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,%at is Model Preglcglve !ontrol?

MPC is a form of control in which the current control
action is obtained by solving on-line, at each
sampling instant, a finite-horizon open-loop optimal
control problem, using the current state of the plant
as the initial state; the optimization yields an optimal
control sequence and the first control in this
sequence is applied to the plant.

Optimization over a future
receding horizon using a dynamic
model of the plant
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. Introduction

® Current trends in automatic control
® Past: stable operation. Replace the human operator.

® Present: operate processes according to the market.
High efficiency and flexibility. New challenges.

® Objective: act on the manipulated variables in order
to satisfy changing operating criteria:
e Profit
* Yield
e Safety
e Energy saving
e Environment

e Quality
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MPC successful in industry.

e Many and very diverse and successful applications:

« Refining, petrochemical, polymers, semiconductor production
scheduling, air traffic control, clinical anesthesia, power

converters, etc.

e Many MPC vendors.

e Most general and intuitive way of posing the control

problem in the time domain. Integrates:

Optimal control
Stochastic control
Mutivariable control
Constraints

Measurable disturbances
Nonlinear processes, etc.
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uccessful in indu

M. Bauer, I.K. Craig | Journal of Process Control 18 (2008) 2-18 Reasons f0|"

success in
industry:

W Standard

_ Model predictive control

Constraint control B Frequently

Split-range control @ Rarely On-line
Linear programming (LP) B Rever . . .
0 Don't know optimization

Nonlinear control algorithms or models

Dead-time compensation

Multi-level

Statistical process control

control

Neural networks based control

Expert system based control

Fuzzy logic control

Constraint

Internal model control (IMC)

management

Adaptive / selftuning control

Directsynthesis (DS)

0% 20% 40% 60% 80%  100%

@ndustrial use of APC methods: survey results. >

Economic assessment of advanced process control — A survey and framework. M. Bauer & |.
K. Craig. Journal of Process Control 18 (2008) pp 2-18. 6



Most APC products are based on MPC

Honeywell (Profit Suite)

Aspentech (AspenOne)

Matrikon (ProcessACT)
Hyperion (DMCplusTM)

ABB (Optimize IT)

Expertune (PlantTriage)
Pavillion (Pavillion8)

Invensys (Connoisseur)

Emerson (EnTech)

Yokogawa (APCSuite)

Universal Dynamics (Brainwave)
Control Soft (Mantra)

Ipcos (INCA)

Knowledgescape

Perceptive Engineering (Perceptive)

Knowledge Process Solutions (IPC)

Own development / in house expertise

Other F’:

0% 10% 20% 30% 40% 50% 60% 70% 80%




Real reason of success: Economics

® MPC can be used to optimize operating points (economic

objectives). Optimum usually at the intersection of a set of

constraints.

® Obtaining smaller variance and taking constraints into account

allow to operate closer to constraints (and optimum)

® Repsol reported 2-6 months payback periods for new MPC
applications.
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MPC successful in Academia

®* Many MPC sessions in control conferences and
control journals, MPC workshops.

® Science Direct: 2,101 journal papers in the last
decade. 265 in 2010. 250 in 2011

* |EEExplore: 1,194 journals and 11,829 conference
papers
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a copper smelter

Energy saving & automatic mode




Pressure control in the mixing chamber
(below atmosphere to avoid emissions)

Vi Results:
Objectives:
e Increment in the time of

automatic operation ( from
Reduce energy consumption in blowers 27% to 84%)

Minimize environmental impact (emissions)

e Energy saving

Electrical consumption of blowers

Yearly savings: 1.900 MWh.

Average reduction: 4.22 %

C. Bordons, M.R. Arahal, E.F. Camacho y J.M. Tejera. “Energy saving in a copper
smelter by means of Model Predictive Control.”



so much successfu
engineering fields?

® Automotive: Cruise control, power train, power management

INn other

* Flight control

* Spacecraft control (attitude, rendez-vous...)
®* Anaesthesia, Diabetes

® Energy in buildings

* Lighting

* Distribution networks: smart grids, canals, water distribution
networks

® Greenhouses
® ElC.
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2. Basic ideas of MPC

» Common features of model predictive controllers:

o Explicit use of a dynamic model to predict the
system evolution in the future (horizon)

o Computation of the control signal minimizing a cost
function

e Use of a sliding strategy: the horizon is moving
towards the future. Only the first element of the
sequence is sent to the plant.

» Algorithms differ in the kind of model, the cost
function and the optimization procedure.

14



Controller strategy

1.- At each samplig instant k,
y(t+k/t) are computed for a
certain horizon N, as

functions of the control |
actions u(t+k/t) Control actions

2.- Control actions are
computed minimizing a
cost function (tracking)

3.- The first control action L |

u(t) is used (the rest is ¢l 42 +N
neglected)

4.- Go to 1 with the new
measured value y(t+1)
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P

Controller strategy. MPC vs. PID

PID: u(t)=u(t-1)+g, e(t) + g e(t-1) + g, e(t-2)

Carlos Bordons. Introduction to MPC. Industry Workshop on HD-MPC 16



Pros & Cons

Advantages:

 Intuitive concepts (optimization, horizon, etc.)

» Used for different types of processes (unstable,
dead-time, etc.)

o Easy extension to the multivariable case
e Constraints handling
e Open methodology that allows future extensions

Drawbacks:
— Need of an appropriate dynamic model of the plant
— Computational burden

Carlos Bordons. Introduction to MPC. Industry Workshop on HD-MPC 17
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%. ;ome algorlfF‘iTTfs§

* MPC is a “family” of control algorithms

® The history of MPC is originated from application
and then expanded to theoretical field (ordinary
control algorithms often has applications after
sufficient theoretical research)

® Based on theoretical research in the 60’ and
optimization needs in the process industry in late 70’

e Kalman: LQG (1960)
* Propoi: use of LP methods (1963)

Carlos Bordons. Introduction to MPC. Industry Workshop on HD-MPC 19
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Fig. 1. Approximate genealogy of linear MPC algorithms.

4th generation
MPC

3rd generation
MPC

2nd generation
MPC

1st generation
MPC

Richalet et al, Model Predictive Heuristic Control (MPHC) IDCOM (1976, 1978. PFC 90’

Cutler & Ramaker, DMC (1979, 1980)
Cutler et al QDMC (QP+DMC) (1983)

Clarke et al GPC (1987)

Commercial extensions of these methods

VAV



[Cutler & Ramaker, 1980]

® Step Response Model. Great interest in industry:

e Easy experimental identification
e Scarce process knowledge required y(t) = Z g AN u(t —1)
® Prediction along the horizon:

Depends on
Future control
S /actions
Common to all linear MPC f\

Free response Past \ Future

* Current time
Forced response

Carlos Bordons. Introduction to MPC. Industry Workshop on HD-MPC 21



DMC.

(g1 0 o 0
g g - 0
® Dynamic Matrix: G S
N 9m Gm—-1 " g1
L 9p Gp—1 " Gp—m+1

® Objective Function:

J = Z[g}(t—i—j | t) —w(t+ 7)) + Z)\[Au(t +j—1)°

Jj=1 g=1
e Solution to the unconstrained minimization:

u=(G'G+ )G (w-f)

Carlos Bordons. Introduction to MPC. Industry Workshop on HD-MPC 22



w -
Au(t) ()
\>Q \> K Process d
/ /
VARAN
f

Free response
calculation

Au(t) = K(w — f)
Linear Control Law

Proportional to the future error (unlike PID)

Carlos Bordons. Introduction to MPC. Industry Workshop on HD-MPC 23



Eeneralized Predictive %ontrol (GPC)

[Clarke et al., 1987]

* CARIMA Model transfer function (valid for unstable processes)

¢}
)

A % = B -1 +
® Cost function like DMC (q )y, (q -1

N, N,
J(u,t)= Z[yt+j _rt+j]2 +ZZ[Aut+j—l]2
j=1

J=N,
® Control law:

u=(G' G+ADH'G" ' (r-1)

® Can be formulated as a 2DOF controller

r(k) u (k) y(k)

— F(2) T K (z)—* P(2)
H(z)-=

Carlos Bordons. Introduction to MPC. Industr




T(t+1) = MT(t) + N A u(t)

® State-space model for y(t) = QT(t)
predictions
QN A ul(t)
[yt +1)t) ] Fl—in :
o0t + 210 % QM 7'N A u(t+ 1)
y = : =
| y(t+ Naft) | Nfl QMN2=1=i N A u(t + 1)
1=0 =

* Free and forced response y = Fi(t) + Hu
J=(Hu+Fi(t) — w) (Hu+Fi(t) —w) + lulu

® Control law
u=H'H+ \I)"'H? (w — Fi(t))

Carlos Bordons. Introduction to MPC. Industry Workshop on HD-MPC 25



State Space

® Advantages:
e Very useful for theoretical analysis (stability)
e Straightforward extension to the multivariable case
e Very appropriate for nonlinear systems

® Drawbacks:

e May need an observer (Kalman filter)
e Dead times difficult to handle

Carlos Bordons. Introduction to MPC. Industry Workshop on HD-MPC 26
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4. MPC and Constraints

In practice, all processes are subject to constraints
e Actuators have a limited range (valves, pumps, etc)
e Safety limits: maximum pressure or temperature
e Technological requirements (temperature profile)
e Product Quality or environmental regulations

2

30




raints in proce

® Usually the optimum is close to the constraints.
(Formula 1: speed, rpm)

® Objective: work as close as possible to the constraints
but without violation

* |f constraints are not considered: work far from the
optimum (safety). Decrease in quality and yield
(benefits)

A -aa,;,
SP 1

\J'*V U U" SP 2

31



'MPC and constraints

MPC is the only methodology able to incorporate constraints in
a systematic way in the design phase (there are other ad-hoc
solutions like override control) >>>>> great success in industry

® Using a dynamic model,
the controller can
anticipate to the future
evolution of the output

® Not considering
constraints on
manipulated variables
(clipping) may result in
higher values of the
objective function.

u(t+1)

/

>

‘7/ Unconstrained
/] solution
> U(t)
/ Clipping
Optimum

32



Problem formulation

Now the objective is to minimize a cost function subject to

constraints.
Constraints must be expressed as function of the minimization

(independent) variable u
u, <ult)<u,. .

v,.<Ui<u,,

for all t along the horizon

Since y = Gu + f, the output constraints can be expressed as a
function of u

Carlos Bordons. Introduction to MPC. Industry Workshop
on HD-MPC 33



-Computing

All constraints (inequalities) can be grouped
and expressed as:

Ru<c

Now the problem to be solved is:
Min ]
Subjectto: Ru<c

Minimization of a quadratic function
subject to linear constraints: Quadratic
Programming (QP). Well-known

optimization algorithm (iterative)

Carlos Bordons. Introduction to MPC. Industry Workshop on HD-MPC



~ Control law computation

MODEL COST FUNCTION CONSTRAINTS SOLUTION

Linear Quadratic None Explicit
Linear Quadratic Linear QP
Linear Norm-1 Linear LP

Carlos Bordons. Introduction to MPC. Industry Workshop on HD-MPC -
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5. Fast Systems

® MPC originally developed for “slow”
processes (chemical, thermal, etc.).
Lot of time for on-line optimization

® Processes with small sampling times:
e Power converters
e Flight control

e Automotive (ESP, ABS, power
management)

e Electromechanical systems

® Constrained MPC implies solving a
QP (computational cost). Lack of
time to solve a QP.

Carlos Bordons. Introduction to MPC. Industry Workshop on HD-MPC 37



plicit MPC
® Use Multiparametric Programming.

Influence of parameter changes in a
certain problem [Bemporad et al., 2002]

* The vector of changing parameters is x(t) *°

* |dea:
e Use the fact that the control law is PWA
e Make a partition of the state space

e Compute a controller for each region L.
beforehand

e On-line: apply the corresponding control law
® On-line optimization is avoided

A. Bemporad, M. Morari, V. Dua and E. Pistikopoulous. The explicit linear quadratic
regulator for constrained systems, Automatica 38 (2002)

Carlos Bordons. Introduction to MPC. Industry Workshop on HD-MPC



Explicit MPC solution:
e Off line computation + On line search

e The solution of the multi-parametric problem gives rise to a PWA
control law

X = [yk Cee Ve—4 Auk_] Ces Allk_3 Avk—l cas A\’k_4]T
. 17 T T T
min > u-Q-u+60° -C" -u 0 — [x WEaN, 0 WhaN, ”k—l]
s.t. R-u<b+Sg-0 regions
u(t) = f(O(t))  fO)=F-0+g" if H-0<k. i=1... Ny
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Some drawbacks

®* The number of regions increases rapidly with the
horizon

e Efficient algorithms for region calculation and
simplification must be used

® Online execution:
e Search in the space of regions (branch and bound, etc.)
e Memory for storage

® The state-space dimension can be really large for
dead-time processes

Carlos Bordons. Introduction to MPC. Industry Workshop on HD-MPC
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6. Other formulations

® MPC for nonlinear processes
® Hybrid MPC
® Distributed MPC (just a few words)

Carlos Bordons. Introduction to MPC. Industry Workshop on HD-MPC 42



6.1. MPC and nonlihear processes

* Most processes are non-linear

*® Linear approximations work for small perturbations
around the operating point (well in most cases)

® There are processes with

e continuous transitions (startups, shutdowns, etc.) and

spend a great deal of time away from a steady-state
operating region or

e never in steady-state operation (i.e. batch processes, solar

plants), where the whole operation is carried out in
transient mode.

* severe nonlinearities (even in the vicinity of steady states)
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Linear vs Nonlinear

® Linear MPC is a mature discipline. The number of
applications seems to duplicate every 4 years.

® Main issues concerning NMPC:
e Modeling and identification
e Optimization procedure

e Analysis: stability, robustness, tuning.

®* Some vendors have NMPC products: Adersa (PFC),
Aspen Tech (Aspen Target), Continental Control
(MVC), DOT Products (NOVA-NLC), Pavilon Tech.
(Process Perfecter)

Carlos Bordons. Introduction to MPC. Industry Workshop on HD-MPC 44



* First principles: equations obtained from the
knowledge of the underlying process: Physics and
Chemistry laws.

* |nput/output. NARMAX
J/(Uz ¢(y(t-])/ sesy y(t-ny/ U(t‘]),...,U(t'nLJ,E’(U,...,E’(t'ne_,__z))

e Volterra, Hommerstein, Wiener (FIR, bilineal)

e Neural Networks

* Piece-wise affine (PWA) LI R I N B
e Local model network

e State Space x(t+1)=f(x(t),u(t)), y(t)=g(x(t))

* |dentification and state estimation are difficult (EKF,
MVE)

Carlos Bordons. Introduction to MPC. Industry Workshop on HD-MPC 45



NMPC implementation

® Solving a Nonlinear (non QP), possibly nonconvex.
* Computation time increased (NLP)
® Real time and no convexity >>> suboptimal solutions

Sequential Quadratic Programming (SQP)
Simultaneous approach (Findeisen and Allgower’02)

Using a sequential approach with successive linearization around
the previous trajectory.

PWA: Mixed Integer Programming Problem

Use the model structure: Volterra & Hammerstein models
Neural Networks (possibly combined with state-space)
Using short horizons

Etc.

Carlos Bordons. Introduction to MPC. Industry Workshop on HD-MPC 46



X={1.273.4,5)

U={A,B,C)

Computer

Science

Discrete
Events

Control

Theory
\
Dynamical 2 B
ue R”
systems

y ye R”

X(k +1) = f(x(k),u(k))
y(k) = g(x(k),u(k))
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P———

Discrete Events & Dynamical Systems

reference
— control | system

output

U={A,B,C}
X={1,2,3,4,5}

X=1 :  X=5 ;. X=4

defdi=fy(x) G dvdi=f0 o deldi=fyx)

U=C, t=tl U=A, t=t2
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Different Hybrid Models

1 - Piecewise Affine (PWA) Systems

2 - Mixed Logical Dynamical (MLD) Systems

3 - Linear Complementary (LC) Systems

4 - Extended Linear Complementary (ELC) Systems
5 - Max-Min-Plus-Scaling (MMPS) Systems



P

PWA syste

u

m3
(k+1) = A x(k) + Bl u(t) + f1
x(k+1) = A3 x(k) + B3 u(t) + 3

x(k+1) = A% x(k) + B? u(t) +)f2
X

Carlos Bordons. Introduction to MPC. Industry Workshop
on HD-MPC 50



fxXea-Integer-
‘MIQP, MINLP)

X+ 1=Akx k+b]k I/tk+fk

g

The resulting optimization problem

U = arg(l%}i}l J)
U = {u(k), u(k+1), u(k+2), ...u (k+N-1)} real

[ = {I(k), [(k+1), I(k+2),..., I(k+N-1)}  Integer



6.3. Distributed MPC

® Large-scale systems: distribution networks, smart
grids, etc.

® Overcome computational and communication
limitation of centralized approaches

Smart appliances

Can shut off in response to
frequency fluctuations

D d management
~ "\ Use can be shifted to off-
L 1 J peak times to save money.

Solar panels

Processors
Execute special protection 0)
schemes in microseconds. \@

peak times could be stored
in batteries for later use.

Energy from small generators
and solar panels can reduce

UCE i D) Industrial
overall demand on the grid. “\“I L =" plant
-
|
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uted control techniques

Information

Control
Agent
C';?:rt}gﬁl —— Sensing.
* Decentralized * Sensitivity-driven
» Cooperation-based * Feasible cooperation

* Communication-based * Lagrange multipliers

“A comparative analysis of distributed MPC techniques applied to the HD-MPC four-tank
benchmark.” 1. Alvarado, D. Limon, D. Mufioz de la Pefa, J.M. Maestre, M.A. Ridao, H. Scheu,
W. Marquardt, R.R. Negenborn, B. De Schutter, F. Valencia and J. Espinosa. Journal of Process

Control 21 (2011) 800-815. .
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Stability

® Optimal controllers with infinite horizon
guarantee stability.

e the objective function can be considered a Lyapunov
function, providing nominal stability. Cannot be
implemented: an infinite set of decision variables.

e Practice: use long horizon

® Optimal finite horizon and the presence of constraints
make it very difficult to prove stability

Carlos Bordons. Introduction to MPC. Industry Workshop on HD-MPC 59



MPC sta

* Terminal cost. Bitmead et al’90 (linear unconstrained), Rawlings & Muske’93

(linear constrained).

® The terminal cost is an associated Control

* Terminal state equality constraint. Kwon & Pearson’77 (LQR constraints),
Keerthi and Gilbert’88, x(k+N)= x5 Too strict: Feasibility problems

t+N-1

J(Fott, oy, N) = D 1(x(k), u(k))

vapunov function

x(t

x(t)

)

x(t+2)

x(t+N)

Xs

Carlos Bordons. Introduction to MPC. Industry Workshop on HD-MPC
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* Dual control (terminal set). Michalska x(t+d) x(t+2)
and Mayne (1993) x(N) € 2 ;

Once the state enters £2 the controller
switches to a previously computed
stable linear strategy.

x(t)

Asymptotic stability theorem (Mayne 2001):

* The terminal set £2is a control invariant set. (It ensures
feasibility)

* The terminal cost F(x)is an associated Control Lyapunov
function such that

ming, . v, (Ffcw)-Flx) + [(xu) | flx,u)e2} <O V xe
* Then the closed loop system is asymptotically stable in X (2 )

Carlos Bordons. Introduction to MPC. Industry Workshop on HD-MPC o



+N-1

J(fn ur,r+N—l>N) = Zl(X(k),ll(k)) + Vf (X(t + N))

subject to

(1) x(k+1) = f(x(k),u(k)), x(t)=x, k=t
(ii) the constraints x € X,ueU,kelt,r+N-1]

(iii) the terminal state constraint x(/+N)e€ X,

® The invariant condition on terminal set w ensures feasibility

while the condition on the terminal function V, guarantees
convergence.

* Important issue: how to choose the terminal cost and region?

Carlos Bordons. Introduction to MPC. Industry Workshop on HD-MPC 58
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me applications not cons
as “process control”

* Fuel Cells (Explicit)
® Hybrid vehicle (Hybrid)
* Power network (Distributed)

Carlos Bordons. Introduction to MPC. Industry Workshop on HD-MPC 60



8.1. “Fast system”: Fuel Cell

Heat

/ ' Oxygen
/// (Oy) in

Hydrogen
(Hz2) in

Water
(H20) out

D

FUEL CELL

Carlos Bordons. Introduction to MPC. Industry Workshop on HD-MPC 61



® Objective: supply in an effective way the necessary flow of reactans,

providing a good transient response and minimizing auxiliary
consumption

* Important: keep the oxygen excess ratio. Starvation danger
® Control the flow of oxygen

MV I
Compressor
Voltage Vg W
% i ﬂ w 02,in
H, Valve Fuel Cell | P = v
A
l 02 cV

Carlos Bordons. Introduction to MPC. Industry Workshop on HD-MPC
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alne er

J=N2 J=Nu
o= 3 W +d—wit+dt+ Y AG) - [Au(t+j — D)
J=N1 j=1

Subject to:
Vinin < ch < Viaax Input constraint (physical limits)

AOs.min < A0y < A0, .max Desired output constraint

* Implicit feed-forward effect:
J = (Gu+Hw+-f—w)' (Gu+H v+ f—w)+Aul u

® Sampling time according to system dynamics: 10 milliseconds
* Explicit solution

Carlos Bordons. Introduction to MPC. Industry Workshop on HD-MPC 63



erimental se

Advantech PCM-3370 CPU: 650MHz
Pentium Il with 256 MB

2 Advantech PCM-3718H0O
multifunction cards (16 Al and 1 AO)

Simulink Real Time Workshop

Horizons: 4 (small)

221 regions

Sampling time: 10 ms
Average exec time: 0.245 ms
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Allows
performance
improvements of
up to 3.46%.

Improved
transient
responses
compared to
those of the
manufacturer’s
control law.
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Real-Time Implementation of a Constrained MPC for Efficient Airflow Control in a PEM Fuel Cell. Alicia Arce,
Alejandro J. del Real, Carlos Bordons and Daniel R. Ramirez, IEEE Transactions on Industrial Electronics (2009)
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8.2. Hybrid system: FC hybrld vehicle

System that is hybrid by nature: different power sources-
different dynamics

Two energy sources On-board power control for a
fuel cell/battery-powered
vehicle propulsion system

How FCX Clarity FCEV Works

~— velocity (kmvh)

net power from fuel-
system (kW)

it
.= -
SR

B

Electric drive motor
Propels vehicle

b 4

v g
o . . . o power from superca

The most distinctive feature of the FCX Clarity Fuel Cell Electric Vehicle - 4
- @ 4 POSItIvE Means rekease ¢

s

Lithium-ion battery Power Drive Unit (PDU)

Stores electricity E Governs electical flow

(FCEV)—other than the fuel cell itself—is the streamlined layout made

negative means absorptl

;
T n excess pomer lrom

A1 L
and part of kinete
° zoo ‘oo m m power from fuel-ce
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Hybrid Model

Load governor
INPUTS Startup dynamics
OUTPUTS
Fuel Cell Power Hybrid C/ntml model
L < ' | h® »  Hydrogen consumption

Fuel Cell System | Pe(k)

Fuel Cell On/Off fe(k) >

% ....... .L(I()) Supplied Motor Power

Battery

charge/discharge Lk)). _____
Battery System  [Pu(k) soc(k)
bt(k) \ | » Battery State of Charge
Battery Power N\ )
\ CC/CV charge control
Thermal dynamics
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MIXED-LOGICAL DYNAMICAL FORMULATION (MLD)

e

BATTERY EVENTS
FUEL CELL EVENTS )
8 (k)=1if P,(k) = 0 or 0 otherwise
8 (k) = if  Prea(k) <4000 or 0  otherwise 88(k) =1 if iy(k) = 125 or 0 otherwise
87 (k) if  Prealk) = 0 or 0 otherwise 87(k)=1if ip(k) > 125 or 0 otherwise
=1 if nk = s or 0 otherwise S¥(k)=1if r(k) < 60 or 0 otherwise
SHky=1 if k) = 25 or 0 otherwise 8(k)=1if r3(k) = 30 or 0 otherwise
\ 5'0(k) =1 if Py(k) =cecontrel or 0 otherwise )
(b 1) = A0+ B ®) + i) ()
Event
y}(k) = Ci(k)xl‘(k) y Generator Be(k) zf \
5(k) = [Pulk) qm(k) SOCK) ip(k) n(k) nk) k) xp1(k) = = fe(k) A = bi(k)
3r(k) = [Pul)]T Somereg o wp(k) = = fe(k) A bi(k)
inite e
Q(k) =[P(k)  Prea(h)])" / sﬁgt—l:;s Clock Machine | **®) xp3(k) = felk) A bt(k)
- xpa(k) = fe(k) A = bt(k)
I e SR J
CONSTRAINTS s'®—fet) . -8k~ fe) .
53(") — -br(k) ﬁ5e5(k) — bi(k) Mode Selector |, X
0.2 < S0C(k) ~felk) — 87(k) —
0 < Pralk) ~felk) — (xp1 (k) V xpa (k) A -3 (K) i
AW < Bk fe(k) « (xpa(k) Axpa(k)) v =82 (k) ik)=j if fujlxp(k),..., xM(k),éf(k) ..... 82 (k)) =
- i) 88(k) — 88 (k) A 82 (k) vi=1,...,34
b

— 8%(k)

xbg(k) VXp3 (k)
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mulation resu

City driving cycle Execution time: less than 10 ms

Driving Cycle
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pplication of Distributed MPC. Power network

Integrating
A\ Fame2 RES and
’M\H actory center Storage

network #2

Network #1

Solved using Energy hubs as modelling framework and
lagrangian distributed MPC as control approach

PhD Thesis: An Integrated Framework for Distributed Model Predictive Control of Large
Scale Networks. Applications to Power Networks. Alejandro J. del Real, June 2011.
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Modelling the network as energy hubs
(integrating electrical and thermal energy)
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Availability of power sources

o i
| ] HHHH |
wind farm#1 Solar thermal
wind farm#2
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Resulting power m

Distributed computation of the solution. Three agents, including
constraints, prices and storage limits

Allows sensitivity analysis: energy prices, storage capabilities,
generation limits, etc.
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Outline
Introduction
Basic ideas of MPC
Some algorithms
MPC and Constraints
MPC for “fast” systems
Other formulations of MPC
Stability
Some applications

. Conclusions and open issues
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“ Conclusions

® General overview. Different “flavors” of MPC

* Nowadays, MPC is a specific thought in controller
design, from which many kinds of computer control
algorithms can be derived for different systems.

* Well established in industry and academia.
® Great expectations for MPC

* Not only for “slow” processes

® Many open issues
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-

ossible/needed?

* Efforts to develop MPC for more difficult situations:

Multiple and logical objectives (Morari, Floudas)

Hybrid processes (Morari, Bemporad, Borrelli, De Schutter, van
den Boom ...)

Nonlinear (Alamir, Alamo, Allgower, Biegler, Bock, Bravo, Chen,
De Nicolao, Findeisen, Jadbadbadie, Limon, Magni, ...)

Large-scale systems: hierarchical and distributed (Scattolini,
Rawlings, De Schutter, Negenborn, ...)

* MPC robustness, adaptation, nonlinearity handling, performance
monitoring, model building, computation, and implementation

® Practitioners wish: increase the time that MPC is not in the manual
mode!
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Introduction to Model
Predictive Control

Amazing tour around MPC (in just 45 minutes!)

Carlos Bordons
University of Seville, Spain
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