ῡ1
1

u∗

(u3, u4)

(u1, u2)
V (u1, u2, u3, u4)

Rawlings Distributed MPC 26 / 56

Two reactors with separation and recycle

Performance comparison

Cost Performance loss

Centralized 0.95 -
Cooperative (1 iterate) 1.60 68%
Ns = 1 1.633 71%
Ns = 2 1.646 73%
Ns = 5 1.661 75%
Ns = 10 1.669 76%
Ns = 25 1.670 76%
Ns = 50 1.670 76%

Rawlings Distributed MPC 27 / 56

Reducing communication

Nu
i

Ni

i

Ni

Nu
i

We define a leader in each neighborhood and a graph between the leaders

Rawlings Distributed MPC 28 / 56

Reducing communication

We define the state propagation in the following way

xi (k) =Āk
iixi (0) +

k−1∑
τ=0

∑
j∈Ni

Āk−τ−1
ii B̄ijuj(τ)

+
k−1∑
τ=0

∑
l∈L

∑
s∈I1:M\l

Ā
[k−τ−1]
is Āslαl(τ)

such that

α+
i = Āiiαi +

∑
j∈Ni

B̄ijuj

α is defined only for the leaders

Computation requires only information from within the neighborhood
and from other leaders

Rawlings Distributed MPC 29 / 56

Nonlinear Distributed MPC

We assume the model is of the form
dx1

dt
= f1(x1, x2, u1, u2)

y1 = C1x1

dx2

dt
= f2(x1, x2, u1, u2)

y2 = C2x2

Given these physical system models of the subsystems, the overall plant
model is

dx

dt
= f (x , u)

y = Cx

in which

x =

[
x1

x2

]
u =

[
u1

u2

]
f =

[
f1

f2

]
y =

[
y1

y2

]
C =

[
C1

C2

]
Rawlings Distributed MPC 30 / 56
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Nonconvexity

0
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À
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Ã

Figure: Cost contours for a two-player, nonconvex game; cost increases for the
convex combination of the two players’ optimal points.

Rawlings Distributed MPC 31 / 56

Requirements for distributed, nonlinear control

Must handle nonconvex objectives

Two criteria in design:
1 the optimizers should not rely on a central coordinator
2 the exchange of information between the subsystems and the iteration

of the subsystem optimizations should be able to terminate before
convergence without compromising closed-loop properties.

Rawlings Distributed MPC 32 / 56

Distributed nonconvex optimization

Consider the optimization

min
u

V (u) s.t. u ∈ U

We require approximate solutions to the following suboptimizations at
iterate p ≥ 0 for all i ∈ I1:M

up
i = arg min

ui∈Ui

V (ui , u
p
−i )

in which u−i = (u1, . . . , ui−1, ui+1, . . . , uM).

Define the step υp
i = up

i − up
i .

Rawlings Distributed MPC 33 / 56

Algorithm

To choose the stepsize αp
i , each suboptimizer initializes the stepsize3

with αi

V (up)− V (up
i + αp

i υ
p
i , u

p
−i ) ≥ −σαp

i ∇iV (up)′υp
i

in which σ ∈ (0, 1).

After all suboptimizers finish the backtracking process, they exchange
steps. Each suboptimizer forms a candidate step

up+1
i = up

i + wiα
p
i υ

p
i ∀i ∈ I1:M

3Armijo rule: (Bertsekas, 1999, p.230)
Rawlings Distributed MPC 34 / 56

Algorithm

Check the following inequality, which tests if V (up) is convex-like

V (up+1) ≤
∑

i∈I1:M

wiV (up
i + αp

i υ
p
i , u

p
−i ) (1)

in which
∑

i∈I1:M
wi = 1 and wi > 0 for all i ∈ I1:M .

If the condition above is not satisfied, then we find the direction with
the worst cost improvement

imax = arg max
i
{V (up

i + αp
i υ

p
i , u

p
−i )}

and eliminate this direction by setting wimax to zero and repartitioning
the remaining wi so that they sum to 1.

At worst, condition (1) is satisfied with one direction only.

Rawlings Distributed MPC 35 / 56

Distributed nonconvex optimization — Properties

Lemma (Feasibility)

Given a feasible initial condition, the iterates up are feasible for all p ≥ 0.

Lemma (Objective decrease)

The objective function decreases at every iterate, that is,
V (up+1) ≤ V (up).

Lemma (Convergence)

Every accumulation point of the sequence {up} is stationary.

Rawlings Distributed MPC 36 / 56
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Distributed nonconvex optimization

0
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4
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u2
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Figure: Nonconvex function optimized with Distributed nonconvex optimization
algorithm

Rawlings Distributed MPC 37 / 56

A nonlinear example

Consider the unstable nonlinear system

x+
1 = x2

1 + x2 + u3
1 + u2

x+
2 = x1 + x2

2 + u1 + u3
2

with initial condition (x1, x2) = (3,−3).

For this example, we use the stage cost

`1(x1, u1) =
1

2
(x ′1Q1x1 + u′1R1u1)

`2(x2, u2) =
1

2
(x ′2Q2x2 + u′2R2u2)

For the simulation we choose the parameters

Q = I R = I N = 2 p = 3 Ui = [−2.5, 2.5] ∀i ∈ I1:2
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Distributed nonlinear cooperative control
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Distributed nonlinear cooperative control
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Distributed nonlinear cooperative control
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Figure: Open-loop cost to go versus time on the closed-loop trajectory for
different numbers of iterations.
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Distributed nonlinear cooperative control
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Figure: Contours of V with N = 1 for k = 0 with (x1(0), x2(0)) = (3,−3).
Iterations of the subsystem controllers with initial condition (u0

1 , u
0
2) = (0, 0).
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Why study robustness of suboptimal MPC?

Cooperative, distributed MPC is a special case of suboptimal MPC.
Anything we establish about suboptimal MPC can be applied to
cooperative, distributed MPC (and optimal MPC!)

Suboptimal MPC has an interesting feature: a nonunique,
point-to-set control law u ∈ κN(x).

Optimal solution of nonconvex

PN(x) : min
u∈UN

VN(x ,u)

cannot be computed online for any nonlinear model. Practitioners
implement only suboptimal MPC.

We should know something about its inherent robustness properties.4

4Pannocchia et al. (2011)
Rawlings Distributed MPC 43 / 56

For suboptimal MPC; again, the basic MPC setup

The system model
x+ = f (x , u) (2)

State and input constraints

x(k) ∈ X , u(k) ∈ U for all k ∈ I≥0

Terminal constraint (and penalty)

φ(N; x ,u) ∈ Xf ⊆ X

Rawlings Distributed MPC 44 / 56

Cost function and control problem

For any state x ∈ Rn and input sequence u ∈ UN , we define

VN(x ,u) =
N−1∑
k=0

`(φ(k ; x ,u), u(k)) + Vf (φ(N; x ,u))

`(x , u) is the stage cost; Vf (x(N)) is the terminal cost

Consider the finite horizon optimal control problem

PN(x) : min
u∈UN

VN(x ,u)
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Suboptimal MPC

Rather then solving PN(x) exactly, we consider using any
(unspecified) suboptimal algorithm having the following properties.

Let u ∈ UN(x) denote the (suboptimal) control sequence for the
initial state x , and let ũ denote a warm start for the successor initial
state x+ = f (x , u(0; x)), obtained from (x ,u) by

ũ := {u(1; x), u(2; x), . . . , u(N − 1; x), u+} (3)

u+ ∈ U is any input that satisfies the invariance condition in the
terminal region

Rawlings Distributed MPC 46 / 56

Suboptimal MPC

The warm start satisfies ũ ∈ UN(x+).

The suboptimal input sequence for any given x+ ∈ XN is defined as
any u+ ∈ UN that satisfies:

u+ ∈ UN(x+) (4a)

VN(x+,u+) ≤ VN(x+, ũ) (4b)

VN(x+,u+) ≤ Vf (x+) when x+ ∈ rB (4c)

in which r is a positive scalar sufficiently small that rB ⊆ Xf .

Notice that constraint (4c) is required to hold only if x+ ∈ rB, and it
implies that |u+| → 0 as |x+| → 0.

Condition (4b) ensures that the computed suboptimal cost is no
larger than that of the warm start.
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Inherent robustness of the suboptimal controller

Consider a process disturbance d , x+ = f (x , κ(x)) + d

A measurement disturbance xm = x + e

Nominal controller with disturbance

x+ ∈ f (x , κN(xm)) + d

x+ ∈ f (x , κN(x + e)) + d

x+ ∈ Fed(x) (5)

Robust stability; is the system x+ ∈ Fed(x) input-to-state stable
considering (d , e) as the input.

Rawlings Distributed MPC 48 / 56
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Robust exponential stability of suboptimal MPC

Definition (SRES)

The origin of the closed-loop system (5) is strongly robustly exponentially
stable (SRES) on a compact set C ⊂ XN , 0 ∈ int(C), if there exist scalars
b > 0 and 0 < λ < 1 such that the following property holds: Given any
ε > 0, there exists δ > 0 such that for all sequences {d(k)} and {e(k)}
satisfying

|d(k)| ≤ δ and |e(k)| ≤ δ for all k ∈ I≥0,

and all x ∈ C, we have that

xm(k) = x(k) + e(k) ∈ XN , x(k) ∈ XN , for all k ∈ I≥0, (6a)

|φed(k; x)| ≤ bλk |x |+ ε, for all k ∈ I≥0. (6b)
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Behavior with and without disturbances

x0

Nominal System

x+ = f (x , u)

u = κN(x)

x0

System with Disturbance

x+ = f (x , u) + d

u = κN(x + e)

d is the process disturbance
e is the measurement disturbance

Rawlings Distributed MPC 50 / 56

Main results

Theorem (SRES of suboptimal MPC (Pannocchia et al., 2011))

Under standard MPC assumptions, the origin of the perturbed closed-loop
system

x+ ∈ Fed(x)

is SRES on Cρ.

This result applies also to distributed, cooperative MPC.
See also Pannocchia talk on Wednesday, 14:30, WEB07.4.
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Conclusions

Cooperative MPC theory maturinga

aStewart et al. (2010); Maestre et al. (2011)

Avoids coordination layer

Satisfies hard input constraints

Provides nominal stability for plants with even strongly interacting
subsystems

Retains closed-loop stability for early iteration termination

Converges with iteration to Pareto optimal (centralized) control

Remains stable under perturbations
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Future directions

Lots to do!

Applications in which players compete as well as cooperate

Framework(s) for decomposing large-scale systems

Modeling versus performance tradeoffs poorly understood

Unstable systems and coupled constraints difficult to handle (supply
chain)

Distributed state estimation has received less attention than control
(Farina et al., 2010a,b)

Applications exposing limitations of current approaches (De Schutter
and Scattolini, 2011; Tarau et al., 2011; Baskar et al., 2011)
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D. D. Šiljak. Decentralized Control of Complex Systems. Academic Press, London,
1991. ISBN 0-12-643430-1.

B. T. Stewart, A. N. Venkat, J. B. Rawlings, S. J. Wright, and G. Pannocchia.
Cooperative distributed model predictive control. Sys. Cont. Let., 59:460–469, 2010.

Rawlings Distributed MPC 55 / 56

Further reading III

A. N. Tarau, B. De Schutter, and J. Hellendoorn. Predictive route control for automated
baggage handling systems using mixed-integer linear programming. Transportation
Research Part C-Emerging Technologies, 19(3):424–439, JUN 2011.

Rawlings Distributed MPC 56 / 56

HD-MPC ICT-223854 Proceedings of the HD-MPC workshop

Page 18/80



HD-MPC ICT-223854 Proceedings of the HD-MPC workshop

2.3 Hierarchical and distributed optimization algorithms (M. Diehl, A.
Kozma, C. Savorgnan)

Page 19/80



Hierarchical and Distributed  
Optimization Methods 
Moritz Diehl, Attila Kozma, Carlo Savorgnan 

Optimization in Engineering Center OPTEC  
and Electrical Engineering Department ESAT 

K.U. Leuven,  Belgium 

IFAC WC Milano,  
August 28, 2011 

Overview 

 Motivation for Centralized Computation 

 Distributed Multiple Shooting Framework 

  Adjoint Based SCP Methods, from Hierarchical to Distributed 

  Software 

Motivation for Hierarchical and Distributed MPC Two Central Observations on distributed MPC 

(1) For cooperative model predictive control, we ideally want to solve  
one large centralized MPC problem. 

Reasons for distributed setup: 
 Robustness and easier reconfigurability 
 Distribution of data and model maintenance 
  Parallel computations (ideally, solution time independendent of size) 
 Hope that less communication is needed than in centralized setting 

(2) Most distributed MPC methods work iteratively and focus on parallelizing 
each iteration. But even if solution time for each iteration is independent 
of size, the convergence speed mostly deteriorates with size of the 
problem (usually linear or sublinear rates).  
 Distributed computation and communication time might be much 
higher than for one centralized solution, i.e. many processors 
together working very hard can be slower than one single one! 

(Interlude: Large Scale QP algorithms) 

Decomposition by Lagrangian dual function 

"  Convex separable QP 

"  Coupling lin. equality 

"  Two-level problem 

"  Low-level: parametric QPs 
(online act. set strat.) 

"  High-level: unconstr. 
problem with gradient avail. 
(fast gradient method) 

(Runtime Comparison in Our Initial Work) 

Solve large distributed quadratic program with 100 subsystems on 100 
CPUs, using different dual decomposition methods: 

Wall clock: 

Same problem takes 0:03 seconds on a single CPU  
when solved with a sparse IP method (OOQP from S. Wright). 

Problem of all gradient methods: no second order information,  
slow linear convergence. Better parallelize IP solver! 
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Can simulation efficiently be parallelized ? Example: Hydro Power Valley (HPV) Benchmark 

HPV consists of 8 coupled subsystems Hydro Power Valley (HPV) 

The "Simulation Box” (e.g. one reach of HPV) Centralized Optimal Control 
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Distributed Multiple Shooting yields sparse NLP Distributed Multiple Shooting 

Multiple Shooting [Bock and Plitt 1984], but in time AND SPACE 

"  discretized subsystem 
connections (polynomials) 

"  gaps between subsystems 

"  any complex topology 

Large Scale Nonlinear Program (NLP) 

Note: coupling constraints only feasible in solution! 
Simultaneous method for simulation and optimization. 

xi = output of each simulation box.  
Xi = Input, lin. combination of other outputs 

Sequential Convex Programming (SCP) 

Adjoint based SCP Method Why are inexact derivatives interesting ? 

Variant: left part of Ai = 0, get completely distributed convex subproblems! 
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Adjoint SCP: both Hierarchical and Distributed  

  Exact SCP: all coordination work done by central agent who 
solves convex subproblems. 100% hierarchical. 

  Adjoint based SCP with partially zero derivative matrices Ai :  
only most influential variables coordinated by central agent, fine 
interactions are exchanged locally. 

  Adjoint based SCP with completely zero derivative matrices Ai :  
all information is exchanged locally, convex problem 
decomposes, no central agent necessary: 100% distributed. 

   Trade-off: convergence speed vs distributed solution 

Overview 

 Motivation for Centralized Computation 

 Distributed Multiple Shooting Framework 

  Adjoint Based SCP Methods, from Hierarchical to Distributed 

  Software 

Real-time perception-based clipping of  
audio signals using convex optimization ACADO Toolkit for Nonlinear MPC 

with Joachim Ferreau and Boris Houska 

Software for Nonlinear MPC: ACADO Toolkit 

 ACADO = Automatic Control and Dynamic Optimization 

 Open source (LGPL):  www.acadotoolkit.org 
 User interface close to mathematical syntax 
 Self containedness: only need C++ compiler 
  Focus on small but fast applications 

Problem Classes in ACADO 

 Optimal Control of Dynamic Systems (ODE/DAE) 

 Nonlinear Model Predictive Control 
 Parameter Estimation and Optimum Experimental Design 
 Robust Optimization 
 Automatic Code Generation for fast MPC applications 

Example for Code Generation (“Tiny“ Scale) 

Algorithm: Gauss Newton Real-
Time Iterations 

1   control input 
10 control intervals 
4  states 

NMPC with 200 kHz possible ! 
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Real-time perception-based clipping of  
audio signals using convex optimization 
Modelica and Automatic Derivatives with 
CasADi 

with Joel Andersson 

CasADi 

 CasADi 
•  “Computer Algebra System for Automatic Differentiation” 
•  Free (LGPL) open-source symbolic tool (www.casadi.org) 
•  Extends the NLP approach for OCP to shooting methods 
•  “Write a state-of-the-art multiple shooting code in 50 lines” 

CasADi – NLP approach for Shooting Methods 

Components of CasADi 
  A computer algebra system for algebraic modeling 
  Efficient, general implementation of AD 

•  AD on sparse, matrix-valued computational graphs 
•  Forward/adjoint mode 
•  Generate new graphs for Jacobians/Hessians 

  Efficient virtual machine for function/derivative evaluation 
  Front-ends to C++, Python and Octave 
  Smart interfaces to numerical codes, e.g.: 

•  NLP solvers: IPOPT, KNITRO, (SNOPT, LiftOpt) 
•  DAE integrators: Cvodes, Idas, GSL 

•  Automatic generation of Jacobian information (for BDF) 
•  Automatic formulation of sensitivity equations (fwd/adj) 

  Symbolic model import from Modelica (via Jmodelica.org) 

CasADi/CVODES for Sensitivies of HPV subsystem 

For full problem: 
  Total: 48 time 

intervals, 8 
subsystems =    384 
simulation boxes 

  Sensitivity Integration 
of full system on full 
horizon would take 
1630 sec 

 Compare this to 1.5 
up to 2.7 sec per 
simulation box.  

0   = only forward w.r.t. controls and adjoint, fully distributed 
15 = all forward derivatives, full space exact SCP 

Summary: Large Nonlinear MPC 

  In cooperative MPC we want to solve centralized optimization problems, 
and centralized algorithms might be more efficient in both time and 
communication than distributed ones 

 Distributed Multiple Shooting (DMS) is a way to parallelize simulation and 
sensitivity generation 

  Adjoint based SCP Algorithms for DMS allow many variants between fully 
hierarchical and fully distributed algorithms 

Software (LGPL): 
  ACADO Toolkit and code generation allow fast nonlinear MPC for small 

problems (e.g. 200 kHz for 4 states) 
 CasADi allows one to easily couple integrators and  

 optimizers and setup e.g. distributed multiple shooting 
  Talk Attila Kozma, Monday, 11:20, room Vito 

Appendix 
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Large-scale separable convex optimization (T.Quoc) 

– convex, possible nonsmooth 

– closed convex, bounded 

 Problem Statement 

 Examples 
–  Large-scale LPs, QPs. 
–  Optimization in networks, graph theory. 
–  Multi-stage stochastic convex optimization. 
–  Distributed MPC, etc. 

 Aim:  
–  Design distributed algorithms to solve (CP) 

 Main idea: Combine three techniques 
–  Lagrangian dual decomposition 

–  Smoothing technique via prox-functions 

–  Excessive gap condition [Nesterov2005] 

 Optimality and feasibility gaps 
                                                         and 

 Algorithm: two variants – primal update and switching update 
–  Generate a sequence                   such that it maintains the excessive gap 

condition, while controls      and      to zero. 

Main idea and algorithms 

Advantages and performance 
 Advantages  

–  Convergence rate O(1/k) 
–  Fast (compared to dual-fast gradient method [Necoara2008], subgradient, 

augmented Lagrangian) 
–  Numerical robustness 
–  Highly distributed 

 Numerical test: Large scale separable QP problems (dense) 

       Compare three difference algorithms: primal update, switching update, dual-fast gradient  for solving 
random QPs   (left – iterations, right – CPU time) 

Coupling between subsystems 

Coupling between subsystems CasADi Code Example: Single Shooting in 30 lines 
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2.4 Design of hierarchical and distributed MPC control systems with
robustness tools (M. Farina, B. Picasso, R. Scattolini)
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Design of hierarchical and distributed MPC

Milano, August 28th, 2011

Design of hierarchical and distributed MPC 
control systems with robustness tools

Marcello Farina, Bruno Picasso, Riccardo Scattolini
DEI-Politecnico di MilanoDEI-Politecnico di Milano

HD-MPC

Pre-Congress Workshop - IFAC 2011 Milano 

2Outline

1. Introduction

2 Hierarchical MPC systems2. Hierarchical MPC systems
• Basic architecture
• Extensions (performance & reconfigurability)
• Conclusions

3 Distributed MPC systems3. Distributed MPC systems
• A “tube-based”, non cooperative DMPC algorithm
• Conclusions

4. Concluding remark
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3

Motivations for distributed / hierarchical control:

Motivations
Motivations for distributed / hierarchical control:

• Reduce the computational load Control Control

• Reduce the communication load
• Improve the robustness with respect to failures 

in the transmission of information Subsys.1 Subsys.2

unit 1 unit 2

in the transmission of information 
in the central control unit

• Improve the modularity and the flexibility of the system Control unit

• Consider different goals at different time scales (Real-
Time Optimization)

• Synchronize subsystems working at different time scales
Subsystem 1

Synchronize subsystems working at different time scales

There has hence been a long time interest for decentralized / 
di t ib t d [Silj k ‘78 ‘91] d hi hi l t l [M i ‘70

Subsystem 2

distributed [Siljak ‘78… ‘91] and hierarchical control [Mesarovic ‘70, 
Findeisen ‘80, …] for large-scale and complex systems. 
Recent contributions include: [Engell ‘07, Tatjewski ‘08 and

HD-MPCPre-Congress Workshop - IFAC 2011 Milano 

Scattolini ‘09 - “An overview on distributed and hierarchical MPC”]).

4The proposed approach

Control unit

Control
unit 1

Control
unit 2

Subsystem 1

unit 1 unit 2

Subsystem 2

Subsystem 1 Subsystem 2

Subsystem 2

In both distributed and hierarchical structuresIn both distributed and hierarchical structures,
there are two possible approaches to the control synthesis
allowing to deal with the interacting subsystems:

1. Game theory
2. Robust control

HD-MPCPre-Congress Workshop - IFAC 2011 Milano 

2. Robust control
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• Conclusions

3 Distributed MPC systems3. Distributed MPC systems
• A “tube-based”, non cooperative DMPC algorithm
• Conclusions
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6Hierarchical MPC systems: basic architecture
m

( ) (i)˜(1) xh+1 = Axh+
mP
i=1

b(i)u(i)h

x ∈ X
(i) (i)

x

Actuator 1

˜(m)

ũ(1)

…

Process

u(i) ∈ U(i)

Low level systems:

Actuator m
ũ(m)

(discrete-time constrained
linear system)

y
actuators (I/O con-

strained linear systems)

Control goal: state feedback

ζ
(i)
h+1 = F(i)ζ(i)h +G(i)ν(i)h
ũ(i)h = H(i)ζ(i)h Control goal: state-feedback

stabilizationζ(i) ∈ Z(i)
ν(i) ∈ V(i)

Typical structure in many control applications:
• Process control [Skogestadt ‘00]

HD-MPCPre-Congress Workshop - IFAC 2011 Milano 

• Automotive [Brahma et al. ‘00]
• Production planning [Golenko-Ginzburg et al. ‘93]
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7Hierarchical MPC systems: basic architecture
A two-layer hierarchical (cascade) control system:

ν(1) xh+1 = Axh+
mP
b(i)u(i)hũ(1)u(1)

A two-layer hierarchical (cascade) control system:

Act. 1R1
ν( )

ζ(1)

xh+1 = Axh+
P
i=1

b( )uh

x ∈ X
u(i) ∈ U(i)

x

MPC
u

……

u

Act. mRm
ν(m)

…

Process

u ∈ U

High level controller
(sampled model of
the process slow

ũ(m)

…

u(m)

ζ(m)

Low level systems: controlled

the process, slow 
time scale k)

Low level systems: controlled
actuators, fast time scale h

Sampler

To be designed: MPC (high-level controller) and 
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Ri’s (low-level regulators)

8

ũ(1)u(1)

Hierarchical MPC systems: the robust control approach

x

Robust MPC
χk+1 = Aχk+ B1uk+ B2wk

u( )u( )
xh+1 = Axh+

mP
i=1

b(i)u(i)h

x ∈ X, u(i) ∈ U(i)

Sampled model

χ ∈ X , u(i) ∈ U(i)
Low level systems
(controlled actuators)

ũ(m)u(m)

Process

x ∈ X, u ∈ U

of the process
(slow time scale) w(i) = ũ(i) − u(i)

Discrepancy between

Sampler

p y
the required control and
the effective action
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9

ũ(1)u(1)

Hierarchical MPC systems: the robust control approach

x

Robust MPC
χk+1 = Aχk+ B1uk+ B2wk

u( )u( )
xh+1 = Axh+

mP
i=1

b(i)u(i)h

x ∈ X, u(i) ∈ U(i)

Sampled model

χ ∈ X , u(i) ∈ U(i)
Low level systems
(controlled actuators)

ũ(m)u(m)

Process

x ∈ X, u ∈ U

of the process
(slow time scale) w(i) = ũ(i) − u(i)

Discrepancy between

Sampler

p y
the required control and
the effective action

kwk ≤ γdkzk
due to the low The scheme is 

i l t t ll
w z

Equivalent
disturbance

level systems’s 
dynamics

Attenuation level

equivalent to a small-
gain control schemeProcess

u χ
Robust MPC

HD-MPC

γ, with γ · γd < 1
Attenuation level Robust MPC
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10High level robust MPC design

T ibl iTwo possible scenarios:

1 The high level unit can simulate the low level actuators
⇒

1. The high level unit can simulate the low level actuators
the disturbance w is predicted (γd is locally available)

2. The disturbance w is not predictable by the high level unit
but γd is globally available

Main result
I b th b t MPC t ll i d i d th tIn both cases, a robust MPC controller is designed so that:

• The high level controller is robustly stabilizing in the slow time scale k ;• The high level controller is robustly stabilizing in the slow time scale k ;

• Convergence to the equilibrium for the overall control system

HD-MPCPre-Congress Workshop - IFAC 2011 Milano 

is guaranteed in the fast time scale h .

11

Scenario 1 (w is predictable): Scenario 2 (only γd is known):
High level robust MPC design
Scenario 1 (w is predictable): Scenario 2 (only γd is known):
min
F

J(χ,F , Np) min
F
max
D

J(χ,F ,D, Np)

subject to the dynamics, the constraints

+ a suitable auxiliary law

where

subject to the dynamics, the constraints

+ a suitable auxiliary law

where

and

J =
PNp−1
j=0 (kzk+jk2Qz−γ2kwk+jk2Qw)+Vf(χk+Np)

and

F =
h
uk uk+1 · · · uk+Nc−1

i
is a sequence of control values

D =
h
wk wk+1 · · · wk+Np−1

i
is a sequence of disturbance valuess a seque ce o co t o a ues q

F =
h
uk uk+1(·) · · · uk+Nc−1(·)

i
is a sequence of control policies

F t th hi h d l l l
Features: the high and low level
designs are decoupled but γd and 

Features: the high and low level
designs are only partially decoupled
but a global γd is not needed and 

HD-MPCPre-Congress Workshop - IFAC 2011 Milano 

des g s a e decoup ed bu γd a d
minmax optimization are needed

g γd
the optimization is less demanding

12

P f t f t ki f th l l l t i f

Comments
• Perfect reference tracking of the low level systems – i.e., frequency

decoupling between the inner and outer loops – is not assumed: the 
low level dynamics is fully taken into account y y

• Even in the absence of perfect frequency decoupling, the robust
control approach allows one to largely decouple the control designscontrol approach allows one to largely decouple the control designs
at the high and at the low level

HD-MPCPre-Congress Workshop - IFAC 2011 Milano 
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P f t f t ki f th l l l t i f

Comments
• Perfect reference tracking of the low level systems – i.e., frequency

decoupling between the inner and outer loops – is not assumed: the 
low level dynamics is fully taken into account y y

• Even in the absence of perfect frequency decoupling, the robust
control approach allows one to largely decouple the control designscontrol approach allows one to largely decouple the control designs
at the high and at the low level

Robust high-level MPC 
vs 

non Robust algorithm

Example:

non-Robust algorithm
(neglected low level dynamics)

HD-MPCPre-Congress Workshop - IFAC 2011 Milano 

14Extensions: performance, control allocation problem

Robust MPC xh+1 = Axh+

+
mP (i)b(i) (i)

ũ(1)u(1)

xχk+1 = Aχk+ B1αkuk+
+ B2αkwk

( ) ( )

+
P
i=1

α
( )
h b(i)u( )h

x ∈ X, u(i) ∈ U(i)
α(i) ∈ {0 1}

…

˜(m)

…

(m)

…

Sampled model

χ ∈ X , u(i) ∈ U(i)
α ∈ {0,1}m Process

α(i) ∈ {0,1}

Low level systems

u(m)u(m)

Sampler

Sampled model
(slow time scale)

Low level systems
(controlled actuators) Over-actuated

Related works e g :Related works, e.g.:
• Load sharing [Eitelberg ‘99]
• Fault tolerance [Mhaskar et al. ‘05 (with MPC), Casavola et al. ’07]

HD-MPCPre-Congress Workshop - IFAC 2011 Milano 

• …

15Extensions: performance, control allocation problem
α Switch

Robust MPC xh+1 = Axh+

+
mP (i)b(i) (i)

Switch

ũ(1)u(1)

xχk+1 = Aχk+ B1αkuk+
+ B2αkwk

( ) ( )

+
P
i=1

α
( )
h b(i)u( )h

x ∈ X, u(i) ∈ U(i)
α(i) ∈ {0 1}

…

˜(m)

…

(m)

…

Sampled model

χ ∈ X , u(i) ∈ U(i)
α ∈ {0,1}m Process

α(i) ∈ {0,1}

Low level systems

u(m)u(m)

Sampler

Sampled model
(slow time scale)

Low level systems
(controlled actuators) Over-actuated

kwk ≤ γdkzk
due to the low level
systems’s dynamics w z

Equivalent
disturbance

Features:
• Control load can be balancedsystems s dynamics

Attenuation level

Process
u, α χ

Robust MPC

• The optimization is a Mixed
Integer Quadratic Programming
problem because of the presence

HD-MPCPre-Congress Workshop - IFAC 2011 Milano 

γ, with γ · γd < 1
Attenuation level Robust MPC problem because of the presence

of the boolean variable α

16Extensions: performance, high level switching controller
B

xh+1 = Axh+
mP
i 1

b(i)u
(i)
hR-MPC, γ1
yũ

+
i=1

h

yh = c(xh)

x ∈ X, u(i) ∈ U(i)
Switch

u

L l l t

…γ2

…

R-MPC,
-
yo

Process (Wiener model)
Low level systems
(controlled actuators)γS

…

R-MPC,
x

Sampler
x

Performance vs robustness :

Robustness
decrease

• Less robustness (a larger γi) enforces a faster response
of the low level systems, thus it ensures better performance

γ1 < γ2 < · · · < γS

Performance
improvement

• Feasibility (i.e., the small-gain condition) is guaranteed: if the
actuators are not fast enough, an alert signal B is sent to the
high level which switches to a more robust (smaller γi) mode

HD-MPCPre-Congress Workshop - IFAC 2011 Milano 

A hybrid system: stability is ensured by a sufficiently large average dwell-time

17Extensions: reconfigurability (plug & play [Stoustrup ‘09])
m+1u(1) ũ(1)

x
Robust MPC

(high level control unit) Low level systems

xh+1 = Axh+
m+1P
i=1

b(i)u
(i)
h

x ∈ X, u(i) ∈ U(i)

u(1)

u(m)

u(1)

ũ(m)Low level systems
(controlled actuators)

Process

u

u(m+1)

u

ũ(m+1)

Sampler
Addition

HD-MPCPre-Congress Workshop - IFAC 2011 Milano 
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m+1u(1) ũ(1)

Extensions: reconfigurability (plug & play [Stoustrup ‘09])

x
Robust MPC

(high level control unit) Low level systems

xh+1 = Axh+
m+1P
i=1

b(i)u
(i)
h

x ∈ X, u(i) ∈ U(i)

u(1)

u(m)

u(1)

ũ(m)Low level systems
(controlled actuators)

Process

u

u(m+1)

u

ũ(m+1)

Sampler
Addition

Robust MPC xh+1 = Axh+
mP
i 1

b(i)u(i)h
u(1) ũ(1)

x
Robust MPC

(high level control unit) Low level systems
(controlled actuators)

+
i=1

h

x ∈ X, u(i) ∈ U(i)
u(m) ũ(m)

(controlled actuators)

ProcessReplacement

HD-MPC

Sampler

Pre-Congress Workshop - IFAC 2011 Milano 
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19Extensions: reconfigurability (plug & play)
Should one completely re-design the high level control unit ?Should one completely re-design the high level control unit ?

In the MPC approach reconfigurability is achieved
if the auxiliary law can be kept unchanged

Main idea: kwk ≤ γdkzkMain idea:

• The gain γd is an abstraction of the low level system
• Different low level configurations characterized by

due to the low level
systems’s dynamics

Equivalentg y
the same (or similar) γd can be considered

• Actuators can be substituted/added provided that
γd does not change Otherwise a new “attenuation

w z
disturbance

Process
γd does not change. Otherwise a new attenuation 
constraint” is added to the MPC problem

• In both cases (actuator substitution and addition) the
auxiliary control law can be left (essentially) unchanged Attenuation level

u χ

Robust MPC

auxiliary control law can be left (essentially) unchanged
Thus, reconfigurability properties are achieved !

Remark: the resulting control system switches among different stable

γ, with γ · γd < 1

HD-MPC

Remark: the resulting control system switches among different stable 
configurations. Stability is preserved if proper dwell-time is guaranteed
Pre-Congress Workshop - IFAC 2011 Milano 

Example
Process (basic configuration):

20

Process (basic configuration):

xf (h+ 1) =

⎡⎣ 0.4 0 0
0 −0.8 0
0 0 1 1

⎤⎦ xf (h) +
⎡⎣ 1
0
1

⎤⎦ uf1 (h) +
⎡⎣ 3
1
0

⎤⎦ uf2 (h).⎣
0 0 1.1

⎦ ⎣
1

⎦ ⎣
0

⎦
Actuators (low level system gain): γd = 0.161.

Actuator addition: At time h = 4, a new actuator is added and γd = 0.963 >
( )0.161 (the supplementary “attenuation constraint” is needed in MPC).

State trajectories: basic configuration (dots)State trajectories: basic configuration (dots)
and with the added actuator (dashed line).

Control reference vs effective control action

HD-MPC

Time: h=4
Pre-Congress Workshop - IFAC 2011 Milano 

Actuator replacement: At time h = 12 the second actuator is replaced with

21Example
Actuator replacement: At time h = 12, the second actuator is replaced with
one guaranteeing a better attenuation level (γnewd = 0.118 < 0.161).

S

Time: h=12 Time: h=12 Time: h=12

State trajectories: 
basic configuration, with the replaced actuator Control reference
and added actuator vs

HD-MPC

and added actuator vs
effective control action

Pre-Congress Workshop - IFAC 2011 Milano 

22Conclusions
A robust MPC approach has been presented for the design ofA robust MPC approach has been presented for the design of
two-layer hierarchical control systems

• For constrained linear discrete-time systems

• The robust control approach allows to :

largely decouple the design at the two levels

to abstract subsystems with their gain and thus to obtain versatility resulting in numerous

extensions (reconfigurability, control allocation problems, switching control for

P

performance improvements)

• Convergence results have been established

Papers:
• B. Picasso, D. De Vito, R. Scattolini, P. Colaneri. An MPC approach to the design of two layer 
hierarchical control systems. Automatica, Vol.46(5), pp. 823-831, 2010.
• B. Picasso, C. Romani, R. Scattolini. Tracking control of Wiener models with hierarchical and 
switching MPC. Submitted.
• D. De Vito, B. Picasso, R. Scattolini. On the design of reconfigurable two layer 
hi hi l l i h MPC I P di f h A i C l

HD-MPC

hierarchical control systems with MPC. In Proceedings of the American Control 
Conference, Baltimore, pp. 4704-4712, 2010.
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23Outline

1. Introduction

2 Hierarchical MPC systems2. Hierarchical MPC systems
• Basic architecture
• Extensions (performance & reconfigurability)
• Conclusions

3 Distributed MPC systems3. Distributed MPC systems
• A “tube-based”, non cooperative DMPC algorithm
• Conclusions

4. Concluding remark

HD-MPCPre-Congress Workshop - IFAC 2011 Milano 

24Distributed MPC
Control Control

Subsys 1 Subsys 2

Control
unit 1

Control
unit 2

Distributed-MPC methods can be

Subsys.1 Subsys.2

classified [Scattolini ‘09] according to:

– Communication protocolsCommunication protocols
• Neighbor-to-neighbor
• All-to-all

– Number of iteration to achieve a– Number of iteration to achieve a 
solution (at each step)

• Iterative algorithms
• Non-iterative algorithms• Non-iterative algorithms

– Cost function to be optimized
• Cooperative algorithms (common goal)
• Non cooperative algorithms

HD-MPCPre-Congress Workshop - IFAC 2011 Milano 

• Non-cooperative algorithms
(temperature control, ecc…)
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Control Control

Distributed MPC

Subsys 1 Subsys 2

Control
unit 1

Control
unit 2

Distributed-MPC methods can be

Subsys.1 Subsys.2

Most common approaches:classified [Scattolini ‘09] according to:

– Communication protocols

Most common approaches:
• Decentralized MPC: 

[Magni-Scattolini ‘06, Raimondo et al.
‘07] (ISS ti ) [Al i BCommunication protocols

• Neighbor-to-neighbor
• All-to-all

– Number of iteration to achieve a

‘07] (ISS perspective) [Alessio-Bempo-
rad ‘08], [Barcelli-Bemporad ‘09]

• Distributed MPC:
[Dunbar ‘07] (non-iterative non cooperative– Number of iteration to achieve a 

solution (at each step)
• Iterative algorithms
• Non-iterative algorithms

[Dunbar 07] (non iterative, non cooperative,  
neighbor-to-neighbor communication);
[Liu et al. ‘09-‘10] (iterative, cooperative);
[Venkat et al. ‘08, Stewart et al.‘10]
(possibly iterative cooperative output feedback MPC• Non-iterative algorithms

– Cost function to be optimized
• Cooperative algorithms (common goal)
• Non cooperative algorithms

(possibly iterative, cooperative, output feedback MPC
with all-to-all communication);
[Maestre,’09]: (game theory-based, cooperative,
iterative approach for linear systems).

HD-MPCPre-Congress Workshop - IFAC 2011 Milano 

• Non-cooperative algorithms
(temperature control, ecc…)

26Motivation

The large-scale system evolves according to the 
centralized dynamical model:y

constrained state

constrained input

central station

constrained input

HD-MPCPre-Congress Workshop - IFAC 2011 Milano 

27Motivation

The large-scale system evolves according to the 
centralized dynamical model:y

constrained state

constrained input

central station

constrained input
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28Motivation

The large-scale system evolves according to the 
centralized dynamical model:y

constrained state

constrained input

central station

constrained input

HD-MPCPre-Congress Workshop - IFAC 2011 Milano 

29Motivation

The large-scale system evolves according to the 
centralized dynamical model:y

constrained state

constrained input

central station

constrained input

Aims:
• develop a control algorithm for the process
• use model predictive control for optimality and to handle constraints
• solve in parallel 4 small scale optimization problems instead of one large
problem

HD-MPC

• exploit a neighbor-to-neighbor communication protocol

Pre-Congress Workshop - IFAC 2011 Milano 

30Assumptions

We partition the system into a graph of
interconnected M (here M=4) low-order

d l

1 2

models.

34 34

HD-MPCPre-Congress Workshop - IFAC 2011 Milano 
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31Assumptions

We partition the system into a graph of
interconnected M (here M=4) low-order

d l

1 2

models.

34 0 034
0 0

00
0
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Large scale system: x 1 = Ax +Bu

DPC: the robust control approach
Large-scale system: xt+1 = Axt +But

Graph of interconnected M low-order subsystems:

l l ilocal state constraints

local input constraints

HD-MPCPre-Congress Workshop - IFAC 2011 Milano 
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Large scale system: x 1 = Ax +Bu

DPC: the robust control approach
Large-scale system: xt+1 = Axt +But

Graph of interconnected M low-order subsystems:

l l ilocal state constraints

local input constraints

Each subsystem i
• has a reference trajectory and guarantees that

• transmits, at each time, the nominal trajectory to its neghbors

HD-MPCPre-Congress Workshop - IFAC 2011 Milano 

34

Large scale system: x 1 = Ax +Bu

DPC: the robust control approach
Large-scale system: xt+1 = Axt +But

Graph of interconnected M low-order subsystems:

l l ilocal state constraints

local input constraints

Each subsystem i
• has a reference trajectory and guarantees that

• transmits, at each time, the nominal trajectory to its neghbors

constrained disturbance

HD-MPCPre-Congress Workshop - IFAC 2011 Milano 
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DPC relies on the solution of M robust MPC problems (i DPC) with the tube based approach

DPC: the robust control approach
DPC relies on the solution of M robust MPC problems (i-DPC) with the tube-based approach
presented in [Mayne, Seron, Raković, Automatica, 2005]

i-th “perturbed” model:i th perturbed  model:

i-th nominal model:

Assign

D fiDefine

If (Aii+Bi Kaux
i) is as. stable, there exists a RPI (robust positively invariant) set Zi for all i. Therefore

HD-MPCPre-Congress Workshop - IFAC 2011 Milano 

36

MAIN UNDERLYING IDEA

DPC: the robust control approach

MAIN UNDERLYING IDEA

Guarantee that Guaranteed by suitableGuarantee that

h

Guaranteed by suitable
constraints in the 
optimization problem

where

At time t: 3

3.5

4

3

3.5

4

3

3.5

4

1.5

2

2.5

x 2

1

1.5

2

2.5

x 2

1.5

2

2.5

x 2

3 2 5 2 1 5 1 0 5 0 0 5 1 1 5
-0.5

0

0.5

1

3 2 5 2 1 5 1 0 5 0 0 5 1 1 5
-0.5

0

0.5

1

3 2 5 2 1 5 1 0 5 0 0 5 1 1 5
-0.5

0

0.5

1

By induction:

-3 -2.5 -2 -1.5 -1 -0.5 0 0.5 1 1.5
x1

-3 -2.5 -2 -1.5 -1 -0.5 0 0.5 1 1.5
x1

-3 -2.5 -2 -1.5 -1 -0.5 0 0.5 1 1.5
x1

HD-MPCPre-Congress Workshop - IFAC 2011 Milano 

HD-MPC ICT-223854 Proceedings of the HD-MPC workshop

Page 32/80



37DPC: the robust control approach

:

:

:

HD-MPCPre-Congress Workshop - IFAC 2011 Milano 

38Online phase

• Solve M tube-based robust MPC problems (i-DPC), with dynamic constraints:

• Coupling variables are the reference trajectories (known in all the prediction horizon k=t,…,t+N-1)

• Further constraint on the solution of the i-DPC:

• Solution:

input to the real system:input to the real system:

reference trajectory update:

HD-MPCPre-Congress Workshop - IFAC 2011 Milano 

39Online phase
The optimization problem at time t

Given - the ref. trajectory of i: 

The optimization problem at time t

- the ref. trajectories of its neighbors:

min.

subject to

local state constraint

input constraint

terminal constraint

coupled state constraint

HD-MPC

terminal constraint

Pre-Congress Workshop - IFAC 2011 Milano 

40Offline phase

1. Assign suitable decentralized stabilizing auxiliary control law.

2 Define suitable i DPC optimization problem cost functions2. Define suitable i-DPC optimization problem cost functions.

3. Define the sets ,     ,     .Ei EiZi
4. Initialize the reference trajectory and the set a suitable value for the prediction

horizon N.

HD-MPCPre-Congress Workshop - IFAC 2011 Milano 
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Example: Chemical plant – reactor/separator process [Liu et al 2010 ]

Example
Example: Chemical plant – reactor/separator process [Liu et al. 2010 ]

The model is developed under the assumption of hydraulic equilibrium

States for each subsystem:
• xAi : Concentration of compound A Inputs for each subsystem:

•
•

xAi
xBi
Ti

p
: Concentration of compound B
: Temperature of subsystem i

We use the linearized model around a given equilibrium point

• Qi :Heat

HD-MPC

We use the linearized model around a given equilibrium point

Pre-Congress Workshop - IFAC 2011 Milano 
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Example: Chemical plant – reactor/separator process

Example

We study the response of linearized model to a perturbation of magnitude⎡
∆

⎤ ⎡
0 05

⎤
Example: Chemical plant – reactor/separator process

⎡⎣ ∆xAi∆xBi
∆Ti

⎤⎦ =
⎡⎣ −0.05
−0.05
−5

⎤⎦⎣ ⎦ ⎣ ⎦
Input constraints: 0 ≤ Qi ≤ 50 −10 ≤ ∆Qi ≤ 40

HD-MPCPre-Congress Workshop - IFAC 2011 Milano 
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Conclusions 43

A distributed predictive control algorithm has been presented
• For linear discrete-time systems

• A large scale control problem has been subdivided into M low order, almost independent

subproblems

• Non cooperative algorithm: each subsystem minimizes a local cost functionNon cooperative algorithm: each subsystem minimizes a local cost function

• Neighbor-to-neighbor transmission is required: low transmission burden

• Only local knowledge on the systems dynamics is required

• The algorithm is highly scalable: transmission, memory and computational loads do not grow. 

• Constraints on state and input variables (local and global) can be handled

• Convergence results can be established

HD-MPCPre-Congress Workshop - IFAC 2011 Milano 

44Conclusions

Advances:
• Efficient algorithms for the initialization of DPC
• Output feedback DPC• Output feedback DPC
• Extension for coping with non input-decoupled systems (B is not block diagonal) 

Wide area of application of DPC:Wide area of application of DPC:
• Independent systems with coupled constraints (e.g., transportation network)
• Cascade systems (e.g., simplified model of an HPV)
• Chemical plants with relevant couplings and feedbacks

Future developments:
• Explore applications in a plug-and-play architecture
• DPC for tracking• DPC for tracking

Papers:
• M. Farina, R. Scattolini. Distributed non-cooperative MPC with neighbor-to-neighbor communication. 
Proceedings of the IFAC World Conference, 2011.
• M. Farina, R. Scattolini. Distributed predictive control: a non-cooperative algorithm with 
neighbor-to-neighbor communication for linear systems. Submitted.
• M. Farina, R. Scattolini. An output feedback distributed predictive control algorithm. To appear in 

HD-MPC

Proceedings of the IEEE Conference on Decision and Control 2011.
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Motivations for distributed / hierarchical control:

Concluding remark
Motivations for distributed / hierarchical control:

• Reduce the computational load Control
unit 1

Control
unit 2

• Reduce the communication load
• Improve the robustness with respect to failures 

in the transmission of information 
Subsys.1 Subsys.2

in the central control unit
• Improve the modularity and the flexibility of the system

Consider different goals at different time scales (Real

Control unit

• Consider different goals at different time scales (Real-
Time Optimization)

• Synchronize subsystems working at different time scales

Subsystem 1

Subsystem 2

Both for distributed and hierarchical control

Subsystem 2

Both for distributed and hierarchical control
systems, robust control turns out to be a suitable
tool to deal with the main issues concerned with
l l d l t

HD-MPCPre-Congress Workshop - IFAC 2011 Milano 

large-scale and complex systems.
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2.5 Distributed MPC based on game theory (J.M. Maestre, D. Limón,
D. Muñoz de la Peña)
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2/48DMPC based on game theory

Outline

� Introduction

� DMPC scheme for Two Agents

� DMPC scheme for Multiple Agents

� Conclusions and Further Research

3/48DMPC based on game theory

Introduction

� Standard centralized control 
systems
� Single controller
� Flawless communication

� Implementation problems
� System-wide model
� Computation time
� Large scale systems

� Transportation networks
� Communication constraints
� Concerns about privacy

� Supply chains

� Distributed control
� Multiple controllers/agents
� Communication
� Partial system knowledge

4/48DMPC based on game theory

� Many control schemes have been proposed with differences on:

� System decomposition 

� Systems coupled through the inputs

� 2 and N subsystems 

� Information available 

� Local model and measurements

� Communicational constraints

� Agent to agent communication

� Low communicational burden

Introduction

5/48DMPC based on game theory

Cooperative games

Bargaining processes

Coalitions

Introduction

� Game theory

“Game theory is a mathematical field that studies the process of 
interactive decision making, that is, situations in which there are 
several entities, namely players or agents, whose individual 
decisions determine jointly the final outcome.”

6/48DMPC based on game theory

Introduction

� Cooperative games
� Prisioners’ dilemma

What would you do?

Cooperative game theory assume all the players “cooperate”

HD-MPC ICT-223854 Proceedings of the HD-MPC workshop
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7/48DMPC based on game theory

Introduction

� Cooperative games
� Prisioners’ dilemma

5 yearsgoes freeA confesses

20 year1 yearA remains silent

B confessesB remains silent

Prisioner A point of view

Prisioner B point of view

5 years20 yearsA confesses

goes free1 yearA remains silent

B confessesB remains silent

10 years20 yearsA confesses

20 year2 yearsA remains silent

B confessesB remains silent

“Greater good”

(global cost function)
(global knowledge)
(communicate)

8/48DMPC based on game theory

DMPC scheme for two agents

� Assumptions 

� There is no coupling 
between the states of the 
agents, only in the 
actuation

� Input and state 
constraints 

� Each agent has local 
information about the 
state and model

� Agents optimize according 
to a local cost function

9/48DMPC based on game theory

DMPC scheme for two agents

� Centralized MPC

Definition of the global cost function (“greater good”) 

10/48DMPC based on game theory

� Algorithm

� Each agent receives its state info xi

� Each agent evaluates Us shifting the last decided input
trajectory Ud

� Each agent calculates its optimal control action assuming the 
other actuates according to the last agreed trajectory Us

DMPC scheme for two agents

11/48DMPC based on game theory

� Algorithm

� Then it calculates the wished action for the neighbor, 
assuming agent i will play the action calculated before

DMPC scheme for two agents

Each agent has computed two different trajectories using
their local model and measurements

12/48DMPC based on game theory

� Algorithm

� Agents communicate again and build a cooperative game 
corresponding to the following team problem

� Agents implement the first global minimum they find

� The algorithm is repeated the next sampling time

DMPC scheme for two agents

Stable option

Selfish option

Altruist option

HD-MPC ICT-223854 Proceedings of the HD-MPC workshop
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13/48DMPC based on game theory

Calculate U1*
Calculate U1*

Calculate U2
wCalculate U2
w

Calculate J1
for all options

Calculate J1
for all options

DecisionDecision

Communication

Communication
Agent 2Agent 1

Calculate U1
sCalculate U1
s

Calculate U2
sCalculate U2
s

Calculate U2*
Calculate U2*

Calculate U1
wCalculate U1
w

Calculate J2
for all options

Calculate J2
for all options

DecisionDecision

DMPC scheme for two agents

Communication

14/48DMPC based on game theory

DMPC scheme for two agents

� Application to a supply chain (MIT beer problem)
� States

� Stock

� Unfulfilled order of stock

� Backlog of unfulfilled orders

� Manipulated variable

� Orders

� Simulation scenarios
� 4 different scenarios

� Comparison
� Centralized MPC

� Iterative MPC (based on information broadcast)

15/48DMPC based on game theory

DMPC scheme for two agents

16/48DMPC based on game theory
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17/48DMPC based on game theory
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DMPC scheme for two agents

18/48DMPC based on game theory

DMPC scheme for two agents

Ω1 Ω2

w1

Terminal region/constraint approach
Robust design approach
Decentralized properties (subspace xi)
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19/48DMPC based on game theory

� Stability theorem

� Terminal cost / Local controller

� Conditions for each subsystem and also for the overall system

� Recursive feasibility

Note: Local controllers only depend on local state measurements

DMPC scheme for two agents

20/48DMPC based on game theory

Design procedure based on robust positive invariance

Convex optimization problem

DMPC scheme for two agents

1
U 1

λ

2
W

1
λ

1
λ

1
λ

21/48DMPC based on game theory

DMPC scheme for two agents

� Local state and model knowledge

� Cooperative solution based on a strategic team 
problem

� Two/three communications steps
� Input trajectories

� Cost function values

� In order to design a stabilizing controller the 
centralized model is needed
� And an initial feasible solution!

� Approximate design procedure of jointly invariant 
sets
� Parameterization of the input constraints

22/48DMPC based on game theory

DMPC scheme for two agents

� HD-MPC four-tank benchmark

“A comparative analysis of distributed MPC techniques applied to the 
HD-MPC four-tank benchmark”. I. Alvarado, D. Limon, D. Muñoz de 
la Peña, J.M. Maestre, M.A. Ridao, H. Scheu, W. Marquardt, R.R 
Negenborn, B. De Schutter, F. Valencia and J. Espinosa. Journal of 
Process Control, 21:5, June 2011, 800-815, Special Issue on 
Hierarchical and Distributed Model Predictive Control.

23/48DMPC based on game theory

� Assumptions 

� There is no coupling 
between the states of the 
agents, only in the 
actuation

� Each agent has local 
information about the 
state and knows how it is 
affected by the different 
inputs

� Input and state 
constraints

� Inputs are not assigned 
to agents

DMPC scheme for multiple agents

24/48DMPC based on game theory

Agents optimize according to a local cost function

Control objective 

The different agents must reach an agreement on the value
of the shared inputs 

GLOBAL PERFORMANCE INDEX

DMPC scheme for multiple agents

HD-MPC ICT-223854 Proceedings of the HD-MPC workshop
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25/48DMPC based on game theory

� Proposed DMPC scheme 
� Subsystems coupled through the inputs 

� Each agent has only partial information of the system

� Low communicational requirements

� Cooperative solution
� Cooperative algorithm from a game theory point of view

� Guaranteed closed-loop stability properties

� Direct extension of the previous algorithm is not 
possible because of the combinatorial explosion
� N agents with q proposals lead to qN options!

� Negotiation based scheme

DMPC scheme for multiple agents

26/48DMPC based on game theory

� Algorithm

� Each agent receives its state info xi

� The agents communicate (if needed) to evaluate the initial value
of the input trajectories Us (shifted inputs) from the latest decided 
input

� A number of proposals are made by a set of agents
� A proposal consists of a future trajectory for a subset of inputs

� A proposal is accepted if and only if it improves the costs for all the 
agents affected by that control action

� After a predefined number of proposals are made, the latest agreed 
input trajectory is applied

DMPC scheme for multiple agents

27/48DMPC based on game theory

� Algorithm
� In order to make a proposal, each agent calculates the optimal 

control action for a (sub)set of inputs that affect its dynamics

Different communication protocols: Round robin, asynchronous...

DMPC scheme for multiple agents

28/48DMPC based on game theory

DMPC scheme for multiple agents

29/48DMPC based on game theory

ProposalProposal

DMPC scheme for multiple agents

30/48DMPC based on game theory

?

?

?

?

?

Proposal

DMPC scheme for multiple agents
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31/48DMPC based on game theory

Proposal

J∆

J∆

J∆

J∆

J∆

DMPC scheme for multiple agents

32/48DMPC based on game theory

Result

(accepted
or not)

Result

(accepted
or not)

DMPC scheme for multiple agents

33/48DMPC based on game theory

Result

(accepted
or not)

DMPC scheme for multiple agents

34/48DMPC based on game theory

Result

(accepted
or not)

Algorithm can be executed in parallel

DMPC scheme for multiple agents

35/48DMPC based on game theory

� Stability theorem

� Terminal cost / Local controllers

� Stabilizing linear controller (centralized or decentralized)

� Recursive feasibility

� Jointly invariant set: robust stability w.r.t. neighbors

� Standard LMI design techniques

� Centralized model is needed

If xi Ωi for all i then

DMPC scheme for multiple agents

∈

36/48DMPC based on game theory

Convex optimization problem

DMPC scheme for multiple agents

1
V

1 1i Uλ →

j iW ≠

2

2

i

U

λ

↓
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37/48DMPC based on game theory

DMPC scheme for multiple agents

� Local state and model knowledge

� Cooperative solution based on negotiation

� Multiple communications with neighbors 
� Input trajectories

� Cost function values

� Parallel implementation

� In order to design a stabilizing controller the 
centralized model is needed
� And an initial feasible solution!

� Approximate design procedure of jointly invariant 
sets
� Parameterization of the input constraints

38/48DMPC based on game theory

� Example 
� Four coupled systems

� Bounds on states and inputs

� Cost functions

DMPC scheme for multiple agents

Ki, Pi have to be designed

39/48DMPC based on game theory

LMI design:

DMPC scheme for multiple agents

40/48DMPC based on game theory

DMPC scheme for multiple agents

Maximum robust invariant

set of the centralized system

Decentralized jointly

robust invariant set

41/48DMPC based on game theory

DMPC scheme for multiple agents

42/48DMPC based on game theory

DMPC scheme for multiple agents
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43/48DMPC based on game theory

DMPC scheme for multiple agents

� Control benchmark of a Hydro Power Plant

DMPC with 8 agents
Linear model
Two time scales (state decoupling)

Nonlinear system
Power reference tracking
Profit maximization

44/48DMPC based on game theory

Food for thought…

Questions
-Do all the links have to be enabled all the time?
-How to divide profits/costs between the agents?
-Which are the most relevant agents/links?

45/48DMPC based on game theory

Food for thought…

� A cooperative game is defined by…
� A set of agents N={1,2,…,n}

� Separated into coalitions S

� A characteristic function v that assigns a value to each 
of the possible 2  coalitions

� v(S) represents the cost to reach the common goal 
without the assistance of the agents out of  the coalition

n

Comunication is
not costlessV(s)

46/48DMPC based on game theory

Food for thought…

An application of Cooperative Game Theory to Distributed
Control. J. M. Maestre, D. Muñoz de la Peña, A. Jiménez 
Losada, E. Algaba Durán, E. F. Camacho. Proceedings of the
18th IFAC World Congress.

47/48DMPC based on game theory

Related publications

� Distributed model predictive control based on a cooperative game. J. M. 
Maestre, D. Muñoz de la Peña, E. F. Camacho. Optimal Control 
Applications and Methods, 32:2, March/April 2011, 153–176. 

� Distributed model predictive control based on agent negotiation, J.M. 
Maestrea, D. Muñoz de la Peña, E.F. Camacho and T. Alamo. Journal of
Process Control, 21:5, June 2011, 685-697. 

� A comparative analysis of distributed MPC techniques applied to the HD-
MPC four-tank benchmark. I. Alvarado, D. Limon, D. Muñoz de la Peña, 
J.M. Maestre, M.A. Ridao, H. Scheu, W. Marquardt, R.R Negenborn, B. De 
Schutter, F. Valencia and J. Espinosa. Journal of Process Control, 21:5, 
June 2011, 800-815.

� An application of Cooperative Game Theory to Distributed Control. J. M. 
Maestre, D. Muñoz de la Peña, A. Jiménez Losada, E. Algaba Durán, E. F. 
Camacho. Proceedings of the 18th IFAC World Congress.

48/48DMPC based on game theory

The end

Thanks for your attention!

Questions, suggestions, comments…

HD-MPC ICT-223854 Proceedings of the HD-MPC workshop

Page 43/80



HD-MPC ICT-223854 Proceedings of the HD-MPC workshop

2.6 Distributed model predictive control by primal decomposition (W.
Marquardt, H. Scheu)
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Distributed Model Predictive 
Control by Primal Decomposition  

Wolfgang Marquardt & Holger Scheu 

IFAC World Congress, 2011, Milan 
Pre-Congress Workshop:  
“Hierarchical and Distributed  
Model-Predictive Control’ IFAC World Congress 2011, Milan - HD-MPC Workshop 

2 

Motivation and Background 

  Chemical & energy process plants 
•  large-scale, structured  
•  nonlinear, stiff 

  Process control and operations 
•  industrial state of the art  

  decentralized (PID) control  
& supervisory control 

  linear (centralized) MPC using step response or state space models 
from plant tests) 

•  (selected) research activities  
  nonlinear centralized MPC and RHE using first principles models 
  dynamic real-time optimization (DRTO) 
  hierarchical or/and decentralized optimal control (MPC, DRTO) and 

matching nonlinear data/model reconciliation & state estimation   

IFAC World Congress 2011, Milan - HD-MPC Workshop 
3 

Large-scale industrial process (Shell):!
•  How should decentralized control scheme 
  be designed for a range of operating 
  conditions and transitions in between? 
•  How fast can plant be moved from  
  operating point A to B? 
•  2 reactors, 3 distillation columns 
•  rigorous model including base layer control 
  system: 14.000 DAEs 
•  4 controls & 6 path constraints for transition,  
  long time horizon >> 24 hrs 

Industrial Case Study (1) 

Optimal transition control:!
•  complexity estimate (single shooting):  
  NLP with 100 Mio embedded DAEs  

IFAC World Congress 2011, Milan - HD-MPC Workshop 
4 

Industrial Case Study (2) 

Discretization of control 3 
•  Initial guess:        25 parameters   
•  Adaptive parameterization at final solution:    129 parameters 
•  Equivalent non-adaptive parameterization:  3072 parameters 
→  95% (or 41 million) equations eliminated by adaptive refinement! 

•  Calculation time per sensitivity integration:       ~ 7500 sec 
•  Total computation times (adaptive, serial):      > 1 month 
•  Total computation times (adaptive, parallel, 8 CPUs):  ~ 1 week    "

Optimal solution (offline) successful! !
 Savings of 50 k€ per transition!!

Is dynamic real-time optimization feasible?!

Computational results: adaptive discretization and parallelization 

(Hartwich, Marquardt, 2010) 

IFAC World Congress 2011, Milan - HD-MPC Workshop 
5 

Control of Process Plants (1) 

  Process plants can naturally be 
decomposed into subsystems Pi 
•  interconnecting variables: flows, 

i.e. rate, conc., temp., etc. 
•  local inputs: flow rates, etc.  
•  local outputs: measurements and 

interconnecting flows 
P1 

P2 

P3 P4 P5 

P1 P2 P3 P4 P5 

P 
u1 u2 u3 u4 u5 

y1 y2 y3 y4 y5 

IFAC World Congress 2011, Milan - HD-MPC Workshop 
6 

Control of Process Plants (2) 

  Centralized MPC (or DRTO) 
•  optimal and stable 
•  large-scale problem 

  Decentralized MPC  
(or DRTO) 
•  small-scale problems 
•  optimality and stability not 

guaranteed 

  Distributed MPC (or DRTO) 
•  small-scale problems 
•  optimality and stability can be 

guaranteed (if properly set-up) 
•  communication required 

P1 P2 P3 P4 P5 

P 
u1 u2 u3 u4 u5 

y1 y2 y3 y4 y5 

Controller C1 C2 C3 C4 C5 

(Scattolini, 2009) 
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IFAC World Congress 2011, Milan - HD-MPC Workshop 
7 

Classic Approach – Dual Decomposition (1)   

  Consider the convex NLP 

  decomposed into subproblems, with primal problems 

  and dual problem 

 iterate to convergence (Lasdon, 1970) 
IFAC World Congress 2011, Milan - HD-MPC Workshop 

8 

Classic Approach – Dual Decomposition (2)          

  Primal problems 

•  cost functions and constraint functions are additive 
•  straight forward implementation 

  Dual problem 

•  main challenge for the solution in dual decomposition 
•  normally requires many iterations 

•  convergence can be proven under convexity assumptions 
(Lasdon, 1970) 

IFAC World Congress 2011, Milan - HD-MPC Workshop 
9 

  Consider a more 
general NLP: 

Sensitivity-Driven Decomposition (1)    

 (Scheu and Marquardt 2011a) 

neither constraints nor objective functions 
 of subsystems  

are additive! 

IFAC World Congress 2011, Milan - HD-MPC Workshop 
10 

  Consider a more 
general NLP: 

  Parallel iterative solution using decomposed subproblems 

ite
ra

tio
ns

 

Sensitivity-Driven Decomposition (2)    

 (Scheu and Marquardt 2011a) 

IFAC World Congress 2011, Milan - HD-MPC Workshop 
11 

Why Might this Decomposition Work? 

  Let us look at the NCO for the (centralized) NLP 

  Proof of optimality requires comparison of the NCO for the 
centralized problem and the decomposed problem. 

Condition depends only on 
first order sensitivities 

Directly guaranteed by 
the subproblems 

IFAC World Congress 2011, Milan - HD-MPC Workshop 
12 

Theorem on Optimality 

  Assumptions on centralized NLP: 
•  cost functions Φi are strictly convex 
•  constraint functions ci are concave 

  Further assumptions 
•  p* solves the centralized NLP and satisfies LICQ 
•  distributed algorithm converges and its minimizer satisfies the LICQ 

  Then, the minimizer                      of the distributed problem and  
the minimizer     of the centralized problem are the same, i.e.   

 (Scheu and Marquardt 2011a) 
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IFAC World Congress 2011, Milan - HD-MPC Workshop 
13 

Graphical Interpretation 

iterative approach overall problem: 
dotted: original problem 
solid: simplified problem 

linearization point 

initial guess 
optimal solution 

IFAC World Congress 2011, Milan - HD-MPC Workshop 
14 

Linear Continuous-Time Systems (1) 

  Finite-horizon linear continuous-time optimal control problem: 

  Transcribe into QP 

(Scheu and Marquardt 2011a) 

IFAC World Congress 2011, Milan - HD-MPC Workshop 
15 

Sketch of Transcription 

1.  Discretize the input variables 

2.  Solve the state variables x(k) for the input parameters p and the 
initial condition x0 in discrete time, i.e. 

3.  Transform continuous-time cost function into discrete cost 
function (Pannocchia et al. 2010) 

4.  Substitute x(k) in the discrete cost function 

IFAC World Congress 2011, Milan - HD-MPC Workshop 
16 

Linear Continuous-Time Systems (2) 

  Finite-horizon linear continuous-time optimal control problem: 

(Scheu and Marquardt 2011a) 

  Transcribe into QP 

  Apply sensitivity-driven decomposition and coordination: 

IFAC World Congress 2011, Milan - HD-MPC Workshop 
17 

Convergence Analysis 

  Algorithm defines a fixed point iteration method, analysis based 
on the KKT NCO  

  Small-gain theorem can be applied, convergence for 

(Scheu and Marquardt 2011a) 
IFAC World Congress 2011, Milan - HD-MPC Workshop 

18 

Enforce Convergence              

  Distributed NLP 

ite
ra

tio
ns

 

  Further modification of the cost function 

    constant L does also depend on Ωi: 

  gradient-free optimization (Wegstein, 1958; Westerberg et al., 
1979) 

  generalization of proximal minimization algorithm (Rockafellar 
1976; Censor 1992) 

HD-MPC ICT-223854 Proceedings of the HD-MPC workshop
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19 

Sensitivity-Driven Distributed MPC (S-DMPC) 

In closed loop, do on each horizon: 

1.  Measure or estimate the current system state. 
2.  Transcribe the optimal control problem into QP. 
3.  Select  

  initial parameters               and  
  initial Lagrange multipliers 
  Warm start based on preceding horizon. 

4.  Apply the distributed QP algorithm described before. 
5.  Apply the calculated optimal control inputs                                    

to the plant. 

coooperative, iterative, optimal on convergence,  
neighbor-to-neighbor communcation 

IFAC World Congress 2011, Milan - HD-MPC Workshop 
20 

Illustrative Example – Alkylation of Benzene 

(J. Liu et al. 2010) 
  subsystems 
  inputs 

IFAC World Congress 2011, Milan - HD-MPC Workshop 
21 

Sketch of Mathematical Model 

For each subsystem: 
  Mass balances for each species and energy balance 

For stirred tank reactors: 
  nonlinear reaction kinetics 
For flash separator: 
  nonlinear phase equilibrium and physical property models 

“Medium-scale” DAE system: 
•  25 differential equations 
•  ~100 algebraic equations 

IFAC World Congress 2011, Milan - HD-MPC Workshop 
22 

Sketch of Controller Design 

  Nonlinear process model 
  Full state feedback 

  Linear controller, based on  
linearization of nonlinear 
model 
•  centralized 

•  distributed 

  no further disturbances, but 
plant-model mismatch 

  set-point tracking 

P1 

P2 

P3 

P4 

P5 

C1 

C2 

C3 

C4 

C5 

x 

C 

IFAC World Congress 2011, Milan - HD-MPC Workshop 
23 

Results 

  S-DMPC provides the 
same controller 
performance as a 
centralized MPC 

  Solve 5 small QP  
in parallel  
instead of 1 large QP 

   faster computation 
possible 

(Scheu and Marquardt, 2011a) 
IFAC World Congress 2011, Milan - HD-MPC Workshop 

24 

Linear Discrete-Time Systems 

  Finite horizon discrete-time linear optimal control problem: 

  Write as QP 

  Apply sensitivity-driven coordination 
(Scheu & Marquardt 2011b) 
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Continuous-time vs. discrete-time 

Continuous-time 

  also possible for higher order  
input representations  

  non-uniform control-grid 
possible 

  system couplings are solved 
during transcription  

  couplings could also be 
included in finite number of 
equality-constraints 

  most natural for nonlinear 
case 

Discrete-time 

  only piecewise constant 
inputs 

  uniform control-grid 

  system couplings are 
included in equality-
constraints 

  couplings could also be 
solved by transcription 

  difficult to extent to nonlinear 
cases 

IFAC World Congress 2011, Milan - HD-MPC Workshop 
26 

Case Study     
  Discrete-time linear system with unknown disturbances 

  where 

  9 differential state variables 
  3 scalar inputs 
  3 scalar disturbances 
  unstable system dynamics: 

(Scheu and Marquardt 2011b) 

IFAC World Congress 2011, Milan - HD-MPC Workshop 
27 

MPC Setup 

  Centralized MPC – 1 monolithic controller with full system 
knowledge, large QP 

  Decentralized MPC – 3 independent controllers, small QP 
  Dual Decomposition – 3 low layer controller, 1 coordinator, small 

QP 
  S-DMPC – 3 cooperative controllers, small QPs  

  Disturbances 

IFAC World Congress 2011, Milan - HD-MPC Workshop 
28 

MPC Setup (cont.) 

  no terminal cost 
  long prediction and control horizon (K = 50) 
  solved using Matlab standard QP solver quadprog with standard 

settings 
  J = 30 iterations required for dual decomposition approach for 

convergence 
  J = 1 and J = 2 iterations for S-DMPC  low communication and 

computing requirements 

IFAC World Congress 2011, Milan - HD-MPC Workshop 
29 

Closed-loop Trajectories 

State trajectories: 

  Decentralized MPC 
•  bad disturbance 

compensation 
•  almost unstable control 

  Dual Decomposition 
•  achieves good performance 
•  requires many iterations (here 

30) 

  S-DMPC  
•  only one iteration 
•  almost matches the 

centralized control 
IFAC World Congress 2011, Milan - HD-MPC Workshop 

30 

Closed-loop trajectories 

Input trajectories 

HD-MPC ICT-223854 Proceedings of the HD-MPC workshop
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Controller Performance 

  Absolute performance (quadratic performance index) 

  Relative performance (Centralized controller is reference) 

  Simulation results 

IFAC World Congress 2011, Milan - HD-MPC Workshop 
32 

Computing Time 

  Comparison of average computing time for the methods 
considered 

  Computing time can be reduced, in particular with multiple CPU 
cores 

  Dual decomposition is not competitive 

IFAC World Congress 2011, Milan - HD-MPC Workshop 
33 

Conclusions & Future Work 

Conclusions 
  S-DMPC: a new method for distributed optimal control 

•  inherits properties of centralized optimal control problem 
•  S-DMPC provides optimal performance 

  S-DMPC enables distributed computing 
•  size of QP to be solved reduced 
•  computing time can be reduced 

Future work 
•  guaranteed stability (e.g. infinite horizon, terminal constraint, …)  
•  output feedback  
•  convergence (adaptation of QP via Wegstein extension) 
•  nonlinear systems  
•  Efficient implementation and integration  

into dynamic real-time optimization platform of AVT.PT 

IFAC World Congress 2011, Milan - HD-MPC Workshop 
34 
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2.7 Hierarchical MPC with applications in transportation and infras-
tructure networks (B. De Schutter)
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Bart De Schutter
Delft Center for Systems and Control

Hierarchical MPC with applications in
transportation and infrastructure networks

Milan, Italy, August 28, 2011

HD−MPC

Outline 2/52

1 HD-MPC for large-scale systems

2 Traffic management and automated highway systems

3 Multi-level multi-scale HD-MPC for AHS

4 Related work

5 Conclusions and future work

Hierarchical MPC for transportation networks — Bart De Schutter HD-MPC

HD-MPC for large-scale systems 3/52

Challenges in control of large-scale networks:

Large-scale networks

Distributed vs centralized control

Optimality ↔ computational efficiency/tractability

Global ↔ local

Scalability

Communication requirements (bandwidth)

Robustness against failures

→ multi-level multi-agent approach

Hierarchical MPC for transportation networks — Bart De Schutter HD-MPC

HD-MPC for large-scale systems 4/52

Multi-level multi-agent control

Multi-level control with intelligent control agents &
coordination

Time-based and space-based separation into layers

supervisor supervisor

control agent control agent
control agent

control agent

Hierarchical MPC for transportation networks — Bart De Schutter HD-MPC

HD-MPC for large-scale systems 4/52

Multi-level multi-agent control

Multi-level control with intelligent control agents &
coordination

Time-based and space-based separation into layers

small region

large region

supervisor supervisor

control
agent agent

control
agent

control

high−level supervisor

fast dynamics

slow dynamics

Hierarchical MPC for transportation networks — Bart De Schutter HD-MPC
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Multi-level control framework

Lowest level:

local control agents
“fast” control
small region
operational control

Higher levels:

supervisors
“slower” control
larger regions
operational, tactical, strategic control

Multi-level, multi-objective control structure

Coordination at and across all levels

Combine with model predictive control (MPC)

Hierarchical MPC for transportation networks — Bart De Schutter HD-MPC
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Major problem for MPC in practice: Required computation
time for large-scale systems

Use distributed and/or hierarchical control approach

Choice of the prediction model: accuracy versus
computational complexity

Right optimization approach

parallel and/or distributed optimization
approximate original MPC optimization problem by another
optimization problem that can be solved efficiently

Include application-specific knowledge

Hierarchical MPC for transportation networks — Bart De Schutter HD-MPC
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Need for traffic control

Traffic jams & congestion
→ cause time losses, extra costs, more incidents

have negative impact on economy, environment, society

Hierarchical MPC for transportation networks — Bart De Schutter HD-MPC
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Several ways to reduce traffic jams and to improve traffic
performance:

New infrastructure, missing links

Pricing

Modal shift

Better use of available capacity through

intelligent traffic control

Hierarchical MPC for transportation networks — Bart De Schutter HD-MPC
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Intelligent traffic control

Next generation traffic control and management system

Use in-car telematics (navigation, telecommunication,
information, . . . ) systems

Vehicle-vehicle + vehicle-roadside communication

Use intelligent vehicles (IVs)

control system senses environment using sensors
enhances either performance of driver or vehicle itself

assisting (advisory/warning)
taking partial or complete control (full automation)

Two variants of traffic management using IVs:

cooperative vehicle-infrastructure systems (CVIS):
drivers are still in charge of their vehicles
Automated Highway Systems (AHS):
autonomous vehicles organized in platoons

Hierarchical MPC for transportation networks — Bart De Schutter HD-MPC
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Automated highway systems (AHS)

Platoons of intelligent,
autonomous vehicles

Small inter-vehicle distance inside
distances + high speeds
→ higher throughput

Larger inter-platoon distance for
safety

Problems:

transition
psychological & legal aspects

→ long-term, trucks

Hierarchical MPC for transportation networks — Bart De Schutter HD-MPC
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Automated highway systems (AHS)

Integrate various in-vehicle and roadside-based traffic control
measures that support platoons of fully autonomous IVs

platoon

dynamic route guidance

cooperative adaptive cruise control

intelligent speed adaptation

Goal: improved traffic performance (safety, throughput,
environment, . . . ) + constraints (robustness, reliability, . . . )

Hierarchical MPC for transportation networks — Bart De Schutter HD-MPC
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Additional advantage of platoons: No capacity drop

Capacity drop for human drivers: If traffic flow breaks down,
then afterwards outflow from congested area is less than
previous higher flow

Reason: Human drivers tend to accelerate more slowly when
they are coming out of congestion

This effect plays less or even not with autonomous vehicles

Hierarchical MPC for transportation networks — Bart De Schutter HD-MPC
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Traffic flow models

Two main classes:

Microscopic models → individual vehicles

Macroscopic models → aggregated variables

Hierarchical MPC for transportation networks — Bart De Schutter HD-MPC
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Microscopic traffic flow models

Consider individual vehicles
Car following + lane changing + overtaking models
Different driver classes (with different parameters settings)
Simulation rather time-consuming for large networks
→ less suited as prediction model for MPC
→ better suited as simulation/validation model

Hierarchical MPC for transportation networks — Bart De Schutter HD-MPC
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Macroscopic traffic flow models

Work with aggregated variables (average speed, density, flow)

Examples:

fluid-like models: Lighthill-Whitham-Richards (LWR), Payne,
METANET, . . .
gas-kinetic models: Helbing model, . . .

Trade-off between computational speed versus accuracy

→ well suited as prediction model for MPC

→ less suited as simulation/validation model

In this presentation we use macroscopic models for automated
highway systems as prediction model for MPC

Hierarchical MPC for transportation networks — Bart De Schutter HD-MPC
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A multi-level multi-scale HD-MPC approach for AHS →
hierarchical multi-layer control approach (∼ California PATH)

Area controller Area controller

Roadside controller Roadside controller

Platoon controller Platoon controller

Vehicle controllerVehicle controller

Regional controller

Supraregional controller

Regional controller

Hierarchical MPC for transportation networks — Bart De Schutter HD-MPC
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Controller Unit Control Time scale

Vehicle vehicle throttle, brake, ≪ s
steering

Platoon vehicles distances & speeds, < s
trajectories

Roadside platoons lanes & speeds, s–min
split & merge

Area flows of platoons routing > min

Regional flows routing > 15–30 min

Hierarchical MPC for transportation networks — Bart De Schutter HD-MPC
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Control strategies

Vehicle controllers: (adaptive) PID + logic (for safety)

Platoon controllers: rule-based control, hybrid control

Roadside, area, regional controllers: MPC

min
u(k),...,u(k+Nc−1)

J(k)

s.t. model of system

operational constraints

→ medium-sized problems due to temporal & spatial
division

→ still tractable

Coordination (top-down) via performance criterion J or
constraints

Hierarchical MPC for transportation networks — Bart De Schutter HD-MPC

Multi-level multi-scale HD-MPC for AHS– Roadside control 19/52

Roadside controllers

Control highway or stretch of highway

Measurements: position, speed, lanes of platoon leaders

Control inputs: platoon speeds, lane allocations, on-ramp
release times

Objectives:

track speed and splitting rate profiles imposed by area
controllers
minimize total time spent (TTS) in network and queues, . . .

Constraints: min. headway, min. and max. speeds

Hierarchical MPC for transportation networks — Bart De Schutter HD-MPC
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MPC for roadside controllers

Model: “big-car” model
platoon = vehicle with speed-dependent length

Lplatoon,p(k) = (np − 1)S0 +

np−1∑
i=1

Tgap,ivnp(k) +

np∑
i=1

Li

with S0 minimum safe distance at zero speed and Tgap,i the
desired time gap

Nonlinear optimization problem:

min
(
TTS links + TTS queues)

subject to nonlinear model
operational constraints

Optimization: mixed-integer nonlinear programming
Simplify by bi-level approach in which first lane allocation is
determined (via heuristics, optimized, slower rate, . . . )

Hierarchical MPC for transportation networks — Bart De Schutter HD-MPC
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Case study – Problem statement

Two-lane highway with an incident causing traffic

3.5 km 4 km 5 km 6 km0 km

incident at t start

lane 1

lane 2

Scenario:

Demand: 2500 veh/h (mainstream) and 350 veh/h (on-ramp)

Incident at 4-5 km, start of simulation (10 minutes)

Queues at start: empty

Simulation period: 10 min, controller sampling time: 1 min

Simulation sampling time: 1 s

Hierarchical MPC for transportation networks — Bart De Schutter HD-MPC
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Case study – Cases

Cases considered:

Uncontrolled human drivers

Controlled human drivers (current situation)

Platoon approach – our approach

Hierarchical MPC for transportation networks — Bart De Schutter HD-MPC
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Case study – Results

Case TTS Relative im-
(veh·h) provement (%)

Uncontrolled 71.80 0 %
Controlled (human drivers) 63.38 10.96 %
Controlled (platoons) 57.75 18.86 %

Reduced TTS → decreased travel times, increased trips, . . .

Hierarchical MPC for transportation networks — Bart De Schutter HD-MPC
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Area controllers

Route guidance + provide set-points for roadside controllers

Traffic network is represented by graph with nodes and links

Due to computational complexity, optimal route choice
control done via flows on links

Optimal route guidance: nonlinear integer optimization with
high computational requirements → intractable

Hierarchical MPC for transportation networks — Bart De Schutter HD-MPC
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Area controllers (contd.)

Fast approaches based on

Mixed-Integer Linear Programming (MILP)

transform nonlinear problem into system of linear equations
using binary variables
can be solved efficiently using branch-and-bound; several
efficient commercial and freeware solvers available

macroscopic METANET-like traffic flow model

for humans, splitting rates are determined by traffic
assignment
in AHS, splitting rates considered as controllable input
will result in non-convex real-valued optimization
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MILP approach – General set-up

Only consider flows and queue lengths

Each link has maximal allowed capacity constraint

Piecewise constant time-varying demand - [kTs, (k + 1)Ts) for
k = 0, . . . ,K − 1 with K (simulation horizon)

...

...

Do,d

t0 KTsTs 2Ts (K − 2)Ts (K − 1)Ts

Do,d(0)

Do,d(1) Do,d(K − 2)

Do,d(K − 1)

Main goal: assign optimal flows xl ,o,d(k)
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MILP approach – Model

Inflow at origin:∑
l∈Lout

o ∩Lo,d

xl ,o,d(k) 6 Do,d(k) +
qo,d(k)

Ts
for each d ∈ D

Outflow from origin to destination:

F out
o,d (k) =

∑
l∈Lout

o ∩Lo,d

xl ,o,d(k)

Assume constant delay κ between beginning and end of link

Queue behavior at origin: Total demand − outflow

More specifically, Do,d(k)− F out
o,d (k) in time interval

[kTs, (k + 1)Ts)

qo,d(k + 1) = max
(
0, qo,d(k) + (Do,d(k)− F out

o,d (k))Ts

)
Hierarchical MPC for transportation networks — Bart De Schutter HD-MPC
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MILP approach – Equivalences

P1: [f (x) 6 0] ⇐⇒ [δ = 1] is true if and only if{
f (x) 6 M(1− δ)
f (x) > ǫ + (m − ǫ)δ

P2: y = δf (x) is equivalent to


y 6 Mδ
y > mδ
y 6 f (x)−m(1− δ)
y > f (x)−M(1− δ)

f function with upper and lower bounds M and m

δ is a binary variable

y is a real-valued scalar variable

ǫ is a small tolerance (machine precision)

→ transform max equations into MILP equations

Hierarchical MPC for transportation networks — Bart De Schutter HD-MPC
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MILP approach – Transforming the queue model

qo,d(k + 1) = max
(
0, qo,d(k) + (Do,d(k)− F out

o,d (k))Ts

)
Define

[ δo,d(k) = 1 ] ⇐⇒ [ qo,d(k) + (Do,d(k)− F out
o,d (k))Ts > 0 ]

Can be transformed into MILP equations using equivalence P1

qo,d(k + 1) = δo,d(k)
(
qo,d(k) + (Do,d(k)− F out

o,d (k))Ts︸ ︷︷ ︸
f (linear)

)
= zo,d(k)

Product between δo,d(k) and f can be transformed into system of
MILP equations using equivalence P2

Queue model → system of MILP equations

Hierarchical MPC for transportation networks — Bart De Schutter HD-MPC
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MILP approach – Objective function for queues
Original objective function: time spent in queues
(linear/quadratic):

queuequeue

lengthlength

timetime

Approximated objective function (linear):

queuequeue

lengthlength

timetime
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MILP approach – Objective Functions

Time spent in links:

Jlinks =

Kend−1∑
k=0

∑
(o,d)∈O×D

∑
l∈Lo,d

xl ,o,d(k)κlT
2
s

Time spent in queues:

Jqueue =

Kend−1∑
k=0

∑
(o,d)∈O×D

1

2
(qo,d(k) + qo,d(k + 1))Ts
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MILP approach – Overall area control problem

Nonlinear optimization problem:

min
(
TTS links + TTS queues)

subject to
nonlinear model
operational constraints

MILP optimization problem:

min
(
TTS links + T̂TS queues)

subject to
MILP model
operational constraints

Hierarchical MPC for transportation networks — Bart De Schutter HD-MPC
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MILP approach – Case study

l1

l2

l3

l4

l5 l6
o1

d1

d2

v1

v2

v3

Figure: Set-up of case study network
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MILP approach – Case study – Set-up

Dynamic demand case with queues only at origins of network

Period (min) 0–10 10–30 30–40 40–60

Do1,d1 (veh/h) 5000 8000 2500 0
Do1,d2 (veh/h) 1000 2000 1000 0

Scenario:

simulation period: 60 min, sampling time: 1 min
capacities:C1=1900 veh/h, C2=2000 veh/h, C3=1800 veh/h,
C4=1600 veh/h, C5=1000 veh/h, and C6=1000 veh/h
delay factor: κ1=10, κ2=9, κ3=6, κ4=7, κ5=2, and κ6=2

Hierarchical MPC for transportation networks — Bart De Schutter HD-MPC
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MILP approach – Case study – Cases

Cases considered

Case A: no control

Case B: controlled using the MILP solution

Case C: controlled using the exact solution

Hierarchical MPC for transportation networks — Bart De Schutter HD-MPC
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MILP approach – Case study – Results

Case TTStot improvement CPU time
(veh.h) (s)

No control 1434 0 % –
MILP 1081 24.6 % 0.27
SQP (5 initial points) 1067 25.6 % 90.0
SQP (50 initial points) 1064 25.8 % 983
SQP (with MILP solution

as initial point)
1064 25.8 % 1.29
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MILP approach – Case study – Analysis

Uncontrolled case: only direct/short routes are used. Length
of origin queue increases with time

Controlled cases: flows assigned to both short and long routes
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Regional controllers

Control collection of areas

Determine optimal flows of platoons between areas

Model: aggregate model – AHS variant of the Macroscopic
Fundamental Diagram (MFD)

Optimization: Nonlinear non-convex programming problem
Will be approximated using mixed-integer linear programming
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Macroscopic Fundamental Diagram (MFD)

Introduced by Geroliminis and
Daganzo

Describes relation between
space-mean flow and density in
neighborhood-sized sections of
cities (up to 10 km2)

Macroscopic fundamental
diagram is independent of the
demand

Outflow of area is proportional
to space-mean flow within area

[veh/h]

[veh/km]ρ

q

Congested

Critical

Free−flow
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Macroscopic Fundamental Diagram for AHS

Adopt modified version of MFD for AHS

Shape of MFD will be sharper and maximal flow will be much
higher than in MFD for human drivers

Represent AHS network by graph

links correspond to areas, with inflow qin,a(k), outflow
qout,a(k), and density ρa(k)
nodes correspond to connections between areas,
external origins (with inflow qorig,o(k)), or
external exits (with outflow qexit,e(k))

Hierarchical MPC for transportation networks — Bart De Schutter HD-MPC
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Model for regional controllers

Network MFD for AHS results in static description of form

qout,a(k) =Ma(ρa(k))

Evolution of densities inside each area is described using
simple conservation equation:

ρa(k + 1) = ρa(k) +
T

La
(qin,a(k)− qout,a(k))

with T sample time step system and La measure for total
length of highways and roads in area a

For every node ν balance between inflows and outflows:∑
a∈Iν

qout,a(k) +
∑

o∈Iorig,ν

qorig,o(k) =

∑
a∈Oν

qin,a(k) +
∑

e∈Oexit,ν

qexit,e(k)
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MPC for regional controllers

Try to keep density in each region below critical density ρcrit,a:

Jpen(k) =

Np∑
j=1

∑
a

[
max(0, ρa(k + j)− ρcrit,a)

]2

Also minimize total time spent (TTS) by all vehicles in region:

JTTS(k) =

Np∑
j=1

∑
a

Laρa(k + j)T

Total objective function:

J(k) = Jpen(k) + γJTTS(k)

Constraints on maximal flows from one area to another,. . .

Results in nonlinear, non-convex optimization problem
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Mixed integer linear programming (MILP) – Two properties

Given function f with lower bound m and upper bound M

Property 1:
[f (x) ≤ 0]⇔ [δ = 1] is equivalent to{

f (x) ≤ M(1− δ)

f (x) ≥ ε + (m − ε)δ

Property 2:
y = δf (x) with δ ∈ {0, 1} is equivalent to

y ≤ Mδ

y ≥ mδ

y ≤ f (x)−m(1− δ)

y ≥ f (x)−M(1− δ)
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Transformation into MILP problem

Approximate MFD by Piece-Wise Affine (PWA) function

qout,a(k) = αa,iρa(k) + βa,i if ρa(k) ∈ [ρa,i , ρa,i+1]

[veh/h]

[veh/km]ρ

q

PWA
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Transformation into MILP problem

Approximate MFD by Piece-Wise Affine (PWA) function

qout,a(k) = αa,iρa(k) + βa,i if ρa(k) ∈ [ρa,i , ρa,i+1]

Introduce binary variables δa,i (k) such that

δa,i (k) = 1 if and only if ρa,i ≤ ρa(k) ≤ ρa,i+1

Can be transformed into MILP equations using Property 1

Now we have

qout,a(k) =
Na∑
i=1

(αa,iρa(k) + βa,i )δa,i (k)

Introduce real-valued auxiliary variables ya,i (k) = ρa(k)δa,i (k)
Can be transformed into MILP equations using Property 2
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Transformation into MILP problem

Results in

qout,a(k) =
Na∑
i=1

αa,iya,i (k) + βa,iδa,i (k)

If we combine all equations and inequalities, we obtain a
system of mixed-integer linear inequalities
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Transformation into MILP problem

Recall

Jpen(k) =
∑

j

∑
a

[
max(0, ρa(k + j)− ρcrit,a)

]2 → not linear

JTTS(k) =
∑

j

∑
a

Laρa(k + j)T → linear!

Removing square in Jpen(k) results in PWA objective function
Can be transformed in MILP equations using Properties 1 & 2

Hence, we get MILP problem

Solution of MILP problem can be directly applied or it can be
used as good initial starting point for original nonlinear,
non-convex MPC optimization problem
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Related work: Traffic management using MPC

More viable option on short term:
roadside intelligence
→ traffic control center +

current infrastructure

Use conventional control measures:
variable speed limits, ramp metering,
traffic signals, lane closures, shoulder lane
openings, tidal flow, . . .

Also include “soft” control measures:
dynamic route information, travel time
information, . . .

Hierarchical MPC for transportation networks — Bart De Schutter HD-MPC
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Ongoing research

Address complexity issues for large-scale systems

simplified models for urban traffic networks
parametrized MPC

Alternative objective functions + related models

emissions: CO, NOx, CO2, HC, . . .
fuel consumption
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Cooperative Vehicle Infrastructure Systems

Intermediate step between current system and AHS

Hierarchical MPC for transportation networks — Bart De Schutter HD-MPC

Related work: Traffic management using MPC 50/52

Other applications

Electricity
networks

Water networks

Railway networks

Logistic systems

Hierarchical MPC for transportation networks — Bart De Schutter HD-MPC
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Conclusions

Hierarchical control framework for automated highway
systems (AHS)

Focus on roadside, area, and regional controllers

In general: nonlinear, non-convex mixed-integer optimization
problems

Reduce complexity of problem by selecting appropriate models
and making approximations

Results by bi-level, mixed-integer linear programming, or
nonlinear, non-convex real-valued optimization problems

Future work

extensive integrated case study & assessment

further development of HD-MPC approaches

further improvements in efficiency and performance

Hierarchical MPC for transportation networks — Bart De Schutter HD-MPC
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Main issues and topics in HD-MPC for transportation and
infrastructure networks

How to obtain tractable prediction models?

What is the best division into subnetworks?

Selection of static/dynamic region boundaries?

How to determine subgoals so as to optimize overall goal?

How can existing approaches be extended to hybrid systems?

How can the computation/iteration time be reduced further?
(algorithms, properties, approximations, reductions, . . . )

Hierarchical MPC for transportation networks — Bart De Schutter HD-MPC

HD-MPC ICT-223854 Proceedings of the HD-MPC workshop

Page 60/80



HD-MPC ICT-223854 Proceedings of the HD-MPC workshop

2.8 Application to start-up of combined-cycle power plant (A. Tica, H.
Guéguen, D. Dumur, D. Faille, F. Davelaar)
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Start-Up of Combined Cycle Power Plants
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HD−MPC

SUPELEC

Introduction 2/23

General context

Diffusion of Combined Cycle Power Plants (CCPP)

Efficiency
Lower pollutant emissions

Production to consumption fit

Partial load (ancillary services)
Frequent start-up and shut-down

Flexibility Improvement

Reduction of start-up and shut-down time
Avoidance of start-up failure
Minimization of life-time consumption

CCPP are complex plants with numerous systems and sub-systems

Start-Up of Combined Cycle Power Plants — H. Guéguen HD-MPC

Introduction 3/23

Objectives

How can MPC control help to reduce start-up time while
saving life-time consumption?

How can Distribution and Hierarchy help to design and
implement control?

How can design models (Modelica) of the plant be used for
operationnal phases?

Start-Up of Combined Cycle Power Plants — H. Guéguen HD-MPC

Combined Cycle Power Plants 4/23

Schematic view

Start-Up of Combined Cycle Power Plants — H. Guéguen HD-MPC

Combined Cycle Power Plants 5/23

Start-up procedure

Start-Up of Combined Cycle Power Plants — H. Guéguen HD-MPC

Combined Cycle Power Plants 6/23

Modelica model
Politecnico di Milano (F Casella)

1 1 1 CCPP with 3 levels of pressure

ThermoPower Library

can be used from low load to high load

Simplified model:

gas turbine
low pressure components

Stress model of critical components

high and intermediate pressure superheated steam headers
high and intermediate pressure steam turbine rotor

Start-Up of Combined Cycle Power Plants — H. Guéguen HD-MPC
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Case Study 7/23

1-1-1 CCPP with 1 level of pressure

Start-Up of Combined Cycle Power Plants — H. Guéguen HD-MPC

Case Study 8/23

Increasing Load Phase

Initial state

Turbine generators are connected to the grid

Gas turbine load is around 15%

Pressure is around 60 e5 Pa

Steam is admitted in steam turbine (Bypass valve is closed)

Aim: full load

GT load near 100%

admission valve: fully open

Start-Up of Combined Cycle Power Plants — H. Guéguen HD-MPC

Case Study 9/23

Local control

Gas turbine control

Feed water flow by drum level control loop

Steam turbine admission valve by control wrt gas turbine load

when GT load ≤ 50%: open-loop control of pressure
when GT load > 50%: fully open

Control

Minimize start-up time

Constraints on stress level

Control variables: GTload, admission valve

Start-Up of Combined Cycle Power Plants — H. Guéguen HD-MPC

Case Study 10/23

Modelica Model

ThermoPower library

Stress model (ASME)

Header stress: combination of mechanical and thermal stress
Rotor stress: thermal stress

Complexity

≈2400 equations
42 state variables
simulation time for increasing load phase: 12.4s (PC with 2
GHz CPU)

Start-Up of Combined Cycle Power Plants — H. Guéguen HD-MPC

Overview 11/23
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Overview 11/23
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Overview 11/23

Start-Up of Combined Cycle Power Plants — H. Guéguen HD-MPC

Smooth Model 12/23

Aim:
elimination of discontinuities

if clauses
piecewise affine functions
steam/water tables

reduction of simulation time

Constraint: keep the structure of the ThermoPower model

corresponding components
new media functions for steam and water

Start-Up of Combined Cycle Power Plants — H. Guéguen HD-MPC

Smooth Model 13/23

simplification/specialization of some components (e.g. reverse
flow elimination)

discontinuities approximations

Discontinuity approximation

∀x ∈ R H(x) =

{
0 x < 0
1 x ≥ 0

∀x ∈ R Hk(x) =
1

1 + e−kx

Start-Up of Combined Cycle Power Plants — H. Guéguen HD-MPC

Smooth Model 13/23

simplification/specialization of some components (e.g. reverse
flow elimination)

discontinuities approximations

Discontinuity approximation

∀x ∈ R H(x) =

{
0 x < 0
1 x ≥ 0

∀x ∈ R Hk(x) =
1

1 + e−kx

Start-Up of Combined Cycle Power Plants — H. Guéguen HD-MPC

Smooth Model 14/23

Steam/Water functions approximation

piecewise polynomial approximations of the Modelica.Media
functions
e.g. T = f (P, h)

Start-Up of Combined Cycle Power Plants — H. Guéguen HD-MPC

Smooth Model 15/23

Complexity

≈2000 equations

42 state variables

simulation time for
increasing load phase: 1.4s
(PC with 2 GHz CPU)

temperature

header stress

Start-Up of Combined Cycle Power Plants — H. Guéguen HD-MPC
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Overview 16/23

Start-Up of Combined Cycle Power Plants — H. Guéguen HD-MPC

Overview 16/23

Start-Up of Combined Cycle Power Plants — H. Guéguen HD-MPC

Overview 16/23

Start-Up of Combined Cycle Power Plants — H. Guéguen HD-MPC

BB optimization 17/23

Profile optimization.

Choice of parametrized profiles: L(t) = Lp(t, q), e.g.

L2H(t, q) = Lm + (Li − Lm)
th

th + kh
+ (LM − Li )

tp

tp + rp

Optimization problem

mintf ,q(J), J =

∫ t0

tf

dt

subject to the constraints

ẋ = f (x , Lp(t, q))

Lp(tf , q) ≥ LM − ε1

‖f (x(tf ), Lp(tf , q))‖ ≤ ε2

h (x(t)) ≤ 0

(1)

Start-Up of Combined Cycle Power Plants — H. Guéguen HD-MPC

BB optimization 18/23

Example: L2H(t, q) gains wrt ramp: time 20%; consumption 20%

gains wrt ramp (classical): time 20%; consumption 20%Start-Up of Combined Cycle Power Plants — H. Guéguen HD-MPC

BB optimization 19/23

Gas turbine load

2 hills functions; start-up time: 4790s (-20%)
spline functions (3); start-up time: 4530s (-25%)

Gas turbine load and steam turbine admission valve

spline functions (2); start-up time: 4440s (-26%)

Start-Up of Combined Cycle Power Plants — H. Guéguen HD-MPC
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MPC 20/23

Control variable: gas turbine load

Every computation time (TC )

profile computation for the next N.TC

Lagrange polynomials (N)

minimization of J =
∫ t0+N.Tc

t0
‖LLN

(t, q)− L0 (L(t0))‖2 dt

Start-up time: 3400s (-43%) [TC = 60s,N = 5]

Start-Up of Combined Cycle Power Plants — H. Guéguen HD-MPC

MPC 20/23

Control variable: gas turbine load

Every computation time (TC )

profile computation for the next N.TC

Lagrange polynomials (N)

minimization of J =
∫ t0+N.Tc

t0
‖LLN

(t, q)− L0 (L(t0))‖2 dt

Start-up time: 3400s (-43%) [TC = 60s,N = 5]

Start-Up of Combined Cycle Power Plants — H. Guéguen HD-MPC

Hierarchy and Distribution 21/23

Hierarchical MPC control

Robustness of control

Introduction of variations into the model?
Simulation on sets?

Distributed control

Gradient based methods?

Robustness?

Range of admissible input signals

Start-Up of Combined Cycle Power Plants — H. Guéguen HD-MPC

Hierarchy and Distribution 21/23

Hierarchical MPC control

Robustness of control

Introduction of variations into the model?
Simulation on sets?

Distributed control

Gradient based methods?

Robustness?

Range of admissible input signals
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Hierarchy and Distribution 22/23

Example

Start-Up of Combined Cycle Power Plants — H. Guéguen HD-MPC

Hierarchy and Distribution 22/23

Example

Start-Up of Combined Cycle Power Plants — H. Guéguen HD-MPC
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Conclusion 23/23

Smooth Modelica model for a 1-1-1 1 pressure level CCPP

new components / media consistent with ThermoPower
systematic design of the optimisation model

Start-up profile optimization

reduction of start-up time
importance of profile functions

Such approach for such plants is still challenging

optimization tools / model development
simulation tools: admissible state and feasible trajectories
distributed approaches: steam interactions

Start-Up of Combined Cycle Power Plants — H. Guéguen HD-MPC

Conclusion 23/23

Smooth Modelica model for a 1-1-1 1 pressure level CCPP

new components / media consistent with ThermoPower
systematic design of the optimisation model

Start-up profile optimization

reduction of start-up time
importance of profile functions

Such approach for such plants is still challenging

optimization tools / model development
simulation tools: admissible state and feasible trajectories
distributed approaches: steam interactions
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HD-MPC

Distributed 

Control of 

Irrigation Canals

Laura Sánchez a and Miguel A. Ridao b

a INOCSA S.L.
b University of Seville

HD-MPC

Outline

• Irrigation Canal System

– Main Elements

– Operation of an Irrigation Canal

• Models

• Control of Irrigation Canals

HD-MPC

Irrigation Canal Scheme

OFFTAKE

HD-MPC

Control structures - Gates

Taintor Gate

Two Taintor Gates with side weirs

Sluice  Gates

Side  

weirs

HD-MPC

Canal elements

Gravity offtake

Syphon

Wasteweirs

Canal 

Head

HD-MPC

Canal Operation Concepts

• Supply oriented operation

– Upstream water supply source or inflow determines the 

canal system flow schedule

– Used when the inflow is fixed by a different 

organization than the canal manager

• Demand oriented operation

– Downstream water demand (offtakes) determines the 

canal system flow schedule

– The inflow is determined by the canal manager 

accordingly with the demand

HD-MPC ICT-223854 Proceedings of the HD-MPC workshop
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HD-MPC

Control objectives

• Main objective: guarantee flows requested by users. It is necessary to 
maintain the level of the canal over the off-take gate.

• Controlled Variables: 

– levels upstream or downstream the gates.

– flows through gates, mainly at the head of the canal and secondary canals.

– Water volume

• Manipulated variables:

– Gate opening 

– flow is considered as a manipulated variable to control levels when a two level 
controller is used.

• Disturbances:
– Off-takes flows: measured, aggregate values or predicted

– Rainfall: Measured or predicted

• Contraints:
– Maximum and minimum levels along the canal

– Maximum and minimum flows

– Operating levels on reservoir at the tail of the canal

HD-MPC

Control Concepts – Downstream Control

• Control structure adjustments (gates) are based upon information 

from downstream (usually levels)

• Downstream control transfers the downstream offtake demand to the 

upstream water supply source (flow at the head)

• Compatible with demand oriented operation

• Impossible with supply oriented operation

HD-MPC

Control Concepts – Upstream Control

• Control structure adjustments (gates) are based upon information 

from upstream (usually levels)

• Upstream control transfers the upstream water supply (or inflow) 

downstream to points of diversion or to the end of the canal

• Compatible with supply oriented operation

• Inefficient with demand oriented operation

HD-MPC

Irrigation Canal Control – General Ideas

• Controlled variables: Water level, water volume or 
discharge (most common, level)

• Two global strategies:

– Directly manipulate gate opening in order to control 
levels

– Two level control
• Compute required gate discharges in order to control water 

levels (discharges as manipulated variable)

• Manipulate gate openings  to obtain the requested gate 
discharges

– Local Controller (Cascade control)

– Inverting the gate discharge equation

HD-MPC

Irrigation Canal Control – General Ideas

Example of a two level downstream controller. The first level is 

a predictive controller and the lower level controller is a PID

HD-MPC

Outline

• Irrigation Canal System

• Models

– Saint-Venant equations

– Models of control structures

– Control models

• Control of Irrigation Canals

HD-MPC ICT-223854 Proceedings of the HD-MPC workshop
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HD-MPC

Irrigation Canal Model - Reaches

Partial Differential Saint-Venant Equations

Mass Balance

Momentum Balance

HD-MPC

Irrigation Canal Model - Reaches

Partial Differential Saint-Venant Equations

Mass Balance

Momentum Balance

Inertia Convective 

acceleration

Gravitational 

Force Friction Force

HD-MPC

Saint_Venant Equations – Water Movement

V

V+c

V-c A disturbance, created in a reach, 

results in two wave movements., one 

wave travels with velocity V+ c and one 

travels with velocity V - c.

surfacesection    cross  WettedA

section cross  wettedof width Top

f

B

B

gA
c

f


• Flow Regimes

– If c>V, subcritical flow, a change in flow results in two waves in opposite 

directions

– If c=V, critical flow, a change in flow results in only one wave travelling 

downstream

– If c<V, supercritical flow, a change in flow results in two waves travelling 

downstream

• Subcritical flow is presented in most real irrigation canal

HD-MPC

Saint_Venant Equations – Water Movement

When a wave arrives at a boundary (a 

control structure), part of the wave is 

reflected. If  a wave is initiated from one of 

the boundaries, it returns after a period

Vc

L

Vc

L
T

r







Vc

L

Vc

L










2

Bode diagram of linearized De Saint Venant equations

Influence of changes in parameter values of reach 

dimension on basic frequency

P.J van Overloop, “Model Predictive Control on Open 

Water Systems”. 2006

HD-MPC

Structure Models – Overshot Gates

coeficient Discharge:

gateofWith:

)(
3

2
2

3

1

d

crd

C

L

hhgLCQ 

Many theoretical or empirical 

formulas have been proposed, for 

example:

HD-MPC

Structure Models – Undershot gates

opening Gate:

2
1

u

ghuLCQ
d



)(2
31

hhguLCQ
d



u

u
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HD-MPC

Simplified models for control

• Some approaches in bibliography

– Based on mathematical models

• Integrator-delay model (Shuurmans, TU Delft)

• Linearization of Saint-Venant equations (Litrico and Fromion, 

Cemegraph)

– Identification models

• Weyer et al. (University of Melbourne)

• Rivas Perez (Havana Polytechnic University)

• Rodellar, Sepulveda (Universidad Politécnica de Cataluña)

HD-MPC

Simplified models for control – ID Model

Integrator-delay 

simplified model

Offtakeskq

fallraininputLateralkq

timeSamplingT

kqkQkqkkQTkhkhA

out

in

d

outoutindinds

)(

,...:)(

))()()()(())()1(( 

Schuurmans, J. (1997), 

„Control of water levels in 

open channels‟, Ph.D.-

dissertation TUDelft

HD-MPC

Identification Models I

2/3

222

2/3

1122
))()(()()()1( tptycthctyty  

First and third 

order non-linear 

and linear models 

for a reach with 

overshot gates

E. Weyer. System identification 

of an open water channel. 

Control Engineering Practice 9, 

2001

))()(()()()1(
2221122

tptycthctyty  

Non-linear model

Linear model

Parameters: c1   c2   

HD-MPC

Identification Models II

OutflowInflowtytatyaty  )()()()(
21



E. Weyer. System identification 

of an open water channel. 

Control Engineering Practice 9, 

2001

))1(2)()(1(

))2()1(2)()(1(

)())2()2((

))1()1(())()((

)2()1()()1(

222

2221

2

2/3

226

2/3

224

2/3

222

2/3

15

2/3

13

2/3

112











tytya

tytytya

tytptyc
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thcthcthcty 

Non-linear model

Parameters: c1   c2  c3  c4

c5 c6 a1 a2 

Third order models for the wave dynamics

Conclusions:

The models can be used for 

accurate simulation of the water 

levels at least 7.5 h ahead of time 

(2) The models are valid under 

both high and low flow conditions

HD-MPC

Identification Models III
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1
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dt

tdy
TT

dt
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Rivas Perez et al. System identification for control of a main irrigation canal pool. 

Proceedings of the 17th World CongressSecond order Model 

ARX higher models and Laguerre Models 

Sepulveda, Instrumentation, model identification and control of an experimental 

irrigation canal. PhD Dissertation. Universidad Politécnica de Cataluña.

HD-MPC

Outline

• Irrigation Canal System

• Models

• Control of Irrigation Canals

– Decentralized control

– Distributed control
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HD-MPC

Irrigation Canal Control – Common solutions

• Most of the implemented techniques are based on 

local PI

– EL-FLO: A PI controller with a filter applied to downstream 

control.

– P+PR: A PI applied to upstream control.

– BIVAL: The controlled variable used both upstream and 

downstream measures (volume control)

– AVIS: P controller for radial gates (upstream control)

– AMIL:P controller for radial gates (downstream control)

– PIR: PI+ Smith predictor

dwnup
yyy )1(  

Malaterre  et al., "Classification of Canal Control 

Algorithms", ASCE Journal of Irrigation and Drainage 

Engineering. Jan./Feb. 1998, Vol. 124, .

HD-MPC

Decentralized control

• The most used solution in practice consist of a PI 
compensator and a filter

– The compensator need at 
least one pole in s=0 to 
achieve zero steady-state 
waterlevel error for step load 
disturbances

– Several PI tuning rules based 
on ID model: Schuurmans, 
Litrico…

– The low pass filter diminish 
the controller sensibility to 
wave resonance

– A typical problem is the level 
error amplification upstream 
(Cantoni, et al. 2007)

HD-MPC

Decentralized Control: Decoupling and Feedforward

• Decoupling: Feedforward control considering the flow at the next 

gate (ui+1) as a disturbance

– This flow is always measured (or computed) – no additional cost

– Diminish the interrelationship among coupled variables – reduction of 

the amplification error problem

• Feedforward – offtake discharges

– Not always available a reliable measure.

)()()()()()()(
1

sdsFsusFsesCsu
iffidiii




HD-MPC

MPC approaches

• Decentralized
– “Predictive Control Applied to ASCE Canal 2”. K. Akouz et al. IEEE International 

Conference on Systems, Man, and Cybernetics. (1998).

– “Decentralized Predictive Controller for Delivery Canals”.S. Sawadogo et al. IEEE 
International Conference on Systems, Man, and Cybernetics, volume 4.(1998).

– “A Simulink-Based Scheme for Simulation of Irrigation Canal Control Systems”. J. 
A. Mantecón et al.. SIMULATION (2002)

– “Predictive control method for decentralized operation of irrigation canals”. M. 
Gómez et al. Applied Mathematical Modelling 26 (2002)

• Centralized
– “Multivariable predictive control of irrigation canals. Design and evaluation on a 2-

pool model”. P.O. Malaterre. International Workshop on the Regulation of Irrigation 
Canals: State of the Art of Research and Applications (1997).

– “Instrumentation, model identification and control of an experimental irrigation 
canal”. C.A. Sepulveda. PhD. Thesis. (1997)

– Model Predictive Control on Open Water Systems. P.J. Overloop. PhD. Thesis. 
(2006)

– “Predictive Control with constraints of a multi-pool irrigation canal prototype”. O. 
Begovich. Latin American Applied Research, 37 (2007)

– “Adaptive and non-adaptive model predictive control of an irrigation canal” J.M. 
Lemos et al. Networks and heterogeneous media. Volume 4, Number 2, (2009).

HD-MPC

Some comparative results

Sepulveda, Instrumentation, model identification and control of an experimental 

irrigation canal. PhD Dissertation. Universidad Politécnica de Cataluña.

A three reaches canal:

 T=1000 s: Offtake increment in Pool1.

• T= 3000 s: Offtake  increment in Pool2.

• T= 5000 s: Water level set point 

increment in Pool3.

HD-MPC

Why distributed Control?

• Coordination between sub-systems is needed, i.e. the avoidance of 
upstream disturbance amplification in canals consisting of canal 
reaches in series

• The number of reaches and gates can be high (near one hundred in 
the Postrasvase Tajo-Segura): computational limitations for a 
Centralized MPC

• Different section of the canal can be managed by different Control 
Centers and even by different organizations.

DECISIONS TAKEN IN ONE HYDROGRAPHICAL AREA CAN INFLUENCE OTHER CLOSE AREAS

HD-MPC ICT-223854 Proceedings of the HD-MPC workshop
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HD-MPC

Why distributed Control?

• Coordination between sub-systems is needed, i.e. the avoidance of 
upstream disturbance amplification in canals consisting of canal 
reaches in series

• The number of reaches and gates can be high (near one hundred in 
the Postrasvase Tajo-Segura): computational limitations for a 
Centralized MPC

• Different section of the canal can be managed by different Control 
Centers and even by different organizations.

DISTRIBUTED CONTROL CAN TACKLE WITH POLITICAL DECISIONS TAKEN IN DIFFERENT PROVINCES

HD-MPC

Distributed approaches to Irrigation Canal

• Decentralized predictive controller for delivery canals
S. Sawadogo, R. M. Faye, P. O. Malaterre and F. Mora-Camino.
Proceedings of the 1998 IEEE International Conference on Systems, Man, and Cybernetics (San 
Diego, California), 1998

• Optimal control of complex irrigation systems via decomposition -coordination and the use 
of augmented Lagrangian
H. El Fawal, D. Georges and G. Bornard
Proceedings of the 1998 International Conference on Systems, Man, and Cybernetics (San Diego, 
California), 1998.

• Decentralized adaptive control for a water distribution system.
G. Georges.
Proceedings ofthe 3rd IEEE Conference on Control Applications (Glasgow, UK), 1999.

• Cooperative Control of Water Volumes of Parallel Ponds Attached to An Open Channel Based 
on Information Consensus with Minimum Diversion Water Loss.
Christophe Tricaud and YangQuan Chen
Proceedings of the 2007 IEEE International Conference on Mechatronics and Automation, Harbin, 
China, 2007, 

• Distributed controller design for open water channels
Y. Li and M. Cantoni,
Proceedings of the 17th IFAC World Congress, Korea, 2008.

• Distributed Model Predictive Control of Irrigation Canals
R.R Negenborn, P.J. Overloop, T. Keviczky and B. De Shutter
NETWORKS AND HETEROGENEOUS MEDIA Vol. 4-2, 2009.

• Performance Analysis of Irrigation Channels with Distributed Control.
Yuping Li and Bart De Schutter. 
2010 IEEE International Conference on Control Applications. Yokohama, Japan, 2010

• A hierarchical distributed model predictive control approach to irrigation canals: A risk 
mitigation perspective.
A. Zafra-Cabeza, J.M.Maestre, Miguel A.Ridao, E.F.Camacho and  L. Sánchez
Journal of Process Control  - Special Issue on HD-MPC.2011

HD-MPC

A serial distributed MPC

• Control strategy: Downstream control
– Controlled variable: Downstream level

– Manipulated variables: Flows at the gates (set-point provided to the local flow 
controllers)

• Subsystems: A gate and the downstream reach

• Each controller requires the current state of its subsystem and predictions of 
the values of interconnecting variables. 

• The controllers perform several iterations consisting of local problem solving 
and communication with neighbors.

• Serial communication scheme: One agent after another performs 
computations

• Iterative method based on Lagrange Multipliers.

“DISTRIBUTED MODEL PREDICTIVE CONTROL OF IRRIGATION 

CANALS”

R.R Negenborn, P.J. Overloop, T. Keviczky and B. De Shutter

NETWORKS AND HETEROGENEOUS MEDIA Vol. 4-2, (2009)

HD-MPC

A serial distributed MPC: Models
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HD-MPC

A serial distributed MPC: Interconnecting variables
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HD-MPC

A serial distributed MPC: Control algorithm

• The controllers solve their control problems in the 

following serial iterative way:

– Set the iteration counter and initialize the Lagrange multipliers 

arbitrarily.

– One controller after another solves its optimization problem:

– Update the Lagrange Multipliers with the new values of the 

interconnecting variables

– Send and receive the multipliers from the neighbor agent

– Move on to the next iteration until a stopping condition is 

satisfied

• The controllers implement the actions until the beginning 

of the next control cycle
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A serial distributed MPC: Control objective

• The deviations of water levels from provided set-points 

are minimized

• The changes in the set-points provided to the local flow 

controllers are minimized to reduce equipment wear
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HD-MPC

A serial distributed MPC: Simulation Results

• 7 reaches canal

• The length of the canal is almost 10 km 

• Maximum capacity of the head gate is 2.8m3/s

• Control cycle length: 240 s.

• Prediction horizon length; 31 (to take into account the total delay in the irrigation canal

• Scenario: a sudden increase of 0.1m3/s at control cycle k = 30 in the water offtake of 
canal reach 3 and a sudden decrease of 0.1m3/s at control cycle k = 70 in the same 
canal reach.

HD-MPC

A HD-MPC approach based on risk management

This approach shows how risk management can be applied to optimize the

Irrigation Canal operation in order to consider process uncertainties.

The proposed method, for the use of risk metrics, forecasts the water level of

reaches, benefits and costs associated to IC.

Formulation of a Hierarchical and Distributed MPC (HDMPC) to optimize the

strategic plan (mitigation actions) that optimizes the operation of the IC.

 Higher Level: MPC with a risk-based strategy

 Lower Level: DMPC to optimize the operation (based on the DMPC based on game

theory presented previously)

“A hierarchical distributed model predictive control approach to irrigation 

canals: A risk mitigation perspective”

A. Zafra-Cabeza, J.M.Maestre, Miguel A.Ridao, E.F.Camacho and  L. 

Sánchez

Journal of Process Control  - Vol 21-5 - Special Issue on HD-MPC (June-

2011)

HD-MPC

HD-MPC and Risk Management

General structure

Higher level

MPC

PLANT

Mitigation actions

Flow head and  gate 

openings

Internal risks (plant data)

External risk information

Lower level

DMPC

Internal risks (plant data)

Cost of mitigation

HD-MPC

Lower level: DMPC approach

Downstream control, considering underflow gates and gate
position as manipulated variable

Each subsystem corresponds with a reach

The Integrator delay model has been used for the reach
movement and the flow through the gates as manipulated
variables

Each agent has only partial information of the system. Agents
optimize according to a local cost function

Low communicational requirements

Cooperative solution: Cooperative algorithm from a game
theory point of view. The different agents must reach an
agreement on the value of the shared inputs

HD-MPC

Lower level: DMPC approach
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where:

There is no coupling between the states of the agents (only coupled by the 

actuations)

Each agent has local information about the state and knows how it is 

affected by the different inputs

Inputs are not assigned to agents
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Lower level: Cost functions

Agents optimize according to a local cost function

Control objective: Global Performance Index

The different agents must reach an agreement on the value of the

shared inputs

HD-MPC

Lower level: Algorithm

1. Each agent p measures its current state xp(t)

2. Agents try to submit their proposals randomly. To this end, each agent asks the neighbors

affected if they are free to evaluate a proposal.

3. In order to generate its proposal, each agent p minimizes Jp solving the following

optimization problem:

4. Each agent i affected by the proposal of agent p evaluates the predicted cost corresponding

to the proposed solution. To do that, the agent calculates the difference between the cost of

the new proposal and the cost of the current accepted proposal. The difference is sent back

to agent p.

5. Once agent p receives the local cost increments from each neighbor, it can evaluate the

impact of their proposal.

6. The algorithm returns to Step 1 until the maximum number of proposals has been made or

the sampling time ends.

7. The first input of each optimal sequence is applied and the procedure is repeated the next

sampling time from Step 1.

HD-MPC

Lower level: Case study

Benchmark:  postrasvase Tajo-Segura in the south-east of Spain

6,680km

17,444km

7 main gates

17 off-take gates

7 subsystem in DMPC

Lower Level
 Control water management in

canals by satisfying demands

 Controlled variables:

downstream levels

 Manipulated variables: flow at

the head and the position of the

gates

 Sampling time: 1 minute

 Nc=5

 The prediction horizon for each

reach is the control horizon plus

the delay of the reach

:Np(i)=Nc+Ki

 7 agents

HD-MPC

Case study: Lower level results

Scenario: All reaches begin with a water level of 3.0 m and there is a change of set 

points for all the reaches to 3.40m (from higher level, day 150)

Nominal case. No disturbances Measure disturbances
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STREP Project 223854 HD-MPC

Bart De Schutter

Closing of the HD-MPC workshop

Milan, Italy, August 28, 2011

HD−MPC

Extra information 2/7

Website of HD-MPC project: http://www.ict-hd-mpc.eu

Slides of this workshop:
http://www.ict-hd-mpc.eu/index.php?page=ifac_workshop

or via HD-MPC website → Events

Closing — Bart De Schutter HD-MPC

Additional HD-MPC activities at IFAC World Congress 3/7

Two special sessions on HD-MPC organized by Bart De Schutter
and Alfredo Núñez:

MoA12 (10.00–12.00): Hierarchical and Distributed Model
Predictive Control – I. Fundamentals

MoB12 (13.30–15.30): Hierarchical and Distributed Model
Predictive Control – II. Applications

Room: Vito

Presenters from HD-MPC and other FP7 EU projects (WIDE,
HYCON2, Embocon, MoVeS)

Closing — Bart De Schutter HD-MPC

Presentations in Session I – Fundamentals 4/7

Feasible-cooperation distributed model predictive control
scheme based on game theory
by Valencia, Espinosa, De Schutter, Staňková

A dual decomposition-based optimization method with
guaranteed primal feasibility for hierarchical MPC problems
by Doan, Keviczky, De Schutter

Distributed model-predictive control driven by simultaneous
derivation of prices and resources
by Scheu and Marquardt

Distributed non-cooperative MPC with neighbor-to-neighbor
communication
by Farina and Scattolini

Adjoint-based distributed multiple shooting for large-scale systems
by Savorgnan, Kozma, Andersson, Diehl

Distributed model predictive control and estimation of
large-scale multi-rate systems
by Roshany-Yamchi, Negenborn, Cychowski, Connell, Delaney

Closing — Bart De Schutter HD-MPC

Presentations in Session II – Applications 5/7

Distributed MPC for multi-zone temperature regulation with
coupled constraints
by Moroşan, Bourdais, Dumur, Buisson

Coordination of a multiple link HVDC system using local
communications based distributed model predictive control
by Mc Namara, Negenborn, De Schutter, Lightbody

Hierarchical control with prioritized MPC for conflict
resolution in air traffic control
by Chaloulos, Hokayem, Lygeros

Fixed-profile load scheduling for large-scale irrigation channels
by Li and De Schutter

Decentralised MPC based on a graph partitioning approach
applied to the Barcelona drinking water network
by Ocampo-Martinez, Puig, Bovo

Cooperative distributed MPC for tracking
by Ferramosca, Limón, Rawlings, Camacho

Closing — Bart De Schutter HD-MPC

Special issue of the Journal of Process Control on HD-MPC 6/7

Special Issue on Hierarchical and
Distributed Model Predictive Control

Journal of Process Control, Volume
21, Issue 5 (2011), pages 683–816

Currently 2 papers in top-10 of most
downloaded papers:

A comparative analysis of distributed
MPC techniques applied to the
HD-MPC four-tank benchmark
by Alvarado et al.
Decentralized model predictive
control of dynamically coupled linear
systems
by Alessio et al.

Closing — Bart De Schutter HD-MPC
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Call for papers: ADHS’12 7/7

ADHS’12: 4th IFAC Conference on Analysis and Design of
Hybrid Systems

Eindhoven, The Netherlands, June 6–8, 2012

Topics:

modeling, simulation, analysis, verification, and control of
hybrid systems
applications in networked control systems, large-scale process
industries, transportation systems, energy distribution
networks, communication networks, etc.

URL: www.adhs12.org

Submission deadline: Nov. 15, 2011

Closing — Bart De Schutter HD-MPC
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