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IntroductionIntroduction
Driving factors for Power Plant Optimization

Grid requirements

HD-MPC solutions for power plant optimization
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Drivers for Power Plant OptimizationDrivers for Power Plant Optimization
World Demand Electricity Increases

Raw Material Prices Increases

Climate Changes

Electricity Market Liberalization

Grid Stability

Environment
(air, water, waste)

Cost
(Fuel, Maintenance)

Grid 
(Voltage, frequency)

Power Plants
Optimizations
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Ex: Grid Requirements. (UCTE)Ex: Grid Requirements. (UCTE)
Po : Daily program
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HD-MPC for Power Plant optimizationHD-MPC for Power Plant optimization

Goal : Find new solutions for Power Plant Operations adapted to : 

Large Interconnected Systems

Multiple objectives

Non linear dynamics

Different Time Scales
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Process Description & Control Objectives

Modeling & HD-MPC solutions

Results

Hydro Power ValleyHydro Power Valley
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Process & Control DescriptionProcess & Control Description

4 run-of-river power plants

5 Reservoirs

Environment
Level, flow rate constraints

Cost
(Limited Storage )

Grid 
Po + kDF + NPr

HPV
Optimizations
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• Rank 3 : Alert, Supervision, Dispatching, Valley Control Room, 

Communication with TSO 

• Rank 2 : Level/flow control, Machine Commitment, RSFP, RSFT 

• Rank 1 : Safety functions, group start-up & shutdown 

 
 
 
 
 

Control 
Room TSO Po

Plant 1

Group 
Control 

Dam 
Control

rank 3 Control
(PHV) 

Plant 2 rank 2 Control 
(PA) 

Plant 3 Plant 4 Plant 5 Plant 6

rank 1 Control 
(APG, APS) 

Plant 7

Process & Control DescriptionProcess & Control Description



Workshop HD-MPC, Leuven, 24/06/201110

Modeling  of a River ReachModeling  of a River Reach
x : longitudinal coordinate [m]
t : time [s]
S(x,t) : wetted section [m2]
P(x,t) : wetted perimeter [m]
Q(x,t) : volumetric flow [m3/s]
qlat : lateral inflow per unit length [m2/s]
z(x,t) :  height [m]
K : Strickler Coefficient [SI]
k : lateral inflow coefficient
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Control ModelsControl Models

Spatial Discretisation of Saint-Venant Equations 
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Simulation platformSimulation platform
Platform made of :
- OPC server
- HMI (editor and supervisor)
- Alarms
- Archived data measurements
- Matlab + OPC Toolbox

Process Data
[OPC]

Historical
Data

Controller

Alarms

Supervision
HMI

Simulation
Model

HMI
Editor

 

OPC server 

 
 

HPV 
MODEL 

OPC client  
 

HMI 

OPC client 
 

HPV 
CONTROL 

OPC client
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HD-MPC solutions HD-MPC solutions 

Methods are under development 

1) Centralized MPC controller – Reference

2) Two level Hierarchical MPC solution

3) Sensitivity-driven Gradient method (RWTH)

4) Multiple shooting Method (KUL)

5) Game theory (USE, UNC)

6) …
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2-Level MPC solution2-Level MPC solution

Upper Level 

Lower Level  

HPV 
Control

Plant 4 

Control
Plant 5

Control

Plant 6 

Control

Plant 7

Control

Pref

Uref,Yref

QtHs, Pe

Xobs, Qlatobs
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Results (Two level hierarchical MPC)Results (Two level hierarchical MPC)
• Perturbation is correctly rejected when no constraints are active.

• Control performance decreases when constraints are active.

Load following Load following with perturbation
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Combined Cycle Start-upCombined Cycle Start-up

Process Description & Control Objectives

Modeling & HD-MPC solutions

Results



Workshop HD-MPC, Leuven, 24/06/201117

Process Description & ControlProcess Description & Control

1 GT- 1 HRSG - 1ST

1 Pressure Level

Environment
NOx, CO2

Cost
Fuel, Water, Life 
Consumption

Grid 
Startup Time

CC SU
Optimizations
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Process & Control DescriptionProcess & Control Description

• Unit : General Sequence & Control

• Group : Sequence & Control Subsystem (Feedwater, Fuel, ….)

• Rank 1 : Sequence & Control of components (Pump, …)
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CCPP modeling: ModelicaCCPP modeling: Modelica

CCPP model:

developed in Modelica language 

using Modelica simulation environment, Dymola 

Modelica: modeling language for large, complex and heterogeneous
physical systems:

Free language

Object-oriented

Equation based

Multi-domain
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CCPP model - DymolaCCPP model - Dymola
1-1-1 configuration (GT-HRSG-ST)

One single level of pressure (HP)

Equations derived from first principles 
(mass, energy and momentum 
balances)

Model complex: ~ 1500 equations

Validated against experimental data

Includes a model of thermal and 
mechanical stress in critical 
components (superheated steam 
header and ST rotor)

Smooth model have been developed 
for optimization 
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Inputs:

• load of GT 

• feed water flow rate for the HRSG circuit 

• water flow feeding the desuperheater

• position of bypass valve

• position of throttle valve

• generator grid breaker of the steam 
turbine

CCPP - Plant inputs/outputs
Outputs:

• power of GT

• fuel flow in GT

• drum level 

• temperature of steam in the superheater 

• steam flow

• header stress

• temperature of steam in the SL

• power of ST

• frequency of ST

• rotor stress of ST
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GT Load profile –Optimization GT Load profile –Optimization 

CCPP non-linear model:

• x = model states (temperatures, pressures, enthalpy...)
• u = model inputs (feed water, feed DSH...)
• L = GT load

initial load L(t0) = Lm
full load L(tf ) = LM

• Assumption: 
GT Load is a parameterized function:
L(t,q) sum of 2 Hill functions
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GT Load profile optimizationGT Load profile optimization

• subject to the constraints:
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Parameters to be optimized:
tf, q=[h,k,p,r,Li]

• Minimum time problem definition:

∫=
ft

t
dtJ

ft,q
min

0

constraints on the state variables (temperatures, pressures, stresses)
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Optimization ResultsOptimization Results

Optimal start-up is 20 minutes faster than a classical start-up (with a 
constant GT load ramp rate satisfying the stress limit)
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Optimization ResultsOptimization Results

• Rotor stress:
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• Header stress:
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Distributed ApproachDistributed Approach
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GT+ HRSG
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Model decomposition
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2 profiles optimization (GT Load, Ot)

Physical decomposition: 2 Dymola models
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Hierarchical ApproachHierarchical Approach
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Optimization 
high level

Optimization 
low level

Plant

High level: 

Minimal time:

uh* = L1(q,t)

Th – HL sample time

Low level:

Quadratic:

ul* = L2(q,t),   Tc ≥ Th

Tl – LL sample time
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SummarySummary
A Modelica model based on the ThermoPower library is developed and used 
for start-up optimization

The start-up optimization method is based on parameterized functions

This approach is used to minimize the start-up time, while keeping the 
constraints within their limits

The idea of solving the start-up problem by optimizing a parameterized 
function can be expanded in many ways (e.g. by considering other types of 
functions, by using as optimization signals other model inputs (ST throttle)

Further work: use this optimization procedure in hierarchical and distributed 
feedback control algorithms (HD-MPC)
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General conclusion & lessons learnedGeneral conclusion & lessons learned
Solutions are still under development,

HD-MPC solutions can be applied naturally in the HPV case.

HD-MPC Optimization with Modelica CCPP models is difficult. 

Library developed for simulation are not suited for optimization (discontinuities)

Initialization problems with Dymola 

Analytical Jacobian is not available for complex Dymola models

Unfeasible simulation occurs (water-steam table)


