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OPTEC - Optimization in Engineering Center 
Center of Excellence of K.U. Leuven, from 2005-2010, 2010-2017  
About 20 professors,  10 postdocs, and 40 PhD students involved in 

OPTEC research 

Scientists in 5 divisions: 
  Electrical Engineering 
 Mechanical Engineering  
 Chemical Engineering  
 Computer Science 
 Civil Engineering 

Many real world applications at OPTEC... 



OPTEC: 70 people in six methodological working groups 
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Integrated Real-World Application Projects 

Optimization Education & Training 
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Overview 

  Linear MPC for Mechatronic System and qpOASES 

 Nonlinear MPC for Distillation Control 

 Nonlinear MPC with ACADO Toolkit  

 Modelica and Automatic Derivative Generation using CasADI 

 Distributed MPC (outlook  C. Savorgnan) 



Real-time perception-based clipping of  
audio signals using convex optimization Linear MPC in Mechatronics 

with Lieboud Vanden Broeck, Hans Joachim Ferreau, 
Jan Swevers 



Brain predicts and optimizes: 
e.g. slow down before curve 

Model Predictive Control (MPC) 

Always look a bit into the future. 



Linear MPC = parametric QP 

For  
•  linear dynamic system  
•  linear constraints   
•  quadratic cost 
Only parametric quadratic program (p-QP) needs to be 
solved: 



Solve p-QP via „Online Active Set Strategy“: 

  go on straight line in parameter space 
from old to new problem data 

  solve each QP on path exactly (keep 
primal-dual feasibility) 

  Update matrix factorization at boundaries 
of critical regions 

  Up to 10 x faster than standard QP 
   

Online Active Set Strategy 

qpOASES: open source C++ code by Hans Joachim Ferreau 



qpOASES – Online Active Set Strategy 

  qpOASES is an object-oriented C++ implementation of 
the online active set strategy with dense linear algebra 

(see www.qpOASES.org, version 3.0beta to be released) 

 Distributed as open-source software under the GNU LGPL 

  Self-contained code: no additional software packages 
required (but BLAS/LAPACK can be linked) 

  Interfaces to several third-party software packages: 
•  Matlab, Octave, Scilab 
•  Simulink (dSPACE, xPC Target) 
•  ACADO Toolkit 
•  YALMIP (under development) 



Time Optimal MPC: a 100 Hz Application 

 Quarter car: oscillating spring 
damper system 

 MPC Aim: settle at any new 
setpoint in in minimal time 

 Two level algorithm: MIQP 
 6 online data 
 40 variables + one integer  
 242 constraints (in-&output) 

 use qpOASES on dSPACE 
 CPU time: <10 ms 

Lieboud Van den Broeck in front of 
quarter car experiment 



Setpoint change without control: oscillations 



With LQR control: inequalities violated 



With Time Optimal MPC 



Time Optimal MPC: qpOASES Optimizer Contents 



qpOASES running on Industrial Control Hardware (20 ms)  



qpOASES – Online Active Set Strategy 

 Reliable code used in many academic and  
industrial real-world applications: 
•  Integral gas engines (Hoerbiger) 
•  Diesel engine testbench 
•  Machine tools 
•  Walking robots 
•  MPC for Process Industry (INCA Suite of IPCOS) 

 Dense linear algebra, but sparsity can be partly exploited 

  Solves dense convex QPs with up to 1000 variables and a few 
thousand constraints (in a couple of seconds) 

  Small-scale QPs are typically solved within a few milli/microseconds 



Real-time perception-based clipping of  
audio signals using convex optimization 
Nonlinear Model Predictive Control of a 
Distillation Column in Stuttgart 

with Frank Allgower, Rolf Findeisen, Hans Georg 
Bock, Ilknur Uslu, Stefan Schwarzkopf, Zoltan Nagy 



First Principle Dynamic System Models  

  Nonlinear differential algebraic equations (DAE)  
  often in modeling languages like gPROMS, 

SIMULINK, Modelica 
  Hundreds to thousands of states 

Can we use these models directly for optimization and feedback control? 
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Principle of Optimal Feedback Control / Nonlinear MPC:  Computations in Nonlinear MPC 

Main challenge for NMPC: fast and reliable real-time optimization 



Optimal Control Family Tree 



Optimal Control Family Tree 





Simulate system on intervals, solve nonlinear program (NLP)  

Direct Multiple Shooting [Bock & Plitt 1984] 

"  gap between shooting intervals 
"  constraint forces gaps to zero 

"  freedom for initialization 
"  suitable for unstable systems 
"  parallelizable 
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Real-Time Iterations minimize feedback delay 











Real-time perception-based clipping of  
audio signals using convex optimization ACADO Toolkit for Nonlinear MPC 

with Joachim Ferreau and Boris Houska 



Software for Nonlinear MPC: ACADO Toolkit 

 ACADO = Automatic Control and Dynamic Optimization 

 Open source (LGPL):  www.acadotoolkit.org 
 User interface close to mathematical syntax 
 Self containedness: only need C++ compiler 
  Focus on small but fast applications 

  Implemented Algorithms for Medium to Large Scale Problems: 
  Inexact SQP methods for large DAE systems 
  Lifted Newton methods for large dynamic systems with          

fixed initial values. 



Problem Classes in ACADO 

 Optimal Control of Dynamic Systems (ODE/DAE) 

 Nonlinear Model Predictive Control 
 Parameter Estimation and Optimum Experimental Design 
 Robust Optimization 
 Automatic Code Generation for fast MPC applications 



Example for Code Generation (“Tiny“ Scale) 

Algorithm: Gauss Newton 
Real-Time Iterations 

1   control input 
10 control intervals 
4   states 



Inexact SQP methods for large scale DAE 

Problem: Computing sensitivities for large scale DAE's with many 
algebraic states is expensive 

Idea: Relax the algebraic equation of the DAE [Bock 1987] 

Use a special relaxation function [Houska, Diehl 2010] 



Advantages of new DAE Relaxation 

Can construct Multiple-Shooting inexact SQP method which 
converges q-quadratically. 

No derivatives with respect to algebraic states needed. 
No consistent initialization of the algebraic states within the DAE 

integrator needed. 

Result for a Large Scale DAE model (distillation column with 82 
differential and 122 algebraic states) in ACADO: 

Computation Time: approx. 6 sec. per SQP step. 



Lifted Newton Method 

Question: Can we be even faster than 6 sec per SQP step? 

Idea: Lifted Newton Method – reduce derivative computation to 
same load as single shooting 

Option to turn on Lifted Newton in ACADO: 
    algorithm.set( DYNAMIC_SENSITIVITY,  FORWARD_SENSITIVITY_LIFTED ); 

Computation time for Stuttgart distillation column with Lifted 
Newton:  approx 0.5 sec per SQP step 



Real-time perception-based clipping of  
audio signals using convex optimization 
Modelica and Automatic Derivatives with 
CasADi 

with Joel Andersson 



CasADi 

 CasADi 
•  “Computer Algebra System for Automatic Differentiation” 
•  Free (LGPL) open-source symbolic tool (www.casadi.org) 
•  Extends the NLP approach for OCP to shooting methods 
•  “Write a state-of-the-art multiple shooting code in 50 lines” 



The NLP Approach to Optimal Control 

 Motivation: “The NLP approach” 
•  Large scale OCP problems best solved with direct methods 

•  E.g. single shooting, multiple shooting, collocation 
•  Tools exist that take OCP problems in standard form… 

•  ACADO Toolkit, MUSCOD-II, DIRCOL, DyOS 
•  … but advanced users often prefer the “NLP approach” 

•  “IPOPT-AMPL” approach 
•  User responsible of reformulating OCP to NLP 
•  Derivative information generated automatically 
•  Formulate arbitrarily complex non-standard OCP 

•  Until now only for direct collocation! 



CasADi – NLP approach for Shooting Methods 

Components of CasADi 
  A computer algebra system for algebraic modeling 
  Efficient, general implementation of AD 

•  AD on sparse, matrix-valued computational graphs 
•  Forward/adjoint mode 
•  Generate new graphs for Jacobians/Hessians 

  Efficient virtual machine for function/derivative evaluation 
  Front-ends to C++, Python and Octave 
  Smart interfaces to numerical codes, e.g.: 

•  NLP solvers: IPOPT, KNITRO, (SNOPT, LiftOpt) 
•  DAE integrators: Cvodes, Idas, GSL 

•  Automatic generation of Jacobian information (for BDF) 
•  Automatic formulation of sensitivity equations (fwd/adj) 

  Symbolic model import from Modelica (via Jmodelica.org) 



CasADi Code Example: Single Shooting in 30 lines 



Real-time perception-based clipping of  
audio signals using convex optimization 
Outlook:  
Multiple Shooting for Distributed Systems 

with  
Attila Kozma, Carlo Savorgnan, Quoc Tran Dinh 



Multiple Shooting for Distributed Systems 

MSD on Hydro Power Valley (HPV) 



Multiple Shooting for Distributed Systems 

Multiple Shooting in time AND SPACE 

"  discretized subsystem 
connections (polynomiasl) 

"  gaps between subsystems 

"  any complex topology 

 Talk Carlo Savorgnan 



Large Scale QP algorithms 

Decomposition by Lagrangian dual function 

"  Convex separable QP 

"  Coupling lin. equality 

"  Two-level problem 

"  Low-level: parametric QPs 
(online act. set strat.) 

"  High-level: unconstr. 
problem with gradient avail. 
(fast gradient method) 



Summary: Large Nonlinear MPC 

OPTEC produces open-source (LGPL) software for academia and industry: 

  qpOASES: linear MPC up to 0.2 MHz range (IPCOS, Hoerbiger, …) 

  ACADO Toolkit: Nonlinear MPC up to 20 kHz (~4000 downloads) 

 CasADi: “write your own optimal control solver” (used in JModelica) 

 Distributed MPC   Talk C. Savorgnan 



Appendix 



Large-scale separable convex optimization (T.Quoc) 

– convex, possible nonsmooth 

– closed convex, bounded 

 Problem Statement 

 Examples 
–  Large-scale LPs, QPs. 
–  Optimization in networks, graph theory. 
–  Multi-stage stochastic convex optimization. 
–  Distributed MPC, etc. 

 Aim:  
–  Design distributed algorithms to solve (CP) 



 Main idea: Combine three techniques 
–  Lagrangian dual decomposition 

–  Smoothing technique via prox-functions 

–  Excessive gap condition [Nesterov2005] 

 Optimality and feasibility gaps 
                                                         and 

 Algorithm: two variants – primal update and switching update 
–  Generate a sequence                   such that it maintains the excessive gap 

condition, while controls      and      to zero. 

Main idea and algorithms 



Advantages and performance 
 Advantages  

–  Convergence rate O(1/k) 
–  Fast (compared to dual-fast gradient method [Necoara2008], subgradient, 

augmented Lagrangian) 
–  Numerical robustness 
–  Highly distributed 

 Numerical test: Large scale separable QP problems (dense) 

       Compare three difference algorithms: primal update, switching update, dual-fast gradient  for solving 
random QPs   (left – iterations, right – CPU time) 







Optimal Control Family Tree 



Optimal Control Family Tree 





CasADi – CC power plant 

 Application example: CC power plant 
•  Combined Cycle Power Plant Startup optimization 
•  Model by F. Casella et.al. 
•  Details: Modelica Conference 2011 (J. Andersson, J. 

Åkesson, F. Casella, M.Diehl) 
  6000+ lines of Modelica code: 10 differential 127 algebraic states 



CasADi – CC power plant 

Solution : CC power plant 
 Compile to XML using JModelica.org compiler 
 Use CasADi in Python to formulate collocation NLP 

•  Direct collocation with Radau discretization 
•  50 finite elements 

 Get NLP with 13849 variables and 13759 constraints 
  Solve with IPOPT using MA57 linear solver 

•  Use exact Hessian 
•  Convergence after 51 IP iterations 
•  Total NLP solution time: 1.97 seconds 

•  0.4 seconds in CasADi, rest in IPOPT internally 


