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Outline and purpose of the presentationOutline and purpose of the presentation

O tliOutline
Motivations
D t li d MPCDecentralized MPC 
Distributed MPC
S CSimplified distributed MPC

Purpose
To describe some “prototype” algorithms (main ideas, no 
f l f th ti l lt )formal proofs or theoretical results). 
To illustrate a simplified implementation
T h l i h i i ifiTo test the algorithms in significant cases



Motivations for
decentralized/distributed controldecentralized/distributed control

Decomposition of a large scale MPC problem inDecomposition of a large scale MPC problem in 
smaller subproblems is useful to:

Reduce the computational load
Reduce the communication loadReduce the communication load
Improve the robustness with respect to failures in 
the transmission of information and/or in the centralthe transmission of information and/or in the central
control unit
Improve the modularity and the flexibility of theImprove the modularity and the flexibility of the 
system
Synchronize subsystems working at different timey y g
scales



Distributed control of large scale systemsDistributed control of large scale systems
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Coordination of independent systems

smart grids with
distributed generation 

industrial systemsy

autonomous
vehiclesvehicles



MPC basic formulation
state feedback 
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MPC basic formulation - 2

At any time k find the sequence

(k) (k+1) (k+N 1)

minimizing the cost function (Q>0, R>0)
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Then use only the first element of the optimal control sequence. This 
implicitly defines the MPC time‐invariant control law
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MPC basic formulation - 3
Typical choices – 1
auxiliary control law u=KLQx
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terminal cost Vf=x’Px

terminal set
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P is in general a matrix without a block diagonal structure
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Typical choices - 2

auxiliary control law u=0
Terminal cost Vf=0

{Terminal set {0}



Robust MPC
“tube-based” approachtube based  approach

W.Langson, I. Chryssochoos, S.V. Rakovic, D.Q. Mayne: “Robust model predictive
control using tubes”, Automatica, Vol. 40, n.1, 2004.

)()()()1( kwkBukAxkx ++=+System

WwUuXx ∈∈∈   ,  ,Constraints

W is a compact and convex set containing the origin

)()()1( kBukAxkx +=+Nominal model )()()1( kBukAxkx nnn +=+Nominal model

Consider the control law u(k)=u (k)+K(x(k)-x (k))Consider the control law u(k) un(k)+K(x(k)-xn(k))

where K is a stabilizing gain, i.e. AK=A+BK is stable



Robust MPCRobust MPC
“tube-based” approach – 2

Now let e(k)=x(k)-xn(k), 

)()()1( kwkeAke +=+

and define E as a “disturbance invariant set” such that
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and define E as a disturbance invariant set  such that
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If the following constraints are fulfilled

KEUUuEXXx nnnn      ,   =∈=∈

one has ,                  andEkeEe ∈∈∀ )( ,)0( Xkx ∈)( Uku ∈)(



Robust MPC
“tube-based” approach - 3tube based  approach 3

For the nominal model solve the MPC problem
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Robust MPC
“tube-based” approach – an extensiontube based  approach an extension

D.Q. Mayne, M.M. Seron, S.V. Rakovic: “Robust model predictive control of linear
systems with bounded disturbances”, Automatica, Vol. 41, n.2, 2005.

At any time instant k it is possible to optimize also with
respect to the initial state xn(k)
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This leads to the control law u(k)=K (x(k)) instead ofThis leads to the control law u(k)=KMPC(x(k)) instead of
u(k)=KMPC(x(k),xn(k)) 



Decentralized
dand

distributed MPCdistributed MPC



A simple example for
decentralized/distributed MPCdecentralized/distributed MPC

S b t 1 S bs stem 2

S1 S2

Subsystem 1
(agent 1)

Subsystem 2
(agent 2)
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polytopic sets containing the originpolytopic sets containing the origin



Special cases

S1 S2

Subsystem 1
( t 1)

Subsystem 2
( t 2)

S1 S2

Input coupled systems

(agent 1) (agent 2)

)()()()1(  :1 2121111111 kuBkuBkxAkxS ++=+

Input-coupled systems

)()()()1(  :2 2221212222 kuBkuBkxAkxS ++=+

It is possible to reformulate the general system in this
way, but a nonminimal representation is obtained



Special cases

S1 S2

Subsystem 1
(agent 1)

Subsystem 2
(agent 2)( g ) ( g )

State-coupled systems

)()()()1(  :1 1112121111 kuBkxAkxAkxS ++=+

p y

)()()()1(  :2 2222221212 kuBkxAkxAkxS ++=+

It is possible to reformulate the general system in this
way, but additional delays have to be forced into some 

input couplings



A remark

Let the original system be described in continuous time
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with “sparse” matrices, for example with most of the elements of A12, A21, B12, B21
equal to zero (or zero)equal to zero (or zero).
Its discretization with the ZOH formula, with the Tusting rule or with the backward
Euler method leads to a discrete time system with “full” matrices A and B.

The forward Euler method preserves the stucture of the matrices A and B, but
can lead to unstable discrete time models even though the original continuous
time system is stabletime system is stable.

Is it worth developing new distributed MPC algorithms for continuous time
systems?systems? 



General MPC problem
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General MPC problem
remarksremarks

1. the cost function is formally separable
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Decentralized/distributed MPC
two main approaches

Subsystem 1 Subsystem 2

S1 S2

Subsystem 1
(agent 1)

Subsystem 2
(agent 2)

1 Robust MPC1. Robust MPC
the effect of the other subsystem is viewed as a 
disturbance to be rejectedd stu ba ce to be ejected

)()()()1(:1 1112121111 kuBkxAkxAkxS ++=+

w1
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Decentralized/distributed MPC
t i htwo main approaches

S1 S2

Subsystem 1
(agent 1)

Subsystem 2
(agent 2)

“G th ” MPC2.  “Game-theory” MPC
the two agents play a game, which can be either
cooperative or not (Pareto or Nash equilibra are searchedcooperative or not (Pareto or Nash equilibra are searched
for depending on the local or global objective of each
agent, or player)g p y )



Decentralized controlDecentralized control

Inputs and outputs are grouped into non overlapping pairs
/ /Local regulators have limited information on the input /state/outputs

Decentralization is independent of the complexity of the local regulators 
(which can rely on the model of the whole system) ( c ca e y o t e ode o t e o e syste )
Some systems cannot be stabilized with a decentralized control 
structure (presence of fixed modes)
V f MPC l i h i h d i il blVery few MPC algorithms with guaranteed properties are available 



Distributed control

Information is transmitted among local regulators
It can concern future (predicted) control sequences orIt can concern future (predicted) control sequences or 
state trajectories
In the first case, the local regulators must know theIn the first case, the local regulators must know the 
whole model of the system



Distributed control algorithms
Propertiesp

Fully connected: all-to-all communication. Information is 
transmitted from any local regulator to all the others
Partially connected: neighbor-to-neighbor communication. 
Information is transmitted among the local regulators of 
subsystems with a direct dynamic influence 

Fully connected Partially connected

l l llocal regulators

transmission of information



Distributed control algorithms
propertiesp p

Iterative: multiple transmissions among local regulators 
ithi h li tiwithin each sampling time 

Non iterative: only one iteration within the sampling time
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2
1

1
1 kukuku p

R1 R2

21

distributed MPC algorithms based on the game theory approach

),...(),...,(),( 2
2
2

1
2 kukuku p

g g y pp
are iterative, since they must “negotiate” their control action

distributed MPC approaches based on robust control are nondistributed MPC approaches based on robust control are non 
iterative



Distributed control algorithms
propertiesp p

Cooperating: each local regulator minimizes a global cost function
I d d t h l l l t i i i l l t f tiIndependent: each local regulator minimizes a local cost function
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Cooperating
both MPC1 and MPC2 aim at

Independent
MPC1 minimizes J1

R1 R2 R1 R2

both MPC1 and MPC2 aim at 
minimizing J1+J2

MPC1 minimizes J1
MPC2 minimizes J2

distributed MPC algorithms based on the game theory approach
can be cooperating or independentcan be cooperating or independent

distributed MPC approaches based on robust control are 
independent



Distributed algorithms
dditi l l ifi tian additional classification

The distributed algorithms described in the literature canThe distributed algorithms described in the literature can 
be divided in two main classes:

distributed optimization approaches: the goal is to
decompose the large-scale optimization problem into
smaller subproblems possibly with a centralsmaller subproblems, possibly with a central
coordinator (hierarchical structure)

distributed control algorithms: all the computations are 
distributed over the local MPC regulators (“flat” 
structure)

This classification tends to be obsolete new distributedThis classification tends to be obsolete, new distributed
optimization algorithms do not need a central coordinator



Decentralized and distributed MPC 
some “prototype” algorithms

In the following the goal is to present some 
approaches followed in the development ofapproaches followed in the development of

decentralized and distributed algorithms, focusing
on the main ideas rather than on the formal

proofs of the corresponding theoretical results



Decentralized MPC
inspired by: L. Magni, R. Scattolini: “Stabilizing Decentralized Model Predictive Control of Nonlinear 

Systems”, Automatica, Vol. 42, n. 7, pp. 1231-1236, 2006.
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asymptotically decaying
disturbances

Each local MPC regulator solves a local optimization problem where an
additional contraction constraint is added to force the state trajectory to
converge to the origin (despite the effect of the mutual influences and of the 
di b )
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(nominal model)

disturbances)

ii
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true trajectory i=1,2
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A robust approach (in decentralized control the robust approach seems to be
the only possibility)



Distributed MPC
an iterative, non cooperative algorithm

inspired by Rawlings and Mayne: “Model predictive control theory and design”, 
Nob Hill Pub 2009Nob Hill Pub, 2009
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Distributed MPC
an iterative noncooperative algorithm

Inside the sampling time k many iterations (negotiation)

an iterative noncooperative algorithm

Inside the sampling time k, many iterations (negotiation) 
p=1,2,…, are performed between the local subsystems

At any iteration p, subsystem i, i=1,2, solves its own
optimization problem by minimizing Ji(xi,ui)
with respect to the sequence (k) (k+N 1)with respect to the sequence ui(k), …, ui(k+N-1)
and using the sequence
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computed by the other subsystem at the previous iteration
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Distributed MPC
an iterative noncooperative algorithm

Main problems

Inside the sampling time, convergence of the 
iterations is not guaranteed

Even if convergence is obtained, the resulting control
l b t t bili ilaw can be not stabilizing

The adopted noncooperative approach leads to aThe adopted noncooperative approach leads to a 
Nash equilibrium and does not guarantee any

stability resulty



Distributed MPC
an iterative, cooperative algorithm

inspired by Rawlings and Mayne: “Model predictive control theory and design”, Nob Hill Pub, 2009

The only difference with respect to the previous iterative 
algorithm is that each subsystem minimizes the overall
performance index

( ) ( ) 1  ,  0,  ,  ,, 212122221111 =+>+= ρρρρρρ uxJuxJJ

Closed loop stability can be achieved even with aClosed-loop stability can be achieved even with a 
limited number of iterations p inside the sampling time



Distributed MPC
a noniterative, noncooperative algorithma noniterative, noncooperative algorithm

with neighbor-to-neighbor communication (DPC)
inspired by Farina and Scattolini: “Distributed non-cooperative MPC with neighbor-to-

neighbor communication ” IFAC World Congress 2011neighbor communication , IFAC World Congress, 2011

A robust approach is used
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Distributed MPC
DPC 2DPC - 2

Each subsystem i=1 2 guarantees that kxkx Φ∈− )(~)(Each subsystem i=1,2 guarantees that iii kxkx Φ∈− )()(

Therefore jijii AWkw Φ=∈)( jijii )(

and the design problem is transformed in a couple of
standard robust design problems for the two subsystemsstandard robust design problems for the two subsystems
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The “tube approach” can be used to derive a distributed
and stabilizing solutionand stabilizing solution



Distributed MPC
DPC - 3DPC 3

Assume that 0  ,  )(~)( ≥∀Φ∈− kkxkx iii

Define the nominal model for the i-th (i=1,2) subsystem

)(~)()()1( kxAkuBkxAkx jijiniiniiin ++=+

and the control law ui(k)=uni(k)+Ki(xi(k)-xni(k))
where Ki is a stabilizing gain, i.e. AiK=Aii+BiKi is stable, with the additional
property that, letting K=diag(Ki), A+BK is stable

The “error” model is
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F thi t l t E b b t iti i i t t iFor this system let Ei be a robust positive invariant set, i.e. 
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and define the set Ωi such that iii E Φ⊆+Ω



Distributed MPC
DPC - 4DPC 4

The MPC problem for the i-th system at time k can be formulated as
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The solution of this problem allows one to compute xni(k+N), which is used to define the 
reference trajectory for the time instant k+1reference trajectory for the time instant k+1
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Distributed MPC
DPC - 5

Properties

A proper choice of the design parameters allows one to guarantee:A proper choice of the design parameters allows one to guarantee:

Feasibility: at any time instant (provided that an initial feasible solution
i il bl t k 0 t d d i MPC)is available at k=0, as standard in MPC)
Convergence: of the state trajectories to the origin
Mixed constraints: it is possible to include in the problem formulationMixed constraints: it is possible to include in the problem formulation
joint constraints on the states of different systems without destroying
the other properties
Local knowledge: any subsystem does not need to know the model of
the other subsystems
Communication requirements: Neighbor-to-neighbor communication,Communication requirements: Neighbor to neighbor communication, 
noniterative scheme
Scalability (plug and play): as the number of subsystems grows, the 
i f ti t b t d d d t itt d b th b tinformation to be stored, processed and transmitted by the subsystems
not directly connected to the new ones remains constant



Distributed MPC
DPC 6DPC - 6

S th t k f th i iti l diti [i] t th ilib iScope: move the trucks from the initial conditions x0
[i] to the equilibrium

condition [0 0]T subject to constraints:

Data:



Distributed MPC
DPC 7DPC - 7

Position of the charts (dotted red line – reference)Position of the charts (dotted red line reference)
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DPC
a simplified implementation

The main drawback of DPC is its heavy off line design (computation of the sets EThe main drawback of DPC is its heavy off-line design (computation of the sets Ei,
Ωi, Φi)
A simple, yet effective in many cases, implementation consists in simply using the 
nominal model and the prediced state trajectories of the neighborhods without anynominal model and  the prediced state trajectories of the neighborhods without any
“set constrains”, but with restriced state and control constraints
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simplified distributed MPC

A

C B

D

F

RV

D

VVR R

subsystem1 subsystem2 subsystem3

187 state variables (62 – 58 – 67) 
6 inputs and 6 outputs (2 for each subsystem)
stabilization problem (initial state ≠ equilibrium state)

f t j t i t d f th t t t t threference trajectories generated from the current state to the 
equilibrium as exponentials
linear centralized and distributed MPC 



Simulation results
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