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Outline and purpose of the presentation

Outline

» Motivations

» Decentralized MPC

» Distributed MPC

» Simplified distributed MPC

Purpose

» To describe some “prototype” algorithms (main ideas, no
formal proofs or theoretical results).

» To illustrate a simplified implementation
» To test the algorithms in significant cases



Motivations for
decentralized/distributed control

Decomposition of a large scale MPC problem in
smaller subproblems is useful to:
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Reduce the computational load
Reduce the communication load
Improve the robustness with respect to f
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Improve the modularity and the flexibility of the
system

Synchronize subsystems working at different time
scales



A1
A+B =40

subsystem1 subsystem2 subsystem3



Coordination of independent systems

smaurt grids with
distributed generation

industrial systems

autonomous

vehicles




MPC basic formulation
state feedback

System X(k +1) = Ax(k) + Bu(k)

constraints XxXe X, ueU
X and U compact sets containing the origin

Auxiliary stabilizing control law U = KX

Positively invariant set X ; < X such that for any x(k) e X ¢

x(k)e X , k>k
u(k) = Kx(k) eU , k >k



MPC basic formulation - 2

At any time k find the sequence

u(k), u(k+1), ..., u(k+N-1)

minimizing the cost function (Q>0, R>0)

N -1
3 =57 x (k +1)Ox(k +1) +u' (k + i)Ru(k + )]V (x(k + N
> D

subject to

X(k+1)e X, u(k+1) eU

Then use only the first element of the optimal control sequence. This
implicitly defines the MPC time-invariant control law

U = Kypc (X)



MPC basic formulation - 3

Typical choices — 1
auxiliary control law u=K X

Ko =—(R+B'PB)~B'PA

P=AP+ PA+Q—A'PB(R+ B'PB)‘lB'PA , P>0
terminal cost V.=X"PXx

terminal set X ; = {X| X'Px < a}c X
P is in general a matrix without a block diagonal structure

Typical choices - 2

auxiliary control law u=0
Terminal cost V=0
Terminal set {0}



Robust MPC

“tube-based” approach

- W N Ny W e e W

W.Langson, I. Chryssochoos, S.V. Rakovic, D.Q. Mayne: “Robust model predictive
control using tubes”, Automatica, Vol. 40, n.1, 2004.

System  X(k +1) = Ax(K) + Bu(k) + w(k)

Constraints xe X, uelU, weW

W is a compact and convex set containing the origin

Nominal model X, (k +1) = Ax, (k) + Bu, (k)

Consider the control law u(k)=u, (kK)+K(x(k)-x.(k))

where K is a stabilizing gain, i.e. Ac<=A+BK is stable



Robust MPC
‘tube-based” approach — 2

Now let e(k)=x(K)-x.(k),
e(k +1) = A e(k) + w(k)

and define E as a “disturbance invariant set” such that
ACE®W c E

If the following constraints are fulfilled
X, € X, =XOE, u, eU, =UOKE

one has Ve(0) e E, e(k) e E , x(k)e X and u(k) eU



Robust MPC
-b

‘tube-based” approach - 3

For the nominal model solve the MPC problem

N-1
minJ =[x, (k +)Qx, (k+ 1)+, (k + DRU, (K +0)]+V (%, (k + N))
- i—0

X, (K +1) = Ax, (k) + Bu, (k)

X, (K+1) e X,

u,(k+1)eU,

X,(k+N)e X, c X OE / "



Robust MPC

“‘tube-based” approach — an extension

D.Q. Mayne, M.M. Seron, S.V. Rakovic: “Robust model predictive control of linear
systems with bounded disturbances”, Automatica, Vol. 41, n.2, 2005.

At any time instant k it is possible to optimize also with
respect to the initial state x, (k)

N -1
min 3 = g[xn'(k +i)Qx. (K +i)+u."(K +i)Ru, (K +D)]+V; (U, (k + N))

X (k +1) = Ax, (k) + Bu,, (k)
x(K)— . (k) € E

X (k+i)e X,

u (k+i)eU.

X (K+N)e X,

This leads to the control law u(k)=K,pc(Xx(k)) instead of
U(K)=Kypc(X(K),X;(K))



Decentralized
and
distributed MPC



A simple example for
decentralized/distributed MPC

(s——(=)

Subsystem 1 Subsystem 2
(agent 1) (agent 2)

S1: X (K +1) = Ay X (K) + App Xy (K) + Bygly (K) + Byplp (K)
S2: Xy (K+1) = Ayyxg (k) + Ay Xy (K) + Byyuy (K) + Byou, (k)

Xy € Xq, Xp € Xy, Uy €eUq,U, €U,

polytopic sets containing the origin



Special cases

(s——(

Subsystem 1 Subsystem 2
(agent 1) (agent 2)

Input-coupled systems
S1: X (K+1) = Ay1xq(K) + Byaug (K) + Byou, (k)
S2: Xy (K+1) = Ay Xy (K) + Byguy (K) + By, (K)

It is possible to reformulate the general system in this
way, but a nonminimal representation is obtained



Special cases

(s——(=)

Subsystem 1 Subsystem 2
(agent 1) (agent 2)

State-coupled systems

S1: X (K +1) = Ay (K) + Ao X (K) + Bpauy (K)
S2: Xy (K+1) = AyyX (k) + Ay X, (K) + Byou, (K)

It is possible to reformulate the general system in this
way, but additional delays have to be forced into some
iInput couplings



A remark

Let the original system be described in continuous time
|:X1(t):|:|:All A12:||:X1(t):|+{811 BlZ:||:u1(t):|
Xo(0) | [ A A [ X() | | Bar By || U(t)

with “sparse” matrices, for example with most of the elements of A,,, A,;, B;,, B,;

equal to zero (or zero).
lts discretization with the ZOH formula, with the Tusting rule or with the backward
Euler method leads to a discrete time system with “full” matrices A and B.

The forward Euler method preserves the stucture of the matrices A and B, but
can lead to unstable discrete time models even though the original continuous
time system is stable.

Is it worth developing new distributed MPC algorithms for continuous time
systems?



General MPC problem

N-1
mind = > [ (k+ DQuxa(k+ )+ Xa (K + )QaXo (K + ) +

Uq,U, .
J=0
+Uy (K + )Ry (K + J) + Uy (k + j)Ryu, (k+ )]+
+ % (K+ N)PX (K + N)+ X, (K + N)P, X, (k + N)

under the dynamic constraints, the previous state and control
constraints, the terminal constraints

X, (K+N)e Xy, X (k+N)e X,

and the additional “mixed” (linear) constraints

X (K+ ) |
Xp(K+ ) .
[Hxl Hy, Hu Huz] Uz(k+j) <c, J=0,.,N
1

LUy (K+J)




General MPC problem

remarks

1. the cost function is formally separable

N-1
3= Dy (k+ DQuxy(k+ )+ Uy (k+ DRy (K + )]+ (k+N)Pxg (k + N) +
j=0

N-1
+ ) Do (k+ 1)QaXa (K + )+ (K + J)Rpuy (K + )]+, (K + NP, (k + N)
j=0

=J,+J,
however, in view of the dynamic constraints
J1 = J1(X, Xo,Ug, Up) , Jp = J5(%, X5, Up,Up)
2. the terminal cost has a particular structure:

. . ‘PO
[x; (k +N) x2(k+N)]Ol PJ ilgtim
A 2



Decentralized/distributed MPC
two main approaches

Subsystem 1 Subsystem 2
(agent 1) (agent 2)

1. Robust MPC
the effect of the other subsystem is viewed as a

disturbance to be rejected
W

SL: %y (K +1) = A (K) +(Bi X (K)+ Byt (K)

S2: X, (K +1):/ Ao X, (K) + Boou, (K)

W,



Decentralized/distributed MPC

two main approaches

(sh——(2

Subsystem 1 Subsystem 2
(agent 1) (agent 2)

2. “Game-theory” MPC
the two agents play a game, which can be either
cooperative or not (Pareto or Nash equilibra are searched
for depending on the local or global objective of each
agent, or player)
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Decentralized control

regulator
R1

System

J| subsystem

Yy

regulator
R2

S1

A1 X,

.| SUbsSystem
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Inputs and outputs are grouped into non overlapping pairs
Local regulators have limited information on the input /state/outputs
Decentralization is independent of the complexity of the local regulators

(which can rely on the model of the whole system)
Some systems cannot be stabilized with a decentralized control

structure (presence of fixed modes)

Very few MPC algorithms with guaranteed properties are available



Distributed control

System
regulator | Y subsystem Vi
R1 1 s '
I ]
1 1
1
o *1 X2
L I
regulator | Y2 .| Subsystem j’z:
R2 52

» Information is transmitted among local regulators

» It can concern future (predicted) control sequences or
state trajectories

» In the first case, the local regulators must know the
whole model of the system



Distributed control algorithms
Properties

» Fully connected. all-to-all communication. Information is
transmitted from any local regulator to all the others

» Partially connected. neighbor-to-neighbor communication.
Information is transmitted among the local regulators of
subsystems with a direct dynamic influence

Fully connected Partially connected

transmission of information



Distributed control algorithms
properties

> Iterative. multiple transmissions among local regulators
within each sampling time

» Non iterative: only one iteration within the sampling time

ug (K),uf (K),...,u (K),...

——————
_-- ~o
~.
- ~,
- ~.
-~ S
~
, N

\\~
~

distributed MPC algorithms based on the game theory approach
are iterative, since they must “negotiate” their control action

distributed MPC approaches based on robust control are non
iterative



Distributed control algorithms
properties

» Cooperating. each local regulator minimizes a global cost function

» Independent. each local regulator minimizes a local cost function
N-1
3= Dok DQux(k+ ) +uy (k+ )Ryt (k+ )]+ (k+ NPy (k+N)+
j=0
N-1 ‘ ‘ '
+ ) Do (k+ D)QXp(k + J) + Uy (K+ )Ry (K + )]+ X (k+ N)Pyx, (k+N)
j=0

Cooperating Independent
both MPC1 and MPC2 aim at MPC1 minimizes J,
minimizing J,+J, MPC2 minimizes J,

distributed MPC algorithms based on the game theory approach
can be cooperating or independent
distributed MPC approaches based on robust control are
independent



Distributed algorithms
an additional classification

The distributed algorithms described in the literature can
be divided in two main classes:

» distributed optimization approaches: the goal is to
decompose the large-scale optimization problem into
smaller subproblems, possibly with a central
coordinator (hierarchical structure)

» distributed control algorithms: all the computations are
distributed over the local MPC regulators (“flat”
structure)

This classification tends to be obsolete, new distributed
optimization algorithms do not need a central coordinator



Decentralized and distributed MPC
some ‘prototype” algorithms

In the following the goal is to present some
approaches followed in the development of
decentralized and distributed algorithms, focusing
on the main ideas rather than on the formal
proofs of the corresponding theoretical results



Decentralized MPC

inspired by: L. Magni, R. Scattolini: “Stabilizing Decentralized Model Predictive Control of Nonlinear
Systems”, Automatica, Vol. 42, n. 7, pp. 1231-1236, 2006.

S1:x (K +1) = Ay Xy (K) + A Xp (K) + Byguy (k) +wy (k) > asymptotically decaying
S2: Xy (k+1) = Ay X (K) + Ayy X, (K) + Boyus, (K) + W, (K) disturbances

Each local MPC regulator solves a local optimization problem where an
additional contraction constraint is added to force the state trajectory to
converge to the origin (despite the effect of the mutual influences and of the

disturbances) N

X; (0)_|
N\

Xi (1) = ax; (0)

predicted trajectories
(nominal model)

®

true trajectory i=1 2

Xi (2) = ax (1)
....... ?

12

N 2N 3N

A robust approach (in decentralized control the robust approach seems to be

the only possibility)



Distributed MPC

an iterative, non cooperative algorithm

inspired by Rawlings and Mayne: “Model predictive control theory and design”,

Nob Hill Pub, 2009

@ @ S1: X (k +1) = Ay (k) + By (k) + Byou (K)
S2: Xy (K+1) = AgyXy (K) + Byguy (K) + Byou, (K)
Subsystem 1 Subsystem 2
(agent 1) (agent 2)

N-1
J= p{zm(m DQuxq (K + ) +ug (K + )Ryuy (K + 1)1+ % (k + N)Prxq (k + N)}

j=0

N-1
+,0{Z[Xlz(k+ 1)Qa%, (K + ) +Up (K + [)RyU (K + J)]+ X, (K + N)Pyx, (k + N)

j=0
= 131 (X, Up )+ P25 (X, Up) s o102 >0, pr+ppp =1

|



Distributed MPC

an iterative noncooperative algorithm

> Inside the sampling time k, many iterations (negotiation)
p=1,2,..., are performed between the local subsystems

» At any iteration p, subsystem I, I=1,2, solves its own
optimization problem by minimizing J;(x;,u;)
with respect to the sequence ui(k), ..., uj(k+N-1)
and using the sequence

U R, U, ..., PN

computed by the other subsystem at the previous iteration

> Letting UK), udk+)), ..., udk+N-D) be the optimal sequence, it
IS set

uP (kH) = w udkH) +(1w)uP* (k) , 1=0...,N-1, O<w <



Distributed MPC
an iterative noncooperative algorithm

Main problems

» Inside the sampling time, convergence of the
iterations is not guaranteed

» Even if convergence is obtained, the resulting control
law can be not stabilizing

The adopted noncooperative approach leads to a
Nash equilibrium and does not guarantee any
stability result



Distributed MPC

an iterative, cooperative algorithm
inspired by Rawlings and Mayne: “Model predictive control theory and design”, Nob Hill Pub, 2009

The only difference with respect to the previous iterative
algorithm is that each subsystem minimizes the overall
performance index

J = pdi0, U )+ pp3,5(%0,U5) o102 >0, py+pp =1

Closed-loop stability can be achieved even with a
limited number of iterations p inside the sampling time



Distributed MPC

a noniterative, noncooperative algorithm

with neighbor-to-neighbor communication (DPC)

inspired by Farina and Scattolini: “Distributed non-cooperative MPC with neighbor-to-
neighbor communication ”, IFAC World Congress, 2011

A robust approach is used
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reference
trajectories

%y (K)o %, (k+N) ~~~~~
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w, (k)

S1: Xy (K +1) = Ay (K) + A X, (K) + Byt (K) +By5 (X, (K) = X, (K)
S2: Xy (k+1) = Ay Xy (K) + Ayy X (K) + By, (K) AZl(Xl(k) — X, (K)

W, (k)




Distributed MPC
DPC -2

Each subsystem i=1,2 guarantees that X; (k) —X; (k) € @,
Therefore w; (k) eW; = A; D ;

and the design problem is transformed in a couple of
standard robust design problems for the two subsystems

S1: X (k+1) = Ayx(K) + A Xy (K) + Baug (K) +wy (k) , wy eW,
S2: Xy (k+1) = Ay Xy (K) + Ay X, (K) + Booly (K) + Wy (K) , Wy €W,

The “tube approach” can be used to derive a distributed
and stabilizing solution



Distributed MPC

DPC - 3
Assume that X (k) —X; (k) e @, , Yk >0
Define the nominal model for the i-th (i=1,2) subsystem
Xni (K +1) = A X (K) + Bjuy, (k) + Aijij (k)

and the control law u;(k)=u,;(K)+K;(x;(k)-Xi(k))
where K; is a stabilizing gain, i.e. Ajx=A;;+BK, is stable, with the additional
property that, letting K=diag(K;), A+BK is stable

The “error’” model is
& (k +1) = x; (k +1) — x,; (k +1) = (A; + BjK;)e; (k) +w; (k)

For this system let E; be a robust positive invariant set, i.e.

ei(k)EEi :>ei(k+|)€Ei , |>O

and define the set Q, such that Q3; + E; c ©;



Distributed MPC
DPC -4

The MPC problem for the i-th system at time k can be formulated as
N -1
| nlin(k) J, = Z[X”i "(K+DQiXn; (kK+ 1) +uy " (K+DRjup (K+ 1] +Vg (Xp; (K+N))
i 1=0
Xni (K +1) = AiXy; (K) + Bjup; (k) + Ay X; (k)
X; (K) —X; (k) € E;
Xni(k+l)—§i (k+1)e; , 1=01,.
an(k+|)€ Xi e Ei
Unl(k+|) EUi e KiEi
Xni(k + N) € ani
The solution of this problem allows one to compute X (k+N), which is used to define the
reference trajectory for the time instant k+1

%K) X (k+1) .. Xi(k+N-2) X (k+N-1)

% (k+1) X (k+2) ... ii(k+N—‘)/ii(k+N):xni(k+N)



Distributed MPC
DPC - 5

Properties

A proper choice of the design parameters allows one to guarantee:

» Feasibility: at any time instant (provided that an initial feasible solution
is available at k=0, as standard in MPC)

» Convergence: of the state trajectories to the origin

» Mixed constraints: it is possible to include in the problem formulation
joint constraints on the states of different systems without destroying
the other properties

» Local knowledge: any subsystem does not need to know the model of
the other subsystems

» Communication requirements: Neighbor-to-neighbor communication,
noniterative scheme

» Scalability (plug and play): as the number of subsystems grows, the
information to be stored, processed and transmitted by the subsystems
not directly connected to the new ones remains constant



Distributed MPC

DPC - 6
k1o k34
WW
hi2 h3a
- — o o g
[ 2,1 3,1 4],1
T, T T T

Scope: move the trucks from the initial conditions x,{/ to the equilibrium
condition [0 0]7 subject to constraints:

Wl <1fori=1,...,3and|u’| <2

Data: bt bl <9 4

m =3, m=2 m3=3,my==06
il =[5, 0]7



Distributed MPC
DPC -7

Position of the charts (dotted red line — reference)
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DPC

a simplified implementation

»The main drawback of DPC is its heavy off-line design (computation of the sets E;,
Q, o)

» A simple, yet effective in many cases, implementation consists in simply using the
nominal model and the prediced state trajectories of the neighborhods without any
“set constrains”, but with restriced state and control constraints

N-1
min J; = Z[Xni'(k +DQi X (K+ 1) +uy: (kK +DRup, (K +D]+Vg (Xy; (k + N))
i 1=0
Xpi (K+1) = Aiixni(k)"‘Biuni(k)"‘Aijij(k)
Xni (K) = X (k)
Xni (K+1) € X;

Up; (kK +1) eU;
X, (K+N)e X no stability properties

" " standard MPC implementation
U; (k) = up; (k)

Xi, Ui, X are “reduced sets”



simplified distributed MPC

A) i
A+B
S D3
— D2 \ B

C
—(C B
D
c1 o2 )
J E
3
A B2 F
A1 D R2 R3 ]
| A+B-w+0 7 D+E==F+B [T Y D+E=F+E F
| T \IT 1T
R RV RV

subsystem1  subsystem2 subsystem3

»> 187 state variables (62 — 58 — 67)

» 6 inputs and 6 outputs (2 for each subsystem)

» stabilization problem (initial state # equilibrium state)

> reference trajectories generated from the current state to the
equilibrium as exponentials

> linear centralized and distributed MPC



Simulation results
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