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What is Model Predictive Control?

MPC is a form of control in which the current control 

action is obtained by solving on-line, at each  

sampling instant, a finite-horizon open-loop optimal 

control problem, using the current state of the plant 

as the initial state; the optimization yields an optimal 

control sequence and the first control in this 

sequence is applied to the plant.
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Optimization over a future 

receding horizon using a dynamic 

model of the plant



1. Introduction
� Current trends in automatic control

� Past:  stable operation. Replace the human operator. 

� Present: operate processes according to the market. 
High efficiency and flexibility. New challenges.

� Objective: act on the manipulated variables in order
to satisfy changing operating criteria:
� Profit

� Yield

� Safety

� Energy saving

� Environment

� Quality
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MPC successful in industry.
� Many and very diverse and successful applications:

� Refining, petrochemical, polymers, semiconductor production 
scheduling, air traffic control, clinical anesthesia, power 
converters, etc.

� Many MPC vendors.

� Most general and intuitive way of posing  the control 
problem in the time domain. Integrates:

� Optimal control

� Stochastic control

� Mutivariable control

� Constraints

� Measurable disturbances

� Nonlinear processes, etc.
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Successful in industry

OnOnOnOn----linelinelineline

optimizationoptimizationoptimizationoptimization
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controlcontrolcontrolcontrol

ConstraintConstraintConstraintConstraint

managementmanagementmanagementmanagement

Reasons for 
success in 
industry:

Economic assessment of advanced process control – A survey and framework. M. Bauer & I. 

K. Craig. Journal of Process Control 18 (2008) pp 2–18. 6



Most APC products are based on MPC
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Real reason of success: Economics

� MPC can be used to optimize operating points  (economic 
objectives).  Optimum usually at the intersection of a set of 
constraints.

� Obtaining smaller variance and taking constraints into account 
allow to operate closer to constraints (and optimum)

� Repsol reported 2-6 months payback periods for new MPC 
applications.
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MPC successful in Academia
� Many MPC sessions in  control conferences and 

control journals, MPC workshops.

� Science Direct: 2,101 journal papers in the last 

decade. 265 in 2010. 250 in 2011

� IEEExplore: 1,194 journals and 11,829 conference 

papers
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Motivating example: mixing chamber in 

a copper smelter

Energy saving & automatic mode
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Results:

• Increment in the time of 
automatic operation ( from
27% to 84%)

• Energy saving 

Yearly savings:  1.900 MWh. 

Average reduction: 4.22 %

C. Bordons, M.R. Arahal, E.F. Camacho y J.M. Tejera. “Energy saving in a copper 

smelter by means of Model Predictive Control.”

Pressure control in the mixing chamber 
(below atmosphere to avoid emissions) 

Objectives:

Minimize environmental impact (emissions)

Reduce energy consumption in blowers



Is it so much successful in other

engineering fields?
� Automotive:  Cruise control, power train, power management

� Flight control

� Spacecraft control (attitude, rendez-vous…)

� Anaesthesia, Diabetes

� Energy in buildings

� Lighting

� Distribution networks: smart grids, canals, water distribution 

networks

� Greenhouses

� Etc.
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� Common features of model predictive controllers:

� Explicit use of a dynamic model to predict the 
system evolution in the future (horizon)

� Computation of the control signal minimizing a cost 
function

� Use of a sliding strategy: the horizon is moving 
towards the future. Only the first element of the 
sequence is sent to the plant.

� Algorithms differ in the kind of model, the cost 
function and the optimization procedure.
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Controller strategy

1.- At each samplig instant k, 
y(t+k/t) are computed for a 
certain horizon N, as 
functions of the control 
actions u(t+k/t)

2.- Control actions are 
computed minimizing a 
cost function (tracking)

3.- The first control action
u(t) is used (the rest is
neglected)

4.- Go to 1 with the new 
measured value y(t+1)

t t+1 t+2 t+N

Control actions

Setpoint

t t+1 t+2 t+N

Control actions

Setpoint

t t+1 t+2 t+N

Control actions

Setpoint

t t+1 t+2 t+N

Control actions

Setpoint
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Controller strategy. MPC vs. PID
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PID:   u(t)=u(t-1)+g0 e(t) + g1 e(t-1) + g2 e(t-2) 



Pros & Cons

Advantages:
� Intuitive concepts (optimization, horizon, etc.)

� Used for different types of processes (unstable, 
dead-time, etc.)

� Easy extension to the multivariable case

� Constraints handling

� Open methodology that allows future extensions

Drawbacks:

– Need of an appropriate dynamic model of the plant

– Computational burden
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3. Some algorithms

� MPC is a “family” of control algorithms

� The history of MPC is originated from application 

and then expanded to theoretical field (ordinary 

control algorithms often has applications after 

sufficient theoretical research)

� Based on theoretical research in the 60’ and 

optimization needs in the process industry in late 70’

� Kalman: LQG (1960) 

� Propoi: use of LP methods (1963)
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Family tree
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� Richalet et al, Model Predictive Heuristic Control (MPHC) IDCOM (1976, 1978. PFC 90’

� Cutler & Ramaker, DMC (1979, 1980)

� Cutler et al QDMC (QP+DMC) (1983) 

� Clarke et al GPC (1987)

� Commercial extensions of these methods



Dynamic Matrix Control (DMC) 
[Cutler & Ramaker, 1980]

� Step Response Model. Great interest in industry:

� Easy experimental identification

� Scarce process knowledge required

� Prediction along the horizon:
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Free response

+ 

Forced response

y = Gu + f

Common to all linear MPC

Current time

FuturePast

Depends on
Future control
actions



DMC. Resolution

� Dynamic Matrix:

� Objective Function:

� Solution to the unconstrained minimization:
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DMC. Control Law

Linear Control Law

Proportional to the future error (unlike PID)
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Generalized Predictive Control (GPC) 
[Clarke et al., 1987]

� CARIMA Model transfer function (valid for unstable processes)

� Cost function like DMC

� Control law:

� Can be formulated as a 2DOF controller
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State Space

� State-space model for
predictions

� Free and forced response

� Control law
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State Space

� Advantages:

� Very useful for theoretical analysis (stability)

� Straightforward extension to the multivariable case

� Very appropriate for nonlinear systems

� Drawbacks:

� May need an observer (Kalman filter)

� Dead times difficult to handle
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Some market products
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OPTIMIZE-IT (ABB)

DMCplus (ASPENTECH)



INCA for BATCH (IPCOS)
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BRAINWAVE (ANDRITZ)
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4. MPC and Constraints
In practice, all processes are subject to constraints

� Actuators have a limited range (valves, pumps, etc)

� Safety limits: maximum pressure or temperature

� Technological requirements  (temperature profile) 

� Product Quality or environmental regulations
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Contraints in process control

� Usually the optimum is close to the constraints.    
(Formula 1: speed, rpm)

� Objective: work as close as possible to the constraints 
but without violation

� If constraints are not considered: work far from the 
optimum (safety). Decrease in quality and yield 
(benefits)

31
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MPC and constraints

� Using a dynamic model, 
the controller can 
anticipate to the future 
evolution of the output

� Not considering 
constraints on 
manipulated variables 
(clipping) may result in 
higher values of the 
objective function. 
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MPC is the only methodology able to incorporate constraints in 

a systematic way in the design phase (there are other ad-hoc

solutions like override control) >>>>>  great success in industry 

J

u(t)

u(t+1)

Unconstrained

solution

Clipping

Optimum



Problem formulation
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umin<u(t)< umax

Umin<U(t)< Umax

ymin (t)<y(t)< ymax(t)

Now the objective is to minimize a cost function subject to 

constraints. 

Constraints must be expressed as function of the minimization 

(independent) variable u

for all t along the horizon

Since y = Gu + f, the output constraints can be expressed as a 

function of u



Computing the control action

All constraints (inequalities) can be grouped

and expressed as:

cRu ≤
Now the problem to be solved is:

Min  J

Subject to:  

Minimization of a quadratic function 
subject to linear constraints: Quadratic 
Programming (QP). Well-known 

optimization algorithm (iterative)

cRu ≤
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Control law computation

 MODEL COST FUNCTION CONSTRAINTS SOLUTION

Linear      Quadratic       None    Explicit

     Linear      Quadratic          Linear       QP

     Linear        Norm-1          Linear       LP
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5. Fast Systems
� MPC originally developed for “slow” 

processes (chemical, thermal, etc.). 
Lot of time for on-line optimization

� Processes with small sampling times:

� Power converters

� Flight control

� Automotive (ESP, ABS, power 
management)

� Electromechanical systems

� Constrained MPC implies solving a 
QP (computational cost). Lack of 
time to solve a QP. 
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Explicit MPC
� Use Multiparametric Programming. 

Influence of parameter changes in a 
certain problem [Bemporad et al., 2002]

� The vector of changing parameters  is x(t)

� Idea:

� Use the fact that the control law is PWA

� Make a partition of the state space

� Compute a controller for each region 
beforehand

� On-line: apply the corresponding control law

� On-line optimization is avoided

Carlos Bordons. Introduction to MPC. Industry Workshop on HD-MPC

A. Bemporad, M. Morari, V. Dua and E. Pistikopoulous. The explicit linear quadratic 

regulator for constrained systems, Automatica 38 (2002)



Explicit MPC
Explicit MPC solution:

� Off line computation + On line search

� The solution of the multi-parametric problem gives rise to a PWA 
control law

regions
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Some drawbacks

� The number of regions increases rapidly with the 
horizon

� Efficient algorithms for region calculation and 
simplification must be used

� Online execution:

� Search in the space of regions (branch and bound, etc.)

� Memory for storage

� The state-space dimension can be really large for 
dead-time processes

Carlos Bordons. Introduction to MPC. Industry Workshop on HD-MPC



Outline
1. Introduction

2. Basic ideas of MPC

3. Some algorithms

4. MPC and Constraints

5. MPC for “fast” systems

6. Other formulations  of MPC

7. Stability

8. Some applications 

9. Conclusions and open issues

41Carlos Bordons. Introduction to MPC. Industry Workshop on HD-MPC



6. Other formulations

� MPC for nonlinear processes

� Hybrid MPC

� Distributed MPC (just a few words)
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6.1. MPC and nonlinear processes

� Most processes are non-linear

� Linear approximations work for small perturbations 
around the operating point (well in most cases)

� There are processes with

� continuous transitions (startups, shutdowns, etc.) and 
spend a great deal of time away from a  steady-state 
operating region or 

� never in steady-state operation (i.e. batch processes, solar 
plants), where the whole operation is carried out in 
transient mode. 

� severe nonlinearities (even in the vicinity of steady states) 
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Linear vs Nonlinear
� Linear MPC is a mature discipline. The number of 

applications seems to duplicate every 4 years.

� Main issues concerning NMPC:

� Modeling and identification

� Optimization procedure

� Analysis: stability, robustness, tuning.

� Some vendors have NMPC products: Adersa (PFC), 
Aspen Tech (Aspen Target), Continental Control  
(MVC), DOT Products (NOVA-NLC), Pavilon Tech. 
(Process Perfecter)
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� First principles: equations obtained from the 
knowledge of the underlying process:  Physics and 
Chemistry laws.

� Input/output. NARMAX
� y(t)= Φ(y(t-1), ..., y(t-ny), u(t-1),...,u(t-nu),e(t),...,e(t-ne+1))

� Volterra, Hammerstein, Wiener (FIR, bilineal)

� Neural Networks

� Piece-wise affine (PWA)

� Local model network 

� State Space x(t+1)=f(x(t),u(t)),    y(t)=g(x(t))

� Identification and state estimation are difficult (EKF, 
MVE)

Nonlinear models



NMPC implementation

� Solving a Nonlinear (non QP), possibly nonconvex.

� Computation time increased (NLP) 

� Real time and no convexity >>> suboptimal solutions
� Sequential Quadratic Programming (SQP)

� Simultaneous approach (Findeisen and Allgower’02)

� Using a sequential approach with successive linearization around 
the previous trajectory.

� PWA: Mixed Integer Programming Problem

� Use the model structure: Volterra & Hammerstein models

� Neural Networks (possibly combined with state-space)

� Using short horizons

� Etc.
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6.2 MPC for Hybrid Systems
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Different Hybrid Models

1 - Piecewise Affine (PWA) Systems

2 - Mixed Logical Dynamical (MLD) Systems 

3 - Linear Complementary (LC) Systems 

4 - Extended Linear Complementary (ELC) Systems

5 - Max-Min-Plus-Scaling (MMPS) Systems



PWA systems
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x

u

x(k+1) = A1 x(k) + B1 u(t) + f1

x(k+1) = A2 x(k) + B2 u(t) + f2

x(k+1) = A3 x(k) + B3 u(t) + f3



Mixed Integer-Real Optimization (MILP, 

MIQP, MINLP) 

Xk

yk=Ckxk+gk

xk+1=Ak x k+Bk uk+f k

?

Xk+1
yk+1=Ck+1xk+1+gk+1

xk+2=Ak+1xk+1+Bk+1uk+1+fk+1

?

Xk+2
yk+2=Ck+2xk+2+gk+2

xk+3=Ak+2xk+2

+Bk+2uk+2+f k+2

The resulting optimization problem

U = {u(k), u(k+1), u(k+2), …,u (k+N-1)} real

I =  {I(k), I(k+1), I(k+2),…, I(k+N-1)} Integer  



6.3. Distributed MPC
� Large-scale systems: distribution networks, smart

grids, etc.

� Overcome computational and communication

limitation of centralized approaches
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Distributed control techniques

� Decentralized

� Cooperation-based

� Communication-based

“A comparative analysis of distributed MPC techniques applied to the HD-MPC four-tank
benchmark.” I. Alvarado, D. Limon, D. Muñoz de la Peña, J.M. Maestre, M.A. Ridao, H. Scheu, 
W. Marquardt, R.R. Negenborn, B. De Schutter, F. Valencia and J. Espinosa. Journal of Process 
Control 21 (2011) 800–815. 53

� Sensitivity-driven

� Feasible cooperation

� Lagrange multipliers
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Stability

� Optimal controllers with infinite horizon
guarantee stability. 

� the objective function can be considered a Lyapunov
function, providing nominal stability. Cannot be 
implemented: an infinite set of decision variables.

� Practice: use long horizon

� Optimal finite horizon and the presence of constraints
make it very difficult to prove stability
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MPC stability
� Terminal cost. Bitmead et al’90 (linear unconstrained), Rawlings & Muske’93 

(linear constrained).

� The terminal cost is an associated Control Lyapunov function

� Terminal state equality constraint. Kwon & Pearson’77 (LQR constraints), 
Keerthi and Gilbert’88, x(k+N)= xS . Too strict: Feasibility problems

56

xS

x(t)

x(t+1)
x(t+2)

x(t+N)
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MPC stability: all ingredients

� Dual control (terminal set).  Michalska

and Mayne (1993) x(N) ∈∈∈∈ ΩΩΩΩ

Once the state enters  ΩΩΩΩ the controller 

switches to a previously computed 

stable linear strategy.

57

x(t)

x(t+1)
x(t+2)

x(t+N)

ΩΩΩΩ

Asymptotic stability theorem (Mayne 2001):

� The terminal set ΩΩΩΩ is a control invariant set. (It ensures 
feasibility)

� The terminal cost F(x) is an associated Control Lyapunov
function such that

min{u ∈∈∈∈ U} {F(f(x,u))-F(x) + l(x,u) | f(x,u)∈∈∈∈ΩΩΩΩ} ≤0 ∀∀∀∀ x∈∈∈∈ΩΩΩΩ

� Then the closed loop system is asymptotically stable in XN(ΩΩΩΩ )
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Formulation that guarantees stability

� The invariant condition on terminal set W ensures feasibility

while the condition on the terminal function Vf guarantees 
convergence.

� Important issue: how to choose the terminal cost and region? 
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Some applications not considered

as “process control”

� Fuel Cells (Explicit)

� Hybrid vehicle (Hybrid)

� Power network (Distributed)
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8.1. “Fast system”: Fuel Cell
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Airflow control

� Objective: supply in an effective way the necessary flow of reactans, 

providing a good transient response and minimizing auxiliary

consumption

� Important: keep the oxygen excess ratio. Starvation danger

� Control the flow of oxygen

reactO

inO

O
W

W

,2

,2

2 =λ
Fuel Cell

Compressor
Voltage

H2 Valve

Ist

Vst

Pst

λo2

MV

CV
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Constrained Predictive Controller

� Implicit feed-forward effect:

� Sampling time according to system dynamics: 10 milliseconds

� Explicit solution

Subject to:
Input constraint (physical limits)

Desired output constraint
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Experimental setup

64

Advantech PCM-3370 CPU: 650MHz 

Pentium III with 256MB 

2 Advantech PCM-3718HO 

multifunction cards (16 AI and 1 AO)

Simulink Real Time Workshop 

Horizons: 4 (small)
221 regions
Sampling time: 10 ms
Average exec time: 0.245 ms



Results • Allows 
performance 
improvements of 
up to 3.46%.

• Improved 
transient 
responses 
compared to 
those of the 
manufacturer’s 
control law.
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Experimental results

Real-Time Implementation of a Constrained MPC for Efficient Airflow Control in a PEM Fuel Cell. Alicia Arce, 

Alejandro J. del Real, Carlos Bordons and Daniel R. Ramírez, IEEE Transactions on Industrial Electronics (2009)
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8.2. Hybrid system: FC hybrid vehicle

System that is hybrid by nature: different power sources-
different dynamics

Two energy sources On-board power control for a
fuel cell/battery-powered 
vehicle propulsion system
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Hybrid Model

Fuel Cell Power

Battery Power

Battery 

charge/discharge

Fuel Cell On/Off

Hydrogen consumption

Supplied Motor Power

Battery State of Charge

68
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Hybrid Controller
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Simulation results
Execution time: less than 10 ms



Prototype. Ready for tests.
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Application of Distributed MPC. Power network

Solved using Energy hubs as modelling framework and  

lagrangian distributed MPC as control approach

72

Integrating 

RES and 

storage

PhD Thesis: An Integrated Framework for Distributed Model Predictive Control of Large

Scale Networks. Applications to Power Networks. Alejandro  J. del Real, June 2011.
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Modelling the network as energy hubs

(integrating electrical and thermal energy)



Solar thermalwind farm#1

wind farm#2
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Availability of power sources



Distributed computation of the solution. Three agents, including 

constraints, prices and storage limits

Allows sensitivity analysis: energy prices, storage capabilities, 

generation limits, etc.
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Resulting power mix
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Conclusions 

� General overview. Different “flavors” of MPC

� Nowadays, MPC is a specific thought in controller 
design, from which many kinds of computer control 
algorithms can be derived for different systems. 

� Well established in industry and academia. 

� Great expectations for MPC 

� Not only for “slow” processes

� Many open issues
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Open issues. Is better MPC 

possible/needed?

� Efforts to develop MPC for more difficult situations:

� Multiple and logical objectives (Morari, Floudas)

� Hybrid processes (Morari, Bemporad, Borrelli, De Schutter,  van 
den Boom …)

� Nonlinear (Alamir, Alamo, Allgower, Biegler, Bock, Bravo, Chen, 
De Nicolao, Findeisen,  Jadbadbadie, Limon, Magni, …)

� Large-scale systems: hierarchical and distributed (Scattolini, 
Rawlings, De Schutter, Negenborn, …)

� MPC robustness, adaptation, nonlinearity handling, performance 

monitoring, model building, computation, and implementation

� Practitioners wish: increase the time that MPC is not in the manual 

mode!
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